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Abstract

Biological foundation models are powerful tools for modeling DNA and protein
sequences, but their performance depends heavily on tokenization strategies—from
BPE and k-mers to single-nucleotide resolution—each imposing rigid inductive
biases. While recent architectures like Hyena and Mamba?2 achieve strong per-
formance using single nucleotide/amino acid resolution, this reliance on fixed
granularity may not align with biology’s natural organization. H-Net, a recently
proposed architecture that replaces static tokenization with dynamic chunking
learned end-to-end through gradient descent, offers a solution by allowing models
to discover meaningful boundaries directly from biological data. We extend H-Net
to biological sequences, incorporating a Projected Gated Convolutional (PGC)
routing module to capture local motifs, and show that on parameter-matched HG38
pretraining H-Net outperforms Mamba2 while achieving strong performance on
supervised protein tasks. We further evaluate the Muon optimizer, which has not
previously been applied to proteins. Muon consistently improves convergence
speed and stability across architectures, including H-Net, Mamba2, and Trans-
former, delivering both faster training and better final perplexity. These results
highlight the value of exploring both architectural innovations and optimization
methods as the field moves toward multimodal biological foundation models that
require flexible and efficient training.

1 Introduction

The past few years have seen rapid progress in protein and DNA language models, with architectures
such as Nucleotide Transformer NT| Evo2 Brixi et al.| [2025]] and ESM [Lin et al.|[2023] scaling to tens
of billions of parameters. These models use self-supervised pre-training to learn rich representations of
sequence, enabling downstream tasks including regulatory variant interpretation, enhancer—promoter
modeling, and protein design. As biological foundation models grow in size, they provide a powerful
framework for general-purpose genomic and proteomic modeling.

Existing foundation models rely on fixed tokenization schemes, character-level, BPE, or k-mers,
that impose rigid sequence boundaries. This contrasts with biology, where short motifs combine
into higher-order units such as regulatory elements or protein domains. Fixed-resolution tokeniza-
tion forces models to reconstruct these patterns implicitly and often inefficiently. This challenge
is magnified in multi-modal settings, where aligning heterogeneous inputs across resolutions is
computationally costly without flexible, shared representations.

To address these limitations, we evaluate H-Net|Hwang et al.[[2025], a hierarchical architecture that
replaces static tokenization with dynamic chunking learned end-to-end. H-Net adaptively segments
sequences into variable-length chunks, compressing redundant regions while preserving informative
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Figure 1: (left) Validation perplexity during training for sub-1M parameter models with an equivalent
number of tokens seen (right) Validation perplexity during training for 72M parameter models with
an equivalent number of tokens seen

features. Under compute-matched settings, H-Net reduces perplexity in DNA pretraining and achieves
competitive performance on protein fitness benchmarks.

We also introduce Projected Gated Convolutions (PGC) between the embedding and routing modules.
PGC layers combine depthwise convolutions, which capture local dependencies, with linear projec-
tions that gate the convolution and encode second-order interactions Ramesh et al.l This yields richer
local features before chunking and is especially effective in protein modeling, where local motifs and
domains are critical.

We evaluate the Muon optimizer muo|across DNA and protein sequence modeling. While Muon has
been applied to DNA, our work provides the most comprehensive assessment to date and the first
application to proteins. Muon consistently improves convergence and stability across H-Net, Mamba,
and Transformer, including on antibody and fluorescent protein DMS tasks.

In combination, H-Net and Muon provide complementary advances: H-Net offers a flexible alternative
to fixed tokenization, while Muon accelerates convergence and improves stability across models.
Together, these results demonstrate how tokenization strategies and optimizers can advance biological
modeling.

1.1 Contributions

Our main contributions are as follows: 1. H-Net for biological sequences. We apply H-Net to both
DNA and protein language modeling, evaluating it under parameter- and data-matched settings. 2.
Muon optimizer. We provide the most comprehensive evaluation of the Muon optimizer to date
on biological sequence modeling. Muon consistently improves convergence speed and stability
for both pretraining and supervised tasks, across architectures including H-Net and Mamba. 3.
Projected Gated Convolutions (PGC). We introduce PGC modules into the H-Net pipeline. These
combine depthwise convolutions with linear gating to capture second-order interactions and richer
local dependencies, yielding gains in protein sequence modeling. 4. Protein tasks. On supervised
protein fitness/function benchmarks, H-Net with Muon is competitive with specialist models while
using the same dynamic chunking interface.

2 Methods

Architecture

H-Net|/Hwang et al.| [2025] is a hierarchical architecture that replaces static tokenization with learned
dynamic chunking, allowing models to discover appropriate sequence granularities through gradient-
based optimization. The model consists of encoder networks that process raw sequences, a routing
module that determines chunk boundaries, a main network operating on compressed representations,
and decoder networks that reconstruct full-resolution outputs. For biological sequences, we use
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Figure 2: (left) Validation perplexity during training for sub-1M parameter models trained with and
without Muon (right) Validation perplexity during training for 72M parameter models trained with
and without Muon

single nucleotide/amino acid resolution as input, enabling the model to learn biologically relevant
hierarchies without predetermined tokenization schemes.

Projected Gated Convolutional (PGC) Routing

We modify H-Net’s original routing module to better capture local sequence dependencies. The
original H-Net routing computes boundary probabilities using cosine similarity between adjacent
positions, which we augment with convolutional features to capture local motifs.

Given encoder outputs #; € R at position ¢, the PGC routing module computes:
g = WiV&, ® ConviDg (&1 kit+r) 1)
ke = W Va1 © ConvIDy (#1—1—pe—1+4) 2

where Wél), W,gl) € RP*P are linear projection matrices, Conv1D, and Conv1Dy, are depthwise
convolutional filters with kernel size 3 (padding 2), and ® denotes element-wise multiplication.

