
Exploring the Impact of Negative Samples of Contrastive Learning:
A Case Study of Sentence Embedding

Anonymous ACL submission

Abstract

Contrastive learning is emerging as a powerful001
technique for extracting knowledge from unla-002
beled data. This technique requires a balanced003
mixture of two ingredients: positive (similar)004
and negative (dissimilar) samples. This is typ-005
ically achieved by maintaining a queue of neg-006
ative samples during training. Prior works in007
the area typically uses a fixed-length negative008
sample queue, but how the negative sample009
size affects the model performance remains un-010
clear. The opaque impact of the number of neg-011
ative samples on performance when employ-012
ing contrastive learning aroused our in-depth013
exploration. This paper presents a momen-014
tum contrastive learning model with negative015
sample queue for sentence embedding, namely016
MoCoSE. We add the prediction layer to the017
online branch to make the model asymmet-018
ric and together with EMA update mechanism019
of the target branch to prevent model from020
collapsing. We define a maximum traceable021
distance metric, through which we learn to022
what extent the text contrastive learning bene-023
fits from the historical information of negative024
samples. Our experiments find that the best025
results are obtained when the maximum trace-026
able distance is at a certain range, demonstrat-027
ing that there is an optimal range of historical028
information for a negative sample queue. We029
evaluate the proposed unsupervised MoCoSE030
on the semantic text similarity (STS) task and031
obtain an average Spearman’s correlation of032
77.27%. Source code is available here.033

1 Introduction034

In recent years, unsupervised learning has been035

brought to the fore in deep learning due to its ability036

to leverage large-scale unlabeled data. Various un-037

supervised contrastive models is emerging, continu-038

ously narrowing down the gap between supervised039

and unsupervised learning. Contrastive learning040

*Authors contributed equally to this manuscript.
†Corresponding author.

