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ABSTRACT

We formalize the problem of machine unlearning as design of efficient unlearning
algorithms corresponding to learning algorithms which perform a selection of adap-
tive queries from structured query classes. We give efficient unlearning algorithms
for linear and prefix-sum query classes. As applications, we show that unlearning
in many problems, in particular, stochastic convex optimization (SCO), can be
reduced to the above, yielding improved guarantees for the problem. In particular,
for smooth Lipschitz losses and any ρ > 0, our results yield an unlearning algo-
rithm with excess population risk of Õ

(
1√
n
+

√
d

nρ

)
with unlearning query (gradient)

complexity Õ(ρ · Retraining Complexity), where d is the model dimensionality
and n is the initial number of samples. For non-smooth Lipschitz losses, we give
an unlearning algorithm with excess population risk Õ

(
1√
n
+
(√

d
nρ

)1/2)
with the

same unlearning query (gradient) complexity. Furthermore, in the special case of
Generalized Linear Models (GLMs), such as those in linear and logistic regression,
we get dimension-independent rates of Õ

(
1√
n
+ 1

(nρ)2/3

)
and Õ

(
1√
n
+ 1

(nρ)1/3

)
for smooth Lipschitz and non-smooth Lipschitz losses respectively. Finally, we
give generalizations of the above from one unlearning request to dynamic streams
consisting of insertions and deletions.

1 INTRODUCTION

The problem of machine unlearning is concerned with updating trained machine learning models upon
request of deletions to the training dataset. This problem has recently gained attention owing to various
data privacy laws such as General Data Protection Regulation (GDPR), California Consumer Act
(CCA) among others, which empower users to make such requests to the entity possessing user data.
The entity is then required to update the state of the system such that it is indistinguishable to the
state had the user data been absent to begin with. While as of now, there is no universally accepted
definition of indistinguishibility as the unlearning criterion, in this work, we consider the most strict
definition, called exact unlearning (see Definition 1 for a formal definition).

Motivating Example: The main objective of our work is to identify algorithmic design principles
for unlearning such that it is more efficient than retraining, the naive baseline method. Towards
this, we first discuss the example of unlearning for Gradient Descent (GD) method, which will
highlight the key challenges as well as foreshadow the formal setup and techniques. GD and
its variants are extremely popular optimization methods with numerous applications in machine
learning and beyond. In a machine learning context, it is typically used to minimize the training loss,
L̂(w;S) = 1

n

∑n
i=1 ℓ(w; zi) where S = {zi}ni=1 is the training dataset and w, the model. Starting

from an initial model w1, in each iteration, the model is updated as:

wt+1 = wt − η∇L̂(wt;S) = wt − η

(
1

n

n∑
i=1

∇ℓ(wt; zi)

)
.

After training, a data-point, say zn without loss of generality, is requested to be unlearnt and so the
updated training set is S′ = {zi}n−1

i=1 . We now need to apply an efficient unlearning algorithm such
that its output is equal to that of running GD on S′. Observe that the first iteration of GD is simple
enough to be unlearnt efficiently by computing the new gradient∇L̂(w0;S

′) = 1
n−1

(
n∇L̂(w1;S)−

∇ℓ(w1; zn)
)

and updating as w′
2 = w1 − η∇L̂(w1;S

′). However, in the second iteration (and
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onwards), the gradient is computed on w′
2 which can be different from w2 and the above adjustment

can no longer be applied and one may need to retrain from here onwards. This captures the key
challenge for unlearning in problems solved by simple iterative procedures such as GD – adaptivity –
i.e., the gradients (or more generally, the queries) computed in later iteration depend on the result of
the previous iterations. We systematically formalize such procedures and design efficient unlearning
algorithms for them. We summarize our key contributions below.

1.1 OUR RESULTS AND TECHNIQUES

Learning/Unlearning as Query Release: Iterative procedures are an integral constituent of the
algorithmic toolkit for solving machine learning problems and beyond. As in the case of GD above,
these often consist of a sequence of simple but adaptive computations. The simple computations are
often efficiently undo-able (as in the first iteration of GD) but its adaptive nature – change of result of
one iteration changing the trajectory of the algorithm – makes it difficult to undo computation, or
unlearn, efficiently.

As opposed to designing unlearning (and learning) algorithms for specific (machine learning) prob-
lems, we study the design of unlearning algorithms corresponding to (a class of) learning algorithms.
We formalize this by considering learning algorithms which perform adaptive query release on
datasets. Specifically, this consists of a selection of adaptive queries from structured classes like
linear and prefix-sum queries (see Section 3 for details). The above example of GD is an instance
of linear query, since the query, which is the average gradient 1

n

∑n
i=1∇ℓ(wt; zi), is linear in the

data-points. With this view, we study how to design efficient unlearning algorithms for such methods.

We use efficiency in the sense of number of queries made (query complexity), ignoring the use of
other resources, e.g., space, computation for selection of queries, etc. To elaborate on why this
is interesting, firstly note that this does not make the problem trivial, in the sense that even with
unlimited access to other resources, it is still challenging do design an unlearning algorithm with
query complexity smaller than that of retraining (the naive baseline). Secondly, let us revisit the
motivation from solving optimization problems. The standard model to measure computation in
optimization is the number of gradient queries a method makes for a target accuracy, often abstracted
in an oracle-based setup (Nemirovskij & Yudin, 1983). Importantly, this setup imposes no constraints
on other resources, yet it witnesses the optimality of well-known simple procedures like (variants of)
GD. We follow this paradigm, and as applications of our results to stochastic convex optimization
(SCO), we make progress on the fundamental question of understanding the gradient complexity of
unlearning in SCO. Interestingly, our proposed unlearning procedures are simple enough that the
improvement over retraining in terms of query complexity also applies even with accounting for the
(arithmetic) complexity of all other operations in the learning and unlearning methods.

Linear queries: The simplest query class we consider is that of linear queries (details deferred
to Appendix B). Herein, we show that the prior work of Ullah et al. (2021), which focused on
unlearning in SCO and was limited to the stochastic gradient method, can be easily extended to
general linear queries. This simple observation yields unlearning algorithms for algorithms for
federated optimization, k-means clustering, etc. Herein, we give a ρ-TV stable (see Definition 2)
learning procedure with T adaptive queries and a corresponding unlearning procedure with a O(

√
Tρ)

relative unlearning complexity (the ratio of unlearning and retraining complexity; see Definition 4).

Prefix-sum queries: Our main contribution is the case when we consider the class of prefix-sum
queries. These are a sub-class of interval queries which have been extensively studied in differential
privacy and are classically solved by the binary tree mechanism (Dwork et al., 2010). We note in
passing that for differential privacy, the purpose of the tree is to enable a tight privacy accounting and
no explicit tree may be maintained. In contrast, for unlearning, we show that maintaining the binary
tree data structure aids for efficient unlearning. We give a binary-tree based ρ-TV stable learning
procedure and a corresponding unlearning procedure with a Õ(ρ) relative unlearning complexity.

Unlearning in Stochastic Convex Optimization (SCO): Our primary motivation for considering
prefix-sum queries is its application to unlearning in SCO (see Section 2 for preliminaries).

1. Smooth SCO: The problem of unlearning in smooth SCO was studied in Ullah et al. (2021) which

proposed algorithms with excess population risk of O
(

1√
n
+
(√

d
nρ

)2/3)
where ρ is the relative
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Problem Base algorithm Rate

Smooth, Lipschitz-SCO Variance Reduced-Frank Wolfe 1√
n
+

√
d

nρ

Lipschitz SCO Dual Averaging 1√
n
+ d1/4

√
nρ

Smooth, Lipschitz GLM JL + Variance Reduced-Frank Wolfe 1√
n
+ 1

(nρ)2/3

Lipschitz GLM JL + Dual Averaging 1√
n
+ 1

(nρ)1/3

Table 1: Excess population risk guarantees for various problems as well as the base algorithm; ρ:
relative unlearning complexity (see Definition 4), JL: Johnson-Lindenstrauss transform.

unlearning complexity. We show that using a variant of variance-reduced Frank-Wolfe (Zhang et al.,
2020), which uses prefix-sum queries, yields an improved excess population risk of O

(
1√
n
+

√
d

nρ

)
.

2. Non-smooth SCO: In the non-smooth setting, both algorithms proposed in Ullah et al. (2021)
have trivial guarantees. Instead we give an algorithm based on Dual Averaging (Nesterov, 2009),
which again uses prefix-sum query access, and thus fits into the framework. This algorithm gives us
an excess population risk of O

(
1√
n
+ d1/4

√
nρ

)
.

3. Generalized Linear Models (GLM): Generalized linear models are one of most basic machine
learning problems which include the squared loss (in linear regression), logistic loss (in logistic
regression), hinge loss (support vector machines) etc. We study unlearning in two classes of
GLMs (see below), for which we combine recently proposed techniques based on dimensionality
reduction (Arora et al., 2022) with the above prefix-sum query algorithms to get the following
dimension-independent rates.

3(a). Smooth GLM: For the smooth GLM setting, we combine Johnson-Lindenstrauss transform
with variance reduced Frank-Wolfe to get O

(
1√
n
+ 1

(nρ)2/3

)
excess population risk. Note that we get

no overhead in statistical rate even with very small relative unlearning complexity, ρ ≈ n−1/4. This
class of smooth GLMs contains the well-studied problem of logistic regression. Hence, our result
demonstrates that it is possible to unlearn logistic regression with sub-linear (specifically, O(n3/4))
unlearning complexity with no sacrifice in the statistical rate.

3(b). Lipschitz GLM: Similarly, for the Lipschitz convex GLM setting, we combine Johnson-
Lindenstrauss transform with dual averaging yielding a rate of Õ

(
1√
n
+ 1

(nρ)1/3

)
.

Please see Table 1 for a summary of above results.

