
Under review as a conference paper at ICLR 2023

PRE-TRAINING FOR ROBOTS: LEVERAGING DIVERSE
MULTITASK DATA VIA OFFLINE RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent progress in deep learning highlights the tremendous potential of utiliz-
ing diverse datasets for achieving effective generalization and makes it enticing
to consider leveraging broad datasets for attaining more robust generalization in
robotic learning as well. However, in practice we likely will want to learn a new
skill in a new environment that is unlikely to be contained in the prior data. There-
fore we ask: how can we leverage existing diverse offline datasets in combination
with small amounts of task-specific data to solve new tasks, while still enjoying
the generalization benefits of training on large amounts of data? In this paper,
we demonstrate that end-to-end offline RL can be an effective approach for doing
this, without the need for any representation learning or vision-based pre-training.
We present pre-training for robots (PTR), a framework based on offline RL that at-
tempts to effectively learn new tasks by combining pre-training on existing robotic
datasets with rapid fine-tuning on a new task, with as a few as 10 demonstrations.
At its core, PTR applies an existing offline RL method such as conservative Q-
learning (CQL), but extends it to include several crucial design decisions that en-
able PTR to actually work and outperform a variety of prior methods. To the best
of our knowledge, PTR is the first offline RL method that succeeds at learning
new tasks in a new domain on a real WidowX robot with as few as 10 task demon-
strations, by effectively leveraging an existing dataset of diverse multi-task robot
data collected in a variety of toy kitchens. We present an accompanying overview
video at this Anonymous URl: https://www.youtube.com/watch?v=
yAWgyLJD5lY&ab_channel=PTRICLR.

1 INTRODUCTION

Robotic learning methods based on reinforcement learning (RL) or imitation learning (IL) have led
to a number of impressive results (Levine et al., 2016; Kalashnikov et al., 2018; Young et al., 2020;
Kalashnikov et al., 2021; Ahn et al., 2022), but the generalization abilities of policies learned in this
way are typically limited by the quantity and breadth of the data available to train them. In prac-
tice, the cost of real-world data collection for each task means that such methods often use smaller
datasets, which leads to more limited generalization. A natural way to circumvent this limitation
is to incorporate existing diverse robotic datasets into the training pipeline of a robot learning al-
gorithm, analogously to how pretraining on diverse prior datasets has enabled rapid finetuning in
supervised learning fields, such as computer vision and NLP. But how can we devise algorithms that
enable effective pretraining for robotic RL?

In most cases, answering this question requires a method that can pre-train on existing data from a
wide range of tasks and domains, and then provide a good starting point for efficiently learning a
new task in a new domain. Prior approaches utilize such existing data by running imitation learn-
ing (IL) (Young et al., 2020; Ebert et al., 2021; Shafiullah et al., 2022) or by using representation
learning (Nair et al., 2022) methods for pre-training and then fine-tuning with imitation learning.
However, this may not necessarily lead to representations that can reason about the consequences
of their actions. In contrast, end-to-end RL can offer a more general paradigm, that can be effective
for both pre-training and fine-tuning, and is applicable even when assumptions in prior work are vi-
olated. Therefore we ask, can we devise a simple and unified framework where both the pretraining
and finetuning process uses RL? This presents significant challenges pertaining to leveraging large
amounts of offline multi-task datasets, which would require high capacity models and this can be
very challenging (Bjorck et al., 2021).

1

https://www.youtube.com/watch?v=yAWgyLJD5lY&ab_channel=PTRICLR
https://www.youtube.com/watch?v=yAWgyLJD5lY&ab_channel=PTRICLR

Under review as a conference paper at ICLR 2023

Offline RL Fine-tuning on Target Data + Bridge DataOffline RL Pretraining on Bridge Dataset

10 domains
100 tasks

12k demos

Put Sushi in Pot, Task ID:

Put Eggplant on Plate, Task ID:

Put Eggplant on Plate, Task ID:

put corn in bowl, Task ID:

Target dataset

1. Pre-train on bridge data 2. Fine-Tune on Mix of Bridge Data and Target Data

Batch-mixing bridge and target data

Figure 1: Overview of PTR: We first perform general offline pre-training on
diverse multi-task robot data and subsequently finetune on one or several a target
tasks while mixing batches between the prior data and the target dataset using a
batch mixing ratio of τ .

In this paper, we show
that multi-task offline
RL pretraining on di-
verse multi-task demon-
stration data followed
by offline RL finetuning
on a very small num-
ber of trajectories (as
few as 10 trials, a max-
imum of 15) can in-
deed be made into an ef-
fective robotic learning
strategy that in practice
can significantly outper-
form methods based on
imitation learning pre-training as well as RL-based methods that do not employ pre-training. This is
surprising and significant, since prior work (Mandlekar et al., 2021) has claimed that IL methods are
superior to offline RL when provided with human demonstrations. Our framework, which we call
PTR (pre-training for robots), is based on the CQL algorithm (Kumar et al., 2020), but introduces a
number of design decisions that we show are critical for good performance and enable large-scale
pre-training. These choices include a specific choice of architecture for providing high capacity
while preserving spatial information, the use of group normalization, and an approach for feeding
actions into the model that ensures that actions are used properly for value prediction. We exper-
imentally validate these design decisions and show that PTR benefits from increasing the network
capacity, even with large ResNet50 architectures, which have never been previously shown to work
with offline RL. Our experiments utilize the bridge dataset (Ebert et al., 2021), which is an exten-
sive previously collected dataset consisting of thousands of trials for a very large number of robotic
manipulation tasks in multiple environments. A schematic of our framework is shown in Figure 1.

The main contribution of this work is a demonstration that PTR can enable offline RL pre-training
on diverse real-world robotic data, and that these pre-trained policies can be fine-tuned to learn new
tasks with just 10-15 demonstrations. This is a significant improvement over prior RL-based pre-
training and finetuning methods, which typically require hundreds or even thousands of trials (Singh
et al., 2020; Kalashnikov et al., 2021; Julian et al., 2020; Chebotar et al., 2021; Lee et al., 2022a).
We present a detailed analysis of the design decisions that enable offline RL to provide an effec-
tive pretraining framework, and show empirically that these design decisions are crucial for good
performance. Although the individual components that constitute PTR are not especially innovative
and are based closely on prior work, the combination of these components is novel, and we show
that this novel combination is important to make offline RL into a viable pre-training tool that can
outperform other pre-training approaches and other RL-based policy learning strategies.

2 RELATED WORK

A number of prior works have proposed algorithms for offline RL (Fujimoto et al., 2018; Kumar
et al., 2019; 2020; Kostrikov et al., 2021a;b; Wu et al., 2019; Jaques et al., 2019; Fujimoto & Gu,
2021; Siegel et al., 2020). Especially, many prior works study offline RL with multi-task data and
devise techniques that perform parameter sharing(Wilson et al., 2007; Parisotto et al., 2015; Teh
et al., 2017; Espeholt et al., 2018; Hessel et al., 2019), or perform data sharing or relabeling (Yu
et al., 2021; Andrychowicz et al., 2017; Yu et al., 2022; Kalashnikov et al., 2021; Xie & Finn, 2021).
In this paper, our goal is not to develop new offline RL algorithms, but to show that these offline RL
algorithms can be an effective tool to pre-train from prior data and then fine-tune to new tasks, and
we illustrate the design decisions required to get such methods to work well.

Unlike methods for finetuning from a learned initialization (Nair et al., 2020; Kostrikov et al., 2021b;
Lee et al., 2022c), which typically perform online interaction, we consider the setting where we do
not use any online interaction and do not require access to a reward function. This resembles the
problem setting considered by offline meta-RL methods (Li et al., 2019; Dorfman & Tamar, 2020;
Mitchell et al., 2021; Pong et al., 2021; Lin et al., 2022), however, our approach is much more
data-efficient and simple as we simply finetune the very same offline RL algorithm.

2

Under review as a conference paper at ICLR 2023

In our experiments, we compare our approach to other approaches that attempt to leverage large,
diverse datasets via representation learning (Mandlekar et al., 2020; Yang & Nachum, 2021; Yang
et al., 2021; Nair et al., 2022; He et al., 2021), as well as other methods for learning from human
demonstrations, such as behavioral cloning methods with expressive policy architectures (Shafiullah
et al., 2022). We find that PTR generally outperforms these methods. We also perform an empirical
analysis to identify the design decisions behind the improved performance of RL-based PTR on
demonstration data compared to BC, and find that the gains largely come from the efficacy of the
value function in identifying the most “critical” decisions in a trajectory. This insight is in contrast
to prior work (Mandlekar et al., 2021), which argues that offline RL methods often do not work on
real robots with human demonstration data, and supports the analysis in prior work (Kumar et al.,
2022) that aims to understand when offline RL outperforms BC with demonstration data.

Perhaps the most closely related to our work are prior methods that run model-free offline RL on
diverse real-world data and then finetune to new tasks (Singh et al., 2020; Kalashnikov et al., 2021;
Julian et al., 2020; Chebotar et al., 2021; Lee et al., 2022a). These prior methods typically per-
form online fine-tuning which requires complex reset mechanisms and uses significantly more data.
(Chebotar et al., 2021; Kalashnikov et al., 2021) require thousand trials for a new tasks, and (Julian
et al., 2020; Lee et al., 2022a) require multiple hours or even days of online collection) to learn new
tasks. While these prior methods are autonomous, our framework PTR performs offline fine-tuning
to learn a new task with as few as 10 demonstrations, and thus provides a complementary advantage.

3 PRELIMINARIES AND PROBLEM STATEMENT

RL methods are derived under the formal model of a Markov decision process (MDP), which is a
tupleM = (S,A, T, r, µ0, γ), where S,A denote the state and action spaces, and T (s′|s,a), r(s,a)
represent the dynamics and reward function respectively. µ0(s) denotes the initial state distribution,
and γ ∈ (0, 1) denotes the discount factor. The policy π(a|s) learned by RL agents must optimize
the long-term cumulative reward, maxπ J(π) := E(st,at)∼π[

∑
t γ

tr(st,at)].

