
Multipole Attention for
Efficient Long Context Reasoning

Coleman Hooper∗1 Sebastian Zhao∗1 Luca Manolache1

Sehoon Kim1 Michael W. Mahoney1,2,3 Yakun Sophia Shao1

Kurt Keutzer1 Amir Gholami1,2

1University of California, Berkeley 2ICSI 3LBNL
{chooper, sebbyzhao, luca.manolache, sehoonkim,
mahoneymw, ysshao, keutzer, amirgh}@berkeley.edu

Abstract

Large Reasoning Models (LRMs) have shown promising accuracy improvements
for complex problem-solving tasks. While these models have attained high ac-
curacy by leveraging additional computation at test time, they need to generate
long chain-of-thought reasoning in order to think before answering, which requires
generating thousands of tokens. While sparse attention methods can help reduce the
KV cache pressure induced by this long autoregressive reasoning, these methods
can introduce errors which disrupt the reasoning process. Additionally, prior meth-
ods often pre-processed the input to make it easier to identify the important prompt
tokens when computing attention during generation, and this pre-processing is
challenging to perform online for newly generated reasoning tokens. Our work
addresses these challenges by introducing MULTIPOLE ATTENTION, which ac-
celerates autoregressive reasoning by only computing exact attention for the most
important tokens, while maintaining approximate representations for the remain-
ing tokens. Our method first performs clustering to group together semantically
similar key vectors, and then uses the cluster centroids both to identify important
key vectors and to approximate the remaining key vectors in order to retain high
accuracy. Additionally, we design a fast cluster update process to quickly re-cluster
the input and previously generated tokens, thereby allowing for accelerating at-
tention to the previous output tokens. We evaluate our method using emerging
LRMs such as Qwen-8B and Deepseek-R1-Distil-Qwen2.5-14B, demonstrating
that our approach can maintain accuracy on complex reasoning tasks even with
aggressive attention sparsity settings. We also provide kernel implementations to
demonstrate the practical efficiency gains from our method, achieving up to 4.5×
speedup for attention in long-context reasoning applications. Our code is available
at https://github.com/SqueezeAILab/MultipoleAttention.

1 Introduction

Test-time compute has emerged as a new dimension for scaling up Large Language Model (LLM)
performance [Snell et al., 2024]. By scaling the amount of computation used at test time, we can allow
LLMs to think longer on harder problems in order to attain higher accuracy. Large Reasoning Models
(LRMs), which are LLMs post-trained to have strong reasoning capabilities, typically reason by
generating long chain-of-thought, where they produce a step-by-step chain to help guide themselves
to the correct solution [Wei et al., 2022, Guo et al., 2025, Qwen, 2025]. This has been shown to

∗Equal Contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/SqueezeAILab/MultipoleAttention


Query Key Centroid

Figure 1: A visualization of the MULTIPOLE ATTENTION algorithm. For important keys (which are
close to the current query), we compute exact attention. For keys which are farther away from the
current query, we instead approximate the attention to these keys using the attention score with a
representative cluster centroid. We use progressively coarser grained centroids as we get further away
from the query. This allows us to maintain important contextual information from all tokens in the
sequence, while only requiring loading a small number of keys for exact attention computation.

provide substantial accuracy gains in domains such as math and coding which require problem solving
capabilities [Guo et al., 2025, Qwen, 2025].

However, the long autoregressive generation required for reasoning also brings substantial inference
efficiency challenges. Notably, the reasoning process leads to large Key/Value (KV) cache memory
footprint [Hooper et al., 2024b]. One common method to reduce the KV cache footprint is through
sparse attention methods that only load important KV cache tokens at each generation step [Tang
et al., 2024, Hooper et al., 2024a]. However, while these methods are promising for reducing the
KV cache memory bottleneck, they lead to unacceptable accuracy loss. Prior work has also shown
that problem solving tasks which require complex reasoning experience greater accuracy degradation
when pruning the KV cache [Liu et al., 2025]. Additionally, existing sparse attention methods often
pre-process the KV cache from the prompt to make it easier to retrieve important prompt tokens
during generation, and this pre-processing is challenging to perform online during generation for the
previously generated reasoning tokens [Hooper et al., 2024a].

To address these challenges, we build on top of [Hooper et al., 2024a] and introduce MULTIPOLE
ATTENTION, which leverages sparse attention in order to only load the important KV cache tokens,
while still approximating attention to the rest of the context to maintain high accuracy. Figure 1
provides an intuitive visualization of our algorithm, which first clusters the keys and computes a
representative centroid for each cluster. When computing attention, our method compares the current
query with the centroids to determine the importance of key tokens. For the highest scoring keys, we
compute exact attention. For the remaining keys, we leverage the cluster centroid to approximate the
attention score for all keys in that cluster, thereby retaining contextual information from the full KV
cache. We also present a hierarchical generalization of our method which leverages progressively
coarser grained centroids as we get further away from the query. To accelerate attention to the
previously generated reasoning tokens, we also design a fast cluster update strategy that can be
applied during generation, thereby allowing our method to accelerate attention to the previous output
tokens.

Specifically, our work makes the following contributions:
• Multipole Approximation: Our algorithm clusters keys based on semantic similarity and rep-

resents all keys within a cluster with a representative key centroid (as in [Hooper et al., 2024a]).
When computing attention, we then compare the current query with the key centroids to identify
which keys are important for the current query; we only compute exact attention for these important
keys, and we approximate the attention to the remaining keys using the attention scores with the
cluster centroids. This allows our algorithm to maintain contextually relevant information from
the full sequence, even with low KV cache budget. We also extend this to a hierarchical multipole
approximation to improve the efficiency of the centroid comparison.

• Fast Online Clustering: In order to accelerate attention to the KV cache entries that are appended
during generation, we design a fast cluster update algorithm. Our algorithm initially assigns the
new tokens to clusters, and then performs a small number of refinement steps over the full keys
to ensure high quality clustering. Additionally, to improve the scalability of our algorithm, we

2



leverage a blockwise k-means clustering method (which clusters the input sequence in segments),
and we design a shifting window method to ensure that the final block always has sufficient tokens
to perform clustering. These optimizations together facilitate efficient clustering for the generated
output tokens.

• System Implementation: We present a prototype system implementation with custom Triton
kernels for performing multipole approximate attention. Our system implementation consists
of a multi-stage kernel implementation that compares the incoming user query with the key
centroids, then computes exact attention for the important keys and approximate attention for the
less important keys. Our methodology achieves up to 4.5× attention speedup during decode for
long context reasoning applications.