SCO in dynamic streams: Finally, we consider SCO in dynamic streams (details deferred to
Appendix F) where we observe a sequence of insertions and deletions and are supposed to produce
outputs after each time-point. In this case, we present two methods: one which satisfies the exact
unlearning guarantee with worse update time, the other which satisfies weak unlearning (see Definition
9) with improved update time. The exact unlearning method is inspired from the work of Ullah et al.
(2021) which dealt with insertions similar to deletions. The weak unlearning method is motivated
from the observation that the above may be too pessimistic. To elaborate, inserting a new data item
does not warrant a (unlearning) guarantee that the algorithm’s state be indistinguishable to the case if
the point was not inserted. Hence, insertions should require smaller (ideally, constant) update time
which is indeed the case for our proposed methods.
1.2 RELATED WORK

Our work is a direct follow up of Ullah et al. (2021) which proposed the framework of Total Variation
(TV) stability and maximal coupling for the exact machine unlearning problem. They applied this to

unlearning in smooth stochastic convex optimization (SCO) and obtained a guarantee of 1√
n
+
(√

d
nρ

) 2
3

on excess population risk, where n is the number of data samples, d, model dimensionality and ρ
is the relative unlearning complexity (see Definition 4). We improve upon the results in that work
in multiple ways as described in the preceding section. Furthermore, the exact unlearning problem
has been studied for k-means clustering (Ginart et al., 2019) and random forests (Brophy & Lowd,
2021). The work of Bourtoule et al. (2021) proposes a general methodology for exact unlearning
for deep learning methods but do not provide rigorous theoretical guarantees on accuracy, even in
simple settings. Besides this, there are works which consider unlearning in SCO, however they use
an approximate notion of unlearning inspired from differential privacy (Guo et al., 2019; Neel et al.,
2021; Sekhari et al., 2021; Gupta et al., 2021), and therefore are incomparable to our work.
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2 SETUP AND PRELIMINARIES
Let Z be the data space,W be the model space andM be the meta-data space, where meta-data
is additional information a learning algorithm may save to aid unlearning. We consider a learning
algorithm as a map A : Z∗ →W ×M and an unlearning algorithm as a map U :W ×M×Z →
W ×M. We use A and U to denote the first output (which belongs toW) of A and U respectively.

We recall the definition of exact unlearning from Ullah et al. (2021) which requires that the entire
state after unlearning be indistinguishable from the state obtained if the learning algorithm were
applied to the dataset without the deleted point.

Definition 1 (Exact unlearning). A procedure (A,U) satisfies exact unlearning if for all datasets S,
all z ∈ Z , and for all events E ⊆ W ×M, we have, P (A (S\ {z}) ∈ E) = P (U (A(S), z) ∈ E)

Unlearning request: We consider the setting where we start with a dataset of n samples and observe
one unlearning request. We assume that the choice of unlearning request is oblivious to the learning
process. In Section F, we generalize our result to the streaming setting.

Total Variation stability, maximal coupling and efficient unlearning: The Total Variation (TV)
distance between two probability distributions P and Q is TV(P,Q) = sup

measureable E
|P (E)−Q(E)|.

Next, we define Total Variation (TV) stability, which was introduced in Ullah et al. (2021) to motivate
algorithmic techniques for efficient unlearning.

Definition 2. An algorithm A is said to be ρ Total Variation stable if for all datasets S and S′

differing in one point, i.e. |S∆S′| = 1, the total variation distance, TV (A(S),A(S′)) ≤ ρ

Given two distributions P and Q, a coupling is a joint distribution π with marginals P and
Q. Furthermore, a maximal coupling is a coupling π such that the disagreement probability
P(x,y)∼π {x ̸= y} = TV(P,Q). In the unlearning context, P = A(S), the output on initial dataset,
and Q = A(S′), the output on the updated dataset. Hence, the unlearning problem simply becomes
about transporting P to Q with small computational cost, akin to optimal transport (Villani, 2009).
Furthermore, when sampled from a maximal coupling between P and Q, by definition, we get the
same sample for both P and Q, expect with probability ρ, and yet satisfying the exact unlearning
criterion. The main idea is that for certain learning algorithms of interest, during unlearning, we can
efficiently construct a (near) maximal coupling of P and Q, and so the same model output from P
suffices for Q, most of the times. In particular, the fraction of times that we need change the model is
the TV-stability parameter ρ of the learning algorithm. The goal, therefore, is to design an (accurate)
TV-stable learning algorithm and a corresponding efficient coupling-based unlearning algorithm. In
this work, we use the technique of reflection coupling described below.

Reflection Coupling (Lindvall & Rogers, 1986): Reflection Coupling is a classical technique
in probability to maximally couple symmetric probability distributions. Consider two probability
distributions P and Q with means u and u′ and let r be a sample from P . The process involves a
rejection sampling step on the two distributions and sample r (see line 13 in in Algorithm 3). If it
results in accept, we use the same r as the sample from Q, otherwise, we apply the following map:
Reflect(u, u′, r) = u− u′ + r, which gives the sample from Q (see line 16 in Algorithm 3).

Our algorithmic techniques borrow tools from differential privacy (Dwork et al., 2014) such as its
relationship with Total Variation stability; we describe these in Appendix A.

Stochastic Convex Optimization (SCO): SCO is the dominant framework for computationally-
efficient machine learning. Consider a convex (constraint) setW and let D denote its diameter. Let
ℓ : W × Z → R be a loss function, which is convex in its first parameter ∀z ∈ Z . Given n i.i.d.
points from an unknown probability distribution D over Z , the goal is to devise an algorithm, the
output of which has small population risk, defined as L(w;D) := E

z∈D
ℓ(w; z). The excess population

risk is then L(w;D)− L(w∗;D) where w∗ denotes a population risk minimizer overW .

Generalized Linear Models (GLM): Generalized Linear Models (GLMs) are loss functions typ-
ically encountered in supervised learning problems, like linear and logistic regression. Herein,
ℓ(w; (x, y)) = ϕy (⟨w, x⟩), where ϕy : R→ R is some function. We use ∥X∥ to denote the radius
bound on data points, i.e. for x ∈ X ⊆ Rd, ∥x∥ ≤ ∥X∥. In this case, we consider the unconstrained
setup i.e. W = Rd, as it allows to get dimension-independent rates for GLMs, similar to what
happens under differential privacy (Jain & Thakurta, 2014; Arora et al., 2022).
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Algorithm 1 Template learning algorithm
Input: Dataset S, steps T , query functions {qt(·)}t≤T where qt ∈ Q, a query class, update functions
{Ut(·)}t≤T , selector function S(·)

1: Initialize model w1 ∈ W
2: for t = 1 to T − 1 do
3: Query dataset ut = qt

(
{wi}i≤t , S

)
4: Update wt+1 = Ut({wi}i≤t , ut)
5: end for

Output: ŵ = S
(
{wt}t≤T

)
We introduce the Johnson-Lindenstrauss property below which is crucial to our construction.

Definition 3 (Johnson-Lindenstrauss property). A random matrix Φ ∈ Rk×d satisfies (β, γ)-JL
property if for any u, v ∈ Rd, with probability at least 1−γ, P (|⟨Φu,Φv⟩−⟨u, v⟩| ≥ β ∥u∥ ∥v∥)≤γ.

There exists many efficient constructions of such random matrices (Nelson, 2011).

3 UNLEARNING FOR ADAPTIVE QUERY RELEASE
We now set up the framework of adaptive query release, which is a lens to view (existing) iterative
learning procedures; this view is useful in our design of corresponding unlearning algorithms. Iterative
procedures run on datasets consist of a sequence of interactions with the dataset; each interaction
computes a certain function, or query, on the dataset. The chosen query is typically adaptive, i.e.,
dependent on the prior query outputs. We consider iterative learning procedures which are composed
of adaptive queries from a specified query class. Formally, consider a query class Q ⊆ WW∗×Z∗

;
herein, each query in Q is a function of a sequence of {wi}i<t (typically, prior query outputs), and
the dataset S, with output inW . With this view, we give a general template of a learning procedure
as Algorithm 1, where {Ut}t and S are the update and selector functions internal to the algorithm.

Query Model: We describe the query model which we use to measure computational complexity.
Under the model, a query function q({w}i , S) takes |S| unit computations (or queries, for brevity) for
any q and {wi}i. In our applications to SCO, this will correspond to the gradient oracle complexity.

Our algorithmic approach to unlearning is rooted in the relationship between TV stability and maximal
couplings. With this view, for a specified query class, we have the following requirements.

1. TV-stability: We want a ρ-TV stable “modification” (clarified later) of the learning Algorithm 1.

2. Efficient unlearning algorithm: We measure efficiency as the average number of queries the
unlearning algorithm makes relative to the learning algorithm (retraining), defined as follows.

Definition 4 (Relative Unlearning Complexity). The Relative Unlearning Complexity is defined as
E(A,U) [Query complexity of unlearning algorithm U]

EA [Query complexity of learning algorithm A]

For a ρ-TV stable learning algorithm, we want that the relative unlearning complexity is (close to)
ρ. This is because our proposed unlearning algorithm constructs a (near) maximal coupling of the
learning algorithm’s output under the original and updated dataset. This means that unlearning
algorithm changes the original output (under the original dataset) with probability at most ρ – we
want that in this case, the unlearning algorithm makes a number of queries akin to retraining. We
also want that in the other case when it does change the output, it makes a small (ideally, constant)
number of queries. We note that relative unlearning complexity, in itself, does not completely
capture if the unlearning algorithm is good, since it may be the case that the corresponding
learning algorithm is computationally more expensive than other existing methods. However, in
our applications to SCO (Section 5), all the learning algorithms are linear time, so the denominator
in the definition above is as small as it can be (asymptotically), i.e. Θ(n).

3. Accuracy: We will primarily be concerned with correctness of the unlearning algorithm and its
efficiency. In the applications (Section 5), we will give accuracy guarantees for specific problems,
where we will see (roughly) that if the learning algorithm is noise-tolerant, then the solution
produced by the proposed TV stable modified algorithm are still accurate.
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4 PREFIX SUM QUERIES
We now consider prefix-sum queries, which is the main contribution of this work. The reason for
considering this query class is that two powerful algorithms for SCO, dual averaging and recursive
variance reduction fit into this template. We start by defining a prefix-sum query.

Definition 5. A set of queries {qt}t≥1 where qt :Wt ×Zn →W are called prefix-sum queries if
q1(w1, S) = p1(w1, z1) and for all t > 1, qt({wi}i≤t , S) = qt−1({wi}i<t , S) + pt

(
{wi}i≤t , zt)

)
for some functions {pt}t≥1 where pt :W∗ ×Z →W .

Simply put, prefix-sum queries, sequentially query new data points and adds them to the previous
accumulated query. A simple example is computing partial sums of data points (z1, z1 + z2, . . .).
Note that in the above definition, we can equivalently represent the prefix-sum queries using the
sequence {pt}t. We also assume that the queries have bounded sensitivity, defined as follows.

