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Abstract

Biological foundation models are powerful tools for modeling DNA and protein1

sequences, but their performance depends heavily on tokenization strategies—from2

BPE and k-mers to single-nucleotide resolution—each imposing rigid inductive3

biases. While recent architectures like Hyena and Mamba2 achieve strong per-4

formance using single nucleotide/amino acid resolution, this reliance on fixed5

granularity may not align with biology’s natural organization. H-Net, a recently6

proposed architecture that replaces static tokenization with dynamic chunking7

learned end-to-end through gradient descent, offers a solution by allowing models8

to discover meaningful boundaries directly from biological data. We extend H-Net9

to biological sequences, incorporating a Projected Gated Convolutional (PGC)10

routing module to capture local motifs, and show that on parameter-matched HG3811

pretraining H-Net outperforms Mamba2 while achieving strong performance on12

supervised protein tasks. We further evaluate the Muon optimizer, which has not13

previously been applied to proteins. Muon consistently improves convergence14

speed and stability across architectures, including H-Net, Mamba2, and Trans-15

former, delivering both faster training and better final perplexity. These results16

highlight the value of exploring both architectural innovations and optimization17

methods as the field moves toward multimodal biological foundation models that18

require flexible and efficient training.19

1 Introduction20

The past few years have seen rapid progress in protein and DNA language models, with architectures21

such as Nucleotide Transformer NT, Evo2 Brixi et al. [2025] and ESM Lin et al. [2023] scaling to tens22

of billions of parameters. These models use self-supervised pre-training to learn rich representations of23

sequence, enabling downstream tasks including regulatory variant interpretation, enhancer–promoter24

modeling, and protein design. As biological foundation models grow in size, they provide a powerful25

framework for general-purpose genomic and proteomic modeling.26

Existing foundation models rely on fixed tokenization schemes, character-level, BPE, or k-mers,27

that impose rigid sequence boundaries. This contrasts with biology, where short motifs combine28

into higher-order units such as regulatory elements or protein domains. Fixed-resolution tokeniza-29

tion forces models to reconstruct these patterns implicitly and often inefficiently. This challenge30

is magnified in multi-modal settings, where aligning heterogeneous inputs across resolutions is31

computationally costly without flexible, shared representations.32

To address these limitations, we evaluate H-Net Hwang et al. [2025], a hierarchical architecture that33

replaces static tokenization with dynamic chunking learned end-to-end. H-Net adaptively segments34

sequences into variable-length chunks, compressing redundant regions while preserving informative35
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Figure 1: (left) Validation perplexity during training for sub-1M parameter models with an equivalent
number of tokens seen (right) Validation perplexity during training for 72M parameter models with
an equivalent number of tokens seen

features. Under compute-matched settings, H-Net reduces perplexity in DNA pretraining and achieves36

competitive performance on protein fitness benchmarks.37

We also introduce Projected Gated Convolutions (PGC) between the embedding and routing modules.38

PGC layers combine depthwise convolutions, which capture local dependencies, with linear projec-39

tions that gate the convolution and encode second-order interactions Ramesh et al.. This yields richer40

local features before chunking and is especially effective in protein modeling, where local motifs and41

domains are critical.42

We evaluate the Muon optimizer muo across DNA and protein sequence modeling. While Muon has43

been applied to DNA, our work provides the most comprehensive assessment to date and the first44

application to proteins. Muon consistently improves convergence and stability across H-Net, Mamba,45

and Transformer, including on antibody and fluorescent protein DMS tasks.46

In combination, H-Net and Muon provide complementary advances: H-Net offers a flexible alternative47

to fixed tokenization, while Muon accelerates convergence and improves stability across models.48

Together, these results demonstrate how tokenization strategies and optimizers can advance biological49

modeling.50

1.1 Contributions51

Our main contributions are as follows: 1. H-Net for biological sequences. We apply H-Net to both52

DNA and protein language modeling, evaluating it under parameter- and data-matched settings. 2.53

Muon optimizer. We provide the most comprehensive evaluation of the Muon optimizer to date54

on biological sequence modeling. Muon consistently improves convergence speed and stability55

for both pretraining and supervised tasks, across architectures including H-Net and Mamba. 3.56

Projected Gated Convolutions (PGC). We introduce PGC modules into the H-Net pipeline. These57

combine depthwise convolutions with linear gating to capture second-order interactions and richer58

local dependencies, yielding gains in protein sequence modeling. 4. Protein tasks. On supervised59

protein fitness/function benchmarks, H-Net with Muon is competitive with specialist models while60

using the same dynamic chunking interface.61

2 Methods62

Architecture63

H-Net Hwang et al. [2025] is a hierarchical architecture that replaces static tokenization with learned64

dynamic chunking, allowing models to discover appropriate sequence granularities through gradient-65

based optimization. The model consists of encoder networks that process raw sequences, a routing66

module that determines chunk boundaries, a main network operating on compressed representations,67

and decoder networks that reconstruct full-resolution outputs. For biological sequences, we use68
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Figure 2: (left) Validation perplexity during training for sub-1M parameter models trained with and
without Muon (right) Validation perplexity during training for 72M parameter models trained with
and without Muon

single nucleotide/amino acid resolution as input, enabling the model to learn biologically relevant69

hierarchies without predetermined tokenization schemes.70

Projected Gated Convolutional (PGC) Routing71

We modify H-Net’s original routing module to better capture local sequence dependencies. The72

original H-Net routing computes boundary probabilities using cosine similarity between adjacent73

positions, which we augment with convolutional features to capture local motifs.74