2 Related Work

2.1 Reasoning Models

Reasoning models have emerged as a new paradigm for solving complex problem-solving tasks
[Guo et al., 2025, Qwen, 2025]. These models are trained to generate a chain-of-thought reasoning
trajectory, which contains step-by-step reasoning to help guide the model to the correct answer [Wei
et al., 2022]. The DeepSeek-R1 model [Guo et al., 2025] pioneered a new reinforcement learning-
based methodology for training reasoning models for problem solving tasks. Their model release
also included smaller open-source models (distilled from their base model) based on the Llama3
[Grattafiori et al., 2024] and Qwen2.5 model series [Yang et al., 2024]. There have also been several
powerful reasoning models released with agentic tool-calling capabilites such as the QwQ-32B model
[Qwen, 2025], the Qwen3 model series [Yang et al., 2024], and the Llama-Nemotron model series
[Bercovich et al., 2025].

2.2 Long Context Inference

Long-context length LLMs, which can support context lengths greater than 100K tokens, have seen
widespread use for applications such as document question answering, summarization, literature
review, and processing multi-turn conversations. There have been several closed-source models which
support long context capabilities [Achiam et al., 2023, Anthropic, 2023], including Gemini [Google,
2023] which supports greater than 1 million context length. Newer open-source model families such
as Llama3 [Meta, 2024] and Qwen2.5 [Yang et al., 2024] also support greater than 100K context
length. Another line of work has focused on extending the context windows of pretrained models
beyond the original supported context length through scaling or adjusting the positional embeddings
[Chen et al., 2023, Peng et al., 2023].

2.3 KV Cache Compression

KV cache compression has emerged as a key algorithmic tool for enabling long context length
inference. For long context inference scenarios, the KV cache becomes the main memory bottleneck,
making KV cache compression crucial for efficient inference [Hooper et al., 2024b]. Common
approaches for compressing the KV cache include quantization [Hooper et al., 2024b, Liu et al.,
2024b], which aims to compress the representation for each token, and sparsification [Tang et al.,
2024, Hooper et al., 2024a, Zhang et al., 2024b], which aims to only load important KV cache tokens.

One previous approach for inducing sparsity to reduce KV cache size during inference is KV cache
eviction, where less important tokens are evicted during the generation process to reduce memory
consumption. Previous works have leveraged metrics such as attention score contribution [Zhang
et al., 2024b] to select tokens to evict from the KV cache. One challenge with evicting tokens from
the KV cache is that it irreversibly discards less important tokens - if these tokens become important
later during generation, they cannot be recovered. KV cache merging [Wang et al., 2024, Yuan et al.,
2025] was proposed as a solution to compensate for the error induced by KV cache pruning. KV
cache merging involves merging evicted KV cache entries (based on key similarity [Wang et al.,
2024] or historical attention scores [Yuan et al., 2025]) instead of discarding them completely. In
contrast with these works, our algorithm retains the full original KV cache (thereby allowing the
model to refer back to any prior KV cache state exactly if they become important during generation),
while approximating attention to less important clusters using the key centroids.

3



a) Clustering using K-Means b) Centroid Lookup c) Multipole Attention

Query Key Centroid Exact ApproximateLow Scoring High Scoring

Figure 2: A diagram outlining how MULTIPOLE ATTENTION identifies and retains important keys,
while approximating the attention to the remaining keys. a) We first construct a Key index by
performing k-means clustering (thereby obtaining a representative centroid for each cluster). b) When
computing attention, we compare the current query with the centroids to estimate the importance of
keys in each cluster (“Centroid Lookup”). c) For the most important (“High Scoring”) key centroids,
we then compute exact attention with the keys in the corresponding clusters. For the remaining
keys, we approximate the attention to each key cluster using the attention to the representative
centroid for that cluster. Overall, MULTIPOLE ATTENTION attains the efficiency of sparse attention
while preserving important contextual information from the full sequence. Our method can also be
generalized to a hierarchical approach, as outlined in Section 3.4.
Another common approach for leveraging sparsity for the KV cache is to retain the full KV cache
and only load in the required KV cache entries for each decoding step. One prior work, QUEST
[Tang et al., 2024], grouped consecutive KV cache entries and derived representative vectors for the
keys within each group, and compared the query with these representative vectors to decide which
KV cache entries to load. Whereas QUEST clustered keys based on positional proximity, Squeezed
Attention [Hooper et al., 2024a] instead clustered keys based on semantic similarity, thereby allowing
for precise identification of tokens which were likely to be high-scoring. Another related work, Tactic
[Zhu et al., 2025], performed clustering based on semantic similarity and then used distribution fitting
to select critical KV cache entries. Other previous works have framed the query-key comparison
as a retrieval problem in order to accelerate attention using vector search methods [Zhang et al.,
2024a, Liu et al., 2024a, He et al., 2025]. In contrast with existing methods, our approach aims to
identify and load only a small subset of KV cache entries for exact attention computation, while
approximating the attention to the remaining KV cache entries. Our algorithm clusters keys based on
semantic similarity and then performs a fast centroid comparison to identify important keys, while
also leveraging these representative centroids to approximate the attention to the keys which are not
retrieved by the centroid lookup. A more detailed discussion of methods that sparsely load KV cache
entries is provided in Appendix A.

3 Algorithm

3.1 Retrieving Important KV Cache Tokens

In order to be able to identify and retrieve important KV cache entries, we first cluster the keys based
on semantic similarity using k-means clustering. We then derive representative centroids for each
cluster by taking the mean of all vectors in each cluster, which can then be used to quickly estimate
the importance of each key cluster (as in [Hooper et al., 2024a]). To identify whether the keys in
cluster i are important for a given query token q, we compare the query with the key centroid for that
cluster to estimate the attention score for the corresponding keys:

Si =
exp (qKc

⊤
i )

∑j Nj · exp (qKc
⊤
j )

, (1)

where Kc j is the key centroid for cluster j and Nj is the number of keys in cluster j. We can then
use the centroid attention score to identify the clusters which are likely to be high scoring, and only
load in the corresponding keys from these clusters for exact attention computation. To decide which

4



keys to retain, we sort the clusters based on the centroid scores, and then retain clusters until we hit
a target token budget. Note that for models which support grouped query attention, we aggregate
importance by averaging the estimated attention across query heads which share keys and values
[Ainslie et al., 2023].