Definition 6. A query q :W∗×Zn→W is B-sensitive if
sup
{wi}i

sup
S,S′:|S∆S′|=1

∥q ({wi}i , S)− q ({wi}i , S
′)∥ ≤ B.

We note that the bounded sensitivity condition is satisfied in a variety of applications; see Section 5.

4.1 LEARNING WITH BINARY TREE DATA-STRUCTURE:
The learning algorithm, given as Algorithm 2, is based on answering the adaptive prefix-sum queries
with the binary tree mechanism (Dwork et al., 2010). For n samples (assume n is a power of two,
otherwise we can append dummy “zero” samples without any change in asymptotic complexity), the
binary tree mechanism constructs a complete binary tree T with the leaf nodes corresponding to the
data samples. The key idea in the binary tree mechanism is that instead of adding fresh independent
noise to each prefix-sum query, it is better to add correlated noise, where the correlation structure
is described by a binary tree. For example, suppose we want to release the seventh prefix-sum
query,

∑7
i=1 pi({wj}j≤i , zi), then consider the dyadic decomposition of 7 as 4, 2 and 1, and release

the sum
(∑4

i=1 pi({wj}j≤i , zi) + ξ1
)
+
(∑6

i=5 pi({wj}j≤i , zi) + ξ2
)
+
(
p7({wj}j≤i , zi) + ξ3

)
where ξi’s denote the added noise, which may have also been used in prior prefix-sum query responses.
See Figure 1 for a simplified description of the process.

We index the nodes of the tree using using binary numbers B = {0, 1}log(n) which describes the path
from the root. Let the tree T = {vb}b∈B which denotes the contents stored by the learning algorithm.
Herein, each node contains the tuple (u, r, w, z) where u ∈ Rd is the query response, r ∈ Rd is the
noisy response, w ∈ Rd a model and z ∈ Z a data point. In fact, only the leaf nodes store the model
and data sample. Finally, define leaf : [n]→ {0, 1}log(n) which gives the binary representation of
the input leaf node.

This binary tree data structure supports the following operations:
1. Append(u, σ; T ): Add a query response u, perturbed by noise of variance σ2, to T , which involves

adding noisy u to uv for v in the path from leaf to root.

2. GetPrefixSum(t; T ), where t ∈ N: Get the t-th noisy response from T .

3. Get(b; T ) where b ∈ {0, 1}log(n): Get all items in the vertex of T indexed by b.

4. Set(b, v; T ) where b ∈ {0, 1}log(n): Set the contents of vertex b in the T as v.

Following Guha Thakurta & Smith (2013), we give pseudo-codes of the above operations in Section
C, with minor modifications to aid the unlearning process.

4.2 UNLEARNING BY MAXIMALLY COUPLING BINARY TREES

The unlearning Algorithm 3 is based on constructing a (near) maximal coupling of the binary trees
under current and updated dataset. Let zj be the element to be deleted and let vs be the leaf node
which contains zj (we use z in place of zj from here on, for simplicity). During unlearning, we
simulate (roughly speaking) the dynamics of the learning algorithm if the deleted point was not
present to begin with. In that case, in place of the deleted point, some other point would have been
used. Now, since the dataset was randomly permuted, every point is equally likely to have been used,
and thus we can use the point z′ in the last leaf node, say vl, in the tree – this choice of the last point
is important for unlearning efficiency. Firstly, the computations associated with the last point z′ needs

6
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+
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Figure 1: A simplified schematic of the learning (left) and unlearning (right) procedures for prefix-
sum queries. In the left, the leaves contain (noisy, if +ξi) prefix-sum queries applied on the randomly
permuted data-point (zi’s) below it. The intermediate nodes with + adds the not-noised values of its
children, where as others add noise to it. On the right, the deleted point z4 is replaced with z8 which
amounts to adjusting the queries with −g+ g′ (see Algorithm 3 for details) and performing Rejection
Sampling (abbreviated RSi, where i indicates the order of occurrence) along the height of the tree.

Algorithm 2 TreeLearn(t0; T )
Input: Dataset S, steps T , B-sensitive prefix queries {pt}t≤T , update functions {Ut}t≤T , σ

1: if t0 = 1 then Permute dataset and initialize T end if
2: (·, ·, wt0 , ·) = Get(leaf(t0); T )
3: for t = t0 to |S| − 1 do
4: ut = pt({wt}i≤t , zt)

5: Append(ut, σ; T )
6: rt = GetPrefixSum(t; T )
7: wt+1 = Ut

(
{wt}≤t , rt

)
8: Set(leaf(t), (ut, rt, wt, zt) ; T )
9: end for

Output: ŵ = S ({wt})

to be undone – towards this, we update the contents of the nodes in the path from node vl to root (line
5), finally removing node vl from the tree (line 6). Then, we need to replace all the computations
which used the deleted point z with the same computation under z′. Since the learning algorithm was
based on the binary tree mechanism, the point z was only explicitly used in the nodes from leaf vs to
the root (so, at most log (n) nodes). We say explicitly above because due to the adaptive nature of the
process, in principle, all nodes after vs depend on it, in the sense that their contents would change if
the response in vs were to change. However, importantly, the binary search structure of our learning
algorithm and our coupling technique (details below) would enable us to (mostly) only care about
explicit computations.

We first compute two new queries, under the data point z and z′, with responses g = pj({wq}q≤s , z)

and g′ = pj({wq}q≤s , z
′) respectively (line 3). Starting with leaf node vs, we update the original

unperturbed prefix-sum query response under z i.e. u to what it would have been under data-point
z′: u′ = u − g′ + g (line 11). Further, since the training method adds noise N (0, σ2I) to u to
produce original noisy response r, we now need to produce a sample fromN (u′, σ2I) to satisfy exact
unlearning. Naively, we could simply get a fresh independent sample from N (u′, σ2I), however,
this would change the noisy response r, and hence require all subsequent computations to be redone
(the adaptive nature). So, ideally, we want to reuse the same r and yet generate a sample from
N (u′, σ2I). This is precisely the problem of constructing a maximal coupling, discussed in the
Section 2, wherein we also discussed the method of reflection coupling to do it. This amounts to
doing a rejection sampling which (roughly) ascertains if response r is still sufficient under the new
distribution N (u′, σ2I). Specifically we compute the ratio of the probability densities at r under the

noise added to u and u′, i.e.
ϕN(u,σ2I)(r)

ϕN(u′,σ2I)(r)
and compare it against a randomly sampled Unif(0,1); if it

results in accept, we move to parent of the node vs, and repeat. If any step fails, we reflect which
generates a different noisy response r′, and continue retraining from the next leaf w.r.t. the post order
traversal of the tree (the variable ct in Algorithm 3 keeps track of this next node). See Figure 1 for a
simplified description of the process.
The main result of this section is as follows.
Theorem 1. The following are true for Algorithms 2 and 3,
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Algorithm 3 TreeUnlearn

Input: zj : data point to be deleted, , T : internal tree data-structure saved during learning
1: s = leaf(j) and l = leaf(|S|)
2: (·, ·, w, z) = Get(s; T ) and (·, ·, ·, z′) = Get(l; T )
3: g = pj({wq}q≤s , z) and g′ = pj({wq}q≤s , z

′)

4: Let path = {l→ · · · → root} be the path from l to root.
5: for b ∈ path do ub = ub − g′ end for
6: Remove node l from T .
7: Let b = s and ct = 1
8: if j = |S| then let b = ∅ end if
9: while b ̸= ∅ do

10: (u, r, ·, ·) = Get(b; T )
11: u′ = u− g + g′

12: if Unif (0, 1) ≤ ϕN(u,σ2I)(r)

ϕN(u′,σ2I)(r)
then

13: if b = s then Set(b, (u′, r, w, z′) ; T )
else then Set(b, (u′, r, ∅, ∅) ; T ) end if

14: else
15: r′ = Reflect(u, u′, r)
16: if b = s then
17: Set(b; (u′, r′, ∅, z′) ; T )
18: w′ = Uj

(
{wq}q≤b ,GetPrefixSum(j; T )

)
19: Set(b, (u′, r′, w′, z′) ; T )
20: else
21: Set(b, (u′, r′, ∅, ∅) ; T )
22: end if
23: TreeLearn(j + ct; T ) // Continue Retraining
24: break
25: end if
26: if b is left sibling then ct = ct + 2|s|−|b|−1 end if
27: Set (new) b as binary representation of parent of b
28: end while
29: Update dataset S = S\ {zj}
Output: ŵ = S({wb}b)

1. The learning Algorithm 2 with σ2 = 64B2log2(n)
ρ satisfies ρ-TV stability.

2. The corresponding unlearning Algorithm 3 satisfies exact unlearning.

3. The relative unlearning complexity is Õ (ρ)

As discussed in the preceding section, in the Theorem above, we have all the properties we needed
with the unlearning process. We now move on to applications and give accuracy guarantees.
5 APPLICATIONS
In the following, we describe some problems and learning algorithms. The corresponding unlearning
algorithms and its correctness simply follow as application of the result of the preceding section,
provided we show that it uses a bounded sensitivity prefix-sum query. The only other thing to show is
the accuracy guarantee of the TV stable modification of the learning algorithm (Algorithm 2).

We use runtime to mean gradient complexity as is standard in convex optimization (Nemirovskij
& Yudin, 1983). But, as pointed out before, our proposed unlearning algorithm yields similar
improvements over retraining, even accounting for other operations in the method.
5.1 SMOOTH SCO WITH VARIANCE REDUCED FRANK-WOLFE
We assume that the loss function w 7→ ℓ(w; z) is H-smooth and G-Lipschitz for all z1. The algorithm
we use is variance reduced Frank-Wolfe method where the variance reduced gradient estimate ut is
the Hybrid-SARAH estimate (Tran-Dinh et al., 2019) with γt =

1
t+1 given as,

1A real valued function w 7→ f(x) is G-Lipschitz and H-smooth if |f(x1)− f(x1)| ≤ G ∥x1 − x2∥ an
∥∇f(x1)−∇f(x2)∥ ≤ H ∥x1 − x2∥ respectively.
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ut = (1− γt) (ut−1 +∇ℓ(wt; zt)−∇ℓ(wt−1; zt)) + γt∇ℓ(wt; zt)

=
1

t+ 1

t∑
i=1

((i+ 1)∇ℓ(wi; zi)− i∇ℓ(wi−1; zi))

We show that the above is a prefix sum query with sensitivity B = 2 (HD +G), thus fits into our
framework. The full pseudo-code is given as Algorithm 12 in Appendix E. We state the main result
below where the accuracy guarantee follows from modifications to the analysis in Zhang et al. (2020).
Theorem 2. Let ρ ≤ 1 and ℓ : W × Z → R be an H-smooth, G-Lipschitz convex function
over a convex set W of diameter D. Algorithm 12, as the learning algorithm, run with σ2 =
64(HD+G)2log2(n)

ρ2 , t0 = 1 and ηt =
1

t+1 on a dataset S of n i.i.d. samples from D outputs ŵ, with

excess population risk bounded as, E [L(ŵ;D)− L(w∗;D)] = Õ
(
(G+HD)D

(
1√
n
+

√
d

nρ

))
.