suffers from the problem of model collapse, where 041

the model converges to a constant value and the 042

samples all mapped to a single point in the feature 043

space. Negative samples are an effective way to 044

solve this problem. 045

In computer vision, SimCLR from Chen (Chen 046

et al., 2020) and MoCo from He (He et al., 2020) 047

is known for using negative samples and get the 048

leading performance in the contrastive learning. 049

SimCLR uses different data augmentation (e.g., 050

rotation, masking, etc.) on the same image to con- 051

struct positive samples, and negative samples are 052

from the rest of images in the same batch. MoCo 053

goes a step further by randomly select the data in 054

entire unlabeled training set to stack up a first-in- 055

first-out negative sample queue. 056

Recently in natural language processing, con- 057

trastive learning has been widely used in the task 058

of learning sentence embedding. One of current 059

state-of-the-art unsupervised method is SimCSE 060

(Gao et al., 2021). Its core idea is to make simi- 061

lar sentences in the embedding space closer while 062

keeping dissimilar away from each other. SimCSE 063

uses dropout mask as augmentation to construct 064

positive text sample pairs, and negative samples 065

are picked from the rest of sentences in the same 066

batch. The mask adopted from the standard Trans- 067

former makes good use of the minimal form of data 068

augmentation brought by the dropout. Dropout re- 069

sults in a minimal difference without changing the 070

semantics, reducing the negative noise introduced 071

by augmentation. However, the negative samples in 072

SimCSE are selected from the same training batch 073

with a limited batch size. Our further experiments 074

show that SimCSE does not obtain improvement as 075

the batch size increases, which arouses our interest 076

in using the negative sample queue. 077

To better digging in the performance of con- 078

trastive learning on textual tasks, we build a con- 079

trastive model consisting of a two-branch structure 080

and a negative sample queue, namely MoCoSE 081

1

https://anonymous.4open.science/r/mocose-3E3C


(Momentum Contrastive Sentence Embedding082

with negative sample queue). We also introduce083

the idea of asymmetric structure from BYOL (Grill084

et al., 2020) by adding a prediction layer to the085

upper branch (i.e., the online branch). The lower086

branch (i.e., the target branch) is updated with ex-087

ponential moving average (EMA) method during088

training. We set a negative sample queue and up-089

date it using the output of target branch. Unlike090

directly using negative queue as in MoCo, for re-091

search purpose, we set an initialization process092

with a much smaller negative queue, and then fill-093

ing the entire queue through training process, and094

update normally. We test both character-level (e.g.,095

typo, back translation, paraphrase) and vector-level096

(e.g., dropout, shuffle, etc.) data augmentations and097

found that for text contrastive learning, the best re-098

sults are obtained by using FGSM and dropout as099

augmentations.100

Using the proposed MoCoSE model, we design101

a series of experiments to explore the contrastive102

learning for sentence embedding. We found that103

using different parts of samples from the negative104

queue leads to different performance. In order105

to test how much text contrastive learning benefit106

from historical information of the model, we pro-107

posed a maximum traceable distance metric. The108

metric calculates how many update steps before the109

negative samples in the queue are pushed in, and110

thus measures the historical information contained111

in the negative sample queue. We find that the best112

results can be achieved when the maximum trace-113

able distance is within a certain range, reflected in114

the performance of uniformity and alignment of the115

learned text embedding. Which means there is an116

optimal interval for the length of negative sample117

queue in text contrastive learning model.118

Our main contributions are as follows:119

1. We combine several advantages of frame-120

works from image contrastive learning to build a121

more generic text unsupervised contrastive model.122

We carried out a detailed study of this model to123

achieve better results on textual data.124

2. We evaluate the role of negative queue length125

and the historical information that the queue con-126

tains in text contrastive learning. By slicing the127

negative sample queue and using different posi-128

tions of negative samples, we found those near the129

middle of the queue provides a better performance.130

3. We define a metric called ’maximum traceable131

distance’ to help analyze the impact of negative132

sample queue by combining the queue length, EMA 133

parameter, and batch size. We found that changes 134

in MTD reflects in the performance of uniformity 135

and alignment of the learned text embedding. 136

2 Related Work 137

Contrastive Learning in CV 138

Contrast learning is a trending and effective un- 139

supervised learning framework that was first ap- 140

plied to the computer vision (Hadsell et al., 2006). 141

The core idea is to make the features of images 142

within the same category closer and the features 143

in different categories farther apart. Most of the 144

current work are using two-branch structure (Chen 145

et al., 2021). While influential works like SimCLR 146

and MoCo using positive and negative sample pairs, 147

BYOL (Grill et al., 2020) and SimSiam (Chen and 148

He, 2021) can achieve the same great results with 149

only positive samples. BYOL finds that by adding 150

a prediction layer to the online branch to form an 151

asymmetric structure and using momentum mov- 152

ing average to update the target branch, can train 153

the model using only positive samples and avoid 154

model collapsing. SimSiam explores the possibil- 155

ity of asymmetric structures likewise. Therefore, 156

our work introduces this asymmetric idea to the 157

text contrastive learning to prevent model collapse. 158

In addition to the asymmetric structure and the 159

EMA mechanism to avoid model collapse, some 160

works consider merging the constraint into the loss 161

function, like Barlow Twins (Zbontar et al., 2021), 162

W-MSE (Ermolov et al., 2021), and ProtoNCE (Li 163

et al., 2021). 164

Contrastive Learning in NLP 165

Since BERT (Devlin et al., 2018) redefined state- 166

of-the-art in NLP, leveraging the BERT model to 167

obtain better sentence representation has become 168

a common task in NLP. A straightforward way to 169

get sentence embedding is by the [CLS] token due 170

to the Next Sentence Prediction task of BERT. But 171

the [CLS] embedding is non-smooth anisotropic 172

in semantic space, which is not conducive to STS 173

tasks, this is known as the representation degrada- 174

tion problem (Gao et al., 2019). BERT-Flow (Li 175

et al., 2020) and BERT-whitening (Su et al., 2021) 176

solve the degradation problem by post-processing 177

the output of BERT. SimCSE found that utilizing 178

contrasting mechanism can also alleviate this prob- 179

lem. 180

Data augmentation is crucial for contrastive 181

learning. In CLEAR (Wu et al., 2020), word and 182

2



phrase deletion, phrase order switching, synonym183

substitution is served as augmentation. CERT184

(Fang and Xie, 2020) mainly using back-and-forth185

translation, and CLINE (Wang et al., 2021) pro-186

posed synonym substitution as positive samples187

and antonym substitution as negative samples, and188

then minimize the triplet loss between positive, neg-189

ative cases as well as the original text. ConSERT190

(Yan et al., 2021) uses adversarial attack, token191

shuffling, cutoff, and dropout as data augmentation.192

CLAE (Ho and Nvasconcelos, 2020) also intro-193

duces Fast Gradient Sign Method, an adversarial194

attack method, as text data augmentation. Several195

of these augmentations are also introduced in our196

work. The purpose of data augmentation is to cre-197

ate enough distinguishable positive and negative198

samples to allow contrastive loss to learn the na-199

ture of same data after different changes. Works200

like (Mitrovic et al., 2020) points out that longer201

negative sample queues do not always give the202

best performance. This also interests us how the203

negative queue length affects the text contrastive204

learning.205

3 Method206

Figure 1 depicts the architecture of proposed207

MoCoSE. In the embedding layer, two versions of208

the sentence embedding are generated through data209

augmentation (dropout = 0.1 + fgsm = 5e− 9).210

The resulting two slightly different embeddings211

then go through the online and target branch to ob-212

tain the query and key vectors respectively. The213

structure of encoder, pooler and projection of on-214

line and target branch is identical. We add a predic-215

tion layer to the online branch to make asymmetry216

between online and target branch. The pooler, pro-217

jection and prediction layers are all composed of218

several fully connected layers.219

Finally, the model calculates contrasting loss be-220

tween query, key and negative queue to update the221

online branch. In the process, key vector serves as222

positive sample with respect to the query vector,223

while the sample from queue serves as negative224

sample to the query. The target branch truncates225

the gradient and updated with the EMA mecha-226

nism. The queue is a first-in-first-out collection227

of negative samples with size K which means it228

sequentially stores the key vectors generated from229

the last few training steps.230

The PyTorch style pseudo-code for training Mo-231

CoSE with the negative sample queue is shown in232

Algorithm 1 in Appendix A.3. 233

Data Augmentation Comparing with SimCSE, 234

we tried popular methods in NLP such as para- 235

phrasing, back translation, adding typos etc., but 236

experiments show that only adversarial attacks 237

and dropout have improved the results. We use 238

FGSM (Goodfellow et al., 2015) (Fast Gradient 239

Sign Method) as adversarial attack. In a white-box 240

environment, FGSM first calculates the derivative 241

of model with respect to the input, and use a sign 242

function to obtain its specific gradient direction. 243

Then, after multiplying it by a step size, the result- 244

ing ’perturbation’ is added to the original input to 245

obtain the sample under the FGSM attack. 246

x′ = x+ ε · sign (∇xL (x, θ)) (1) 247

Where x is the input to the embedding layer, θ is 248

the online branch of the model, and L(·) is the con- 249

trastive loss computed by the query, key and neg- 250

ative sample queue. ∇x is the gradient computed 251

through the network for input x, sign() is the sign 252

function, and ε is the perturbation parameter which 253

it controls how much noise it added. 254

EMA and Asymmetric Branches Our model 255

uses EMA mechanism to update the target branch. 256

Formally, denoting the parameters of online and 257

target branch as θo and θt, EMA decay weight as 258

η, we update θt by: 259

θt ← ηθt + (1− η)θo (2) 260

Experiments demonstrate that not using EMA leads 261

to model collapsing, which means the model did 262

not converge during training. The prediction layer 263

we added on the online branch makes two branches 264

asymmetric to further prevent the model from col- 265

lapsing. For more experiment details about sym- 266

metric model structure without EMA mechanism, 267

please refer to Appendix A.2. 268

Negative Sample Queue The negative sample 269

queue has been theoretically proven to be an effec- 270

tive means of preventing model from collapsing. 271

Specifically, both the queue and the prediction layer 272

of the upper branch serves to disperse the output 273

feature of the upper and lower branches, thus ensur- 274

ing that the contrastive loss obtains features with 275

sufficient uniformity. We also set a buffer for the 276

initialization of the queue, i.e., only a small portion 277

of the queue is randomly initialized at the begin- 278

ning, and then enqueue and dequeue normally until 279

the end. 280

3



Exponential Moving Average

E
m

b
ed

d
in

g
 L

ay
er

B
ert E

n
co

d
er

B
ert E

n
co

d
er

D
ata A

u
g
m

en
tatio

n

S
en

ten
ce E

m
b
ed

d
in

g

Embedded 

sample 1

Queue

P
o
o
ler L

ay
er

P
o
o
ler L

ay
er

S
en

ten
ce E

m
b
ed

d
in

g

P
ro

jectio
n
 L

ay
er

P
ro

jectio
n
 L

ay
er

P
ro

jectio
n
 E

m
b
ed

d
in

g
K

ey
s

P
red

ictio
n
 L

ay
er

Q
u
ery

Contrastive Loss

S
en

ten
ce In

p
u
ts

Embedded 

sample 2

//
//

D
eq

u
eu

e &
 en

q
u
eu

e

online

target

Figure 1: The model structure of MoCoSE. The embedding layer consists of a Bert embedding layer with additional
data augmentation. The pooler, projection, and predictor layers all keep the same dimensions with the encoder layer.
The MoCoSE minimizes contrastive loss between query, queue and keys (i.e. InfoNCE loss).