One challenge when clustering the keys is the impact of the Rotary Positional Embeddings (RoPE),
which rotates key vectors by different amounts depending on their position in the sequence. This
means that semantically similar keys at different positions in the sequence may not be clustered
together. To address this, we employ the Windowed RoPE strategy from [He et al., 2025] when
computing the centroids (which assumes a fixed relative positional difference between the query and
the key vectors), thereby improving the clusterability of the key vectors. We then use a query vector
rotated at a fixed position when performing the centroid lookup (as in [He et al., 2025]).

3.2 Importance-Aware Multipole Approximation

After using our centroid lookup to identify the important tokens, we then aim to approximate the
attention to the less important tokens in order to retain necessary contextual information. We directly
use the attention score to the cluster centroid from Equation 1 as the estimated attention score for
the cluster. We also cache a representative value centroid Vc for each cluster (which is the average
of the corresponding value vectors for a given key cluster). The attention contribution for cluster i
(excluding the Softmax denominator) can be represented as follows:

Ni exp (qKc
⊤
i )Vci (2)

where Ni, Kci, and Vci are the number of keys for cluster i, the key centroid for cluster i, and the
value centroid for cluster i, respectively. For the less important key clusters, we compute the attention
contribution of each cluster using Equation 2. We then merge the attention output from exact attention
(for the important tokens) and from the centroids (for the less important tokens) in order to obtain the
final attention output. Our algorithm is visualized in Figure 2, which shows how we leverage the key
centroids both to identify important keys for the current query, as well as to approximate the attention
for the less important keys.

3.3 Efficient Online Clustering

A key challenge when employing our approach for long generation applications is the need to
approximate attention to the generated tokens. This requires updating the clusters and corresponding
centroids as new tokens are appended to the KV cache; however, this is computationally expensive if
we need to re-run clustering for the entire sequence. To quickly update clusters and corresponding
centroids when appending newly generated tokens, we incorporate two approaches: a blockwise
clustering methodology (with a sliding window to manage the transition between blocks when
appending new tokens), as well as a fast initial cluster assignment for newly appended tokens
followed by a small number of cluster refinement steps.

Figure 3 outlines our blockwise clustering methodology to ensure that when we append to the
centroids, we do not need to recluster the full sequence. We perform clustering in blocks of W tokens,
which means that when we append new tokens, we only need to recluster the final block. Additionally,
if the final block was limited at W tokens, after exceeding this limit it would be challenging to cluster
the subsequent tokens until there were a sufficient number of new tokens appended. We therefore
allow the final block to extend to α + W tokens before removing the first W tokens from this block
and clustering them separately. This ensures that the final block never has fewer than α tokens,
meaning that the final block always contains a sufficient number of keys for clustering. Note that
the blockwise clustering approach also improves clustering runtimes during prefill, improving the
scalability of our algorithm.

Additionally, to accelerate the update process, we sample additional initial centroids randomly from
the appended tokens, and then leverage a fast initial assignment of the appended tokens to the nearest
centroids and corresponding update of the centroids that these tokens map to (this is analogous to a
batched version of the sequential k-means algorithm [MacQueen, 1967]). This process only needs to
be run for the newly appended tokens, which makes its runtime overhead minimal. After running
this single-shot update, to ensure high clustering accuracy we run a small number of iterations of full
k-means over the final block to refine the centroids and centroid assignment.

5



Refined when updating clustersUntouched when updating clusters

𝑊 Tokens𝑊 Tokens

𝑊+	∝ Tokens 𝑊	Tokens ∝ Tokens

When final window hits 𝑊+	∝ tokens, split into 𝑊 and ∝ tokens 

Final ∝ to 𝑊+	∝ Tokens

Keys

Centroids

Figure 3: Visualization of our blockwise clustering method and sliding window approach for updating
clusters during generation. We cluster the keys in blocks of W tokens, except for the final block,
which contains the last α to W + α tokens. When we update the clusters, we only need to update the
final window. Once the final window reaches W + α tokens, we split it into the first W tokens (which
becomes its own block) and the final α tokens (which becomes the new final block that we append
new keys to).

3.4 Hierarchical Multipole Attention

Although our method allows for pruning a large portion of KV cache entries while maintaining
accuracy, the granularity of clustering needs to be sufficient for accurate retrieval and approximation.
However, this can lead to the centroid lookup becoming a bottleneck if the number of centroids that
we need to compare with grows with the context length. In particular, as we push to more aggressive
sparsity regimes, the overhead of the centroid lookup becomes more prominent.

To alleviate the overhead of the centroid lookup, while still providing an accurate approximation
for the full KV cache, we extend the hierarchical centroid lookup method from [Hooper et al.,
2024a] to a hierarchical multipole approximation for the attention operation. We perform hierarchical
k-means clustering in order to derive progressively coarser grained cluster centroids. This hierarchical
clustering is compatible with the fast online clustering update described in Section 3.3, as the
blockwise clustering method can be applied at each level of the hierarchy. At each level of the
centroid lookup, we identify a small number of promising key centroids (for which we need to
compare with the next level of refined centroids), and then approximate the less important keys using
the attention to the key centroids.

For the case where we have two levels of hierarchy, we first compare the query with the coarse-grained
(first-level) centroids to identify which regions of the keys are potentially important. This initial
lookup allows us to only perform fine-grained (second-level) centroid comparisons with centroids
that are likely to be high scoring. Additionally, for the low-importance first-level centroids, we can
approximate the attention to all of the tokens in the corresponding clusters using the attention to
the first-level centroids. We then perform the second level centroid lookup only for the promising
fine-grained centroids. Here, we identify the most important tokens (which need to be loaded for
exact attention computation), and we approximate the attention to the remaining tokens which were
only important enough to reach the second-level centroid lookup. This progressive refinement process
allows us to employ more accurate approximation for keys depending on their importance. Overall,
our hierarchical multipole algorithm reduces the overhead of the centroid comparison, while still
providing accurate approximation for the less important keys at each step in the lookup.

4 System Implementation

We implement custom Triton kernels for computing the centroid lookup, sparse Flash Decoding,
and centroid replacement operations. These kernels follow the parallelization strategies from
FlashAttention-2 [Dao, 2023], including splitting computation across attention heads and along

6



the query sequence length dimension, and FlashDecoding [Dao et al., 2023], where computation is
split across the KV dimension and the intermediate results are reduced. We also build upon existing
work on sparse FlashAttention kernels [Pagliardini et al., 2023, Hooper et al., 2024a].