Problem statement. Our goal is to learn general-purpose initializations from a broad, multi-task
offline dataset and then finetune these initializations to specific downstream tasks. We denote the
general-purpose offline dataset by D, which is partitioned into k chunks. Each chunk contains
data for a given robotic task (e.g. picking and placing a given object) collected in a given domain
(e.g. a particular kitchen). See Figure 1 for an illustration. Denoting the task/domain abstractly
using an identifier i, the dataset can be formally represented as D = ∪ki=1 (i,Di), where we de-
note the set of training tasks concisely as Ttrain = [k]. Chunk Di consists of data for a given
task identifier i, and consists of a collection of transition tuples, Di = {(sij ,aij , rij , s′ij)}nj=1 col-
lected by a demonstrator on task i. Our goal is to utilize this multi-task dataset D, to find the
best possible policy for one or multiple target tasks (denoted without loss of generality as task
Ttarget = {k + 1, · · · , n}), for which no experience is observed in D. While the diverse dataset D
does not contain any experience for the target tasks, we are provided with a very small dataset of
demonstrations D∗ := {D∗k+1,D∗k+1, · · · ,D∗n} corresponding to each of the target tasks. Note that
the size of D∗ is extremely small: in our experiments we consider between 10 to 15 demonstrations
for a given target task, such that a policy that simply ignores the diverse offline dataset is unlikely to
succeed. Our goal is to attain the best possible policy for tasks Ttarget at the end.

Background and preliminaries. The Q-value of a given state-action tuple Qπ(s,a) for a policy π
is the long-term discounted reward attained by executing action a at state s and following policy π
thereafter. The Q-function satisfies the Bellman equation Qπ(s,a) = r(s,a) + γEs′,a′ [Qπ(s′,a′)].
Typical model-free offline RL methods (Fujimoto et al., 2018; Kumar et al., 2019; 2020) alternate
between estimating the Q-function of a fixed policy π using the offline datasetD and then improving
the policy π to maximize the learned Q-function. Our system, PTR, utilizes one such model-free
offline-RL method, conservative Q-learning (CQL) (Kumar et al., 2020). We discuss how we adapt
CQL for pre-training on diverse data followed by single-task finetuning in Section 4.

Tasks and domains. As discussed, our problem involves pre-training on data from many tasks
and domains, which we source from the bridge dataset Ebert et al. (2021), and finetuning to a new
task in a new domain. Our terminology for “task” and “domain” follows Ebert et al. (2021): a task
corresponds to a skill-object pair, such as “put potato in pot” and a domain corresponds to a particular
environment, which in the case of the bridge dataset consists of different toy kitchens, potentially
with different viewpoints and robot placements. We assume the new tasks and environments come
from the same training distribution, but are not seen in the prior data.

3

Under review as a conference paper at ICLR 2023

4 LEARNING POLICIES FOR NEW TASKS FROM OFFLINE RL PRE-TRAINING
To effectively solve new tasks from diverse offline datasets, a robotic learning framework must: (1)
extract useful skills out of the diverse robotic dataset, and (2) rapidly specialize the learned skills
towards an unseen target task, given only a minimal amount of experience from this target task.
In this section, we present our framework, PTR, that provides these benefits by training a single,
highly-expressive deep neural via offline RL, and then specializes it on the target task with a small
amount of data. We will first present the key components of our robotic framework in Section 4.1
and then discuss our novel technical contributions, the practical design choices that are crucial for
attaining good performance in Section 4.2.

4.1 THE COMPONENTS OF PTR
To satisfy both requirements (1) and (2) from above, our framework uses a multi-task offline RL
approach, where the policy and Q-function are conditioned on a task identifier. This allows us to
share a single set of weights for all possible tasks in the diverse offline dataset, providing a general-
purpose pre-training procedure that can use diverse data. Once a policy is obtained via this multi-
task pre-training process, we adapt this policy for solving a new target task by utilizing a very small
amount of target task data. We describe the two phases, pre-training and fine-tuning, below:

Phase 1: Multi-task offline RL pre-training. In the first phase, PTR learns a single Q-function
and policy for all tasks i ∈ Ttrain conditioned on the task identifier i, i.e., Qφ(s,a; i) and πθ(a|s, i),
via multi-task offline RL. We use a one-hot task identifier that imposes minimal assumptions on
the task structure. For multi-task offline RL, we use the conservative Q-learning (CQL) (Kumar
et al., 2020) algorithm, extending it to the multi-task setting. This amounts to training the multi-
task Q-function against a temporal difference error objective along with a regularizer that explicitly
minimizes the expected Q-value under the learned policy πθ(a|s; i), to prevent overestimation of
Q-values for unseen actions, which can lead to poor offline RL performance (Kumar et al., 2019).
Formally, the training objective for our multi-task Q-function, as prescribed by CQL, is given by:

min
φ

α

 E
i∼Ttrain,

s∼Di,a∼π

[Qφ(s,a; i)]− E
i∼Ttrain,
s,a∼D

[Qφ(s,a; i)]

+
1

2
E

i∼Ttrain,

s,a,s′∼D
a′∼π

[(
Qθ(s,a; i)− r − γQ̄(s′,a′)

)2]
,

Q̄ denotes a target Q-network, which a delayed copy of the current Q-network. We train φ by
running gradient descent on the above objective, and then optimize the learned policy to maximize
the learned Q-values, along with an additional entropy regularizer as shown below:

max
θ

Ei∼Ttrain,s∼Di
[
Ea∼πθ(·|s;i)[Qφ(s,a; i)]

]
+ βH(πθ).

At the end of this multi-task offline training phase, we obtain a policy πoff
θ and Q-function Qoff

φ , that
are ready to be finetuned to a new downstream task.

Phase 2: Offline fine-tuning of πoff
θ and Qoff

φ to target tasks Ttarget. In the second phase, PTR
attempts to learn a policy to solve one or more downstream tasks by adapting πoff

θ , using a limited
set of user-provided demonstrations that we denote D∗. Our method for adaptation is simple yet
effective: we incorporate the new target task data into the replay buffer of the very same offline
multi-task CQL algorithm from the previous phase and resume training from Phase 1. However,
naı̈vely incorporating the target task data into the replay buffer might still not be effective since this
scheme would hardly ever train on the target task data during adaptation due to the large imbalance
between the sizes of the few target demonstrations and the large pre-training dataset. To address
this imbalance, each minibatch passed to multi-task CQL during offline fine-tuning consists of a
τ fraction of transitions from bridge demonstration data and 1 − τ fraction of transitions from the
target dataset. By setting τ to be small, we are able to prioritize multi-task CQL to look at target
task data frequently, enabling it to make progress on the downstream task without overfitting.

Handling task identifiers for new tasks. The description of our system so far has assumed that the
downstream test tasks are identified via a task-identifier. In practice, we utilize a one-hot vector to
indicate the index of a task. While such a scheme is simple to implement, it is not quite obvious
how we should incorporate new tasks with one-hot task identifiers. In our experiments, we use two
approaches for solving this problem: first, we can utilize a larger one-hot encoding that incorporates
tasks in both Ttrain and Ttarget, but never train the network corresponding to Ttarget. The Q-function
and the policy are trained on these placeholder task identifiers only during fine-tuning in Phase 2.

4

Under review as a conference paper at ICLR 2023

Another approach for handling new tasks is to not use unique task identifiers for every new task,
but rather “re-target” or re-purpose existing task identifiers for new target tasks in the fine-tuning
phase. PTR provides the option: we can simply assign an already existing task identifier to the target
demonstration data before fine-tuning the learned Q-function and the policy. For example, in our
experiments in Section 5 we re-target the put sushi in pot task which uses orange transparent pots to
instead put the sushi into a metal pot, which was never seen during training.

A complete overview of our approach is shown in Figure 1. We use a value of α = 10.0 in multi-
task CQL and τ = 0.8 for mixing the pre-training dataset and the target task dataset in most of our
experiments in the real-world, without requiring any domain-specific tuning.

4.2 IMPORTANT DESIGN CHOICES AND PRACTICAL CONSIDERATIONS

Even though the components discussed in Section 4.1 are sufficient to give rise to an offline pre-
training and fine-tuning algorithm, as we show in Section 4, this approach does not lead very good
results just on its own. Instead, we must make some crucial design decisions, including designing
neural network architectures that can learn from diverse data, cross-validation metrics to identify
policies we expect to be effective after fine-tuning, and the design of the reward functions that can
be used to label the pre-training dataset. While these design choices are not individually innovative,
we will show that making the right choices for these components leads to an improvement of more
than 3.5x in final real-world performance. Thus, describing, analyzing, and evaluating these design
choices is a significant and important contribution of this work that we hope will facilitate real-world
application of offline RL pretraining.

ResNet34

Action vector duplicated

Task ID

Learned
spatial

embeddings

Output ResNet

Featuremaps

Fully-connected Layers

Figure 2: The Q-function architecture for PTR. The
encoder is a ResNet34 with group normalization along
with learned spatial embeddings (left). The decoder
(right) is a MLP with the action vector duplicated and
passed in at each layer. A one-hot task identifier is also
passed into the input of the decoder.