Contrastive Loss Similar to MoCo, we also use281

InfoNCE (Oord et al., 2018) as contrastive loss, as282

shown in eq.(3).283

L = − log
exp (q · k/τ)

exp (q · k/τ) +
∑

l exp (q · l/τ)
(3)284

Where, q refers to the query vectors obtained285

by the online branch; k refers to the key vectors286

obtained by the target branch; and l is the negative287

samples in the queue; τ is the temperature parame-288

ter.289

4 Experiments290

4.1 Settings291

We train with a randomly selected corpus of292

1 million sentences from the English Wikipedia,293

and we conduct experiments on seven standard se-294

mantic text similarity (STS) tasks, including STS295

2012—2016 (Agirre et al., 2012, 2013, 2014, 2015,296

2016), STSBenchmark (Cer et al., 2017) and SICK-297

Relatedness (Wijnholds and Moortgat, 2021). The298

SentEval1 toolbox is used to evaluate our model,299

and we use the Spearman’s correlation to measure300

the performance. We start our training by loading301

pre-trained Bert checkpoints2 and use the [CLS]302

token embedding from the model output as the sen-303

tence embedding. In addition to the semantic simi-304

larity task, we also evaluate on seven transfer learn-305

ing tasks to test the generalization performance of306

the model. For text augmentation, we tried sev-307

eral vector-level methods mentioned in ConSERT,308

1https://github.com/facebookresearch/SentEval
2https://huggingface.co/models

including position shuffle, token dropout, feature 309

dropout. In addition, we also tried several text- 310

level methods from the nlpaug3 toolkit, including 311

synonym replace, typo, back translation and para- 312

phrase. 313

Training Details The learning rate of MoCoSE- 314

BERT-base is set to 3e-5, and for MoCoSE-BERT- 315

large is 1e-5. With a weight decay of 1e-6, the 316

batch size of the base model is 64, and the batch 317

size of the large model is 32. We validate the model 318

every 100 step and train for one epoch. The EMA 319

decay weight η is incremented from 0.75 to 0.95 by 320

the cosine function. The negative queue size is 512. 321

For more information please refer to Appendix A.1. 322

4.2 Main Results 323

We compare the proposed MoCoSE with several 324

commonly used unsupervised methods and the cur- 325

rent state-of-the-art contrastive learning method 326

on the text semantic similarity (STS) task, in- 327

cluding average GloVe embeddings (Pennington 328

et al., 2014), average BERT or RoBERTa em- 329

beddings, BERT-flow, BERT-whitening, ISBERT 330

(Zhang et al., 2020a), DeCLUTR (Giorgi et al., 331

2021), CT-BERT (Carlsson et al., 2021) and Sim- 332

CSE. 333

As shown in Table 1, the average Spearman’s 334

correlation of our best model is 77.27%, outper- 335

forming unsupervised SimCSE with BERT-base. 336

Our model outperforms SimCSE on STS2012, 337

STS2015, and STS-B, and SimCSE perform bet- 338

ter on the STS2013 task. Our MoCoSE-BERT- 339

3https://github.com/makcedward/nlpaug

4



Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
Unsupervised Models (Base)

GloVe (avg.) 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERT (first-last avg.) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERT-flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERT-whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERT 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
CT-BERT 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
RoBERTa (first-last avg.) 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTa-whitening 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
DeCLUTR-RoBERT 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99
SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
MoCoSE 71.48 81.40 74.47 83.45 78.99 78.68 72.44 77.27

Unsupervised Models (Large)
SimCSE-RoBERTa 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
SimCSE-BERT 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
MoCoSE-BERT 74.50 84.54 77.32 84.11 79.67 80.53 73.26 79.13

Table 1: Spearman correlation of MoCoSE on seven semantic text similarity tasks. We compared with the state-
of-the-art method SimCSE. MoCoSE achieves the best results with both BERT-base and BERT-large pre-trained
models.

Model MR CR SUBJ MPQA SST TREC MRPC Avg.
Unsupervised Model (Base)

GloVe (avg.) 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Skip-thought 76.50 80.10 93.60 87.10 82.00 92.20 73.00 83.50
Avg. BERT embeddings 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
BERT-[CLS]embedding 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
SimCSE-RoBERTa 81.04 87.74 93.28 86.94 86.60 84.60 73.68 84.84
SimCSE-BERT 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
MoCoSE 81.07 86.43 94.76 89.70 86.35 84.06 75.86 85.46

Unsupervised Model (Large)
SimCSE-RoBERTa 82.74 87.87 93.66 88.22 88.58 92.00 69.68 86.11
MoCoSE-BERT 83.71 89.07 95.58 90.26 87.96 84.92 76.81 86.90

Table 2: Performance of MoCoSE on the seven transfer tasks. We compare the performance of MoCoSE and other
models on the seven transfer tasks evaluated by SentEval, and MoCoSE remains at a comparable level with the
SimCSE.

large model outperforms SimCSE-BERT-Large by340

about 0.7 on average, mainly on STS12, STS13,341

and STS14 tasks, and maintains a similar level on342

other tasks.343

Furthermore, we also evaluate the performance344

of MoCoSE on the seven transfer tasks provided by345

SentEval. As shown in Table 2, MoCoSE-BERT-346

base outperforms most of the previous unsuper-347

vised method, and is on par with SimCSE-BERT-348

base.349

5 Empirical Study350

To further explore the performance of the MoCo-351

like contrasting model on learning sentence embed-352

ding, we set up the following ablation trials.353

5.1 EMA Decay Weight 354

We use EMA to update the model parameters for 355

the target branch and find that EMA decay weight 356

affects the performance of the model. The EMA de- 357

cay weight affects the update process of the model, 358

which further affects the vectors involved in the 359

contrastive learning process. Therefore, we set dif- 360

ferent values of EMA decay weight and train the 361

model with other hyperparameters held constant. 362

As shown in Table 3 and Appendix A.5, the best 363

result is obtained when the decay weight of EMA is 364

set to 0.85. Compared to the choice of EMA decay 365

weight in CV (generally as large as 0.99), the value 366

of 0.85 in our model is smaller, which means that 367

the model is updated faster. We speculate that this 368

is because the NLP model is more sensitive in the 369

fine-tuning phase and the model weights change 370

5



EMA 0.5 0.8 0.85 0.9 0.95 0.99
Avg. 75.76 75.19 76.49 76.05 76.08 75.12

Table 3: Effect of EMA decay weight on model per-
formance. The best results are obtained with the EMA
decay weight at 0.85.