The first stage of our kernel implementation (the centroid lookup) is designed to compare the query
with the key centroids in order to identify the important tokens (as in [Hooper et al., 2024a]). After
obtaining the attention scores to the centroids, we gather the centroid scores per-token and apply
top-K to identify which top-scoring clusters of keys can be retained under a fixed token budget. After
identifying the important and less important clusters, the next phase of our kernel implementation
(sparse FlashDecoding) calculates the attention output from keys belonging to selected (important)
clusters. This kernel accepts as input a tensor containing the indices of keys, and only loads the keys
corresponding to these indices for exact attention computation.

Finally, in the third stage of our kernel implementation (centroid replacement), we approximate the
attention to the less important keys using the attention to the corresponding centroids. Based upon
Equation 2, we need exp (qKc

⊤
i ), i.e. the result of comparing the query with the key centroids. Given

that these values are computed during centroid lookup, we modify the centroid lookup kernels to
save these values and then we later load them in the replacement kernel (to avoid re-loading the key
centroids during the replacement stage). We also return a boolean mask from the centroid lookup that
identifies which centroids are less important in order to only perform replacement for these centroids.
The centroid replacement kernel loads the query-key centroid dot product results from the centroid
lookup and then computes attention with the value centroids. The attention output is then merged
with the output from the sparse FlashDecoding kernel.

For our fast clustering update, we implement this using PyTorch-level primitives (wrapped in
torch.compile to reduce kernel launch overheads). We use a fixed buffer of L to 2L local tokens
which are not clustered and are loaded exactly at each decoding step, and we append the oldest L
tokens from the buffer to the clusters every L decoding steps. After performing clustering, we cache
the key and value centroids in order to avoid recomputing these values for each generation step.

5 Results

5.1 Experimental Setup

We evaluate MULTIPOLE ATTENTION on two long context reasoning datasets: LongBenchV2 [Bai
et al., 2024] and GSM-Infinite [Zhou et al., 2025]. LongBenchV2 contains complex real-world long-
context questions across tasks such as document QA, long in-context learning, dialogue understanding,
and code repository understanding. GSM-Infinite contains synthetic mathematical reasoning tasks
that require multiple arithmetic operations. We leverage two open-source reasoning models for
our evaluation: Qwen3-8B [Yang et al., 2024] and DeepSeek-R1-Distil-Qwen-14B. We use YaRN
scaling across our experiments to enable up to 128K context length [Peng et al., 2023]. We use the
recommended decoding settings for both models, which is to use a temperature of 0.6 and a top-p
value of 0.95, and to set the top-k value to 20 for Qwen3-8B. We report average results across 3 trials
for all experiments.

We evaluate our approach using token budgets of 128 and 512. We fix the block size for clustering as
W = 8K tokens throughout our evaluation and set α = 1

2 W, and we set L = 128 (meaning that we
keep the last 128 to 256 tokens unclustered and we update the clusters every 128 decoding steps). We
set the number of k-means iterations as 10 for prefill and 3 for refinement with our fast cluster update,
and we use random initialization for the centroids. We also leave the first 10 “Attention Sink” tokens
untouched due to their disproportionate importance [Xiao et al., 2023].

We compare our method with Squeezed Attention [Hooper et al., 2024a] and QUEST [Tang et al.,
2024] as representative baselines for sparse attention. Note that for Squeezed Attention, we report
results that leverage our optimized online clustering implementation in order to identify important
KV cache entries among the generated output tokens (as well as windowed RoPE for improved
key clustering), but without our method for approximating attention to clusters of tokens using the
attention to the centroids. The token budgets for the baselines are adjusted to ensure that they retain
the same number of tokens when factoring in the local buffer used by MULTIPOLE ATTENTION. For
MULTIPOLE ATTENTION, we use one centroid per 16 tokens, and for QUEST we use a page size
of 16. For Squeezed Attention, we use one centroid per 8 tokens for fair comparison, since it only

7



Overall Easy Hard Short Medium Long
26.0

28.0

30.0

32.0

34.0

36.0

38.0

40.0

42.0

Ac
cu

ra
cy

Baseline Squeezed Attention Multipole Attention

Figure 4: LongBenchV2 evaluation for DeepSeek-R1-Distil-Qwen-14B. We report accuracy on the
full dataset, as well as easy/hard difficulty splits, and for short/medium/long (<32K/32K-128K/128K+)
splits. We report accuracy for a token budget of 512, where we observe that MULTIPOLE ATTENTION
(MpAttn) can achieve higher accuracy than Squeezed Attention (SqAttn) for the same token budget,
and we observe no accuracy drop on the overall benchmark score.

Table 1: Accuracy on LongBench-V2 for Qwen3-8B with different token budgets. We report accuracy
on the “Short” (<32K) split from the dataset. We include baseline comparisons with QUEST [Tang
et al., 2024] as well as Squeezed Attention [Hooper et al., 2024a].

Method Token Budget = 128 Token Budget = 512

Baseline 41.5 41.5
QUEST 13.7 22.2
Squeezed Attention 36.3 40.2
MULTIPOLE ATTENTION 38.1 40.4

has to store key centroids (whereas our method stores key and value centroids). For evaluation with
the hierarchical variant of MULTIPOLE ATTENTION, we use a two-level lookup with one centroid
per 64 tokens for the first level, and with one centroid per 8 tokens for the second level (and when
comparing with the hierarchical centroid lookup from Squeezed Attention, we run their method with
twice as many centroids at each level for fair comparison with our approach).

For our kernel benchmarking experiments, we use split size of 2048 in our FlashDecoding baseline
and sparse FlashDecoding kernels, as well as the centroid lookup and replacement kernels. Note
that this is suboptimal for a batch size of 1 for the lookup and replacement kernels, as the number of
centroids is too small to saturate the GPU; however, we fixed this across all batch sizes for simplicity.
We benchmark our kernel implementations using triton.testing.do_bench with 500 warmup
runs and 500 measurement runs.

5.2 Evaluation

Figure 4 presents evaluation on the LongBenchV2 dataset for the Deepseek-R1-Distil-Qwen-14B
model. These results show how MULTIPOLE ATTENTION is able to preserve the accuracy of
the baseline, even with aggressive sparsity settings. Additionally, these results highlight how our
method outperforms existing sparse attention methods, demonstrating how our multipole attention
approximation is able to retain closer accuracy to the baseline by leveraging the scores to the
centroids. Table 1 also presents evaluation on LongBenchV2 for the Qwen3-8B model. We include
baseline comparisons with QUEST [Tang et al., 2024] and Squeezed Attention, demonstrating how
MULTIPOLE ATTENTION outperforms existing sparse attention methods at different token budgets.
Note that we only report accuracy on the “Short” (<32K) split from the dataset, since the Qwen3-
8B model achieves lower than 25% accuracy on the medium / long splits (which is worse than
random since the questions are multiple choice with 4 answers), primarily due to issues with endless
repetitions. Appendix B provides additional analysis on LongBenchV1 [Bai et al., 2023] using a
non-reasoning long context model, demonstrating how our method is generalizable for long context
tasks outside of reasoning. Appendix C also provides ablations for the block size and number of
cluster centroids hyperparameters.