Furthermore, the corresponding unlearning Algorithm 3 (with query and update functions as specified
in the learning algorithm), satisfies exact unlearning with Õ (ρn) expected runtime.

5.2 NON-SMOOTH SCO WITH DUAL AVERAGING

In this section, we only assume that loss function w 7→ ℓ(w; z) is G-Lipschitz and convex ∀ z ∈ Z .
Herein, we use dual averaging method (Nesterov, 2009) where the model is updated as follows:
wt+1 = ΠW

(
w0 − η

∑t
i=1∇ℓ(wi; zi)

)
, where Π denotes the Euclidean projection on to the convex

setW . The above again is a prefix-sum query with sensitivity G, thus fits into our framework. The
full pseudo-code is given as Algorithm 13 in Appendix E. The accuracy guarantee mainly follows
from Kairouz et al. (2021).

Theorem 3. Let ρ ≤ 1 and ℓ : W × Z → R be a G-Lipschitz convex function over a convex set
W of diameter D. Algorithm 13, as the learning algorithm, run with σ2 = 64G2log2(n)

ρ2 , t0 = 1

and η =
Dd1/4

√
log(n)

G
√
nρ on a dataset S of n samples, drawn i.i.d. from D, outputs ŵ with excess

population risk bounded as E [L(ŵ;D)− L(w∗;D)] = Õ

(
GD

(
1√
n
+
√√

d
nρ

))
. Furthermore, the

corresponding unlearning Algorithm 3 (with query and update functions as specified in the learning
algorithm), satisfies exact unlearning with Õ (ρn) expected runtime.

5.3 CONVEX GLM WITH JL METHOD

Algorithm 4 JL method
Input: Dataset S, loss function ℓ, Algorithm A, JL matrix Φ ∈ Rd×k, Noise variance σ2

1: ΦS = {Φxi}ni=1

2: w̃ = A(ℓ,ΦS, 2G ∥X∥ , 2H ∥X∥2 , σ)
Output: ŵ = Φ⊤w̃

This JL method, proposed in Arora et al. (2022), is a general technique to get dimension-independent
rate for unconstrained convex GLMs from algorithms giving dimension-dependent rate for constrained
(general) convex losses. The method, described in Algorithm 4, simply embeds the dataset into a low
dimensional space, via a JL matrix Φ, and then runs a base algorithm on the low dimensional dataset.

Smooth, Lipschitz GLMs: We assume that ϕy : R→ R is convex, H-smooth and G-Lipschitz for

all y ∈ Y . Using VR-Frank Wolfe as the base algorithm, we get a rate of O
(

1√
n
+ 1

(nρ)2/3

)
with

relative unlearning efficiency of ρ – see Theorem 5 for a precise statement.

Lipschitz GLMs: We assume that ϕy : R→ R is convex and G-Lipschitz for all y ∈ Y . We give
the following result in this case using Dual Averaging as the base algorithm. Using Dual Averaging
as the base algorithm, we get a rate of O

(
1√
n
+ 1

(nρ)1/3

)
with relative unlearning efficiency of ρ –

see Theorem 6 for the precise statement.
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A ADDITIONAL PRELIMINARIES

We recall some concepts from differential privacy which will be useful in our algorithmic techniques.

Definition 7. An algorithm A satisfies (α, ϵ(α))-Rényi Differential Privacy (RDP), if for any two
datasets S and S′ which differ in one data point (|S∆S′| = 1), the α-Rényi Divergence between
A(S) and A(S′), with probability densities ϕA(S) and ϕA(S′), defined as follows:

Dα (A(S)∥A(S′)) =
1

α− 1
ln

(∫
Range(A)

ϕA(S)(x)
αϕA(S′)(x)

1−αdx

)
is bounded as, Dα(A(S)∥A(S′)) ≤ ϵ(α).

RDP satisfies many desirable properties such as adaptive and parallel composition and amplification
by sub-sampling (Mironov, 2017; Wang et al., 2019). Furthermore, we give the following lemma
which relates TV stability to RDP.

Lemma 1 (RDP =⇒ TV-stability). If an algorithm satisfies (α, ϵ(α))-RDP, then it satisfies(
1− exp

(
−lim

α↓1
ϵ(α)

)) 1
2

-TV stability.

Proof of Lemma 1. From Theorem 4 in Van Erven & Harremos (2014), we have that lim
α↓1

Dα(P∥Q) =

KL (P∥Q), where KL(·∥·) denotes the Kullback-Leibler (KL) divergence between the two distribu-
tions. Finally, we relate the TV distance with the KL divergence using Bretagnolle–Huber bound
(Bretagnolle & Huber, 1979; Canonne, 2022) which gives the claimed bound.

B UNLEARNING FOR LINEAR QUERIES

A basic form of a query we consider is a linear query, defined as follows.

Definition 8. A query q :W∗ ×Zn →W is a linear query if q ({wi}i ;S) =
∑

j∈S pj ({wi}i ; zj)
for some functions pj :W∗ ×Z →W .

We consider the class of B-sensitive linear queries. We give the TV stable modified learning
procedure in Algorithm 5 which basically releases the linear queries perturbed with Gaussian noise
of appropriate variance.

Algorithm 5 LearnLinearQueries(wt0 , t0)

Input: Dataset S, initial iteration t0, steps T , query functions {qt(·)}t≤T , update functions
{Ut(·)}t≤T , Selector function S(·), noise variance σ

1: Initialize model w1 ∈ W
2: for t = t0 to T − 1 do
3: Query the dataset ut = qt

(
{wi}i≤t ;S

)
.

4: Perturb: rt = ut + ξt where ξt ∼ N (0, σ2Id).
5: Update wt+1 = Ut({wi}i≤t , rt)

6: Save (ut, rt, wt+1)
7: end for

Output: ŵ = S
(
{wt}t≤T

)

Note that the underlying probability distribution that the above learning algorithm samples from is
a Markov chain. The corresponding unlearning procedure, described in Algorithm 6, is based on
constructing a coupling between the Markov chains for the current dataset and the dataset without the
to-be-deleted point. In particular, we start from the first iteration, perform rejection sampling, if it
results in acceptance, then we proceed to the second iteration and so on. If some iteration results in
rejection, then we do the reflection step, and continue retraining from there on.
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Algorithm 6 Unlearning algorithm for linear queries
Input: Deleted point zj ,

1: for t = 1 to T − 1 do
2: (ut, rt, wt) = Load ()

3: Compute u′
t = ut − pjt

(
{wi}i≤t ; zj

)
4: if Unif (0, 1) ≤ ϕN(ut,σ

2I)(rt)

ϕN(u′
t,σ

2I)(rt)
then

5: Save (u′
t)

6: else
7: r′t = reflect(rt, ut, u

′
t)

8: wt+1 = Ut

(
{wi}i≤t , r

′
t

)
9: LearnLinearQueries(wt+1, t+ 1)

10: break
11: end if
12: end for

The above is basically the same unlearning algorithm as that of Ullah et al. (2021) but presented in
the general context of linear queries. Therefore, it generalizes the framework of Ullah et al. (2021)
which was limited to the Stochastic Gradient Descent algorithm. We also remark that linear queries
can often be augmented with a sub-sampling operator yielding amplified guarantees, as done in Ullah
et al. (2021). However, we omit this extension for brevity. The main result of this section is as
follows.

Theorem 4. The following are true for Algorithms 5 and 6,

1. The learning algorithm, Algorithm 5 with σ2 = 64B2

n2ρ2 satisfies ρ-TV stability.

2. The unlearning algorithm, Algorithm 6, corresponding to Algorithm 5, satisfies exact
unlearning.

3. The relative unlearning complexity is O
(
ρ
√
T
)

.

Proof. This proof simply follows from the observation that the analysis of Ullah et al. (2021) only
uses the bounded sensitivity linear query structure of the stochastic gradient method for their TV
stability bound as well as correctness and runtime of the unlearning procedure.

B.1 APPLICATIONS

This generalization yields the following applications.

B.2 FEDERATED UNLEARNING FOR FEDERATED AVERAGING

In the federated learning setting, we have C clients (which typically correspond to user devices) with
their own datasets and a parameter server (aggregator). A typical, informal, goal is training a single
globally shared model using all the dataset with small communication between the clients and the
server, and without moving any private data (explicitly) to the server. Federated Averaging (Konecnỳ
et al., 2016), described in Algorithm 7, is a widely used method in federated learning. Note that in the
every round of the method, the client outputs, {wc

t}
C
c=1, are aggregated using an averaging operation:

wt =
1

C

C∑
c=1

wc
t .

In Algorithm 7, ClientUpdate is a function which runs on the client’s data using the current model
wt and problem specific-parameter P (such as as number of steps, learning rate of some optimization
routine). For brevity, we do not instantiate the ClientUpdate function, but usually some variant of
stochastic gradient descent is used.
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Algorithm 7 Federated Averaging (Server side)
Input: Number of clients C, number of rounds T , client-specific parameters P

1: Initialize model w1 ∈ W
2: for t = 1 to T − 1 do
3: for c = 1 to C do
4: wc

t+1 = ClientUpdate (c, wt−1,P)
5: end for
6: wt+1 = 1

C

∑C
c=1 w

c
t+1

7: end for
Output: ŵ = S

(
{wt}t≤T

)

Federated Unlearning: In the federated unlearning problem, after a model is trained, one of the
clients requests to remove themselves from the process. The parameter server then needs to update
the model (and state) in such a way that it is indistinguishable to the state if the client were absent.
Hence, this is analogous to the standard unlearning problem with the client playing the role of a data
point. This analogy also occurs with private federated learning wherein the widely-used granularity
of differential privacy is user-level differential privacy (McMahan et al., 2017). In this case, a client
(potentially containing multiple data items) plays the role of a data item, the presence/absence of
which is used in the differential privacy definition.