Proj. Pred. Corr. Proj. Pred. Corr.
1 60.46 1 66.96

0 2 62.67 2 2 66.29
3 63.62 3 61.57
1 76.74 1 31.51

1 2 76.89 3 2 43.97
3 76.24 3 39.13

Table 4: The impact of different combinations of pro-
jection and predictor on the model.

more after each step of the gradient, so a faster371

update speed is needed.372

5.2 Projection and Prediction373

Several papers have shown (e.g. Section F.1 in374

BYOL (Grill et al., 2020)) that the structure of375

projection and prediction layers in a contrastive376

learning framework affects the performance of the377

model. We combine the structure of projection and378

prediction with different configurations and train379

them with the same hyperparameters. As shown380

in Table 4, the best results are obtained when the381

projection is 1 layer and the prediction has 2 layers.382

The experiments also show that the removal of383

projection layers degrades the performance of the384

model.385

5.3 Data Augmentation386

We investigate the effect of some widely-used387

data augmentation methods on the model perfor-388

mance. As shown in Table 5, cut off and token shuf-389

fle do not improve, even slightly hurt the model’s390

performance. Only the adversarial attack (FGSM)391

has slight improvement on the performance. There-392

fore, in our experiments, we added FGSM as a393

default data augmentation of our model in addition394

to dropout. Please refer to Appendix A.7 for more395

FGSM parameters results. We speculate that the396

reason token cut off is detrimental to the model re-397

sults is that the cut off perturbs too much the vector398

formed by the sentences passing through the em-399

bedding layer. Removing one word from the text400

may have a significant impact on the semantics. We401

tried two parameters 0.1 and 0.01 for the feature402

cut off, and with these two parameters, the results403

of using the feature cut off is at most the same as404

Augmentation Methods Avg.
Dropout only 76.76
+ FGSM (ε=5e-9) 77.04
+ Position_shuffle (True) 73.80
+ Token dropout (prob=0.1) 41.32
+ Feature dropout (prob=0.01) 76.33
+ Feature dropout (prob=0.1) 71.62
+ Typos 22.32
+ Synonym replace (roberta-base) 28.70
+ Paraphrasing (xlnet-base-cased) 60.45
+ Backtranslation (en->de->en) 69.35

Table 5: The effect of different data augmentation meth-
ods.

without using feature the cut off, so we discard the 405

feature cut off method. More results can be found 406

in Appendix A.6. 407

The token shuffle is slightly, but not significantly, 408

detrimental to the results of the model. This may 409

be due to that BERT is not sensitive to the position 410

of token. In our experiment, the sentence-level 411

augmentation methods also failed to outperform 412

than the drop out, FGSM and position shuffle. 413

Among the data augmentation methods, only 414

FGSM together with dropout improves the results, 415

which may due to the adversarial attack slightly en- 416

hances the difference between the two samples and 417

therefore enables the model to learn a better repre- 418

sentation in more difficult contrastive samples. 419

5.4 Predictor Mapping Dimension 420

The predictor maps the representation to a fea- 421

ture space of a certain dimension. We investigate 422

the effect of the predictor mapping dimension on 423

the model performance. Table 6.a shows that the 424

predictor mapping dimension can seriously impair 425

the performance of the model when it is small, and 426

when the dimension rises to a suitable range or 427

larger, it no longer has a significant impact on the 428

model. This may be related to the intrinsic dimen- 429

sion of the representation, which leads to the loss 430

of semantic information in the representation when 431

the predictor dimension is smaller than the intrinsic 432

dimension of the feature, compromising the model 433

performance. We keep the dimension of the predic- 434

tor consistent with the encoder in our experiments. 435

More results can be found in Appendix A.8. 436

5.5 Batch Size 437

With a fixed queue size, we investigated the ef- 438

fect of batch size on model performance, the results 439

is in Table 6.b, and the model achieves the best per- 440

6



Dim Avg.
256 73.91
512 76.07
768 77.04
1024 77.02
2048 77.03

(a)

Size Avg.
32 73.86
64 77.25
128 76.78
256 76.62

(b)

Table 6: (a) Impact of prediction dimension on model
performance. (b) Impact of batch size on the model
with fixed queue size. Both table under a batch size
setting to 512.

formance when the batch size is 64. Surprisingly441

the model performance does not improve with in-442

creasing batch size, which contradicts the general443

experience in image contrastive learning. This is444

one of our motivations for further exploring the445

effect of the number of negative samples on the446

model.447

5.6 Size of Negative Sample Queue448

The queue length determines the number of neg-449

ative samples, which direct influence performance450

of the model. We first test the size of negative sam-451

ple queue to the model performance. With queue452

size longer than 1024, the results get unstable and453

worse. We suppose this may be due to the random454

interference introduced to the training by filling the455

initial negative sample queue. This interference456

causes a degradation of the model’s performance457

when the initial negative sample queue becomes458

longer. To reduce the drawbacks carried out by459

this randomness, we changed the way the negative460

queue is initialized. We initialize a smaller negative461

queue, then fill the queue to its set length in the first462

few updates, and then update normally. According463

to experiments, the model achieves the highest re-464

sults when the negative queue size set to 512 and465

the smaller initial queue size set to 128.466

According to the experiments of MoCo, the in-467

crease of queue length improves the model perfor-468

mance. However, as shown in Table 7, increasing469

the queue length with a fixed batch size decreases470

our model performance, which is not consistent471

with the observation in MoCo. We speculate that472

this may be due to that NLP models updating faster,473

and thus larger queue lengths store too much out-474

dated feature information, which is detrimental to475

the performance of the model. Combined with the476

observed effect of batch size, we further conjec-477

ture that the effect of the negative sample queue478

on model performance is controlled by the model479

Initial
Size

Queue Size
128 256 512 1024 4096

w.o. init. 76.40 76.19 75.38 76.63 50.17
init. 1/4 queue 75.92 76.34 77.30 76.20 50.42
init. 1/2 queue 76.16 76.39 76.94 76.57 38.74
init. all (normal) 76.87 75.81 76.29 76.45 45.80

Table 7: Correlation performance of initializing differ-
ent proportion of negative queue with different negative
queue size.