8



Table 2: GSM-Infinite performance of Qwen3-8B at 8K and 16K context lengths. We measure
the accuracy for 1-operation and 2-operation splits with the symbolic task. We report results
for MULTIPOLE ATTENTION (“MpAttn”) as well as Squeezed Attention [Hooper et al., 2024a]
(“SqAttn”). We also include results using the hierarchical extension of our methodology, as well as
the hierarchical lookup approach from Squeezed Attention (hierarchical configurations are marked
with “-H”). We report the portion of memory operations required relative to the baseline (accounting
for metadata overhead and assuming 8K/16K context lengths). MULTIPOLE ATTENTION achieves
higher accuracy for the same memory overhead relative to Squeezed Attention across all token
budgets and context lengths.

(a) Context length = 8K

Method Token Memory Acc. Acc.
Budget Operations (1 op.) (2 op.)

Baseline - 1 0.76 0.23

SqAttn 128 0.11 0.58 0.16
MpAttn 128 0.11 0.72 0.19

SqAttn-H 128 0.08 0.65 0.17
MpAttn-H 128 0.08 0.71 0.23

SqAttn 512 0.16 0.65 0.17
MpAttn 512 0.16 0.82 0.22

(b) Context length = 16K

Method Token Memory Acc. Acc.
Budget Operations (1 op.) (2 op.)

Baseline - 1 0.65 0.28

SqAttn 128 0.09 0.28 0.13
MpAttn 128 0.09 0.40 0.17

SqAttn-H 128 0.05 0.28 0.09
MpAttn-H 128 0.05 0.41 0.21

SqAttn 512 0.11 0.41 0.18
MpAttn 512 0.11 0.61 0.30

2.4X 2.5X 3.3X 4.1X 3.7X 4.5X

Figure 5: Attention runtime evaluation on an A6000 GPU for the Qwen3-8B model. We report results
normalized to the FlashDecoding baseline. We show results for 90% and 95% sparsity (with one
centroid per 16 tokens). We can attain up to 4.5× speedup relative to the baseline FlashDecoding
kernels by leveraging MULTIPOLE ATTENTION.

Table 2 provides evaluation for the Qwen3-8B model on GSM-Infinite. We include results for the
single-level and hierarchical variants of our method and the Squeezed Attention baseline [Hooper
et al., 2024a]. We report results for 1 and 2 operation difficulty levels (referring to the number of
operations required to get to the final answer). Our method retains closer to baseline accuracy than
sparse attention methods like Squeezed Attention. The advantages of MULTIPOLE ATTENTION are
particularly pronounced for aggressive sparsity regimes since there is a greater chance that sparse
attention methods like Squeezed Attention will discard tokens which are important for retaining
accuracy, whereas our approach always ensures that we retain at least an approximate representation
for these tokens. Additionally, our hierarchical multipole algorithm attains higher accuracy for the
same number of memory operations required relative to the one-level approach by reducing the
overhead of the centroid lookup and centroid replacement operations.

5.3 System Benchmarking

We benchmarked our custom kernel implementations on both A6000 and A100 GPU platforms.
Figure 5 shows the observed attention speedups on an A6000 GPU with our method, and kernel
benchmarking evaluation on an A100 GPU is also provided in Appendix E. We observe up to

9



2.5×, 4.1×, and 4.5× speedups for batch sizes of 1, 4, and 16, respectively. We also show the
breakdown of the portion of the runtime spent on our initial centroid comparison (“Centroid Lookup”),
attention approximation using the centroids (“Centroid Replacement”), sparse Flash Decoding for
exact attention with the important keys (“Sparse FlashDecoding”), as well as the median overhead
from the fast cluster update (“Cluster Update”). For larger batch sizes, the centroid lookup and
sparse FlashDecoding runtimes are substantial relative to the attention approximation kernel and
cluster update, demonstrating the low overhead of our centroid replacement method relative to sparse
attention, and how our fast cluster update enables quickly re-building an index over the generated
tokens. Appendix D compares the attention speedups from MULTIPOLE ATTENTION with Squeezed
Attention, demonstrating that we achieve comparable speedups for the same memory footprint.
Appendix F provides additional analysis of the clustering overheads during prefill as well as decode.

6 Conclusion

Reasoning has emerged as a key enabler of complex problem solving capabilities in LLMs. While this
reasoning through long chain-of-thought decoding is critical for achieving high accuracy on complex
tasks, it comes with substantial efficiency costs due to the need to generate thousands of tokens
before producing an answer. While sparse attention methods can accelerate decoding by reducing
the memory bandwidth requirements for loading the KV cache, these approaches lead to substantial
accuracy loss with aggressive sparsity regimes. Our work addresses these challenges by introducing
MULTIPOLE ATTENTION, which reduces the KV cache memory requirements by only loading a small
number of entries for exact attention computation, while maintaining approximate representations for
the rest of the tokens. Our algorithm first clusters the keys based on semantic similarity, and then
uses the corresponding cluster centroids both to select important key vectors and to approximate the
attention to less important keys, thereby retaining important contextual information from the full
sequence. We also design a fast cluster update strategy to facilitate quickly re-clustering the input to
incorporate the newly generated tokens, which allows us to accelerate attention to the previous output
tokens. We evaluate our method on emerging reasoning models and hard long-context reasoning tasks,
demonstrating that our approach can maintain accuracy on complex reasoning tasks with aggressive
KV cache sparsity settings. We also present efficient kernel implementations, demonstrating how our
algorithm can accelerate attention by up to 4.5× for long context reasoning applications.

7 Limitations

One limitation of our method is that it focuses on speeding up generation, and it does not accelerate
attention during the prefill phase. One potential avenue for future work would be extending our
method to support accelerating prefill. Another limitation is that additional implementation effort
would be required to support our method in existing LLM serving frameworks. A third limitation is
that our method requires additional memory to store the centroids (although this overhead is small
relative to the size of the full KV cache).