Policy and Q-function architectures. Perhaps
the most crucial design decision for our ap-
proach is the neural network architecture for
representing πoff and Qoff. Since we wish to
fine-tune the policy for different tasks, we must
use high-capacity neural network models for
representing the policy and the Q-function. We
experimented with a variety of standard (high-
capacity) architectures for vision-based robotic
RL. This includes standard convolutional archi-
tectures (Singh et al., 2020) and IMPALA ar-
chitectures (Espeholt et al., 2018). However,
we observed that these standard models were
unable to effectively handle the diversity of the
pre-training data, and often collapsed. Then,
we attempted to utilize standard ResNets (He et al., 2016) (ResNet-18, Resnet-34, and their adap-
tations to imitation problems from Ebert et al. (2021)) to represent Qφ, but faced divergence chal-
lenges similar to prior efforts with batch normalization (Bjorck et al., 2021; Bhatt et al., 2019). We
found that by simply replacing batch normalization layers – known to be hard to train with TD-
learning (Bhatt et al., 2019) – with group normalization layers (Wu & He, 2018), we were able to
stably train ResNet Q-functions. See Appendix E for quantitative studies comparing these choices.
Unlike prior work (Lee et al., 2022b), we observed that with group normalization, we attain favor-
able scaling properties of PTR with parameters: the more the parameters, the better the performance
as shown in Figure 6. We also observed that choosing an appropriate method for converting the
3-dimensional feature-map tensor produced by the ResNet into a one-dimensional embedding plays
a crucial role for learning accurate Q-functions and obtaining functioning policies. Unlike standard
ResNet architectures for supervised learning, simply computing global average pooling (as used
in many classification architectures) performs poorly. Instead we point-wise multiply the learned
feature-map with a 3-dimensional parameter tensor before computing sums over the spatial dimen-
sions which allows the network to explicitly encode spatial information. We refer to this technique
as “learned spatial embeddings”. An illustration of this architecture is provided in Figure 2. As
detailed in Appendix E, Table 10, we find that utilizing this leads to about a 2x improvement.

Next, we found that a Q-function Qφ(s,a) obtained by running naı̈ve multi-task CQL tends to not
use the action input a effectively, due to strong correlations between s and a in the offline data, which
is almost always the case for close-to-optimal trajectories. As a result, policy improvement against
such a Q-function overfits to these correlations, producing poor policies. To resolve this issue, we

5

Under review as a conference paper at ICLR 2023

modified the architecture of Q-network, to pass the action a as input at each fully connected layer,
which (as shown in Figure 2 and Appendix E, Table 11), greatly alleviates the issue, improving the
performance by over 3.5x compared to naı̈ve CQL.

Zero Shot Q-Values Chosen Finetuned Checkpoint Q-ValuesOverfitted Finetuned Checkpoint Q-Values

Figure 3: Top: PTR policy rollout of task “put sushi
in pot” re-targeted to metal-pot. Bottom: left: Q-value
over time for a target task trajectory before fine-tuning
begins (zero-shot), middle: Q-values for a checkpoint
that has started to overfit after being trained for long and
exhibits drastic changes in Q-values over the course of
a trajectory, and right: Q-values for a checkpoint that
attains high performance.

Cross-validation after finetuning. Since we
wish to learn task-specific policies that do not
overfit to small amounts of data, thereby los-
ing their generalization ability, we must ap-
ply the right number of gradient steps during
finetuning: too few gradient steps will produce
policies that do not succeed at the target tasks,
while too many gradient steps will give policies
that have likely lose the generalization ability
of the pre-trained policy. To handle this trade-
off, we use a simple heuristic: we run finetun-
ing for many iterations while also plotting the
learned Q-values over a held-out dataset of tra-
jectories from the target task. Then, we pick
the checkpoint for which the learned Q-values
are (roughly) monotonically increasing over the
course of an held-out trajectory (see Figure 3
for an example). Empirically we find that this
heuristic guides us to identify a good checkpoints (more examples in Appendix E).

Reward specification. In this paper, we aim to pre-train on existing robotic datasets, such as the
bridge dataset (Ebert et al., 2021), which consists of human-teleoperated demonstration data. Al-
though the demonstrations are all successful, they are not annotated with any reward function. Per-
haps an obvious choice is to label the last transition of each trajectory as a success, and give it +1
binary reward. However, in several of the datasets we use, there can be a 0.5-1.0 second lag be-
tween task completion and when the episode is terminated by the data collection. To ensure that a
successful transition is not incorrectly labeled as 0, we utilized the practical heuristic of annotating
the last n = 3 transitions of every trajectory with a reward of +1 and and annotated other states
with a 0 reward. We show in Appendix C that this provided the best results. In principle, more
complicated methods of reward labeling (Eysenbach et al., 2021) could be used. However, we found
the presented rule to be simple and yet effective to learn good policies.

5 EXPERIMENTAL EVALUATION OF PTR AND TAKEAWAYS FOR ROBOTIC RL

The goal of our experiments is to validate if PTR can learn effective policies from only a handful
of user-provided demonstrations for a given target task, by effectively utilizing previously-collected
robotic datasets for pre-training. We also aim to understand whether the design decisions introduced
in Section 4.2 are crucial for attaining good robotic manipulation performance. To this end, we
evaluate PTR in a variety of robotic manipulation settings, and compare it to state of the art methods
that either do not use any form of offline RL or do not learn end-to-end by employing some form
of visual representation learning. We are considering three scenarios: (a) when the target task
requires retargeting the behavior of an existing skill, in this case changing the type of object types
it interacts with, (b) when the target task requires performing a previously observed task but this
time in a previously unseen domain, and (c) when the target task requires learning a new skill in
a new domain, by using the target demonstrations. For more details and visuals, please visit our
anonymous website at https://bit.ly/PTR_ICLR.

Real-world experimental setup. We directly utilize the publicly available bridge dataset Ebert
et al. (2021) for pre-training, as it provides a large number of robot demonstrations for a diverse set
of tasks in multiple domains, i.e. multiple different toykitchens. We use the same WidowX250 robot
platform for our evaluations. The bridge dataset contains distinct tasks, each differing in terms of the
objects that the robot interacts with and the domain the task is situated in. We assign a different task
identifier to each task in the dataset for pre-training. We also evaluate on an additional door-opening
task not present in the bridge dataset, where we collected demonstrations for opening and closing a
variety of doors, and test our system on new, unseen doors. More details of our setup can be found
in Appendix A.

6

https://bit.ly/PTR_ICLR

Under review as a conference paper at ICLR 2023

Pre-Training Task: Put
Sushi in Pot

Fine-Tuning Task: Use
metal pot instead Held-out Target Domain

a)

10
 ta

rg
et

 d
em

os
 e

ac
h

b) c)
Examples of Bridge DataExamples of Bridge Data

Figure 4: Illustrations of the three real-world experimental setups we evaluate PTR on: (a) the “put sushi
in a metallic pot” task which requires retargeting, (b) the task of opening an unseen door, and (c) fine-tuning
on several novel target tasks in a held out toykitchen environment.

Comparisons. Since the datasets we use (both the pre-training bridge dataset from (Ebert et al.,
2021) and the newly collected door opening data) consist of human demonstrations, as indicated by
prior work (Mandlekar et al., 2021), the strongest prior method in this setting is behavioral cloning
(BC), which attempts to simply imitate the action of the demonstrator based on the current state. We
incorporate BC in a pipeline similar to PTR, denoted as BC (finetune), where we first run BC on the
pre-training dataset, and then finetune it using the demonstrations on the target task using the same
batch mixing as in PTR. Additionally, we tune the hyperparameters of all our BC baselines against
the validation error on a held-out offline dataset. Next, to assess the importance of performing pre-
training followed by fine-tuning, we compare PTR to (i) the COG approach of Singh et al. (2020),
which is equivalent to jointly training with CQL on the pre-training data and the target task data from
scratch, and (ii) multi-task offline CQL (CQL (0-shot)) that does not use the target demonstrations
at all. We also make the analogous comparison for BC, jointly training BC on the pre-training and
target task data from scratch (BC (joint)) which is equivalent to (Ebert et al., 2021). For fairness of
comparison, BC, CQL, and PTR (both for 0-shot, joint-training and fine-tuning) use the same exact
architecture including our learned-spatial embedding described in subsection 4.2. In Scenario 3,
we compare PTR to other state-of-the-art representation learning methods, and policy architectures.
More implementation details can be found on our anonymous website.

Method Success rate
BC (0-shot) 0.00%
BC (finetune) 0.00%
CQL (0-shot) 6.67%

PTR (Ours) 46.67%

Table 1: Performance of PTR
for “put sushi in metallic pot”
in Scenario 1. PTR substantially
outperforms BC (finetune), even
though it is provided access to
only demonstration data. We also
show some examples comparing
some trajectories of BC and PTR
in Appendix C.

Scenario 1: Re-targeting skills for existing tasks to act on new
objects during finetuning. We utilized the subset of the bridge data
with all pick-and-place tasks in one toy kitchen for pre-training, and
selected the “put sushi in pot” task as our target task. This task is
demonstrated in the bridge dataset, but only using an orange trans-
parent pot (see Figure 4 (a)). In order to pose a scenario where the
offline policy at the end of pre-training must be re-targeted to act on
a different object, we collected only ten demonstrations that place
the sushi in a metallic pot. This scenario is challenging since the
metallic pot drastically differs from the orange transparent pot visu-
ally. By pre-training on all pick-and-place tasks in this domain (32
tasks) and jointly fine-tuning on this data and 10 demonstrations,
PTR is able to obtain a policy that is re-targeted towards the metal
pot. BC appears to be mistaking arbitrary patches on the tabletop
with the pot. Quantitatively, observe in Table 1, that PTR is able
to complete the task with reasonable accuracy, whereas 0-shot and fine-tuned BC are completely
unable to solve the task. The fact that 0-shot CQL has great difficulty solving the task indicates that
target demonstrations are necessary for solving this task, and PTR is able to make efficient use of
these demonstrations (prior work Ebert et al. (2021) also found BC performs poorly with even 50
demonstrations).

0-shot Joint Training Target data only
Task PTR (Ours) BC (fine.) CQL BC COG BC CQL BC

Open Door 60% 50% 0% 0% 25% 35% 20% 35%

Table 2: Performance of PTR (and 95% confidence interval) for opening
a new target door in Scenario 2 averaged over 20 evaluation trials. PTR out-
performs both BC (finetune) and BC (joint) given access to the same data. Note
that jointly training is worse than finetuning from the pre-trained initialization.