Corr.
0∼
512

256∼
768

512∼
1024

Without
256∼768

All

Avg. 76.10 77.02 75.71 76.18 76.86

Table 8: The impact of negative samples at different
locations in the queue on the model performance.

history information contained in the negative sam- 480

ple in the queue. See Appendix A.9 and A.10 for 481

more results of the effect of randomization size and 482

queue length. 483

Since the queue is first-in-first out, to test the 484

hypothesis above, we sliced the negative sample 485

queue and use different parts of the queue to partic- 486

ipate in loss calculation. Here, we set the negative 487

queue length to 1024, the initial queue size to 128, 488

and the batch size to 256. Thus, 256 negative sam- 489

ples will be push into the queue for each iteration. 490

We take 0 ∼ 512, 256 ∼ 768, 512 ∼ 1024, a con- 491

catenated of slice 0 ∼ 256 and 768 ∼ 1024, and 492

all negative sample queues respectively for testing. 493

The experiment results are shown in Table 8. 494

The experiments show that the model performs 495

best when using the middle part of the queue. So 496

we find that the increase in queue length affects 497

the model performance not only because of the 498

increased number of negative samples, but more 499

because it provides historical information within a 500

certain range. 501

5.7 Maximum Traceable Distance Metric 502

To testify there are historical information in neg- 503

ative sample queue influencing the model perfor- 504

mance, we define a Maximum Traceable Distance 505

Metric dtrace to help explore the phenomenon. 506

dtrace =
1

1− η
+
queue_size
batch_size

(4) 507

The η refers to the decay weight of EMA. The 508

dtrace calculates the update steps between the cur- 509

rent online branch and the oldest negative samples 510

in the queue. The first term of the formula rep- 511

resents the traceable distance between target and 512

7



0 5 10 15 20
Maximum Traceable Distance

75.8

76.0

76.2

76.4

76.6

76.8

77.0
C

or
re

la
tio

n

SimCSE-unsup-bert-base

MoCoSE

Figure 2: The relationship between traceable distance
and model correlation.

6 8 10 12 14 16 18 20
Maximum Traceable Distance

75.5

76.0

76.5

77.0

77.5

C
or

re
la

tio
n

64
128
256

Figure 3: The batch size does not invalidate the trace-
able distance. The traceable distance needs to be main-
tained within a reasonable range even for different
batch sizes. This explains why increasing the batch
size only does not improve the performance, because
increasing the batch size only can cause the distance
changes into unsuitable regions.

online branch due to the EMA update mechanism.513

The second term represents the traceable distance514

between the negative samples in the queue and the515

current target branch due to the queue’s first-in-516

first-out mechanism. The longer traceable distance,517

the wider the temporal range of the historical in-518

formation contained in the queue. We obtained519

different value of traceable distance by jointly ad-520

just the decay weight, queue size, and batch size.521

As shown in Figure 2 and Figure 3, the best result522

of BERT base is obtained with dtrace is set around523

14.67. The best result of Bert large shows the sim-524

ilar phenomenon, see Appendix A.11 for details.525

This further demonstrates that in text contrastive526

learning, the historical information used should be527

not too old and not too new, and the appropriate528

traceable distance between branches is also impor-529

tant. Some derivations about eq.4 can be found in530

Appendix A.12.531

However, for an image contrast learning model,532

like MoCo, experimental results suggests that533

5 10 15 20 25
MTD

0.2

0.4

0.6

0.8

D
is

ta
nc

e

L2 distance
L1 distance

Figure 4: L1 and L2 distances of learned embedding’s
uniformity and alignment with a fixed point changes
along with MTD.

longer queue size increases the performance. We 534

believe that this is due to the phenomenon of unique 535

anisotropy (Zhang et al., 2020b) of text that causes 536

such differences. The text is influenced by the word 537

frequency producing the phenomenon of anisotropy 538

with uneven distribution, which is different from 539

the near-uniform distribution of pixel points of im- 540

age data. Such a phenomenon affects the com- 541

putation of the cosine similarity (Wang and Isola, 542

2020), and the loss of InfoNCE that we use depends 543

on it, which affects the performance of the model 544

through the accumulation of learning steps. To test 545

such a hypothesis, we use alignment and uniformity 546

to measure the distribution of the representations 547

in space and monitor the corresponding values of 548

alignment and uniformity for different MTDs. As 549

shown in the Figure 4, it can be found that a proper 550

MTD allows the alignment and uniformity of the 551

model to reflects an optimal combination. The 552

change in MTD is reflected in the performance of 553

uniformity and alignment of the learned text em- 554

bedding, and the increase and decrease of MTD is 555

a considering result of uniformity and alignment 556

moving away from their optimal combination re- 557

gion. 558

6 Conclusion 559

In this work, we propose MoCoSE, it applies the 560

MoCo-style contrastive learning model to the em- 561

pirical study of sentence embedding. We conducted 562

experiments to study every detail of the model to 563

provide some experiences for text contrastive learn- 564

ing. We further delve into the application of the 565

negative sample queue to text contrastive learning 566

and propose a maximum traceable distance metric 567

to explain the relation between the queue size and 568

model performance. 569

8



References570

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel571
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei572
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada573
Mihalcea, German Rigau, Larraitz Uria, and Janyce574
Wiebe. 2015. Semeval-2015 task 2: Semantic tex-575
tual similarity, english, spanish and pilot on inter-576
pretability. In Proceedings of the 9th International577
Workshop on Semantic Evaluation (SemEval 2015),578
pages 252–263.579

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel580
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei581
Guo, Rada Mihalcea, German Rigau, and Janyce582
Wiebe. 2014. Semeval-2014 task 10: Multilingual583
semantic textual similarity. In Proceedings of the584
8th International Workshop on Semantic Evaluation585
(SemEval 2014), pages 81–91.586

Eneko Agirre, Carmen Banea, Daniel M. Cer, Mona T.587
Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, Ger-588
man Rigau, and Janyce Wiebe. 2016. Semeval-589
2016 task 1: Semantic textual similarity, monolin-590
gual and cross-lingual evaluation. In Proceedings of591
the 10th International Workshop on Semantic Evalu-592
ation (SemEval-2016), pages 497–511.593

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor594
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-595
lot on semantic textual similarity. In *SEM 2012:596
The First Joint Conference on Lexical and Compu-597
tational Semantics – Volume 1: Proceedings of the598
main conference and the shared task, and Volume599
2: Proceedings of the Sixth International Workshop600
on Semantic Evaluation (SemEval 2012), volume 1,601
pages 385–393.602

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-603
Agirre, and Weiwei Guo. 2013. *sem 2013 shared604
task: Semantic textual similarity. In Second Joint605
Conference on Lexical and Computational Seman-606
tics (*SEM), Volume 1: Proceedings of the Main607
Conference and the Shared Task: Semantic Textual608
Similarity, volume 1, pages 32–43.609

Fredrik Carlsson, Magnus Sahlgren, Evangelia610
Gogoulou, Amaru Cuba Gyllensten, and Erik Ylipää611
Hellqvist. 2021. Semantic re-tuning with contrastive612
tension. In ICLR 2021: The Ninth International613
Conference on Learning Representations.614

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo615
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-616
2017 task 1: Semantic textual similarity multilingual617
and crosslingual focused evaluation. In Proceed-618
ings of the 11th International Workshop on Semantic619
Evaluation (SemEval-2017), pages 1–14.620

Pengguang Chen, Shu Liu, and Jiaya Jia. 2021. Jig-621
saw clustering for unsupervised visual representa-622
tion learning. In Proceedings of the IEEE/CVF Con-623
ference on Computer Vision and Pattern Recogni-624
tion, pages 11526–11535.625