8 Acknowledgements

We acknowledge gracious support from the FuriosaAI team including Jihoon Yoon, Suyeol Lee, and
Hyung Il Koo, as well as from Intel, Apple, NVIDIA, and Mozilla. We also appreciate the support
from Microsoft through their Accelerating Foundation Model Research, including great support from
Sean Kuno. Furthermore, we appreciate support from Google Cloud, the Google TRC team, and
specifically Jonathan Caton, and Prof. David Patterson. Prof. Keutzer’s lab is sponsored by the Intel
corporation, UC Berkeley oneAPI Center of Excellence, Intel VLAB team, as well as funding through
BDD and BAIR. We appreciate great feedback and support from Ellick Chan, Saurabh Tangri, Andres
Rodriguez, and Kittur Ganesh. Sehoon Kim would like to acknowledge the support from the Korea
Foundation for Advanced Studies (KFAS). Michael W. Mahoney would also like to acknowledge
a J. P. Morgan Chase Faculty Research Award as well as the DOE, NSF, and ONR. This work was
supported by the Director, Office of Science, Office of Advanced Scientific Computing Research,
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Our conclusions do
not necessarily reflect the position or the policy of our sponsors, and no official endorsement should
be inferred.

10



References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Anthropic. Claude 2: https://www.anthropic.com/news/claude-2, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
Lei Hou, Yuxiao Dong, et al. Longbench v2: Towards deeper understanding and reasoning on
realistic long-context multitasks. arXiv preprint arXiv:2412.15204, 2024.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido
Galil, Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran
Zilberstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Gerald
Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia Chen,
Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh, Fei Jia,
Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Aleksander Ficek,
Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov, Wei Du, Shubham
Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria Gitman, Evelina
Bakhturina, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus Kliegl, Rabeeh
Karimi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Brandon Norick, Joseph
Jennings, Shrimai Prabhumoye, Syeda Nahida Akter, Mostofa Patwary, Abhinav Khattar, Deepak
Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su, Guyue Huang, Terry Kong, Parth Chadha,
Sahil Jain, Christine Harvey, Elad Segal, Jining Huang, Sergey Kashirsky, Robert McQueen, Izzy
Putterman, George Lam, Arun Venkatesan, Sherry Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang,
Anna Warno, Abhilash Somasamudramath, Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar
Mor, Omer Ullman Argov, Scot Junkin, Oleksandr Romanenko, Pedro Larroy, Monika Katariya,
Marco Rovinelli, Viji Balas, Nicholas Edelman, Anahita Bhiwandiwalla, Muthu Subramaniam,
Smita Ithape, Karthik Ramamoorthy, Yuting Wu, Suguna Varshini Velury, Omri Almog, Joyjit
Daw, Denys Fridman, Erick Galinkin, Michael Evans, Katherine Luna, Leon Derczynski, Nikki
Pope, Eileen Long, Seth Schneider, Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika
Katariya, Joey Conway, Trisha Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii
Kuchaiev, Boris Ginsburg, Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro,
Jonah Alben, Yonatan Geifman, Eric Chung, and Chris Alexiuk. Llama-nemotron: Efficient
reasoning models, 2025. URL https://arxiv.org/abs/2505.00949.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of
large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

Ronald Coifman, Vladimir Rokhlin, and Stephen Wandzura. The fast multipole method for the wave
equation: A pedestrian prescription. IEEE Antennas and Propagation magazine, 35(3):7–12, 1993.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sisov. Flash-decoding for long-context
inference: https://crfm.stanford.edu/2023/10/12/flashdecoding.html, 2023.

Google. Gemini 1.5 https://blog.google/technology/ai/google-gemini-next-
generation-model-february-2024, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

11

https://www.anthropic.com/news/claude-2
https://arxiv.org/abs/2505.00949
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024


Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Junhui He, Junna Xing, Nan Wang, Rui Xu, Shangyu Wu, Peng Zhou, Qiang Liu, Chun Jason
Xue, and Qingan Li. A2 ATS: Retrieval-based kv cache reduction via windowed rotary position
embedding and query-aware vector quantization. arXiv preprint arXiv:2502.12665, 2025.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Monishwaran Maheswaran, June Paik,
Michael W Mahoney, Kurt Keutzer, and Amir Gholami. Squeezed attention: Accelerating long
context length llm inference. arXiv preprint arXiv:2411.09688, 2024a.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. Advances in Neural Information Processing Systems, 2024b.

Yanming Kang, Giang Tran, and Hans De Sterck. Fast multipole attention: A divide-and-conquer
attention mechanism for long sequences. arXiv preprint arXiv:2310.11960, 2023.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024a.

Xiang Liu, Zhenheng Tang, Hong Chen, Peijie Dong, Zeyu Li, Xiuze Zhou, Bo Li, Xuming Hu,
and Xiaowen Chu. Can llms maintain fundamental abilities under kv cache compression? arXiv
preprint arXiv:2502.01941, 2025.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

James MacQueen. Some methods for classification and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume
1: Statistics, volume 5, pages 281–298. University of California press, 1967.

Meta. Llama 3.1: https://ai.meta.com/blog/meta-llama-3-1, 2024.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns. arXiv preprint arXiv:2401.06104, 2024.

Matteo Pagliardini, Daniele Paliotta, Martin Jaggi, and François Fleuret. Fast attention over long
sequences with dynamic sparse flash attention. Advances in Neural Information Processing
Systems, 36:59808–59831, 2023.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

Qwen. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL https:
//qwenlm.github.io/blog/qwq-32b/.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adaptive
kv cache merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

12

https://ai.meta.com/blog/meta-llama-3-1
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/


Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads.
arXiv preprint arXiv:2410.10819, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024.

Jian Yuan, Ziwei He, Haoli Bai, Jingwen Leng, and Bo Jiang. Weightedkv: Attention scores weighted
key-value cache merging for large language models. In ICASSP 2025-2025 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2025.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen,
and Bin Cui. Pqcache: Product quantization-based kvcache for long context llm inference. arXiv
preprint arXiv:2407.12820, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024b.

Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. Gsm-infinite: How
do your llms behave over infinitely increasing context length and reasoning complexity? arXiv
preprint arXiv:2502.05252, 2025.

Kan Zhu, Tian Tang, Qinyu Xu, Yile Gu, Zhichen Zeng, Rohan Kadekodi, Liangyu Zhao, Ang Li,
Arvind Krishnamurthy, and Baris Kasikci. Tactic: Adaptive sparse attention with clustering and
distribution fitting for long-context llms. arXiv preprint arXiv:2502.12216, 2025.