Scenario 2: Generaliz-
ing to previously unseen
domains. Next, we study
whether PTR can adapt
behaviors seen in the pre-
training data to new do-
mains. We study a door
opening task, which re-
quires significantly more complex maneuvers and precise control compared to the pick-and-place

7

Under review as a conference paper at ICLR 2023

tasks from above (video on the anonymous website). The target door (shown in Figure 4(b)) we wish
to open and corresponding toy kitchen domain is never seen previously in the pre-training data, and
doors in the pre-training data exhibit different sizes, shapes, handle types and visual appearances.
Due to the limited number of demonstrations and the associated task complexity, in order to suc-
ceed, an algorithm must effectively leverage the pre-training data. Concretely, for pre-training, we
used a dataset of 800 door-opening demonstrations on 12 different doors in 4 different toy kitchen
domains, and we utilize 15 demonstrations on a held-out door for finetuning. Table 2 shows that
PTR improves over both BC baselines and COG.

Interestingly, Table 2 shows that while COG by itself does not outperform BC (joint), the pre-
training and fine-tuning approach in PTR leads to significantly better performance, improving over
the best BC baseline despite using same CQL algorithm as COG. Since CQL (joint) is equivalent to
PTR, but with no Phase 1, this large performance gap indicates the efficacy of offline RL methods
trained on large diverse datasets at providing good initializations for learning new downstream tasks.
We believe that this finding may be of independent interest to robotic offline RL practitioners: when
utilizing multi-task offline RL, it might be better first to run multi-task pre-training followed by
fine-tuning, as opposed to jointly training from scratch.

BC finetuning Joint training Target data only Pre-train. rep. + BC finetune
Task PTR (Ours) BC (fine.) Autoreg. BC BeT COG BC CQL BC R3M MAE

Take croissant from metal bowl 7/10 3/10 5/10 1/10 4/10 4/10 0/10 1/10 1/10 3/10
Put sweet potato on plate 7/20 1/20 1/20 0/20 0/20 0/20 0/20 0/20 0/20 1/20

Place knife in pot 4/10 2/10 2/10 0/10 1/10 3/10 3/10 0/10 0/10 0/10
Put cucumber in pot 5/10 0/10 1/10 0/10 2/10 1/10 0/10 0/10 0/10 0/10

Table 3: Performance of PTR and other baseline methods for new tasks in Scenario 3. Note that PTR out-
performs all other baselines including BC (finetune), BC with more expressive policy classes (BeT (Shafiullah
et al., 2022), Auto-regressive), representation learning methods (Nair et al., 2022; He et al., 2021) and offline
RL with no pre-training (“Target data only”) and joint training (Singh et al., 2020; Ebert et al., 2021).

Scenario 3: Learning to solve new tasks in new domains. Unlike the two scenarios studied above,
in this scenario, we attempt to solve a new task in a new kitchen scene. This task is represented via
a unique task identifier, and we are not provided with any data for this task identifier, or even any
data with from the kitchen scene where this task is situated during pre-training. We pre-train on all
80 pick-and-place style tasks from the bridge dataset, while holding out any data from the new task
kitchen scene, and then fine-tune on 10 demonstrations for 4 target tasks independently in this new
kitchen, as shown in Table 3. Recent representation learning methods (R3M, MAE+BC) or more
expressive policy architectures (Auto-regressive and BeT) do not lead to improved performance
compared to the standard BC (finetune) approach, and we find that PTR outperforms all of these
approaches. Please find more details on the implementation of R3M, MAE+BC Auto-regressive and
BeT in Appendix D. This might appear surprising, and perhaps just a hyperparameter tuning artifact
at first, but we present additional qualitative and quantitative analysis aiming at understanding the
reasons behind why our offline RL-based PTR approach works better in the following paragraph.
Figure 5 shows a comparison of rollouts of the final policy found by PTR with rollouts from a BC
finetuning policy on the ”take croissant from metal bowl” and ”put cucumber in bowl” tasks. We
also present additional rollouts in our anonymous website.

Qualitative Comparison of BC (finetune) and PTR

BC (finetune)
Failure: grasps bowl instead of croissant when

crossiant is not underneath

PTR
Success: grasps croissant and puts by sink

Task: Take Croissant from Metal Bowl

BC (finetune)
Failure: executes an imprecise grasp, and fails to

locate the pot accurately

PTR
Success: Places Cucumber in Pot

Task: Put Cucumber in Bowl

Figure 5: Qualitative successes of PTR visualized along-
side failures of BC (finetune). As an example, observe that
while PTR is accurately able to reach to the croissant and
grasp it to solve the task, BC (finetune) is imprecise and
grasps the bowl instead of the croissant resulting in failure.

Understanding why PTR outperforms
BC baselines. One natural question to
ask given the results in this paper is: why
does utilizing an offline RL method for
pre-training and finetuning as in PTR out-
perform BC-based methods even though
the dataset is quite “BC-friendly”, consist-
ing of only demonstrations? The answer
to this question is not obvious, especially
since joint training with BC (BC (joint))
still outperforms COG in our results in Ta-
ble 3. Intuitively, we might expect that
the RL-based PTR method might be better
able to identify important decision points
in the data, thus learning more control-
centric representations, as suggested in prior work (Kumar et al., 2022). But can we analyze this
question more precisely?

8

Under review as a conference paper at ICLR 2023

To understand the reason behind improvements from RL, we perform a qualitative evaluation of
the policies learned by PTR and BC (finetune) on two tasks: take croissant from metal bowl and
put cucumber in bowl in Figure 5. We find that the failure mode of BC policies can be primarily
explained as a lack of precision in locating the object, or a prematurely-executed grasping action.
This is especially prevalent in settings where the object of interest is farther away from the robot
gripper at the initial state, and hints at the inability of BC to prioritize learning the critical decisions
(e.g., precisely moving over the object before the grasping action) over non-critical ones (e.g., the
action to take to reach nearby the object from farther away). On the other hand, RL can learn to
make such critical decisions correctly as shown in Figure 5.

Task BC (finetune) PTR AW-BC (finetune)
Cucumber 0/10 5/10 5/10
Croissant 3/10 7/10 6/10

Table 4: Performance of advantage-weighted BC
on two tasks from Table 3. Observe that weighting
the BC objective using advantage estimates from the
Q-function learned by PTR leads to much better per-
formance than standard BC (finetune), almost recover-
ing PTR performance. This test indicates that the Q-
function in PTR allows us to be accurate on the more
critical decisions, thereby preventing the failures of BC.

More concretely, to verify if the performance
benefits can be explained entirely by the abil-
ity of Q-learning to prioritize critical deci-
sions, we run a version of weighted behavioral
cloning, where the weights are derived from the
advantage estimates computed using a frozen
Q-function learned by PTR after fine-tuning:
wφ(s,a)=exp(Qφ(s,a)−maxa′ Qφ(s,a′)). As
shown in Table 6, we find that this advantage-
weighted BC (AW-BC) approach performs sig-
nificantly better than BC (finetune) method and
comparably to PTR, for two tasks (croissant and cucumber from Table 3. Since AW-BC is essen-
tially the same as BC, just with a modified weight to indicate the importance of any transition,
this performance improvement clearly indicates the benefits of learning value functions via RL in a
pre-training then fine-tuning setting, even when we only have demonstration data. Note that since
AW-BC uses the PTR-weights after fine-tuning, it cannot serve as an independent method.

Figure 6: Scaling trends for PTR
on the open door task from Scenario
2, and average over two pick and place
tasks from Scenario 3. Note that with
our design decisions, PTR is able to
effectively benefit from high capacity
function approximators.

Our design decisions enable us to effectively leverage high-
capacity neural networks. To understand the importance of
designing techniques that enable us to use high-capacity mod-
els for offline RL, we examine the efficacy of PTR with dif-
ferent Q-networks, on the open door task from Scenario 2, and
the put cucumber in pot and take croissant out of metallic bowl
tasks from Scenario 3. We compare to standard three-layer
convolutional network architectures used by prior work for
DM-control tasks (see for example, Kostrikov et al. (2020)),
an IMPALA (Espeholt et al., 2018) ResNet that consists of 15
convolutional layers spread across a stack of 3 residual blocks,
and the ResNet 18, 34, and 50 architectures with our proposed
design decisions. Observe in Figure 6, that the performance of
smaller networks (Small, IMPALA) is significantly worse than
the ResNet in the door opening task. For the pick-and-place
tasks that contain a much larger dataset, Small, IMPALA and
ResNet18 all perform much worse than ResNet 34 and ResNet
50. In Appendix E we show that ResNet 34 models perform much worse if our prescribed design
decisions are not used. We also perform a diagnostic study in simulation, whose details can be found
in Appendix C (Table 7), and these support our real-world results.

6 CONCLUSION AND DISCUSSION

We presented a system that uses diverse prior data for general-purpose offline RL pretraining, fol-
lowed by fine-tuning to downstream tasks. The prior data, sourced from a publicly available dataset,
consists of over a hundred tasks across ten scenes and our policies can be fine-tuned with as few as 10
demonstrations. We show that this approach outperforms prior pre-training and fine-tuning methods
based on imitation learning. One of the most exciting directions for future work is to further scale
up this pre-training to provide a single policy initialization, that can be utilized as a starting point,
similar to GPT3 (Brown et al., 2020). A limitation of our method is that it requires the prior data and
new tasks to be structurally similar and an exciting future direction is to scale it up to more complex
settings, including to novel robots. For more information, please check out our Anonymous Video:
https://www.youtube.com/watch?v=yAWgyLJD5lY&ab_channel=PTRICLR!

9

https://www.youtube.com/watch?v=yAWgyLJD5lY&ab_channel=PTRICLR

Under review as a conference paper at ICLR 2023

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Aditya Bhatt, Max Argus, Artemij Amiranashvili, and Thomas Brox. CrossNorm: Normalization for
Off-Policy TD Reinforcement Learning. arXiv e-prints, art. arXiv:1902.05605, February 2019.

Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement learn-
ing. arXiv preprint arXiv:2106.01151, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex Irpan,
Benjamin Eysenbach, Ryan Julian, Chelsea Finn, et al. Actionable models: Unsupervised offline
reinforcement learning of robotic skills. arXiv preprint arXiv:2104.07749, 2021.

Ron Dorfman and Aviv Tamar. Offline meta reinforcement learning. arXiv e-prints, pp. arXiv–2008,
2020.

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic
skills with cross-domain datasets. arXiv preprint arXiv:2109.13396, 2021.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International Conference on Machine Learning,
pp. 1407–1416. PMLR, 2018.

Ben Eysenbach, Sergey Levine, and Russ R Salakhutdinov. Replacing rewards with examples:
Example-based policy search via recursive classification. Advances in Neural Information Pro-
cessing Systems, 34:11541–11552, 2021.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. arXiv preprint arXiv:1812.02900, 2018.

K He, X Chen, S Xie, Y Li, P Dollár, and RB Girshick. Masked autoencoders are scalable vision
learners. arxiv. 2021 doi: 10.48550. arXiv preprint arXiv.2111.06377, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado van
Hasselt. Multi-task deep reinforcement learning with popart. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pp. 3796–3803, 2019.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

10

Under review as a conference paper at ICLR 2023

Ryan Julian, Benjamin Swanson, Gaurav S Sukhatme, Sergey Levine, Chelsea Finn, and Karol
Hausman. Never stop learning: The effectiveness of fine-tuning in robotic reinforcement learning.
arXiv preprint arXiv:2004.10190, 2020.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651–
673, 2018.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic re-
inforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
pp. 5774–5783. PMLR, 2021a.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. 2021b.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing Sys-
tems, pp. 11761–11771, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline reinforcement
learning or behavioral cloning? In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=AP1MKT37rJ.

Alex X Lee, Coline Devin, Jost Tobias Springenberg, Yuxiang Zhou, Thomas Lampe, Abbas Ab-
dolmaleki, and Konstantinos Bousmalis. How to spend your robot time: Bridging kickstart-
ing and offline reinforcement learning for vision-based robotic manipulation. arXiv preprint
arXiv:2205.03353, 2022a.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game decision transform-
ers. arXiv preprint arXiv:2205.15241, 2022b.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022c.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Keith Ross, Henrik Iskov Chris-
tensen, and Hao Su. Multi-task batch reinforcement learning with metric learning. arXiv preprint
arXiv:1909.11373, 2019.

Sen Lin, Jialin Wan, Tengyu Xu, Yingbin Liang, and Junshan Zhang. Model-based offline meta-
reinforcement learning with regularization. arXiv preprint arXiv:2202.02929, 2022.

Ajay Mandlekar, Fabio Ramos, Byron Boots, Silvio Savarese, Li Fei-Fei, Animesh Garg, and Dieter
Fox. Iris: Implicit reinforcement without interaction at scale for learning control from offline
robot manipulation data. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4414–4420. IEEE, 2020.

11

https://openreview.net/forum?id=AP1MKT37rJ

Under review as a conference paper at ICLR 2023

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Fei-Fei
Li, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. In 5th Annual Conference on Robot Learning,
2021. URL https://openreview.net/forum?id=JrsfBJtDFdI.

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In International Conference on Machine
Learning, pp. 7780–7791. PMLR, 2021.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

Vitchyr H Pong, Ashvin Nair, Laura Smith, Catherine Huang, and Sergey Levine. Offline meta-
reinforcement learning with online self-supervision. arXiv preprint arXiv:2107.03974, 2021.

Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ariuntuya Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone. arXiv preprint arXiv:2206.11251, 2022.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, and Martin Riedmiller. Keep doing what worked: Be-
havioral modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396,
2020.

Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. Cog:
Connecting new skills to past experience with offline reinforcement learning. arXiv preprint
arXiv:2010.14500, 2020.

Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick, Raia
Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning.
arXiv preprint arXiv:1707.04175, 2017.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a
hierarchical bayesian approach. In Proceedings of the 24th international conference on Machine
learning, pp. 1015–1022, 2007.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Annie Xie and Chelsea Finn. Lifelong robotic reinforcement learning by retaining experiences.
arXiv preprint arXiv:2109.09180, 2021.

Mengjiao Yang and Ofir Nachum. Representation matters: Offline pretraining for sequential deci-
sion making. arXiv preprint arXiv:2102.05815, 2021.

Mengjiao Yang, Sergey Levine, and Ofir Nachum. Trail: Near-optimal imitation learning with
suboptimal data. arXiv preprint arXiv:2110.14770, 2021.

Sarah Young, Dhiraj Gandhi, Shubham Tulsiani, Abhinav Gupta, Pieter Abbeel, and Lerrel Pinto.
Visual imitation made easy, 2020.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and Chelsea Finn.
Conservative data sharing for multi-task offline reinforcement learning. Advances in Neural In-
formation Processing Systems, 34, 2021.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine. How
to leverage unlabeled data in offline reinforcement learning. arXiv preprint arXiv:2202.01741,
2022.

12

https://openreview.net/forum?id=JrsfBJtDFdI

Under review as a conference paper at ICLR 2023

Appendices

A DETAILS OF OUR EXPERIMENTAL SETUP

A.1 REAL-WORLD EXPERIMENTAL SETUP

A picture of our real-world experimental setup is shown in Figure 7. The scenarios considered in
our experiments (Section 5) are designed to evaluate the performance of our method under a variety
of situations and therefore we set up these tasks in different toykitchen domains (see Figure 7) on
three different WidowX 250 robot arms. We use data from the bridge dataset (Ebert et al., 2021)
consisting of data collected with many robots in many domains for training but exclude the task /
domain that we use for evaluation from the training dataset.

(1) (2)

(3) (4)

Figure 7: Setup Overview: Following Ebert et al. (2021), we use a toykitchen setup described in that prior
work for our experiments. This utilizes a 6-DoF WidowX 250 robot. (1): Held-out toykitchen used for exper-
iments in Scenario 3 (denoted “toykitchen 6”), (2): Re-targeting toykitchen used for experiments in Scenario
2 (denoted “toykitchen 2”), (3): target objects used in the experiments of scenario 3., (4): the held-out kitchen
setup used for door opening (“toykitchen 1”).

A.2 DIAGNOSTIC EXPERIMENTAL SETUP IN SIMULATION

Figure 8: Bin-Sorting task used for our
simulated evaluations. The task requires
sorting the cylinder into the left bin and the
teapot into the right bin.

In simulation, we evaluate our approach in a simulated
bin-sorting task on the simulated WidowX 250 platform,
aimed to mimic the setup we use for our real-world eval-
uations. This setup is designed in the PyBullet simulation
framework provided by Singh et al. (2020). A picture is
shown in Figure 8. In this task, two different bins and
two different objects are placed in front of the WidowX
robot. The goal of the robot is to correctly sort each of
the two objects to their designated bin (e.g the cylinder
is supposed to be placed in the left bin and teapot should
be placed in the right bin. We refer to this task as a com-
pound task since it requires successfully combining be-
haviors of two different pick-and-place skills one after the
other in a single trajectory while also adequately identify-
ing the correct bin associated with each object. A success
is counted only when the robot can accurately sort both
of the objects into their corresponding bins.

13

Under review as a conference paper at ICLR 2023

Figure 9: Some trajectories from the pre-training data used in the simulated bin-sort task.

Figure 10: The five demonstration trajectories used for Phase 2 of PTR.

Offline pre-training dataset. The dataset provided for offline pre-training only consists of demon-
strations that show how the robot should pick one of the two objects and place it into one of the
two bins. Each episode in the pre-training dataset is about 30-40 timesteps long. A picture showing
some trajectories from the pre-training dataset are shown in Figure 9. While the downstream task
only requires solving this sorting task with two specific objects (shown in Figure 10), the pre-training
data consists of a 10 unique objects (some shown in Figure 9). The two target objects that appear
together in the downstream target scene are never seen together in the pre-training data. Since the
pre-training data only demonstrates how the robot must pick up one of the objects and place it in
one of the two bins (not necessarily in the target bin that the target task requires), it neither consists
of any behavior that places objects into bins sequentially, nor does it consist of any behavior where
one of objects is placed one of the bins while the other one is not. This is what makes this task
particularly challenging.

Target demonstration data. The target task data provided to the algorithm consists of only five
demonstrations that show how the robot must complete both the stages of placing both objects (see
Figure 10). Each episode in the target demonstration data is 80 timesteps long, which is substantially
longer than any trajectory in the pre-training data, though one would hope that good representations
learned from the pick and place tasks are still useful for this target task. While all methods are able to
generally solve the first segment of placing the first object into the correct bin, the primary challenge
in this task is to effectively sort the second object, and we find that PTR attains a substantially better
success rate than other baselines in this exact step.

B DESCRIPTION OF THE REAL-WORLD EVALUATION SCENARIOS

In this section, we describe the real-world evaluation scenarios considered in Section 5. We addi-
tionally include a much more challenging version of Scenario 3, for which we present results in
Appendix C. These harder test cases evaluate the finetuning performance on four different tasks,

14

Under review as a conference paper at ICLR 2023

Retarget to metal-pot, using 10
demos in target domain

1. Pre-Train on Bridge Data in toykitchen 2 (1850 trajectories 31 tasks):

Figure 11: Illustration of pre-training data and finetuning data used for Scenario 1: re-targeting the put
sushi in metal-pot behavior to put the object in the metal pot instead of the orange transparent pot.

1. Pre-Train on Bridge Data, 12 doors 800 demonstrations, 3 different toy-kitchens

2. Fine-Tune on Target Domain Data: 1 door, 15
demonstrations

Figure 12: Illustration of pre-training data and fine-tuning data used for Scenario 2 (door opening):
transferring a behavior to a held-out domain.

starting from the same initialization trained on bridge data except the toykitchen 6 domain in which
these four tasks were set up. In the following sections, nomenclature for the toy kitchens is drawn
from Ebert et al. (2021) and as described in the caption of Figure 7.