The boundary probability at position ¢ is then computed using cosine similarity:

1 q;rk’t >
pp=-(1-———]€l0,1,p1 =1 3)
t 2( Tacley ) € 01

Muon Optimizer

We employ the Muon optimizer, which achieves superior convergence through gradient orthogonal-
ization via Newton-Schulz iteration. Unlike Adam which applies element-wise adaptive scaling,
Muon orthogonalizes the momentum-averaged gradient to preserve directional information while
removing magnitude imbalances. The update rule applies W;11 = W; — n x /fan-out/fan-in x
NewtonSchulz(M;) where M is the momentum buffer. We use Muon with momentum coefficient
0.95 and learning rate 0.02 for matrix parameters, while applying AdamW to 1D parameters (biases,
embeddings). This is the first demonstration of Muon’s effectiveness on biological sequence tasks,
particularly for supervised protein fitness prediction.

Pretraining on HG38

We pretrain parameter-matched models on human genome assembly HG38 using sequences of length
131,072 nucleotides. We compare four architectures: Mamba2, Hyena, Transformers, and H-Net,
each trained with both AdamW and Muon optimizers. All models process single nucleotide resolution
inputs and are trained for 10 epochs with batch size 256. Small and large model families are trained,
ensuring fair evaluation of both architecture (dynamic chunking) and optimization (Muon).

Supervised Protein Fitness Tasks

We evaluate on RELSO protein fitness prediction tasks (Castro et al.|[2022]], measuring validation
Spearman correlation between predicted and experimental fitness values. The benchmark includes
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Table 1: Evaluation of H-Net Ablations and Baselines on Protein Tasks (Spearman), with and without
Muon. Best results per task are bolded.

Mamba Mamba Hyena Hyena H-Net H-Net H-Net H-Net
(750k)  (750k, Muon) (750k) (750k, Muon) (750k) (750k, Muon) (750k, PGC) (750k, PGC, Muon)
GFP 0.86 0.86 0.85 0.86 0.86 0.86 0.86 0.86
GB1_WU 0.72 0.72 0.71 0.71 0.70 0.72 0.72 0.72
Gifford 0.48 0.49 0.47 0.50 0.44 0.45 0.50 0.47

three diverse protein engineering datasets: GB1_WU (stability of protein G domain B1 variants),
Gifford (CDR3 enrichment in antibody sequences), and GFP (green fluorescent protein brightness).
These tasks require models to generalize from limited labeled examples to predict the functional
impact of mutations. We train supervised model variants (Mamba2, Hyena, H-Net, H-Net with PGC,
each with AdamW or Muon) for 250 epochs.

Evaluation For protein tasks, we report Spearman correlation on the RELSO validation sets. To
assess learned chunking patterns, we visualize routing decisions on known functional elements and
compute alignment with annotated protein domains and DNA regulatory regions.

3 Results

On HG38 DNA pretraining, H-Net consistently achieved the best perplexity among all architectures
(Figure 1). At the sub-1M parameter scale, H-Net reached the lowest final perplexity (roughly 3.27),
outperforming both Mamba?2 (3.34) and Transformer (3.5). Scaling to 72M parameters reinforced
this advantage, with H-Net converging to 2.76, compared to 2.85 and 3.18 for Transformers.

The Muon optimizer further boosted training efficiency and final quality across all architectures,
accelerating convergence and lowering perplexity (Figure 2). At the small scale, Muon reduced
perplexity for H-Net by 0.15, for Mamba2 by 0.06, and for Transformer by 0.08. At 72M parameters,
Muon again improved every model: H-Net by 0.08, Mamba2 by 0.08, and Transformer by a striking
0.34. Among all experiments, H-Net with Muon achieved the best overall performance, reaching 2.68
perplexity at 72M parameters. Throughout all experiments, Muon paired improvements in perplexity
with faster convergence.

For supervised protein fitness tasks, the results revealed task-specific patterns in architecture and
optimizer effectiveness (Table 1). On GFP fluorescence prediction, most models achieved similar high
performance (Spearman 0.85-0.86), suggesting this task may be approaching a performance ceiling
with current approaches. GB1 WU stability prediction showed clearer differentiation, with Mamba2,
H-Net with Muon, and H-Net-PGC variants all achieving the best performance (0.72), while standard
H-Net lagged slightly (0.70-0.71). The Gifford CDR3 enrichment task proved most challenging and
discriminative, with Hyena-Muon and H-Net-PGC achieving the highest correlation (0.50), followed
by Mamba2-Muon (0.49), while standard H-Net variants performed poorly (0.44-0.47). Notably,
while Muon consistently improved convergence during pretraining, its benefits for supervised tasks
were more variable, suggesting that the optimizer’s advantages may be most pronounced during
large-scale self-supervised learning rather than fine-tuning on smaller labeled datasets.

4 Discussion

The Muon optimizer consistently improved convergence speed and stability across both DNA pre-
training and supervised protein modeling. By reducing compute requirements while improving
final performance, Muon highlights how optimization methods can deliver practical gains on par
with architectural advances. These results suggest that the field should look beyond Adam and
systematically explore optimizers and other ML training techniques, which may become increasingly
important as biological foundation models scale.

H-Net provided a flexible alternative to fixed tokenization, with PGC further enriching local context
in protein tasks. While improvements were more modest than Muon’s, H-Net’s adaptive chunking
illustrates how tokenization strategies can shape downstream performance. Looking ahead, dynamic
tokenization combined with robust optimization may be essential as models move toward multi-modal
integration, where aligning heterogeneous data types under realistic compute budgets remains a core
challenge.
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