13



A Extended Related Work: Only Loading Important KV Cache Entries

One previous approach for sparse attention has aimed to retain the full KV cache, but only load in
the required KV cache entries for each decoding step. A common method that these approaches
have used to identify important KV cache entries is clustering the keys. QUEST [Tang et al., 2024]
grouped consecutive KV cache entries and derived representative vectors for the keys within each
group. Their approach performs retrieval by comparing the current query with the representative
vectors in order to identify whether the group is important and needs to be loaded for exact attention
computation. While this method grouped consecutive keys, positional proximity in the sequence is
not necessarily indicative of the similarity of the corresponding key vectors. Squeezed Attention
[Hooper et al., 2024a] instead clustered keys based on semantic similarity, thereby allowing for
precise identification of tokens which were likely to be high-scoring. Tactic [Zhu et al., 2025] also
clustered the keys based on semantic similarity and then performed distribution fitting to help predict
important KV cache entries.

Multiple prior works have framed the query-key comparison as a retrieval problem in order to leverage
vector search methods to accelerate attention. One such method, PQCache [Zhang et al., 2024a],
performed product quantization in order to perform vector search to select important keys, and
then only computed exact attention using the selected keys. A2ATS [He et al., 2025] performed
query-aware vector quantization in order to allow for accurate retrieval of important KV cache entries.
RetrievalAttention [Liu et al., 2024a] constructs a vector index over the keys in order to facilitate
retrieval of important keys, and offloads the full KV cache and the vector index to the CPU to perform
the lookup.

In contrast with prior work on accelerating decoding through sparsely loading the KV cache, our
method aims to select and load a small subset of important tokens for exact attention computation,
while maintaining an approximate representation for the remaining KV cache entries. Our approach
uses clustering to group semantically similar keys, followed by a fast centroid lookup that identifies
important keys. Notably, our key centroids also serve as representative vectors for the keys in each of
the clusters, and can therefore be used to approximate the attention to the keys which are not retrieved
by the centroid lookup. This allows our method to maintain high accuracy even with aggressive
sparsity settings (and for tasks which are sensitive to KV cache pruning).

Another related prior work is [Kang et al., 2023], which utilized a Fast Multipole Method (FMM)-
inspired approach for accelerating the attention computation in Transformers. FMM [Coifman et al.,
1993] is a related technique for accelerating simulations with N-Body problems which approximates
groups of point masses as a single point mass and performs coarser grained approximations for
masses which are further away from the current point of interest. This approach is analogous to our
algorithm, which approximates keys using progressively coarser-grained key centroids as we get
further from the current query token. However, unlike [Kang et al., 2023] which grouped KV cache
entries based on positional proximity in the sequence, our method clusters keys based on semantic
similarity, and therefore determines the granularity of approximation based on the importance of KV
cache entries for the current query.

B Additional Long Context Experiments

To demonstrate the broader applicability of our methodology on long context tasks other than reason-
ing, we evaluate our method on LongBenchV1 [Bai et al., 2023] using a non-reasoning long context
model (Llama-3.1-8B-Instruct [Meta, 2024]), with results provided in Table 3. We also provide
additional baseline comparisons with Squeezed Attention [Hooper et al., 2024a], DuoAttention [Xiao
et al., 2024] and TOVA [Oren et al., 2024]. We use the evaluation setup from the DuoAttention
open-source code, which simulates decoding for the last 50 prompt tokens, and we use a temperature
of 0. We configure MULTIPOLE ATTENTION to use 95% sparsity and one centroid per 16 tokens, and
then adjust the other methods to have equivalent KV cache budgets (88.75% sparsity when accounting
for metadata). Our results demonstrate how our method substantially outperforms Squeezed Attention,
DuoAttention, and TOVA on a range of long context evaluation tasks, and also how our method
generalizes to long context tasks outside of reasoning.

14



Table 3: MULTIPOLE ATTENTION (“MpAttn”) evaluation on non-synthetic tasks from LongBenchV1
[Bai et al., 2023] for the Llama-3.1-8B-Instruct model. We include baseline comparisons with
Squeezed Attention (“SqAttn”) [Hooper et al., 2024a] as well as DuoAttention (“DuoAttn”) [Xiao
et al., 2024] and TOVA [Oren et al., 2024] (configured to have the same KV cache budget as our
method). We also provide estimates for the number of memory operations required for KV cache
loading, including metadata (normalized to the number of KV cache memory operations required for
the baseline). Note that the TOVA algorithm allows each query head to select different KV entries
and would therefore have a higher KV footprint for GQA models even for the same sparsity settings.
MULTIPOLE ATTENTION provides noticeable accuracy improvements for the same KV cache budget
relative to existing methods.

Config Mem.
Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Code

Avg.Ops.
NQA

Qsp
r

M
FQA

HPQA
2W

iki

M
SQ

GRep
QM

SM
M

New
s

TREC
TQA

SSum
RB LCC

Baseline 1.00 30.1 45.3 55.5 56.0 44.8 30.5 35.2 25.3 27.3 72.5 91.2 43.2 49.0 52.5 47.0

DuoAttn 0.1125 13.2 16.8 21.3 29.1 17.4 8.2 20.5 17.3 20.1 32.0 52.4 36.8 47.0 49.0 27.2
TOVA 0.1125 24.1 14.0 23.2 41.5 21.1 15.1 25.5 19.9 20.9 35.0 86.1 39.9 49.1 48.6 33.1
SqAttn 0.1125 29.3 24.2 38.6 50.1 35.2 27.0 31.5 24.5 18.9 55.0 81.6 41.5 49.9 47.4 39.6

MpAttn 0.1125 31.6 32.9 42.0 54.3 31.3 30.3 32.8 24.7 22.9 67.5 86.7 42.1 46.8 48.7 42.5

C Hyperparameter Ablations

Tables 4 and 5 provide ablations for the number of centroids as well as block size, respectively. We
report LongBenchV2 accuracy for the Qwen3-8B model on the “short” (<32K context length) split
with a token budget of 128. We find that if the number of KV tokens per centroid is increased or if
the block size is decreased, the accuracy is degraded. However, increasing these parameters leads
to additional inference costs. We therefore used 1 centroid per 16 tokens and a block size of 8K to
retain model accuracy without introducing substantial memory and latency overheads.

Table 4: LongBenchV2 accuracy on the “Short” (<32K) split versus ratio of centroids to KV tokens
for the Qwen3-8B model. We report results for a token budget of 128. The configuration used
throughout the paper is bolded.