B.1 SCENARIO 1: RE-TARGETING SKILLS FOR EXISTING TO SOLVE NEW TASKS

Pre-training data. The pre-training data comprises of all of the pick and place data from the bridge
dataset (Ebert et al., 2021) from toykitchen 2. This includes data corresponding to the task of putting
the sushi in the transparent orange pot (Figure 11).

Target task and data. Since our goal in this scenario is to re-target the skill for putting the sushi in
the transparent orange pot to the task of putting the sushi in the metallic pot, we utilize a dataset of
20 demonstrations that place the sushi in a metallic pot as our target task data that we fine-tune with
(shown in Figure 11).

Quantitative evaluation protocol. For our quantitative evaluations in Table 1, we run 10 controlled
evaluation rollouts that place the sushi and the metallic pot in different locations of the workspace.
In all runs the arm starts at up to 10 cm distance above the target object. The initial object and arm
poses and positions are matched as closely as possible for different methods.

B.2 SCENARIO 2: GENERALIZING TO PREVIOUSLY UNSEEN DOMAINS

Pre-training data. The pre-training data in Scenario 2 consists of 800 door opening demonstrations
on 12 different doors across 3 different toykitchen domains.

15

Under review as a conference paper at ICLR 2023

1. Pre-Train on Bridge Data 80 tasks, 5920 trajectories
Put Sweet Potato on Plate

Put cucumber in pot

Put knife in pot

Take croissant out of pot

2. Fine-Tune on
10 demos each

Figure 13: Illustration of pre-training data and fine-tuning data used for the new tasks we have added
in Scenario 3. The goal is to learn to solve new tasks in new domains starting from the same pre-trained
initialization and when fine-tuning is only performed using 10-20 demonstrations of the target task.

Target task and data. The target task requires opening the door of an unseen microwave in toyk-
itchen 1 using a target dataset of only 15 demonstrations.

Quantitative evaluation protocol. We run 20 rollouts with each method, counting successes when
the robot opened the door by at least 45 degrees. To perform this successfully, there is a degree of
complexity as the robot has to initial open the door till it’s open to about 30 degrees. Then due to
physical constraints, the robot needs to wrap around the door and push it open from the inside. To
begin an evaluation rollout, we reset the robot to randomly sampled poses obtained from held-out
demonstrations on the target door. This is a compound task requiring the robot to first grab the door
by the handle, next move around the door, and finally push the door open. As before, we match the
initial pose of the robot as closely as possible for all the methods.

B.3 SCENARIO 3: LEARNING TO SOLVE NEW TASKS IN NEW DOMAINS

Pre-training data. All pick-and-place data in the bridge dataset (Ebert et al., 2021) except any
demonstration data collected in toykitchen 6, where our evaluations are performed.

Target task and data. The target task requires placing a corn in a pot in the sink in the new target
domain and the target dataset provides 10 demonstrations for this task. These target demonstrations
are sampled from the bridge dataset itself.

Quantitative evaluation protocol. During evaluation we were unable to exactly match the camera
orientation used to collect the target demonstration trajectories, and therefore ran evaluations with
a slightly modified camera view. This presents an additional challenge for any method as it must
now generalize to a modified camera view of the target toykitchen domain, without having ever
observed this domain or this camera view during training. We sampled initial poses for our method
by choosing transitions from a held out dataset of demonstrations of the target task and resetting the
robot to those initial pose for each method. We attempted to match the positions of objects across
methods as closely as possible.

B.4 MORE TASKS IN SCENARIO 3: LEARNING TO SOLVE MULTIPLE NEW TASKS IN NEW
DOMAINS FROM THE SAME INITIALIZATION

In Appendix C, we have now added results for more tasks in Scenario 3. The details of these tasks
are as follows:

Pre-training data. All pick-and-place data from bridge dataset (Ebert et al., 2021) except data from
toykitchen 6.

Target task and data. We consider four downstream tasks: take croissant from a metallic bowl, put
sweet potato on plate, place knife in pot, and put cucumber in bowl, and collected 10 target demon-

16

Under review as a conference paper at ICLR 2023

strations for croissant, sweet potato and put cucumber in bowl tasks, and 20 target demonstrations
for the knife in pot task. A picture of these target tasks is shown in Figure 13.

Qualitative evaluation protocol. For our evaluations, we utilize either 10 or 20 evaluation rollouts.
As with all of our other quantitative results, we evaluate all the baseline approaches and PTR starting
from an identical set of initial poses for the robot. These initial poses are randomly sampled from
the poses that appear in the first 10 timesteps of the held-out demonstration trajectories for this target
task. For the configuration of objects, we test our policies in a variety of task-specific configurations
that we discuss below:

• Take croissant from metallic bowl: For this task, we alternate between two kinds of
positions for the metallic bowl. In the “easy” positions, the metallic bowl is placed roughly
vertically beneath the robot’s initial starting pose, whereas in the “hard” positions, the robot
must first move itself to the right location of the bowl and then execute the policy.

• Put cucumber in bowl: We run 10 evaluation rollouts starting from 10 randomly sampled
initial poses of the robot for our evaluations. Here we moved the bowl between the two
stovetops in each trial.

• Put sweet potato on plate: For this task, we performed 20 evaluation rollouts. We only
sampled 10 initial poses for the robot, but for each position, we evaluated every policy on
two orientations of the sweet-potato (i.e., the sweet potato is placed on the table on its flat
face or on its curved face). Each of these orientations present some unique challenges, and
evaluating both of them allows us to gauge how robust the learned policy is to changes in
orientation. The demonstration data had a variety of orientations for the sweet potato object
that differed for each collected trajectory.

• Place knife in pot: We evaluate this task over 10 evaluation rollouts, where the first five
rollouts use a smaller knife, while the other five rollouts use a larger knife (shown in Fig-
ure 7). Each knife was seen in the demanstration dataset with equal probability.

We will discuss the results obtained on these new tasks in Appendix C.

C ADDITIONAL EXPERIMENTAL RESULTS

Original Viewpoint Elevated Viewpoint Rotated Viewpoint

Croissant Task Multiple Viewpoint Experiment

Figure 14: Sample observations from different camera viewpoints, only used during fine-tuning. Left:
the original camera viewpoint found in Figure 13. Middle: an elevated camera viewpoint where the robot and
camera has been raised 7 cm. Right: a rotated camera viewpoint where the kitchen has been slightly translated
and rotated 15 degrees counterclockwise relative to the camera and robot.

Finetuning to novel camera viewpoints: Even though Scenario 3 already presents a novel toy-
kitchen domain and previously unseen objects during finetuning, we also evaluate PTR on a more
challenging scenario where we additionally alter the camera viewpoint during finetuning. We apply
two kinds of alterations to the camera: (a) we elevate the mount platform of the camera by 7 cm,
which necessitates adapting the way the physical coordinates of the robot end-effector are interpreted
by the policy, and (b) we rotate the camera by about 15 degrees to induce a more oblique image
observation than what was ever seen during pre-training. Note that in both of these scenarios, the
robot has never encountered such camera viewpoints during pre-training, which makes this scenario
even more challenging. The original dataset in (Ebert et al., 2021) had the camera elevated to the
same position for eadch domain and always ensured the kitchen was parallel to the camera platform,
with translations being the primary changes in scene for each domain. In Table 5, we present our
results comparing PTR and BC (finetune). Observe that PTR still clearly outperforms BC (finetune),

17

Under review as a conference paper at ICLR 2023

and attains performance close to that of PTR in Table 3, indicating that such shifts in the camera do
not drastically hurt PTR.

Method Elevated Viewpoint Rotated Viewpoint
BC (finetune) 2/10 3/10
PTR (Ours) 6/10 7/10

Table 5: Comparison of PTR and BC (finetune), when evaluated on novel camera viewpoints with ele-
vated and rotated cameras as shown in Figure 14 for the croissant task. Observe that PTR still outperforms BC
(finetune) in this setting and attains more than 2x success rate of BC (finetune).

C.1 EXPANDED DISCUSSION: WHY DOES PTR OUTPERFORM BC-BASED METHODS, EVEN
WITH DEMONSTRATION DATA?

One natural question to ask given the results in this paper is: why does utilizing an offline RL method
for pre-training and finetuning as in PTR outperform BC-based methods even though the dataset is
quite “BC-friendly”, consisting of only demonstrations? One might speculate that an answer to
this question is that our BC baseline can be tuned to be much better. However, note that our BC
baseline is not suboptimally tuned. We utilize the procedure prescribed by prior work (Ebert et al.,
2021) for tuning BC as we discuss in Appendix D. In addition, the fact that BC (joint) does actually
outperform CQL (joint) in many of our experiments, indicates that our BC baselines are well tuned.
To explain the contrast to Ebert et al. (2021), note that the setup in this prior work utilized many more
target task demonstrations (≥ 50 demonstrations from the target task) compared to our evaluations,
which might explain why our BC-baseline numbers are lower in an absolute sense. Therefore, the
technical question still remains: why would we expect PTR to perform better than BC? We will
attempt to answer this question using some empirical evidence and visualizations. Also, we will aim
to provide intuition for why our approach PTR outperforms the baseline.

Qualitative Comparison of BC (finetune) and PTR

BC (finetune)
Failure: grasps bowl instead of croissant when

crossiant is not underneath

PTR
Success: grasps croissant and puts by sink

Task: Take Croissant from Metal Bowl

BC (finetune)
Failure: executes an imprecise grasp, and fails to

locate the pot accurately

PTR
Success: Places Cucumber in Pot

Task: Put Cucumber in Bowl

Figure 15: Qualitative successes of PTR visualized alongside failures of BC (finetune). As an example,
observe that while PTR is accurately able to reach to the croissant and grasp it to solve the task, BC (finetune)
is imprecise and grasps the bowl instead of the croissant resulting in failure.