Given encoder outputs x̂t ∈ RD at position t, the PGC routing module computes:75

qt = W (1)
q x̂t ⊙ Conv1Dq(x̂t−k:t+k) (1)

kt = W
(1)
k x̂t−1 ⊙ Conv1Dk(x̂t−1−k:t−1+k) (2)

where W
(1)
q ,W

(1)
k ∈ RD×D are linear projection matrices, Conv1Dq and Conv1Dk are depthwise76

convolutional filters with kernel size 3 (padding 2), and ⊙ denotes element-wise multiplication.77

The boundary probability at position t is then computed using cosine similarity:78

pt =
1

2

(
1− q⊤t kt

∥qt∥∥kt∥

)
∈ [0, 1], p1 = 1 (3)

Muon Optimizer79

We employ the Muon optimizer, which achieves superior convergence through gradient orthogonal-80

ization via Newton-Schulz iteration. Unlike Adam which applies element-wise adaptive scaling,81

Muon orthogonalizes the momentum-averaged gradient to preserve directional information while82

removing magnitude imbalances. The update rule applies Wt+1 = Wt − η ×
√

fan-out/fan-in ×83

NewtonSchulz(Mt) where Mt is the momentum buffer. We use Muon with momentum coefficient84

0.95 and learning rate 0.02 for matrix parameters, while applying AdamW to 1D parameters (biases,85

embeddings). This is the first demonstration of Muon’s effectiveness on biological sequence tasks,86

particularly for supervised protein fitness prediction.87

Pretraining on HG3888

We pretrain parameter-matched models on human genome assembly HG38 using sequences of length89

131,072 nucleotides. We compare four architectures: Mamba2, Hyena, Transformers, and H-Net,90

each trained with both AdamW and Muon optimizers. All models process single nucleotide resolution91

inputs and are trained for 10 epochs with batch size 256. Small and large model families are trained,92

ensuring fair evaluation of both architecture (dynamic chunking) and optimization (Muon).93

Supervised Protein Fitness Tasks94

We evaluate on RELSO protein fitness prediction tasks Castro et al. [2022], measuring validation95

Spearman correlation between predicted and experimental fitness values. The benchmark includes96
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Table 1: Evaluation of H-Net Ablations and Baselines on Protein Tasks (Spearman), with and without
Muon. Best results per task are bolded.

Mamba
(750k)

Mamba
(750k, Muon)

Hyena
(750k)

Hyena
(750k, Muon)

H-Net
(750k)

H-Net
(750k, Muon)

H-Net
(750k, PGC)

H-Net
(750k, PGC, Muon)

GFP 0.86 0.86 0.85 0.86 0.86 0.86 0.86 0.86
GB1_WU 0.72 0.72 0.71 0.71 0.70 0.72 0.72 0.72
Gifford 0.48 0.49 0.47 0.50 0.44 0.45 0.50 0.47

three diverse protein engineering datasets: GB1_WU (stability of protein G domain B1 variants),97

Gifford (CDR3 enrichment in antibody sequences), and GFP (green fluorescent protein brightness).98

These tasks require models to generalize from limited labeled examples to predict the functional99

impact of mutations. We train supervised model variants (Mamba2, Hyena, H-Net, H-Net with PGC,100

each with AdamW or Muon) for 250 epochs.101

Evaluation For protein tasks, we report Spearman correlation on the RELSO validation sets. To102

assess learned chunking patterns, we visualize routing decisions on known functional elements and103

compute alignment with annotated protein domains and DNA regulatory regions.104

3 Results105

On HG38 DNA pretraining, H-Net consistently achieved the best perplexity among all architectures106

(Figure 1). At the sub-1M parameter scale, H-Net reached the lowest final perplexity (roughly 3.27),107

outperforming both Mamba2 (3.34) and Transformer (3.5). Scaling to 72M parameters reinforced108

this advantage, with H-Net converging to 2.76, compared to 2.85 and 3.18 for Transformers.109

The Muon optimizer further boosted training efficiency and final quality across all architectures,110

accelerating convergence and lowering perplexity (Figure 2). At the small scale, Muon reduced111

perplexity for H-Net by 0.15, for Mamba2 by 0.06, and for Transformer by 0.08. At 72M parameters,112

Muon again improved every model: H-Net by 0.08, Mamba2 by 0.08, and Transformer by a striking113