Baseline Ratio=1/128 Ratio=1/64 Ratio=1/32 Ratio=1/16 Ratio=1/8

41.5 29.3 35.4 38.5 38.1 37.0

Table 5: LongBenchV2 accuracy on the “Short” (<32K) split versus clustering block size W for the
Qwen3-8B model. We report results for a token budget of 128. The configuration used throughout
the paper is bolded.

Baseline W = 2K W = 4K W = 8K W = 16K

41.5 35.0 38.0 38.1 36.9

D Runtime Comparison with Squeezed Attention

In Table 6, we compare the latency for MULTIPOLE ATTENTION versus Squeezed Attention [Hooper
et al., 2024a] for the same memory footprint (using one centroid per 16 tokens for MULTIPOLE
ATTENTION and one centroid per 8 tokens for Squeezed Attention, as outlined in Section 5.1). Note
that the Squeezed Attention baseline we compare with in our experiments also contains the clustering
improvements from MULTIPOLE ATTENTION, which are required to allow it to be applied for tasks
where the prefill is only known at runtime and during the generation process to accelerate attention
to newly generated tokens (as the baseline Squeezed Attention method cannot be run online). We
report the speedups for Squeezed Attention and MULTIPOLE ATTENTION on an A6000 GPU with
batch sizes of 1/4/16 (assuming 90% sparsity). These results outline how MULTIPOLE ATTENTION
provides similar latency for the same sparsity level as Squeezed Attention, while providing substantial
accuracy improvements (as highlighted in Section 5.2).

15



Table 6: Attention speedup for MULTIPOLE ATTENTION and Squeezed Attention [Hooper et al.,
2024a] for the Qwen3-8B model on an A6000 GPU, relative to the full attention baseline.

Method Batch Size = 1 Batch Size = 4 Batch Size = 16

Squeezed Attention 2.8× 3.3× 3.6×
MULTIPOLE ATTENTION 2.4× 3.3× 3.7×

1.9X 2.1X 2.4X 2.8X1.2X 1.3X

Figure 6: Attention runtime evaluation on an A100 GPU for the Qwen3-8B model. We report results
normalized to the FlashDecoding baseline. We show results for 90% and 95% pruning, and for batch
sizes of 1, 4, and 16 (and assuming one centroid per 16 tokens). We can attain up to 2.8× speedup
relative to the baseline FlashDecoding kernels by leveraging MULTIPOLE ATTENTION.

E A100 Kernel Benchmarking

Figure 6 shows the observed attention speedups on an A100 GPU with our method. We observe up
to 1.3×, 2.1×, and 2.8× speedups for batch sizes of 1, 4, and 16, respectively. Note that there are
reduced speedups for batch size of 1 due to there being insufficient work to saturate the GPU.

F Clustering Runtime

Tables 7 and 8 provide measured runtime for the fast cluster update during generation on A6000
and A100 GPUs, respectively. We find that the overhead of the fast cluster update is typically 3-4%
of the runtime of the FlashDecoding baseline on an A6000 GPU, and 5% of the runtime of the
FlashDecoding baseline on an A100 GPU. Table 9 also reports the clustering overhead during prefill,
which is relatively low (between 13-15% on A6000/A100 GPUs).

Table 7: Runtime (in milliseconds) for running our fast clustering update for the Qwen3-8B model on
an A6000 GPU. The clustering runtimes for 8K and 12K tokens serve as the median and maximum
clustering runtimes, respectively, since we set W = 8K and α = 1

2 W throughout our evaluation.
Since we update the clusters once every 128 decoding steps (and need to run FlashDecoding at
each step), clustering adds a median of 3-4% overhead and a maximum of 6% overhead during the
decoding process.

Batch Size FlashDecoding Runtime (128K context length) Clustering Runtime (8K) Clustering Runtime (12K)

1 0.8 4.1 6.6
4 2.9 12.4 23.1

16 11.6 47.6 89.8

16



Table 8: Runtime (in milliseconds) for running our fast clustering update for the Qwen3-8B model on
an A100 GPU. The clustering runtimes for 8K and 12K tokens serve as the median and maximum
clustering runtimes, respectively, since we set W = 8K and α = 1

2 W throughout our evaluation.
Since we update the clusters once every 128 decoding steps (and need to run FlashDecoding at
each step), clustering adds a median of 5% overhead and a maximum of 8-9% overhead during the
decoding process.

Batch Size FlashDecoding Runtime (128K context length) Clustering Runtime (8K) Clustering Runtime (12K)

1 0.4 2.6 4.2
4 1.3 8.4 14.8

16 5.1 31.7 59.7

Table 9: Runtime overhead (in milliseconds) for running our blockwise clustering algorithm during
prefill for the Qwen3-8B model. We report overheads on both A100 and A6000 GPUs for a batch
size of 1, assuming 128K context length prefill (divided into 8K blocks). Clustering adds a relatively
low overhead of between 13%-15% when processing the input prompt.

GPU FlashAttention Runtime (128K context length) Clustering Runtime (16 blocks of size 8K) Clustering Overhead (%).

A6000 1506 192 13
A100 787 118 15

17



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the contributions of the work
(namely, optimizing long-context reasoning through a novel algorithm and system imple-
mentation).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included a limitations section in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18



Answer: [NA]

Justification: We did not include any theoretical results requiring proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include detailed description of the method as well as hyperparameter
settings and system configuration.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

19



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, we will submit our code as part of the supplemental material
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All hyperparameter settings are specified.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experimental results are for individual LLM evaluation runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify the hardware platforms used for benchmarking results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work does not violate the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is focused on efficiency for long context reasoning. There are hence
no direct links to applications with positive or negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release models or datasets in our work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the creators of existing models and datasets that we use, as well as
previous code implementations that we build upon.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

22

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide documentation and instructions with our code to understand and
run it.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We did not perform research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not perform research with human subjects or crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23



16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLMs in a non-standard manner when producing this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Reasoning Models
	Long Context Inference
	KV Cache Compression

	Algorithm
	Retrieving Important KV Cache Tokens
	Importance-Aware Multipole Approximation
	Efficient Online Clustering
	Hierarchical Multipole Attention

	System Implementation
	Results
	Experimental Setup
	Evaluation
	System Benchmarking

	Conclusion
	Limitations
	Acknowledgements
	Extended Related Work: Only Loading Important KV Cache Entries
	Additional Long Context Experiments
	Hyperparameter Ablations
	Runtime Comparison with Squeezed Attention
	A100 Kernel Benchmarking
	Clustering Runtime