To begin answering this question, it is instructive to visualize some failures for a BC-based method
and qualitatively attempt to understand why BC is worse than utilizing PTR. We visualize some
evaluation rollouts for BC (finetune) and PTR as film strips in Figure 15. Specifically, we visualize
evaluation rollouts that present a challenging initial state. For example, for the rollout from the take
crossiant out of metallic pot task, the robot must first accurately position itself over the crossiant
before executing the grasping action. Similarly, for the rollout from the cucumber task, the robot
must accurately locate the bowl and precisely try to grasp the cucumber. Observe in Figure 5 that
BC (finetune) typically fails to accurately reach the objects of interest (croissant and the bowl) and
executes the grasping action prematurely. On the other hand, PTR is more robust in these situations,
and is able to accurately reach the object of interest before it executes the grasping action or the
releasing action. Why does this happen?

18

Under review as a conference paper at ICLR 2023

To understand why this happens, one mental model is to appeal to the critical states argument
from Kumar et al. (2022). Intuitively, this argument suggests that in tasks where the robot must
precisely accomplish actions at only few specific states (called “critical states”) to succeed, but the
actions at other states (called “non-critical states”) do not matter as much. Thus, offline RL-style
methods can outperform BC-based methods even with demonstration data. This is because learning
a value function can enable the robot to reason about which states are more important than others,
and the resulting policy optimization can “focus” on taking correct actions at such critical states. Our
real-world evaluation scenarios exhibit such a structure. The majority of the actions that the robot
must take to reach the object do not need to be precise as long as they generally move the robot in
the right direction. However, in order to succeed, the robot must critically ensure to position the arm
right above the object in a correct orientation and position itself right above the container in which
the object must be placed. These are the critical states and special care must be taken to execute the
right action at these states. In such scenarios, the argument of Kumar et al. (2022) would suggest
that offline RL should be better. We believe that we observe a similar effect in our experiments: the
learned BC policies are often not precise-enough at those critical states where taking the right action
is critical to succeed.

Q Values Learnt After Finetuning
Before Offline Finetuning Finetuned Chosen Checkpoint

Q
-V

al
ue

s

Target Task: Put Cucumber in Bowl

Trajectory Timestep Trajectory Timestep

Q
-V

al
ue

s

Q
-V

al
ue

s

Trajectory Timestep Trajectory Timestep

Q
-V

al
ue

s

Target Task: Take Croissant out of Metal Bowl

Figure 16: Evolution of Q-values on the target task over the process of fine-tuning with PTR. Observe that
while the learned Q-values on held-out trajectories from the dataset just at the beginning of Phase 2 (finetuning)
do not exhibit a roughly increasing trend, the checkpoint of PTR we choose to evaluate exhibits a generally
increasing trend in the Q-values despite having access to only 10 demonstrations for these target tasks.

As supporting evidence to the discussion above, we further visualize the Q-values over held-out
trajectories from the target demonstration data that were never seen by PTR during fine-tuning in
Figure 16. To demonstrate the contrast, we present the trend in Q-values before fine-tuning and for
the checkpoint selected for evaluation after fine-tuning on the target task. Observe that the Q-values
for the chosen checkpoint generally increase over the course of the trajectory indicating that the
learned Q-function is able to fit well to the target data. Also, the learned Q-function generalizes
to held-out trajectories despite the fact that only 10 demonstrations were provided during the fine-
tuning phase. This evidence supports the claim that it is reasonable to expect the learned Q-function
to be able to focus on the more critical decisions in the trajectory.

To further support our hypothesis that PTR outperforms BC-based methods because the
learned value function enables us to learn about “critical” decisions, we run an experiment
that essentially runs a weighted version of BC during finetuning, where the weights are provided
by exponentiated advantage values, where the advantages are defined as: Aθ(s,a) = Qθ(s,a) −
maxa′ Qθ(s,a

′) under a Q-function learned by PTR. This approaches essentially matches BC fine-
tuning in all aspects: the policy parameterization, the loss function (mean-squared error), and the
details of training are kept identical to our BC baselines, with the exception of an additional weight
given by exp(Aθ(s,a)) on a given transition (s,a, r, s′) observed in the set of limited task-specific
demonstrations. We refer to this approach as “advantage-weighted BC finetuning”.

In contrast to our BC (finetune) results from Table 3, where PTR significantly outperformed BC
(finetune), observe in Table 6, that advantage-weighted BC (finetune) performs comparably to PTR
on the two tasks we studied for our analysis. This result is significant since it implies that all other
factors kept identical, utilizing the weights given by the Q-function is the crucial factor in improving

19

Under review as a conference paper at ICLR 2023

the performance of BC and avoids the qualitative failure modes associated with BC methods shown
in Figure 15.

Task BC (finetune) PTR (Ours) Advantage-weighted BC (finetune)
Put cucumber in pot 0/10 5/10 5/10

Take croissant from metal bowl 3/10 7/10 6/10

Table 6: Performance of advantage-weighted BC on two tasks from Table 3. Observe that weighting the
BC objective using advantage-weights computed using the Q-function learned by PTR leads to much better
performance than standard BC (finetune), and close to PTR. This test indicates that the Q-function in PTR
allows us to focus on more critical points, thereby preventing the failures discussed in Figure 15.

C.2 RESULTS IN SIMULATION

In this section, we present some additional results comparing BC-based methods and CQL to PTR
in our simulated bin-sorting task. Recall that goal of this task was to solve a two-stage, compound
task with only five target demonstrations as discussed in Figure 8, Appendix A.2. Most importantly,
the pre-training data does not show any instance of the robot attempting to solve this two-stage task.

The performance numbers (along with 95%-confidence intervals) are shown in Table 7. Observe
that PTR improves upon prior methods in a statistically significant manner, outperforming the BC
baselines by a significant margin. This validates the efficacy of PTR in simulation, and corroborates
our real-world results.

Method Success rate
BC (joint training) 7.00 ± 0.00 %
CQL (joint training) 8.00 ± 1.00 %
BC (finetune) 4.88 ± 4.07 %

PTR (Ours) 17.41 ± 1.77 %

Table 7: Performance of PTR in comparison with other methods on the simulated bin sorting
task, trained for many more gradient steps for all methods until each one of them converges. Observe
that PTR substantially outperforms other prior methods, including joint training on the same data
with BC or CQL. Training on target data only is unable to recover a non-zero performance, and so
we do not report it in this table. Since the 95%-confidence intervals do not overlap between PTR and
other methods, it indicates that PTR improves upon baselines in a statistically significant manner.

D HYPERPARAMETERS FOR PTR AND BASELINE METHODS

In this section, we will present the hyperparameters we use in our experiments and explain how we
tune the other hyperparameters for both our method PTR and the baselines we consider.

PTR. Since PTR utilizes CQL as the base offline RL method, it trains two Q-functions and a sep-
arate policy, and maintains a delayed copy of the two Q-functions, commonly referred to as target
Q-functions. We utilize completely independent networks to represent each of these five models (2
Q-functions, 2 target Q-functions and the policy). We also do not share the convolutional encoders
among them. As discussed in the main text, we rescaled the action space to [−1, 1]|A| to match the
one used by actor-critic algorithms, and utilized a tanh squashing function at the end of the policy.
We used a CQL α value of 10.0 for our pick and place experiments. The rest of the hyperparameters
for training the Q-function, the target network updates and the policy are taken from the standard
training for image-based CQL from Singh et al. (2020), and are presented in Table 9 below for
completeness. The hyperparameters we choose are essentially the network design decisions of (1)
utilizing group normalization instead of batch normalization, (2) utilizing learned spatial embed-
dings instead of standard mean pooling, (3) passing in actions at each of the fully connected layers
of the Q-network and the hyperparameter α in CQL that must be adjusted since our data consists of
demonstrations. We will ablate the new design decisions explicitly in Appendix E.

The only other hyperparameter used by PTR is the mixing ratio τ that determines the proportion
of samples drawn from the pre-training dataset and the target dataset during the offline finetuning

20

Under review as a conference paper at ICLR 2023

Hyperparameter Value
Q-function learning rate 3e-4
Policy learning rate 1e-4
Target update rate 0.005 (soft update with Polyak averaging)
Optimizer type Adam
Discount factor γ 0.96 (since trajectories have a length of only about 30-40)
Use terminals True
Reward shift and scale shift = -1, scale = 10.0
CQL α 10.0
Use Color Jitter True
Use Random Cropping True

Table 8: Main hyperparameters for CQL training in our real-world experiments. In simulation, we utilize
a smaller α for CQL, α = 1.0 and a larger discount γ = 0.98 since trajectories in simulation are about 60-70
timesteps in length.

phase in PTR. We utilize τ = 0.7 for our experiments with PTR in the main paper, and use τ = 0.9
for the additional experiments we added in the Appendix. This is because τ = 0.9 (more bridge
data, and smaller amount of target data) was helpful in scenarios with very limited target data.

In order to perform checkpoint selection for PTR, we utilized the trends in the learned Q-values over
a set of held-out trajectories on the target data as discussed in Section 4.2. We did not tune any other
algorithmic hyperparameters for CQL, as these were taken directly from (Singh et al., 2020).

BC (finetune). We trained BC in a similar manner as Ebert et al. (2021), utilizing the design
decisions that this prior work found optimal for their experiments. The policy for BC utilizes the
very same ResNet 34 backbone as our RL policy since a backbone based on ResNet 34 was found
to be quite effective in Ebert et al. (2021). Following the recommendations of Ebert et al. (2021)
and based on result trends from our own preliminary experiments, we chose to not utilize the tanh
squashing function at the end of the policy for any BC-based method, but trained a deterministic
BC policy that was trained to regress to the action in the demonstration with a mean-squared error
(MSE) objective.

Hyperparameter Value
Policy learning rate 1e-4
Optimizer type Adam
Use Color Jitter True
Use Random Cropping True
Dropout 0.4

Table 9: Main hyperparameters for Behavior Cloning Baseline Training in our real-world and simula-
tion experiments. Note: architecture design choices follow closely to PTR design choices.
In order to perform cross-validation, checkpoint and model selection for our BC policies, we follow
guidelines from prior work (Ebert et al., 2021; Emmons et al., 2021) and track the MSE on a held-
out validation dataset similar to standard supervised learning. We found that a ResNet 34 BC policy
attained the smallest validation MSEs in general, and for our evaluations, we utilized a checkpoint
of a ResNet 34 BC policy that attained the smallest MSE.