Ting Chen, Simon Kornblith, Mohammad Norouzi, 626
and Geoffrey Hinton. 2020. A simple framework for 627
contrastive learning of visual representations. In In- 628
ternational conference on machine learning, pages 629
1597–1607. PMLR. 630

Xinlei Chen and Kaiming He. 2021. Exploring simple 631
siamese representation learning. In Proceedings of 632
the IEEE/CVF Conference on Computer Vision and 633
Pattern Recognition, pages 15750–15758. 634

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 635
Kristina N. Toutanova. 2018. Bert: Pre-training of 636
deep bidirectional transformers for language under- 637
standing. In Proceedings of the 2019 Conference of 638
the North American Chapter of the Association for 639
Computational Linguistics: Human Language Tech- 640
nologies, Volume 1 (Long and Short Papers), pages 641
4171–4186. 642

Aleksandr Ermolov, Aliaksandr Siarohin, Enver 643
Sangineto, and Nicu Sebe. 2021. Whitening for self- 644
supervised representation learning. In ICML 2021: 645
38th International Conference on Machine Learning, 646
pages 3015–3024. 647

Hongchao Fang and Pengtao Xie. 2020. Cert: Con- 648
trastive self-supervised learning for language under- 649
standing. arXiv preprint arXiv:2005.12766. 650

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie- 651
Yan Liu. 2019. Representation degeneration prob- 652
lem in training natural language generation models. 653
arXiv preprint arXiv:1907.12009. 654

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. 655
Simcse: Simple contrastive learning of sentence em- 656
beddings. arXiv preprint arXiv:2104.08821. 657

John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader. 658
2021. DeCLUTR: Deep contrastive learning for 659
unsupervised textual representations. In Proceed- 660
ings of the 59th Annual Meeting of the Association 661
for Computational Linguistics and the 11th Interna- 662
tional Joint Conference on Natural Language Pro- 663
cessing (Volume 1: Long Papers), pages 879–895, 664
Online. Association for Computational Linguistics. 665

Ian J. Goodfellow, Jonathon Shlens, and Christian 666
Szegedy. 2015. Explaining and harnessing adversar- 667
ial examples. In ICLR 2015 : International Confer- 668
ence on Learning Representations 2015. 669

Jean-Bastien Grill, Florian Strub, Florent Altché, 670
Corentin Tallec, Pierre H. Richemond, Elena 671
Buchatskaya, Carl Doersch, Bernardo Avila Pires, 672
Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, 673
Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and 674
Michal Valko. 2020. Bootstrap your own latent: A 675
new approach to self-supervised learning. In Ad- 676
vances in Neural Information Processing Systems, 677
volume 33, pages 21271–21284. 678

9

https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72


R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimen-679
sionality reduction by learning an invariant map-680
ping. In 2006 IEEE Computer Society Confer-681
ence on Computer Vision and Pattern Recognition682
(CVPR’06), volume 2, pages 1735–1742.683

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and684
Ross Girshick. 2020. Momentum contrast for unsu-685
pervised visual representation learning. In Proceed-686
ings of the IEEE/CVF Conference on Computer Vi-687
sion and Pattern Recognition, pages 9729–9738.688

Chih-Hui Ho and Nuno Nvasconcelos. 2020. Con-689
trastive learning with adversarial examples. In Ad-690
vances in Neural Information Processing Systems,691
volume 33, pages 17081–17093.692

Quentin Lhoest, Albert Villanova del Moral, Patrick693
von Platen, Thomas Wolf, Yacine Jernite, Abhishek694
Thakur, Lewis Tunstall, Suraj Patil, Mariama Drame,695
Julien Chaumond, Julien Plu, Joe Davison, Simon696
Brandeis, Victor Sanh, Teven Le Scao, Kevin Can-697
wen Xu, Nicolas Patry, Steven Liu, Angelina698
McMillan-Major, Philipp Schmid, Sylvain Gug-699
ger, Nathan Raw, Sylvain Lesage, Anton Lozhkov,700
Matthew Carrigan, Théo Matussière, Leandro von701
Werra, Lysandre Debut, Stas Bekman, and Clément702
Delangue. 2021. huggingface/datasets: 1.13.2.703

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,704
Yiming Yang, and Lei Li. 2020. On the sentence705
embeddings from pre-trained language models. In706
Proceedings of the 2020 Conference on Empirical707
Methods in Natural Language Processing (EMNLP),708
pages 9119–9130.709

Junnan Li, Pan Zhou, Caiming Xiong, and Steven Hoi.710
2021. Prototypical contrastive learning of unsuper-711
vised representations. In ICLR 2021: The Ninth712
International Conference on Learning Representa-713
tions.714

Jovana Mitrovic, Brian McWilliams, and Melanie Rey.715
2020. Less can be more in contrastive learning. ”I716
Can’t Believe It’s Not Better!” NeurIPS 2020 work-717
shop.718

Aaron van den Oord, Yazhe Li, and Oriol Vinyals.719
2018. Representation learning with contrastive pre-720
dictive coding. arXiv preprint arXiv:1807.03748.721

Jeffrey Pennington, Richard Socher, and Christopher722
Manning. 2014. GloVe: Global vectors for word723
representation. In Proceedings of the 2014 Confer-724
ence on Empirical Methods in Natural Language725
Processing (EMNLP), pages 1532–1543, Doha,726
Qatar. Association for Computational Linguistics.727

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou.728
2021. Whitening sentence representations for bet-729
ter semantics and faster retrieval. arXiv preprint730
arXiv:2103.15316.731

Dong Wang, Ning Ding, Piji Li, and Haitao Zheng.732
2021. Cline: Contrastive learning with semantic733

negative examples for natural language understand- 734
ing. In ACL 2021: 59th annual meeting of the Asso- 735
ciation for Computational Linguistics, pages 2332– 736
2342. 737

Tongzhou Wang and Phillip Isola. 2020. Understand- 738
ing contrastive representation learning through align- 739
ment and uniformity on the hypersphere. In Inter- 740
national Conference on Machine Learning, pages 741
9929–9939. PMLR. 742

Gijs Wijnholds and Michael Moortgat. 2021. Sick-nl: 743
A dataset for dutch natural language inference. In 744
Proceedings of the 16th Conference of the European 745
Chapter of the Association for Computational Lin- 746
guistics: Main Volume, pages 1474–1479. 747

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 748
Chaumond, Clement Delangue, Anthony Moi, Pier- 749
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow- 750
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 751
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 752
Teven Le Scao, Sylvain Gugger, Mariama Drame, 753
Quentin Lhoest, and Alexander M. Rush. 2020. 754
Transformers: State-of-the-art natural language pro- 755
cessing. In Proceedings of the 2020 Conference on 756
Empirical Methods in Natural Language Processing: 757
System Demonstrations, pages 38–45, Online. Asso- 758
ciation for Computational Linguistics. 759