TV-stable learning and unlearning: The model aggregation step (line 6 in Algorithm 7) of the
federated averaging method is a linear query over the clients. Moreover, if the clients output models
that are bounded in norm, then it is a bounded sensitivity linear query (typically enforced by clipping
the updates). Hence, this fits into the template of linear query release method and thus can be
modified, as in Algorithm 5 to be TV stable. The corresponding unlearning method is the one given
in Algorithm 6.

B.3 LLOYD’S ALGORITHM FOR k-MEANS CLUSTERING

In this section, we briefly discuss how an algorithm for k-means clustering fits into the linear query
release framework. We remark that the prior work of Ginart et al. (2019) gave an unlearning method
for this problem based on randomized quantization, which can also be seen as a specific TV-stable
algorithm followed by a coupling based unlearning method.

Lloyd’s algorithm is a widely used method for k-means clustering. Herein, starting with an arbitrary
choice of centers, we construct a partition of the dataset, which thereby gives a new set of centers.
This process is repeated for a certain number of rounds. The method is described as Algorithm 8.

We notice again that the updates for every cluster, line 7 in Algorithm 8, is a linear query, hence it fits
into the linear query release template and thus learning and unlearning algorithms based on linear
queries readily follow.

Algorithm 8 Lloyd’s algorithm
Input: Number of clusters C, number of rounds T , dataset S = {zi}ni=1.

1: Initialize centers {wc}Cc=1
2: for t = 1 to T − 1 do
3: for c = 1 to C do
4: Compute Sc =

{
zc1, z

c
2, . . . z

c
|Sc|

}
, the set of data-points closest to wc.

5: end for
6: for c = 1 to C do
7: Update wc =

1
|Sc|

∑|Sc|
i=1 z

c
i

8: end for
9: end for

Output: {wc}Cc=1
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C MISSING DETAILS FROM SECTION 4

In this section, we provide pseudo-code of the operations supported by the binary tree data structure.

Algorithm 9 Append(u, σ; T )
Input: Query response u, noise variance σ,Tree T

1: Let s be the first empty leaf index
2: path = {s→ · · · root} be the path from s to root.
3: UpdateTree(u, path, σ; T )

Algorithm 10 UpdateTree(u, path, σ; T )
Input: Query response u, Set of nodes path, noise variance σ,Tree T

1: for b ∈ path do
2: ub = ub + u
3: if b is a left child or b is a leaf then
4: ξ ∼ N (0, σ2I)
5: rb = ub + ξ
6: break
7: end if
8: end for

Algorithm 11 GetPrefixSum(t; T )
Input: t ∈ N, Tree T ,

1: Initialize g ∈ Rp to 0
2: s← leaf(t)
3: Let path be the path from s to root.
4: while b ̸= ∅ do
5: if b is a leaf child or b is a leaf then
6: g = g + rb
7: end if
8: end while

Output: g

D MISSING PROOFS FROM SECTION 4

Proof of Theorem 1. The first part of the Theorem follows from Lemma 2 followed by post-
processing to argue that the same TV stability parameter holds for the final iterate.

The second part, exact unlearning, follows from Lemma 5 wherein Q denotes the distribution of the
algorithm’s output run on the dataset without the to-be-deleted point.

For the third part, note that the unlearning algorithm 3 makes two queries if no retraining is triggered.
If a retraining is triggered, the number of queries it makes is at most the query complexity of
learning algorithm, T = n. Finally, the probability of retraining, from Lemma 6 is at most log (n) ρ.
Combining, this gives the stated bound on relative unlearning complexity.

D.1 LEMMAS FOR UNLEARNING

Additional notation: We first present some additional notation used in the statement and proof
of the following lemmas. Let S and S′ be datasets before and after the unlearning request. Let
P and Q denote the probability measures over the range of tree data-structure, which is T =(
Rd × Rd × Rd × [n]

)n
, induced by the output of learning algorithm on S and S′ respectively. We

order the nodes of the binary tree w.r.t. the post-order traversal of tree. Hence, given two nodes v and
v′ or their binary representations s and s′, we use v ≤ v or s ≤ s′ w.r.t the above ordering. Given a
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node b, let Pb (·|T≤b) denote the conditional distribution of the nodes given the prefix nodes of the
tree.

Let p be a permutation over [n] and pb denote the index on the b-th node, when b is a leaf. Let µ
denote the probability, and conditional probability, depending on context, of p and pb, under the
random permutation model. Specifically, we use µ(p) and µ(pb|p≤b) to denote the probability of the
sequence p and conditional probability of pb given the previous values.

Let T (1) denote the initial binary tree i.e. the one constructed after the algorithm is run on dataset
S, and T (2) be the binary tree constructed after unlearning. Let Pp and Qp denote the conditional
distributions for P and Q respectively given permutation p.

We factor the probability density of P as:
ϕP

(
T (1)

)
=
∏
b∈B

ϕPb

(
v
(1)
b |T

(1)
≤b

)
=
∏
b∈B

µ(p
(1)
b |p

(1)
≤b)ϕ

P
p
(1)
≤b

b

(
u
(1)
b , r

(1)
b , w

(1)
b |T

(1)
≤b

)
Fixing the permutation sequence p(1), denote and factor the conditional distribution as,

ϕp(1)

P (T (1)) =
∏
b∈B

ϕ
P

p
(1)
≤b

b

(
u
(1)
b , r

(1)
b , w(1)|T (1)

≤b

)
Finally, define response trees T̃ (1) and T̃ (2) which only contain the response variables (rb)b. More-
over, define distributions P̃ , P̃b, P̃p, P̃p

b and Q̃, Q̃b, Q̃p Q̃p
b as before.

We first show the the tree T̃ produced by the learning algorithm is TV-stable.

Lemma 2. Let 0 < ρ ≤ 1, B ≥ 0, n ∈ N. For B-sensitive prefix sum queries, setting σ2 =
64B2log2(n)

ρ2 , the response tree data structure T̃ is ρ-TV stable.

Proof. The proof of privacy of tree aggregation is classical in differential privacy, see Guha Thakurta
& Smith (2013) for example. The proof has three ingredients: Gaussian mechanism guarantee,
parallel composition (to argue that accounting along the height of the tree suffices) and adaptive
composition (for accounting along the height of the tree). Since the noise is Gaussian and these
composition properties also holds under RDP (Mironov, 2017), therefore we can give an RDP
guarantee of ϵ(α) ≤ log2(n) · 64αB

2

σ2 αρ2. Finally, using Lemma 1 and a numerical simplification
since ρ ≤ 1 gives the claimed result.

Recall that j is the index of the data item (after permutation) which is deleted. Without loss of
generality, assume that the original index of the deleted data-point is n. We first argue the following
about the distribution of p(1) and p(2).

Lemma 3. For any set E ⊆ [n]n and any set E′ ⊆ [n− 1]n−1, we have

Pp(1)

(
p(1) ∈ E

)
= µn(E)

Pp(2)

(
p(2) ∈ E′

)
= µn−1(E

′)

Proof. Since p(1) and p(2) are discrete distributions, it suffices to argue the above for the atoms.
Firstly, by construction, p(1) ∼ µn and hence the first part is done. For the second part for any
sequence h = (hi)

n−1
i=1 where hi ∈ [n−1]. Let [h, j] denote the concatenation of h and j (the deleted

index). By symmetry, the probability

Pp(2) (h) =
1

n+ 1
Pp(1) ([h, j]) = µn−1(h)

This completes the proof.

We now show transport of the conditional distribution by the unlearning operation.

Lemma 4. For any measurable event E ⊆ Rd|T (2)|,
P
(
T̃ (2) ∈ E|p(1),p(2)

)
= Q̃p(2)

(E).
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Proof. The proof is based on induction on the nodes of T̃ (2) in the post-order traversal. Let
(
v
(1)
b

)
b

and
(
v
(2)
b

)
b
be the nodes of the tree arranged in the post-order traversal order. Given j, index of

the item deleted, let s = leaf(j). Define prefix(s) and suffix(s), as set of nodes before and after s
respectively in the ≤ order.

Given an event E ⊆ Rd|T̃ (2)| and r≤b, define E
r≤b

b as follows:

E
r≤b

b =
{
e ∈ Rd : ∃e ∈

(
×>bRd

)
: (r≤b, e, e) ∈ E

}
where ×>bRd denote the Cartesian product of Rd’s of upto > b but smaller than or equal to

∣∣T (1)
∣∣

elements. Similarly, define E
r≤b

≥b as,
E

r≤b

≥b =
{
e ∈

(
×≥bRd

)
: (r≤b, e) ∈ E

}
Finally, define E<b as

E<b =
{
e ∈

(
×<bRd

)
: ∃e ∈

(
×≥bRd

)
: (e, e) ∈ E

}
We now factorize the probability below as,

P
(
T̃ (2) ∈ E|p(1),p(2)

)
=

∏
b∈prefix(s)

P
(
r
(2)
b ∈ E

r
(2)
<b

b |p(2)b , r
(2)
<b

)
P
(
T̃ (2)
≥s ∈ E

r
(2)
<s

≥s |T̃
(2)
<s ,p

(1),p(2)

)

=
∏

b∈prefix(s)

P
(
r
(1)
b ∈ E

r
(1)
<b

b |p(1)b , r
(1)
<b

)
P
(
T̃ (2)
≥s ∈ E

r
(2)
<s

≥s |T̃
(2)
<s ,p

(1),p(2)

)

=
∏

b∈prefix(s)

Pb

(
E

r
(1)
<b

b |p(1)b , r
(1)
<b

)
P
(
T̃ (2)
≥s ∈ E

r
(2)
<s

≥s |T̃
(2)
<s ,p

(1),p(2)

)

=
∏

b∈prefix(s)

Qb

(
E

r
(2)
<b

b |p(2)b , r
(2)
<b

)
P
(
T̃ (2)
≥s ∈ E

r
(2)
<s

≥s |T̃
(2)
<s ,p

(1),p(2)

)

= Q<s

(
E<s|p(2)<s, r

(2)
<s

)
P
(
T̃ (2)
≥s ∈ E

r
(2)
<s

≥s |T̃
(2)
<s ,p

(1),p(2)

)
where the second equality follows since r

(1)
≤b = r

(2)
≤b and p

(1)
b = p

(2)
b for all b < s by construction.

The third equality follows since r
(1)
b is distributed as Pb conditionally and fourth and final follows

since conditioned on the permutation being the same, the prefix is also distributed as Q<s.