Analogous to the case of PTR discussed above, we also ablated the performance of BC for a set of
varying values of the mixing ratio τ , but found that a large value of τ = 0.9 was the most effective
for BC, and hence utilized τ = 0.9 for BC (finetune) and BC (joint).

BC (joint) and CQL (joint). The primary distinction between training BC (joint) and BC (fine-
tune) and correspondingly, CQL (joint) and PTR was that in the case of joint training, the target
dataset was introduced right at the beginning of Phase 1 (pre-training phase), and we mixed the
target data with the pre-training data using the same value of the mixing ratio τ used in for our
fine-tuning experiments to ensure a fair comparison.

Pre-trained R3M initialization (Nair et al., 2022): Next we compare PTR to utilizing an off-the-
shelf pre-trained representation given by R3M (Nair et al., 2022). We compare to two baselines

21

Under review as a conference paper at ICLR 2023

that attempt to train a MLP policy on top of the R3M state representation by using BC (finetuning)
and CQL (finetuning) respectively. To ensure that this baseline is well-tuned, we tried a variety
of network sizes with 2, 3 or 4 MLP layers and also tuned the hidden dimension sizes in [256,
512, 1024]. We also utilized dropout as regularization to prevent overfitting and tuned a variety of
values of dropout probability in [0, 0.1, 0.2, 0.4, 0.6, 0.8]. We observe in Table ??, that on the four
tasks we evaluate on, PTR outperforms R3M, which indicates that training on the bridge dataset can
indeed give rise to effective visual representations that are more suited to finetuning in our setting.
The numbers we report in the table are the best over each parametric policy corresponding to each
hyperparameter in our abalation. Checkpoint selection was done utilizing early stopping which is
the last iteration where the validation error stops decreasing. Learning curves for this baseline can
be found in our Anonymous Website.

Pre-trained MAE initialization (He et al., 2021): We took a similar training procedure to R3M
for our MAE representation. We used an MAE trained on the every image from the bridge dataset
Ebert et al. (2021). We then finetuned on a specific target task with a similar ablation on network
size, hidden dimension size and regularization techniques such as dropout. We observe in Table ??,
that on the four tasks we evaluate on, PTR outperforms R3M, which indicates that training on
the bridge dataset can indeed give rise to effective visual representations that are more suited to
finetuning in our setting. The numbers we report in the table are the best over each parametric policy
corresponding to each hyperparameter in our abalation. Checkpoint selection was done utilizing
early stopping which is the last iteration where the validation error stops decreasing. Learning
curves for this baseline can be found in our Anonymous Website.

Policy expressiveness study. We considered two policy expressiveness choices for BC to compare
with our reference BC implementation that is implementated with a set of MLP layers. These first of
the two choices was an autoregressive policy where the 7 dimensional action space was discretized
into 100 bins. Each action was then predicted autoregressively conditioned on the observation, task
id and the action component from the previous dimension(s). The sencond approach was with the
BeT Architecture from Shafiullah et al. (2022). We utilized the reference implementation from the
paper with the default suggested hyperparameters for this set of abalations. The window size for the
mingpt transformer was abalated over between 1, 2, and 10.

E VALIDATING THE DESIGN CHOICES FROM SECTION 4.2 VIA ABLATIONS

In this section, we will present ablation studies aimed to validate the design choices utilized by PTR.
We found these design choices quite crucial for attaining good performance. The concrete research
questions we wish to answer are: (1) How important is utilizing a large network for attaining good
performance with PTR, and how does the performance of PTR scale with the size of the Q-function?,
(2) How effective is a learned spatial embedding compared to other approaches for aggregating
spatial information? (3) Is concatenating actions at each fully-connected layer of the Q-function
crucial for good performance?, (4) Is group normalization a good alternative to batch normalization?
and (5) How does our choice of creating binary rewards for training affect the performance of PTR?.
We will answer these questions next.

Figure 17: Scaling trends for PTR on the
open door task from Scenario 2, and average
over two pick and place tasks (take crois-
sant out of metallic pot and put cucumber in
bowl) from Scenario 3. Note that more high
capacity and expressive function approxima-
tors lead to the best results.

Highly expressive Q-networks are essential for good
performance. To assess the importance of highly expres-
sive Q-functions, we evaluate the performance of PTR
with varying sizes and architectures on three tasks: the
open door task from Scenario 2, and the put cucumber
in pot and take croissant out of metallic bowl tasks from
Scenario 3. Our choice of architectures is as follows:
(a) a standard three-layer convolutional network typically
used by prior work for DM-control tasks (see for exam-
ple, Kostrikov et al. (2021a)), (b) an IMPALA (Espeholt
et al., 2018) ResNet that consists of 15 convolutional lay-
ers spread across a stack of 3 residual blocks, (c) ResNet
18 with group normalization and learned spatial embed-
dings, (d) ResNet 34 that we use in our experiments, and
(e) an even bigger ResNet 50 with group normalization
and learned spatial embeddings.

22

Under review as a conference paper at ICLR 2023

We present our results in Figure 6. To obtain more accu-
rate scaling trends, we plot the trend in the average suc-
cess rates for the pick and place tasks from Scenario 3 along with the trend in the success rate for
the open door task separately since these tasks use different pre-training datasets. Observe that the
performance of smaller networks (Small, IMPALA) is significantly worse than the ResNet in the
door opening task. For the pick and place tasks that contain a much larger dataset, Small, IMPALA
and ResNet18 all perform much worse than ResNet 34 and ResNet 50. We believe this result is
quite exciting since it highlights the possiblity of actually benefitting from using highly-expressive
neural network models with TD-learning based RL methods trained on lots of diverse multi-task
data (contrary to prior work (Lee et al., 2022b)). We believe that this result is a valuable starting
point for further scaling and innovation.

Learned spatial embeddings are crucial for performance. Next we study the impact of utilizing
the learned spatial embeddings for encoding spatial information when converting the feature maps
from the convolutional stack into a vector that is fed into the fully-connected part of the Q-function.
We compare our choice to utilizing a spatial softmax as in Ebert et al. (2021), and also global average
pooling (GAP) that simply averages over the spatial information, typically utilized in supervised
learning with ResNets.

Method Success rate
PTR with spatial softmax 4/10
PTR with global average pooling 4/10

PTR with learned spatial embeddings (Ours) 7/10

Table 10: Ablation of PTR with spatial softmax and GAP on the croissant task. Observe that PTR with
learned spatial embeddings performs significantly better than using a spatial softmax or global average pooling.
As shown in Table 10 learned spatial embeddings outperform both of these prior approaches on the
put croissant in pot task. We suspect that spatial softmax does not perform much better than the GAP
approach since the softmax operation can easily get saturated when running gradient descent to fit
value targets that are not centered in some range, which would effectively hinder its expressivity.
This indicates that the approach of retaining spatial information like in PTR is required for attaining
good performance.

Concatenating actions at each layer is crucial for performance. Next, we run PTR without
passing in actions at each fully connected layer of the Q-function on the take croissant out of metallic
bowl task and only directly concatenate the actions with the output of the convolutional layers before
passing it into the fully-connected component of the network. On the croissant task, we find that
not passing in actions at each layer only succeeds in 2/10 evaluation rollouts, which is significantly
worse than the default PTR which passes in actions at each layer and succeeds in 7/10 evaluation
rollouts (Table 11).

Method Success rate
PTR without actions passed in at each FC layer 2/10
PTR with actions passed in at each FC layer (Ours) 7/10

Table 11: Ablation of PTR with actions passed in at each layer. Observe that passing in actions at each
fully-connected layer does lead to quite good performance.
Group normalization is more consistent than batch normalization. Next, we ablate the usage
of group normalization over batch normalization in the ResNet 34 Q-functions that PTR uses. We
found that batch normalization was generally harder to train to attain Q-function plots that exhibit a
roughly increasing trend over the course of a trajectory. That said, on some tasks such as the croissant
in pot task, we did get a reasonable Q-function, and found that batch normalization can perform well.
On the other hand, on the put cucumber in pot task, we found that batch normalization was really
ineffective. These results are shown in Table 12, and they demonstrate that batch normalization may
not be as consistent and reliable with PTR as group normalization.

Choice of reward function. Finally, we present some results that ablate the choice of the reward
function utilized for training PTR from data that entirely consists of demonstrations. In our main

23

Under review as a conference paper at ICLR 2023

Method Croissant out of metallic bowl Cucumber in pot
PTR with batch norm. (relative) + 28.0% (7/10→ 9/10) - 60.0% (5/10→ 2/10)

Table 12: Relative performance of PTR with batch normalization with respect to PTR with group nor-
malization. Observe that while utilizing batch normalization in PTR can be sometimes more effective than
using group normalization (e.g., take croissant out of metallic bowl task), it may also be highly ineffective and
can reduce success rates significantly in other tasks. The performance numbers to the left of the → corresponds
to the performance of PTR with group normalization and the performance to the right of → is the performance
with batch normalization.

set of experiments, we labeled the last three timesteps of every trajectory with a reward of +1 and
annotated all other timesteps with a 0 reward. We tried perhaps the most natural choice of labeling
only the last timestep with a 0 reward on the croissant task, and found that this choice succeeds 0/10
times, compared to annotating the last three timesteps with a +1 reward which succeeds 7/10 times.
We suspect that this is because only annotating the last timestep with a +1 reward is not ideal for
two reasons: first, the task is often completed in the dataset much earlier than the observation shows
the task complete, and hence the last-step annotation procedure induces a non-Markovian reward
function, and second, only labeling the last step with a +1 leads to overly conservative Q-functions
when used with PTR, which may not lead to good policies.

24