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian 760
Khabsa, Fei Sun, and Hao Ma. 2020. Clear: Con- 761
trastive learning for sentence representation. arXiv 762
preprint arXiv:2012.15466. 763

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang, 764
Wei Wu, and Weiran Xu. 2021. Consert: A con- 765
trastive framework for self-supervised sentence rep- 766
resentation transfer. In ACL 2021: 59th annual 767
meeting of the Association for Computational Lin- 768
guistics, pages 5065–5075. 769

Jure Zbontar, Li Jing, Ishan Misra, yann lecun, 770
and Stephane Deny. 2021. Barlow twins: Self- 771
supervised learning via redundancy reduction. In 772
ICML 2021: 38th International Conference on Ma- 773
chine Learning, pages 12310–12320. 774

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim, 775
and Lidong Bing. 2020a. An unsupervised sentence 776
embedding method by mutual information maxi- 777
mization. In Proceedings of the 2020 Conference on 778
Empirical Methods in Natural Language Processing 779
(EMNLP), pages 1601–1610. 780

Zhong Zhang, Chongming Gao, Cong Xu, Rui Miao, 781
Qinli Yang, and Junming Shao. 2020b. Revisit- 782
ing representation degeneration problem in language 783
modeling. In Findings of the Association for Com- 784
putational Linguistics: EMNLP 2020, Online Event, 785
16-20 November 2020, volume EMNLP 2020 of 786
Findings of ACL, pages 518–527. Association for 787
Computational Linguistics. 788

10

https://doi.org/10.5281/zenodo.5570305
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.findings-emnlp.46
https://doi.org/10.18653/v1/2020.findings-emnlp.46
https://doi.org/10.18653/v1/2020.findings-emnlp.46
https://doi.org/10.18653/v1/2020.findings-emnlp.46
https://doi.org/10.18653/v1/2020.findings-emnlp.46


A Appendix789

A.1 Experiment Settings790

We train our MoCoSE model using a single791

NVIDIA RTX3090 GPUs. Our training system792

runs Microsoft Windows 10 with CUDA toolkit793

11.1. We use Python 3.8 and PyTorch version v1.8.794

We build the model with Transformers 4.4.2(Wolf795

et al., 2020) and Datasets 1.8.0(Lhoest et al., 2021)796

from Huggingface. We preprocess the training797

data according to the SimCSE to directly load the798

stored data in training. We compute the uniformity799

and alignment metrics of embedding on the STS-800

B dataset according to the method proposed by801

Wang (Wang and Isola, 2020). The STS-B dataset802

is also preprocessed. We use the nlpaug toolkit in803

our data augmentation experiments. For synonym804

replace, we use ’ContextualWordEmbsAug’805

function with ’roberta-base’ as parameter. For806

typo, we use ’SpellingAug’ and back transla-807

tion we use ’BackTranslationAug’ with param-808

eter ’facebook/wmt19-en-de’ and paraphrase we809

use ’ContextualWordEmbsForSentenceAug’810

with parameter ’xlnet-base-cased’. All the parame-811

ter listing here is default value given by official.812

A.2 Symmetric Two-branch Structure813

We remove the online branch predictor and set814

the EMA decay weight to 0, i.e., make the struc-815

ture and weights of the two branches identical. As816

shown in Figure 5, it is clear that the model is col-817

lapsing at this point. And we find that the model818

always works best at the very beginning, i.e., train-819

ing instead hurts the performance of the model. In820

addition, as the training proceeds, the correlation821

coefficient of the model approaches 0, i.e., the pre-822

diction results have no correlation with the actual823

labeling. At this point, it is clear that a collapse of824

the model is observed. We observed such a result825

for several runs, so we adopted a strategy of dou-826

ble branching with different structures plus EMA827

momentum updates in our design. Subsequent ex-828

periments demonstrated that this allowed the model829

to avoid from collapsing.830

We add predictor to the online branch and set the831

EMA decay weight to 0. We find that the model832

also appears to collapse and has a dramatic oscilla-833

tion in the late stage of training, as shown in Figure834

6.835

0 2000 4000 6000 8000 10000 12000 14000
Training Step

0

5

10

15

20

25

30

C
or

re
la

tio
n

Symmetrical

Figure 5: Experiment on a symmetric two-branch struc-
ture with EMA decay weight set to 0.

0 2000 4000 6000 8000 10000 12000 14000 16000
Training Step

0

5

10

15

20

25

C
or

re
la

tio
n

with predictor

Figure 6: Experiment after adding predictor on the on-
line branch with EMA decay weight set to 0.

A.3 Pseudo-Code for Training MoCoSE 836

The PyTorch style pseudo-code for training Mo- 837

CoSE with the negative sample queue is shown in 838

Algorithm 1. 839

A.4 Distribution of Singular Values 840

Similar to SimCSE, we plot the distribution of 841

singular values of MoCoSE sentence embeddings 842

with SimCSE and Bert for comparison. As illus- 843

trated in Figure 7, our method is able to alleviate 844

the rapid decline of singular values compared to 845

other methods, making the curve smoother, i.e., 846

our model is able to make the sentence embedding 847

more isotropic. 848

A.5 Experiment Details of EMA 849

Hyperparameters 850

The details of the impact caused by the EMA 851

parameter are shown in the Figure 8. We perform 852

this experiment with all parameters held constant 853

except for the EMA decay weight. 854

11



Algorithm 1: Momentum Contrastive Sentence Embedding
Input:
D : Training data set ;
Q : Negative Sample Queue;
Ea : Embedding with random data augmentation;
θo, θt : weights of online branch and target branch;
Optimizer : Adam optimizer
K,Ks: Queue size, Queue size at initialisation;
η : ema decay ema and ema scheduling strategy;
τ Temperature parameters
Output: MoCoSE model θo

1 Initializing the queue Q with size Ks;
2 foreach B ∈ D do
3 vo, vt ← Ea (B) , Ea (B) // Using data Augmentation to generate

different views
4 zo ← θo (vo) // (N, d), N is batch size, d is dimension of sentence

embedding
5 zt ← θt (vt)

6 lzo,zt,Q ← − log exp (zo·zt/τ)
exp (zo·zt/τ)+

∑
x∈Q exp (zo·x/τ) // compute contrastive loss

using InFoNCE
7 optimizer(lzo,zt,Q, θo) // Update only the parameters of the online

branch according to the loss gradient;
8 θt ← η ∗ θt + (1− η) ∗ θo // Update the parameters of the target

branch using EMA
9 enqueue(Q, vt) // Update the negative sample queue Q

10 dequeue(Q)
11 return θo

12



0 100 200 300 400 500 600 700 800
index

0

50

100

150

200

250

300

350
Si

ng
ul

ar
 V

al
ue

s
MoCoSE
SimCSE
BERT-base

Figure 7: Singular value distributions of sentence em-
bedding matrix from sentences in STS-B.