We now start the induction: let I(induction variable) be I = s i.e the last item is deleted. In this case,
the unlearning algorithm simply removes the s-th node of the tree and all we are left with is the tree
with prefix(s) nodes, which as argued above is distributed as Q<s = Q.

For the case I = s + 1: we simply focus on T̃ (2)
≥s = T̃ (2)

s = r
(2)
s . Note that r(1)s is distributed

as N (u(1), σ2I) and we want r(2)s distributed as N (u(2), σ2I). The operation in the algorithm is
basically a one step reflection coupling which from Lemma 1 in Ullah et al. (2021) satisfies,

P
(
r(2)s ∈ E

r
(2)
<s

s |p(1),p(2)

)
= Q

p(2)
s

s

(
E

r
(2)
<s

s

)
Therefore,

P
(
T̃ (2) ∈ E|p(1),p(2)

)
= Q<s

(
E<s|p(2)<s, r

(2)
<s

)
Q̃

p(2)
s

s

(
E

r
(2)
<s

s

)
= Q̃p(2)

(E)

This finishes the base cases.

We now proceed to the induction step: suppose the following claim holds for nodes upto I = k – for
any event E, the marginal distribution

P
(
T (2)
≤k ∈ E|p(1),p(2)

)
= Q̃≤k

(
E|p(2)

)
For node k + 1, consider a few cases:
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1. A: All rejection sampling steps prior to node k resulted in accepts:

(a) AP: Node k + 1 lies in the path from the s to root.

i. APA: The rejection sampling at this node succeeds.

ii. APR: The rejection sampling at this node fails i.e. a reflection step is performed.

(b) AN: Node k + 1 doesn’t lie in the path from s root.

2. R: Some rejection sampling step resulted in rejection.

For case R, we have that r(2)k+1 ∼ Q̃k+1(·|T̃ (2)
≤k ,p

(2)). For the case AN, note that the random variable

r
(2)
k+1 = r

(1)
k+1, hence,

P
(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1|AN, T
(2)
≤k ,p

(1),p(2)

)
= P̃k+1

(
E

r
(2)
≤k

k+1|p
(2), T̃ (2)

≤k

)
= Q̃k+1

(
E

r
(2)
≤k

k+1|p
(2), T̃ (2)

≤k

)
where the last equality follows since the dependence of r(2)k+1 is only on data points which are leaves
of the sub-tree rooted at node k + 1. These, by assumption do not contain the data point s, hence is
identically distributed as Pk+1.

For the event AP, we have,

P
(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1|AP,p
(1)p(2), T̃ (2)

)
= P

(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1,APA|AP,p
(1),p(2), T̃ (2)

≤k

)
+ P

(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1,APR|AP,p
(1),p(2), T̃ (2)

≤k

)
= Q̃k+1

(
E

r
(2)
≤k

k+1|p
(1),p(2), T̃ (2)

≤k

)
where the last step follows from Lemma 1 in Ullah et al. (2021) .

Hence, combining AP and AN cases,

P
(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1|AN, T
(2)
≤k ,p

(1),p(2)

)
= Q̃k+1

(
E

r
(2)
≤k

k+1|p
(2), T̃ (2)

≤k

)
We now combine all the cases: let ϕ(A)

≤k , ϕ
(R)
≤k denote the conditional densities of T̃ (2)

≤k under events A

and R respectively. Let Tk =
∣∣∣T̃ (2)

≤k

∣∣∣. For any event E,

P
(
T̃ (2)
≤k+1 ∈ E|p(1),p(2)

)
= P

(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1|A, T̃
(2)
≤k ∈ E≤k,p

(1),p(2)

)
P
(
T̃ (2)
≤k ∈ E

r
(2)
≤k

k+1,A|p
(1),p(2)

)

+ P
(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1|R, T̃
(2)
≤k ∈ E≤k,p

(1),p(2)

)
P
(
T̃ (2)
≤k ∈ E≤k,R|p(1), p(2)

)
=

∫
RdTk+1

1

(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1

)
1

(
T̃ (2)
≤k ∈ E≤k

)(
1

(
T̃ (2)
≤k ∈ A

)
ϕ
(A)
≤k

(
T̃ (2)
≤k

)
+ 1

(
T̃ (2)
≤k ∈ R

)
ϕ
(R)
≤k

(
T̃ (2)
≤k

))
ϕ
Q̃p(2)

k+1

(
r
(2)
k+1|T̃

(2)
≤k

)
dT̃ (2)

≤k dr
(2)
k+1

=

∫
RdTk+1

1

(
T (2)
≤k+1 ∈ E

)
ϕ
Qp(2)

≤k

(
T̃ (2)
≤k

)
ϕ
Q̃p(2)

k+1

(
r
(2)
k+1|T̃

(2)
≤k

)
dT̃ (2)

≤k dr
(2)
k+1

= Q̃p(2)

≤k+1 (E)

where in the third equality, we use the induction hypothesis. This completes the proof of the
lemma.

Lemma 5. For any measurable event E ⊆ T, P[T (2) ∈ E] = Q(E).

18



Under review as a conference paper at ICLR 2023

Proof. This follows primarily from Lemma 4, and the fact that other elements in nodes of T , namely
ub and wb are deterministic functions of the prefix vertices in the tree T̃ . Consider a decomposition
of the event E = Eu × Er × Ew × Ez . Now,

P[T (2) ∈ E] = Ep(1)P
(
T (2) ∈ Eu × Er × Ew × Ez|p(1),p(2) ∈ Ez

)
P
(
p(2) ∈ Ez

)
= Ep(1)P

(
T̃ (2) ∈ Er|p(1),p(2)

)
µn−1(Ez)

= Ep(1)Q̃p(2)

(Er)µn−1(E2)

= Ep(1)Qp(2)

(Eu × Ew × Er)µn−1(Ez)

= Q(E)
where the second and fourth equality follows since variables wb and ub are deterministic functions of
the responses r≤b. The second and third equality also uses Lemma 3 and Lemma 4 respectively.

Lemma 6. The probability of retraining is at most log (n) ρ.

Proof. A retraining is triggered only when a rejection sampling step fails. Note that a rejection
sampling step happens only when the node b belongs to the path from s to root, say path. Let Accept
be the event when all rejection sampling steps succeed.

P (Accept) = ET (1),T (2),{ub}
∏

b∈path

1

ub ≤
ϕ
Q̃p(2)

b

(
r
(1)
b |T

(1)
<b

)
ϕ
P̃p(2)

b

(
r
(1)
b |T

(1)
<b

)


= ET̃ (1),p(1),p(2)

∏
b∈path

P

ub ≤
ϕ
Q̃p(2)

b

(
r
(1)
b |T̃

(1)
<b

)
ϕ
P̃p(1)

b

(
r
(1)
b |T̃

(1)
<b

)


= Ep(1),p(2)

∏
b∈path

∫
Rd

min

(
ϕ
Q̃p(2)

b

(
r
(1)
b |T̃

(1)
<b

)
, ϕ

P̃p(1)

b

(
r
(1)
b |T̃

(1)
<b

))
dr

(2)
b

= Ep(1),p(2)

∏
b∈path

(
1− TV

(
Q̃p(2)

b , P̃p(1)

b |T̃ (1)
<b

))

=
∏

b∈path

(1− ρb)

≥ 1−
∑

b∈path

ρb

≥ 1− log (n)max
b

ρb

≥ 1− log (n) ρ

where the fourth equality follows from the definition of TV distance and in the last equality, ρb
denotes the (conditional) TV distance of node b. The third to last inequality follows from Lemma 7
and the second to last inequality follows from Holder’s inequality. For the last inequality, we simply
upper bound ρb ≤ ρ since the algorithm is ρ-TV stable (Lemma 2). This completes the proof.

Lemma 7. Let {ai}ki=1 be real numbers such that ai ∈ (0, 1) for all i and
∑k

i=1 ai ≤ 1. Then,∏k
i=1 (1− ai) ≥ 1−

∑k
i=1 ai
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Proof. We prove this via induction on k. The base case k = 1 is immediate. For the induction step k,
we have

k∏
i=1

(1− ai) =

k−1∏
i=1

(1− ai) (1− ak) ≥

(
1−

k−1∑
i=1

ai

)
(1− ak)

= 1−
k∑

i=1

ai +

(
k−1∑
i=1

ai

)
ak

≥ 1−
k∑

i=1

ai

This completes the proof.

E MISSING PROOFS FROM SECTION 5
E.1 VARIANCE-REDUCED FRANK WOLFE

Algorithm 12 Variance-reduced Frank Wolfe(t0; T )
Input: Dataset S, loss function (w, z) 7→ ℓ(w, z), steps T , σ,{ηt}t

1: if t0 = 1 then Permute dataset, initialize T , set wt0 = 0 end if
2: for t = 1 to T − 1 do
3: ut =

∑t
i=1 ((i+ 1)∇ℓ(wi; zi)− i∇ℓ(wi−1; zi))

4: Append(ut, σ; T )
5: rt = GetPrefixSum(t; T )
6: vt = argminw∈W

〈
w, rt

t+1

〉
7: wt+1 = (1− ηt)wt + ηtvt
8: Set(leaf(t), (ut, rt, wt, zt) ; T )
9: end for

Output: ŵ = wT

Proof of Theorem 2. For the accuracy guarantee, we follow the proof of Theorem 1 in Zhang et al.
(2020). Let dt = rt

t+1 . From smoothness, we have

L(wt+1;D) ≤ L(wt;D) + ⟨∇L(wt;D), wt+1 − wt⟩+
H

2
∥wt+1 − wt∥2

≤ L(wt;D) + ηt ⟨∇L(wt;D)− dt, vt − wt⟩+ ⟨dt, vt − wt⟩+
η2tHD2

2

= L(wt;D) + ηt ⟨∇L(wt;D)− dt, vt − wt⟩+ ηt ⟨dt, w∗ − wt⟩+
η2tHD2

2

≤ L(wt;D) + ηt ⟨∇L(wt;D), w∗ − wt⟩+ ηt ⟨dt −∇L(wt), w
∗ − vt⟩+

η2tHD2

2

≤ (1− ηt)L(wt;D)− ηtL(w
∗;D) + 2D

t+ 1
∥dt −∇L(wt;D)∥+

η2tHD2

2

where the second inequality follows from the update and the fact that iterates lie in the set of diameter
D. The third inequality follows from the optimality of vt in the update in Algorithm 12. Finally, the
last inequality follows from convexity, Cauchy-Schwarz inequality and by substituting the step-size.
We now take expectation, and use the bound on gradient estimation error in Lemma 8 to get,

E[L(wt+1;D)− L(w∗;D)]

≤ (1− ηt)E[L(wt;D)− L(w∗;D)] + Õ

(
(HD +G)D

(
1

(t+ 1)3/2
+

√
d

(t+ 1)
2
ρ

))

+
HD2

2 (t+ 1)
2
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The above recursion gives us,

E[L(wT ;D)− L(w∗;D)] ≤ (L(w1;D)− L(w∗))

T−1∏
t=1

(1− ηt)

+

T−1∑
i=1

Õ

(
(HD +G)D

(
1

(i+ 1)3/2
+

√
d

(i+ 1)
2
ρ

)
+

HD2

(i+ 1)
2

)
T−1∏
t=i+1

(1− ηt)

≤ HD2

T

+

T−1∑
i=1

Õ

(
(HD +G)D

(
1

(i+ 1)
1/2

+

√
d

(i+ 1) ρ

)
+

HD2

(i+ 1)

)
1

T

≤ Õ

(
(HD +G)D

(
1√
T

+

√
d

Tρ

)
+

HD2

T

)

≤ Õ

(
(HD +G)D

(
1√
T

+

√
d

Tρ

))
where the second inequality follows from smoothness and substituting

∏T−1
t=i+1 (1− ηt) = i+1

T−1 .
Substituting number of iterations T = n completes the accuracy proof.