0.34. Among all experiments, H-Net with Muon achieved the best overall performance, reaching 2.68114

perplexity at 72M parameters. Throughout all experiments, Muon paired improvements in perplexity115

with faster convergence.116

For supervised protein fitness tasks, the results revealed task-specific patterns in architecture and117

optimizer effectiveness (Table 1). On GFP fluorescence prediction, most models achieved similar high118

performance (Spearman 0.85-0.86), suggesting this task may be approaching a performance ceiling119

with current approaches. GB1 WU stability prediction showed clearer differentiation, with Mamba2,120

H-Net with Muon, and H-Net-PGC variants all achieving the best performance (0.72), while standard121

H-Net lagged slightly (0.70-0.71). The Gifford CDR3 enrichment task proved most challenging and122

discriminative, with Hyena-Muon and H-Net-PGC achieving the highest correlation (0.50), followed123

by Mamba2-Muon (0.49), while standard H-Net variants performed poorly (0.44-0.47). Notably,124

while Muon consistently improved convergence during pretraining, its benefits for supervised tasks125

were more variable, suggesting that the optimizer’s advantages may be most pronounced during126

large-scale self-supervised learning rather than fine-tuning on smaller labeled datasets.127

4 Discussion128

The Muon optimizer consistently improved convergence speed and stability across both DNA pre-129

training and supervised protein modeling. By reducing compute requirements while improving130

final performance, Muon highlights how optimization methods can deliver practical gains on par131

with architectural advances. These results suggest that the field should look beyond Adam and132

systematically explore optimizers and other ML training techniques, which may become increasingly133

important as biological foundation models scale.134

H-Net provided a flexible alternative to fixed tokenization, with PGC further enriching local context135

in protein tasks. While improvements were more modest than Muon’s, H-Net’s adaptive chunking136

illustrates how tokenization strategies can shape downstream performance. Looking ahead, dynamic137

tokenization combined with robust optimization may be essential as models move toward multi-modal138

integration, where aligning heterogeneous data types under realistic compute budgets remains a core139

challenge.140

4



References141

Nucleotide Transformer: building and evaluating robust foundation models for human genomics |142

Nature Methods. URL https://www.nature.com/articles/s41592-024-02523-z.143

Muon: An optimizer for hidden layers in neural networks | Keller Jordan blog. URL https:144

//kellerjordan.github.io/posts/muon/.145

Garyk Brixi, Matthew G. Durrant, Jerome Ku, Michael Poli, Greg Brockman, Daniel Chang,146

Gabriel A. Gonzalez, Samuel H. King, David B. Li, Aditi T. Merchant, Mohsen Naghipour-147

far, Eric Nguyen, Chiara Ricci-Tam, David W. Romero, Gwanggyu Sun, Ali Taghibakshi, Anton148

Vorontsov, Brandon Yang, Myra Deng, Liv Gorton, Nam Nguyen, Nicholas K. Wang, Etowah149

Adams, Stephen A. Baccus, Steven Dillmann, Stefano Ermon, Daniel Guo, Rajesh Ilango, Ken150

Janik, Amy X. Lu, Reshma Mehta, Mohammad R.K. Mofrad, Madelena Y. Ng, Jaspreet Pannu,151

Christopher Ré, Jonathan C. Schmok, John St. John, Jeremy Sullivan, Kevin Zhu, Greg Zynda,152

Daniel Balsam, Patrick Collison, Anthony B. Costa, Tina Hernandez-Boussard, Eric Ho, Ming-Yu153

Liu, Thomas McGrath, Kimberly Powell, Dave P. Burke, Hani Goodarzi, Patrick D. Hsu, and154

Brian L. Hie. Genome modeling and design across all domains of life with Evo 2, February 2025.155

URL http://biorxiv.org/lookup/doi/10.1101/2025.02.18.638918.156

Egbert Castro, Abhinav Godavarthi, Julian Rubinfien, Kevin B Givechian, Dhananjay Bhaskar,157

and Smita Krishnaswamy. Relso: a transformer-based model for latent space optimization and158

generation of proteins. arXiv preprint arXiv:2201.09948, 2022.159

Sukjun Hwang, Brandon Wang, and Albert Gu. Dynamic Chunking for End-to-End Hierarchical160

Sequence Modeling, July 2025. URL http://arxiv.org/abs/2507.07955. arXiv:2507.07955161

[cs].162

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,163

Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level164

protein structure with a language model. Science, 379(6637):1123–1130, 2023.165

Krithik Ramesh, Sameed M Siddiqui, Albert Gu, Michael D Mitzenmacher, and Pardis C Sabeti.166

Lyra: An Efficient and Expressive Subquadratic Architecture for Modeling Biological Sequences.167

5

https://www.nature.com/articles/s41592-024-02523-z
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
http://biorxiv.org/lookup/doi/10.1101/2025.02.18.638918
http://arxiv.org/abs/2507.07955

	Introduction
	Contributions

	Methods
	Results
	Discussion