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
EMA decay

74.5

75.0

75.5

76.0

76.5

77.0

C
or

re
la

tio
n

Figure 8: Effect of EMA decay weight on model per-
formance.

A.6 Details of Different Data Augmentations855

We use only dropout as a baseline for the results856

of data augmentations. Then, we combine dropout857

with other data augmentation methods and study858

their effects on model performance. The results are859

shown in Figure 9.860

dropout

+FGSM(5e-9)

Position_shuffle

+Token drop(0.01)

+Feature drop(0.1)

Augmentation

68

70

72

74

76

C
or

re
la

tio
n

Figure 9: Impact of four additional data enhancements
with dropout combinations on the model.

A.7 Experiment Details of FGSM861

We test the effect of the intensity of FGSM on862

the model performance. We keep the other hyper-863

parameters fixed, vary the FGSM parameters (1e-9, 864

5e-9, 1e-8, 5e-8). As seen in Table 9, the average 865

results of the model are optimal when the FGSM 866

parameter is 5e-9. 867

Epsilon 1e-9 5e-9 1e-8 5e-8 No
Avg. 75.61 76.64 75.39 76.62 76.26

Table 9: Different parameters of FGSM in data aug-
mentation affect the model results.

A.8 Dimension of Sentence Embedding 868

In both BERT-whitening (Su et al., 2021) and 869

MoCo (He et al., 2020), it is mentioned that the 870

dimension of embedding can have some impact on 871

the performance of the model. Therefore, we also 872

changed the dimension of sentence embedding in 873

MoCoSE and trained the model several times to 874

observe the impact of the embedding dimension. 875

Because of the queue structure of MoCoSE, we 876

need to keep the dimension of negative examples 877

consistent while changing the dimension of sen- 878

tence embedding. As shown in the Figure 10, when 879

the dimension of Embedding is low, this causes con- 880

siderable damage to the performance of the model; 881

while when the dimension rises to certain range, 882

the performance of the model stays steady. 883

256 512 768 1024 2048
Dimension of Embedding

73

74

75

76

77

C
or

re
la

tio
n

Figure 10: Impact of dimensions of the sentence em-
bedding.

A.9 Details of Random Initial Queue Size 884

We test the influence of random initialization 885

size of the negative queue on the model perfor- 886

mance when queue length and batch size are fixed. 887

As seen in Figure 11, random initialization does 888

have some impact on the model performance. 889

A.10 Queue Size and Initial Size 890

We explored the effect of different combinations 891

of initial queue sizes and queue length on the model 892

13



1 16 32 64 128 256 512
Initial Size

75.0

75.5

76.0

76.5

77.0

77.5
C

or
re

la
tio

n

Figure 11: The effect of the initial queue size on the
model results when the queue length is 512 and the
batch size is 64.

performance. The detailed experiment results are893

shown in Figure 13. It can be found that model894

performance rely deeply on initialization queue895

size. Yet, too large queue size will make the model896

extremely unstable. This is quite different from897

the observation of negative sample queue in image898

contrastive learning.899

A.11 Maximum Traceable Distance in900

Bert-large901

5 10 15 20 25 30 35 40 45
Maximum Traceable Distance

76.0

76.5

77.0

77.5

78.0

78.5

79.0

C
or

re
la

tio
n

Figure 12: The relationship between MTD and cor-
relation of MoCoSE-BERT-large. It can be seen that
even at large model, peaks occur within a certain MTD
range.

We also train mocose with different batch size902

and queue size on Bert-large. As shown in Fig-903

ure 12, we observe the best model performance in904

MoCoSE-BERT-large within the appropriate Maxi-905

mum Traceable Distance range (around 22). Once906

again, this suggests that even on BERT-large, the907

longer queue sizes do not improve the model per-908

formance indefinitely. Which also implies that the909

history information contained in the negative sam-910

ple queue needs to be kept within a certain range911

on BERT-large as well.912

A.12 Proof of Maximum Traceable Distance 913

Here, we prove the first term of the formula for 914

Maximum Traceable Distance. Due to the EMA 915

update mechanism, the weight of target branch is a 916

weighted sum of the online weight in update history. 917

The first term of Maximum Traceable Distance 918

calculate the weighted sum of the historical update 919

steps given a certain EMA decay weight η. From 920

the principle of EMA mechanism, we can get the 921

following equation. 922

Sn =

k∑
i=0

(1− η) · ηi · (i+ 1) (5) 923

Sn represents the update steps between online and 924

target branch due to the EMA mechanism. Since 925

EMA represents the weighted sum, we need to ask 926

for Sn to get the weighted sum. 927

928

We can calculate Sn as: 929

Sn = (−1) ∗ ηk+1 ∗ (k + 1)−
(
1− ηk+1

)
(η − 1)

(6) 930

As k tends to infinity, the limit for Sn can be calcu- 931

lated as following: 932

lim
k→∞

Sn = lim
k→∞

[
(−1) ∗ ηk+1 ∗ (k + 1)−

(
1− ηk+1

)
(η − 1)

]
(7) 933

It is obvious to see that the limit of the equation 7 934

consists of two parts, so we calculate the limit of 935

these two parts first. 936

lim
k→∞

(−1) ∗ ηk+1 ∗ (k + 1)
η<1
= 0 (8) 937

The limit of the first part can be calculated as 0. 938

Next, we calculate the limit of the second part. 939

lim
k→∞

(
1− ηk+1

)
(η − 1)

η<1
=

1

1− η
(9) 940

We calculate the limit of the second part as 1
1−η . 941

Since the limits of both parts exist, we can obtain 942

the limit of Sn by the law of limit operations. 943

lim
k→∞

Sn = lim
k→∞

[
(−1) ∗ ηk+1 ∗ (k + 1)−

(
1− ηk+1

)
(η − 1)

]

= lim
k→∞

(−1) ∗ ηk+1 ∗ (k + 1)− lim
k→∞

(
1− ηk+1

)
(η − 1)

=
1

1− η
(10) 944

14



128 256 512 1024 4096
Queue Size

40

50

60

70

C
or

re
la

tio
n

128 256 512 1024
Queue Size

74.0

74.5

75.0

75.5

76.0

76.5

77.0

77.5

C
or

re
la

tio
n

begin_size
1
32
64
128
256
512
1024

begin_size
1
32
64
128
256
512
1024
2048
4096

Figure 13: The impact of different initial negative sample queue sizes for different initial sizes on model perfor-
mance. (left):Zoomed view. (right):Overview with different negative queue size. Results of different initial size
under same queue size.

15