For the unlearning part, we start by showing that the algorithm falls into the tem-
plate of bounded sensitivity prefix-sum query release. Recall that the update ut =∑t

i=1 ((i+ 1)∇ℓ(wi; zi)− i∇ℓ(wi−1; zi)).

The sensitivity is then bounded as,

∥((i+ 1)∇ℓ(wi; z)− i∇ℓ(wi−1; z))− ((i+ 1)∇ℓ(wi; z
′)− i∇ℓ(wi−1; z

′))∥
≤ iH ∥wi − wi−i∥+ 2G

≤ iHηi−1 ∥vi−1 − wi−1∥+ 2G

≤ 2 (HD +G)

where the first inequality follows from smoothness and Lipschitzness of the loss. The second
inequality follows from the update in Algorithm 12 and the last inequality follows from the fact
that the iterates remain in the set of diameter D. Hence the correctness of the unlearning algorithm
follows from Theorem 1. For runtime, the training time, in terms of gradient computations is Θ(n).
Therefor, using the fact that the relative unlearning complexity, from Theorem 1, is Õ(ρ), we have
Õ(ρn) bound on expected unlearning runtime.

Lemma 8. The gradient estimation error E
∥∥∥ rt
t+1 −∇L(wt;D)

∥∥∥2 ≤

Õ
(
(HD +G)

2
(

1
t+1 + d

(t+1)2ρ2

))
Proof. Note that dt := rt

t+1 comprises of the original gradient estimate from Zhang et al. (2020), say

d̃t and the noise added by the binary tree mechanism, say ξt. Hence,

E ∥dt −∇L(wt; D)∥2 = E
∥∥∥d̃t −∇L(wt; D)

∥∥∥2 + E ∥ξt∥2

≤ Õ

(
(HD +G)

2

t+ 1

)
+

log(n)∑
i=1

dσ2

(t+ 1)
2
ρ2

= Õ

(
(HD +G)

2

(
1

t+ 1
+

d

(t+ 1)
2
ρ2

))
where the first inequality follows from Lemma 2 in Zhang et al. (2020) with α = 1, and the fact that
in the binary tree mechanism we add noise of variance σ at most log (n) times; the factor 1/(t+ 1)2
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comes because the gradient estimate is rt/(t+1) and rt is the binary tree response. The final equality
follows by plugging in the value of σ.

E.2 DUAL AVERAGING

Algorithm 13 Dual averaging(t0; T )
Input: Dataset S, loss function (w, z) 7→ ℓ(w, z), steps T , {ηt}t,

1: if t0 = 1 then Permute dataset, initialize T , set wt0 = 0 end if
2: for t = 1 to T − 1 do
3: ut =

∑t
i=1∇ℓ(wi; zi)

4: Append(ut, σ; T )
5: rt = GetPrefixSum(t; T )
6: wt+1 = ΠW (w0 − ηtpt)
7: Set(leaf(t), (ut, rt, wt, zt) ; T )
8: end for

Output: ŵ = wT

Proof of Theorem 3. The accuracy guarantee directly follows from Theorem 5.1 in Kairouz et al.
(2021), replacing ϵ/log2(1/δ)2 therein by ρ. To elaborate, we set σ = Õ

(
G2

ρ2

)
as opposed to

Õ
(

G2log4(1/δ)
ϵ2

)
, hence substituting it in the accuracy proof of Theorem 5.1 in Kairouz et al. (2021)

gives the claimed guarantee.

For the unlearning part, we start by showing that the algorithm falls into the template of bounded
sensitivity prefix query release.

Recall that the update ut =
∑t

i=1∇ℓ(wt; zi). The sensitivity is simply bounded by Lipschitznes as,

∥∇ℓ(wt; z)−∇ℓ(wt; z
′)∥ ≤ 2G

Hence the correctness of the unlearning algorithm follows from Theorem 1. For runtime, the training
time, in terms of gradient computations is Θ(n). Therefor, using the fact that the relative unlearning
complexity, from Theorem 1, is Õ(ρ), we have Õ(ρn) bound on expected unlearning runtime.

E.3 CONVEX GLMS WITH THE JL METHOD

Theorem 5. Let ρ ≤ 1 and ℓ :W ×X × Y → R be an H-smooth, G-Lipschitz convex GLM loss
function. Algorithm 4 instantiated with Algorithm 12, as the learning algorithm, run with σ2 =

Õ

(
(H∥X∥2∥w∗∥+G∥X∥)

2

ρ2

)
, t0 = 1, ηt = 1

t+1 and k = Õ

((
H∥X∥2∥w∗∥

(H∥X∥2∥w∗∥+G∥X∥)

)2/3

(nρ)
2/3

)
on a dataset S of n samples, drawn i.i.d. from D, outputs ŵ with excess population risk bounded as

E [L(ŵ;D)− L(w∗;D)] = Õ

(
(G∥X∥+H∥X∥2∥w∗∥)∥w∗∥

√
n

+ H1/3G2/3∥w∗∥4/3∥X∥4/3+H∥X∥2∥w∗∥2

(nρ)2/3

)
Furthermore, the corresponding unlearning Algorithm 3 (with query and update functions as specified
in the learning algorithm), satisfies exact unlearning with Õ (ρn) expected runtime .

Proof of Theorem 5. We start with the accuracy guarantee. Let α ≤ 1 be a parameter to be set later.
From the JL property, with k = O

(
log (n/β) /α2

)
, with probability at least 1− β, the norm of all

data-points in S, ∥Φxi∥ ≤ (1 + α) ∥xi∥ ≤ 2 ∥X∥. Hence, conditioned on the above event, the GLM
loss function function is G̃ = 2G ∥X∥-Lipschitz and H̃ = 4H ∥X∥2-smooth. Let ΦD denote the
push-forward measure of D under the map (x, y) 7→ (Φx, y). With probability at least 1 − β, the
excess risk is,
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E[L(ŵ;D)− L(w∗;D)] = E[L(Φ⊤w̃;D)− L(Φw∗; ΦD)] + E[L(Φw∗; ΦD)− L(w∗;D)]
= E[L(w̃; ΦD)− L(Φw∗; ΦD)] + E[ϕy(⟨Φw∗,Φx⟩)− ϕy (⟨w∗, x⟩)]

≤ Õ

((
G̃+ H̃ ∥w∗∥

)
∥w∗∥

(
1√
n
+

√
k

nρ

))
+

H

2
E |⟨Φx,Φw∗⟩ − ⟨x,w∗⟩|2

≤ Õ

((
G̃+ H̃ ∥w∗∥

)
∥w∗∥

(
1√
n
+

√
k

nρ

)
+

H̃ ∥w∗∥2

k

)

= Õ


(
G̃+ H̃ ∥w∗∥

)
∥w∗∥

√
n

+
H̃1/3G̃2/3 ∥w∗∥4/3 + H̃ ∥w∗∥2

(nρ)2/3


where in the first inequality, we use the accuracy guarantee of VR-Frank Wolfe (Theorem 2) and
smoothness of ϕy together with the fact that w∗ is globally optimal. The second inequality follows
from JL property and the last inequality follows by the setting of k.

For the in-expectation (over the JL matrix) bound, note that in the worst-case, L(ŵ;D)−L(w∗;D) ≤
G ∥ŵ − w∗∥. From boundedness of the range of (typical) JL maps, ∥ŵ − w∗∥ = poly(n, d) w.p. 1.
Hence, taking the failure probability β to be small enough suffices to be give an expectation bound
which is same as above upto polylogarithmic factors.

We now proceed to the unlearning guarantee. We first remark that the correctness of the unlearning
algorithm (see Lemma 4) holds as long as the learning algorithm uses prefix-sum queries, even with
unbounded sensitivity. Hence, the correctness follows. We now proceed to bound the unlearning
runtime. We first bound the TV stability parameter of the learning algorithm using Lemma 9. The
setting of noise variance σ in Algorithm 4 together with the stability guarantee of Theorem 2 ensures
that γ(H̃, G̃) ≤ τ

2 . Hence the JL method satisfies ρ-TV stability. Now, Lemma 6 gives us that the
probability of retraining is at most Õ(ρ). Since the training time, in terms of gradient computations is
Θ(n), we have Õ(ρn) bound on expected unlearning runtime.

Theorem 6. Let ρ ≤ 1 and ℓ : W × X × Y → R be a G-Lipschitz convex GLM loss func-
tion. Algorithm 4 with Algorithm 13 as the sub-routine, as the learning algorithm, run with

σ2 = O
(

G2∥X∥2

ρ2

)
, t0 = 1, η =

∥w∗∥d1/4
√

log(n)

G∥X∥√nρ and k =
√
nρ on a dataset S of n samples

sampled i.i.d. fromD outputs ŵ, with excess population risk bounded as, E [L(ŵ;D)− L(w∗;D)] =

Õ

(
G ∥X∥ ∥w∗∥

(
1√
n
+ 1

(nρ)1/3

))
. Furthermore, the corresponding unlearning Algorithm 3 (with

query and update functions as specified in the learning algorithm), satisfies exact unlearning with
Õ (ρn) expected runtime.

Proof of Theorem 6. We start with the accuracy guarantee; let α ≤ 1 be a parameter to be set later.
From the JL property, with k = O

(
log (n/β) /α2

)
, with probability at least 1− β, the norm of all

data-points in S, ∥Φxi∥ ≤ (1 + α) ∥xi∥ ≤ 2 ∥X∥. Hence, conditioned on the above event, the GLM
loss function function is G̃ = 2G ∥X∥-Lipschitz. Let ΦD denote the push-forward measure of D
under the map (x, y) 7→ (Φx, y). With probability at least 1− β, the excess risk is,
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E[L(ŵ;D)− L(w∗;D)] = E[L(Φ⊤w̃;D)− L(Φw∗; ΦD)] + E[L(Φw∗; ΦD)− L(w∗;D)]
= E[L(w̃; ΦD)− L(Φw∗; ΦD)] + E[ϕy(⟨Φw∗,Φx⟩)− ϕy (⟨w∗, x⟩)]

≤ Õ

G̃ ∥w∗∥

 1√
n
+

√√
k

nρ

+GE |⟨Φx,Φw∗⟩ − ⟨x,w∗⟩|

≤ Õ

G̃ ∥w∗∥

 1√
n
+

√√
k

nρ

+
G̃ ∥w∗∥√

k


≤ Õ

(
G̃ ∥w∗∥

(
1√
n
+

1

(nρ)
1/3

))
where in the first inequality, we use the accuracy guarantee of Dual Averaging (Theorem 3) and
Lipschitzness of ϕy together. The second inequality follows from JL property and the last inequality
follows by the setting of k. As in Theorem 5, the same bound as above for in-expectation (over the
JL matrix) holds follows by taking the failure probability β to be small enough.

The correctness and runtime of the unlearning algorithm follows as in the proof of Theorem 5.

Lemma 9. Suppose A is an algorithm which when run on H̃-smooth and G̃-Lipschitz functions
is γ(H̃, G̃)-TV stable, then the JL method with with k = O (log (2n/τ)) and A as input, run on

H-smooth and G-Lipschitz GLMs, satisfies τ
2 + γ

(
2G ∥X∥ , 4H ∥X∥2

)
-TV stability.

Proof. Given a dataset S let GS be the uniform bound on Lipschitzness parameter of the class of
loss functions {w 7→ ℓ(w; z)}z∈S . We define HS similarly. Let α ≤ 1 be a parameter to be set
later. From the JL property, with k = O (log (n/β)), with probability at least 1 − β, the norm
of all data-points in S, ∥Φxi∥ ≤ 2 ∥X∥ - we denote this event as EJL. Since the loss function is
a GLM, we have that conditioned on EJL, the Lipschitzness and smoothness parameters GS and
HS are bounded by 2G ∥X∥ and 2H ∥X∥2 respectively. We therefore get a stability parameter
γ̃ := γ

(
2G ∥X∥ , 4H ∥X∥2

)
.

We set β = ρ/2. We now incorporate the failure probability in the failure guarantee. Let PΦ and QΦ

denote the probability distributions of the output on datasets S and S′. By definition of TV distance,

TV(PΦ, QΦ) = sup
E

Pw∼P (w ∈ E)− Pw∼Q (w ∈ E)

= sup
E

(
Pw∼P (w ∈ E|EJL)P(EJL) + Pw∼P (w ∈ E|E′

JL)P(E′
JL)

− Pw∼Q (w ∈ E|EJL)P(EJL)− Pw∼Q (w ∈ E|E′
JL)P(E′

JL)
)

≤
(
sup
E

Pw∼P (w ∈ E|EJL)− Pw∼Q (w ∈ E|EJL)

)
P(EJL)

+

(
sup
E

Pw∼P (w ∈ E|E′
JL)− Pw∼Q (w ∈ E|E′

JL)

)
P(E′

JL)

≤
(
sup
E

Pw∼P (w ∈ E|EJL)− Pw∼Q (w ∈ E|EJL)

)
+ ρ/2

≤ γ̃ + ρ/2
which completes the proof.

F SCO IN DYNAMIC STREAMS

In this section, we extend our previous results to dynamic streams wherein we observe a sequence of
insertions and deletions, starting with potentially zero data points. We assume that the number of
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available points throughout is positive and the data points are i.i.d. from an an unknown distribution
as well as the unlearning requests are chosen independent of the algorithm.

To give a simple and unified presentation, let the expected accuracy, say excess population risk, of
the ρ-TV stable Algorithm 2 with a dataset S be α(|S| , ρ;P) where P denotes problem specific
parameters such as Lipschitzness, diameter etc.

We present two techniques for dynamic streams; the first one satisfies exact unlearning but has a
worse update time; this is similar to Ullah et al. (2021). The other satisfies weak unlearning (defined
below) with better update time. A key component to both are anytime guarantees described below.

Anytime binary tree mechanism: In the previous section, the depth of the initialized tree and the
noise variance σ, both were chosen as a function of the dataset size n. However, the tree can be easily
built in an online manner as in prior work Guha Thakurta & Smith (2013). For setting the noise
variance: for target ρ-TV stability, we distribute the noise budget exponentially along the height of
the tree; specifically, the leaf node contribute to ρ/2 TV stability, the nodes above them ρ/4 and so
on. In this way, the final tree satisfies ρ-TV stability for any value of n.

Anytime accuracy: The other problem of changing data size is that the internal parameters of
algorithm (step size, in our case) may be set as a function of n for desirable accuracy guarantees.
Fortunately, the two algorithms that we consider, VR-Frank Wolfe and Dual Averaging, have known
horizon-oblivious parameter settings Orabona (2019). Their JL counterparts on the other hand,
require setting the embedding dimension as a function of n, and thus not applicable unless we assume
that the number of data points throughout the stream is Θ(n).

F.1 WEAK UNLEARNING

We first define weak unlearning wherein only the model output and not the entire state is required to
be indistinguishable.

Definition 9 (Weak unlearning). A procedure (A,U) satisfies weak unlearning if for all all datasets
S, all z ∈ Z , and for all events E ⊆ W ×M, we have, P (A (S\ {z}) ∈ E) = P (U (A(S), z) ∈ E)

We now argue in what way insertions handled in Ullah et al. (2021) is deficient. The main reason
is that they require insertions to also satisfy the unlearning criterion: the state of the system upon
insertion is instinguishable to the state had the inserted point being present to begin with. However,
this is an overkill; adding new points simply serve to yield improved statistical accuracy. Furthermore,
methods which allow adding new points, abound, particularly in the stochastic optimization setting,
popularly known as incremental or continual release methods. Importantly, the insertion time of these
methods is constant (in n). Hence, a natural question is whether, for dynamic streams, can we design
unlearning methods in which we pay for update time only in proportion to the number of deletions?
Our result shows that we can, albeit under the weak unlearning (see Definition 9) guarantee.

Specifically, our procedure requires hiding the order in which data points are processed. Intuitively,
an incremental method typically processes the newest data point the last. This ordering is problematic
to the unlearning guarantee, since if some point is to deleted, then we can no longer replace it with
the last point as that would result in a different order. Our main result is as follows.

Theorem 7. In the dynamic streaming setting with R requests, using anytime incremental learning
and unlearning algorithms, Algorithm 2 and 3, without permuting the dataset, the following are true.

1. It satisfies weak unlearning at every time point in the stream.

2. The accuracy of the output ŵi at time point i, with corresponding dataset Si, is
E[L(ŵi;D)]−min

w
L(w;D) = α(ρ, |Si| ;P)

3. The number of times retraining is triggered, for V unlearning requests is at most Õ(ρV )

Importantly, in the above guarantee, we only pay for the number of unlearning requests V rather than
the number of requests R.

Proof of Theorem 7. The first claim, weak unlearning guarantee of the unlearning algorithm, follows
mainly from Lemma 4. Specifically, it shows that conditioned on the permutation of the dataset (in
this case, since the dataset is not permuted, the permutation is simply identity), the distribution over
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the responses (rb)b in the tree after unlearning, is transported to the distribution of the output under
S′. Since the model output is a deterministic function of the responses, (weak unlearning) correctness
follows for one request. For the streaming setting, we simply apply the above inductively over the
requests.

The second claim follows since, at every time point, the executed algorithm is indistinguishable
from the base algorithm executed over the current dataset. Moreover, by assumption, the base
algorithm, is anytime, i.e. no parameter is set which depends on the size of the dataset. Hence, the
accuracy guarantee follows. For the last claim about the number of retraining, firstly, as motivated,
by the assumption that the algorithm is incremental, the insertions are handled in O(1) time. For the
unlearning requests, note that from ρ-TV stability at every point, using Lemma 6, we have a Õ(ρ)
probability of retraining. We now apply Proposition 8 from Ullah et al. (2021) which converts this to
a bound on the expected number of times a retraining is triggered. For V unlearning requests, this
gives us a Õ(ρV ) bound on the number of retraining triggers.

F.2 EXACT UNLEARNING

Another way to extend the results for one unlearning request to dynamic streams is to modify the
definition of unlearning (Definition 1) to also hold for insertions, as is done in Ullah et al. (2021). This
allows us to apply the same tree based unlearning technique when handing insertions. Specifically,
upon inserting a new point, we randomly choose a leaf and replace the leaf with the inserted point,
and then insert the chosen leaf as the last leaf in the tree. We have the following guarantee for this
method.

Theorem 8. In the dynamic streaming setting with R requests, using anytime learning and unlearning
algorithms, Algorithm 2 and 3, the following are true.

1. Exact unlearning at every time point in the stream.

2. The accuracy of the output ŵi at time point i, with corresponding dataset Si, is
E[L(ŵi;D)]−min

w
L(w;D) = α(ρ, |Si| ;P)

3. The total number of times, a retraining is triggered, for R requests is at most O(ρR)

Proof. The arguments are similar to that of the proof of Theorem 7. The first part follows by applying
the correctness of the unlearning algorithm, Theorem 1, inductively over the stream. We remark that
the handling the insertions in the same way as deletions hardly changes anything in the proofs. The
second claim follows from the anytime nature of the algorithm and by assumption on the accuracy
guarantee. Finally, using the probability of retraining in Lemma 6 and Proposition 8 in Ullah et al.
(2021) gives us the stated number of retraining triggers.
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