
RAT: Retrieval Augmented Thoughts Elicit
Context-Aware Reasoning and Verification

in Long-Horizon Generation

Zihao Wang
Peking University

zhwang@stu.pku.edu.cn

Anji Liu
University of California, Los Angeles

liuanji@cs.ucla.edu

Haowei Lin
Peking University

linhaowei@pku.edu.cn

Jiaqi Li
Beijing Institute of General Artificial Intelligence

lijiaqi@bigai.cn

Xiaojian Ma
Beijing Institute of General Artificial Intelligence

xiaojian.ma@ucla.edu

Yitao Liang∗
Peking University

yitaol@pku.edu.cn

Abstract

We explore how iterative revising a chain of thoughts with the help of information
retrieval significantly improves large language models’ reasoning and generation
ability in long-horizon generation tasks, while hugely mitigating hallucination. In
particular, the proposed method — retrieval-augmented thoughts (RAT) — revises
each thought step one by one with retrieved information relevant to the task query,
the current and the past thought steps, after the initial zero-shot CoT is generated.
Applying RAT to GPT-3.5, GPT-4, and CodeLLaMA substantially improves their
performances on various long-horizon generation tasks; on average of relatively
increasing rating scores by 13.63% on code generation, 16.96% on mathematical
reasoning, 19.2% on creative writing, and 42.78% on embodied task planning.

1 Introduction

Large Language Models (LLMs) have achieved fruitful progress on various natural language rea-
soning tasks [57, 59, 54, 67, 6], especially when combining large-scale models [49, 41] with
sophisticated prompting strategies, notably chain-of-thought (CoT) prompting [57, 27]. However,
there have been increasing concerns about the factual correctness of LLMs reasoning, citing the
possible hallucinations in model responses [43] or the intermediate reasoning paths, i.e. CoTs [13].
This issue becomes more significant when it comes to zero-shot CoT prompting, aka. “let’s think step-
by-step” [27] and long-horizon generation tasks that require multi-step and context-aware reasoning,
including code generation, task planning, mathematical reasoning, etc. Factually valid intermediate
thoughts could be critical to the successful completion of these tasks.

Several prompting techniques have been proposed to mitigate this issue, one promising direction,
Retrieval Augmented Generation (RAG) [30] seeks insights from human reasoning [22], and utilizes
retrieved information to facilitate more factually grounded reasoning. In this paper, we explore how
to synergize RAG with sophisticated long-horizon reasoning. Our intuition is that the hallucination

∗Corresponding Author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Step 0

Draft initial step-by-step zero-shot
CoTs based on the task prompt.

A task prompt
is given by a
human user.

LLM makes
zero-shot
step-by-step
reasoning based
on the prompt.

This initial
zero-shot CoT
answer may
be flawed.

How to obtain diamond
sword in Minecraft?

LLM

Task Prompt (I)

T1: Mine 4 planks (flawed)
T2: craft table from planks

...
Tn: Craft diamond sword

Initial CoTs

Retrieve with
the task prompt
and previous
generated CoTs.

LLM revises the
i-th steps in thought
chains (T1:i-1, Ti)
based on the
retrieved content.

The thought chain
(T1:i-1, Ti) is replaced
with the revised
generation T1:i.

T1* T2 T3 Tn

...

T1*: Mine 4 logs
T2: craft table from planks

...
Tn: Craft diamond sword

Revised CoTs

Step 1 - Step n

Step 1 Step n

Retrieve relevant information and iteratively revise
each CoT with all previous generations in context.

Retrieval
T1 Library R1

Augmented Revision

I Rn

T1*

T1* T2* T3* Tn*

...

T1*: Mine 4 logs
T2*: craft 12 planks

...
Tn*: Craft diamond sword

Revised CoTs

Retrieval
Library RnT1* T2* Tn...

...

Augmented Revision

I Rn

T1* T2*

...

T1 T2 T3 Tn

...

*

*

*

Figure 1: Pipeline of Retrieval Augmented Thoughts (RAT). Given a task prompt (denoted as I in the figure),
RAT starts from initial step-by-step thoughts (T1, T2, · · · , Tn) produced by an LLM in zero-shot (“let’s think
step by step”). Some thought steps (such as T1 in the figure) may be flawed due to hallucination. RAT iteratively
revises each thought step (T ⋆

1 , T
⋆
2 , · · · , T ⋆

i−1, Ti) using RAG from an external knowledge base (denoted as
Library). Detailed prompting strategy can be found in Section 3.2.

within the intermediate reasoning process could be alleviated through the help of outside knowledge.
The resulting prompting strategy, retrieval-augmented thoughts (RAT), is illustrated in Figure 1.
Our strategy comprises two key ideas. Firstly, the initial zero-shot CoT produced by LLMs along
with the original task prompt will be used as queries to retrieve the information that could help
revise the possibly flawed CoT. Secondly, instead of retrieving and revising with the full CoT and
producing the final response at once, we devise a progressive approach, where LLMs produce the
response step-by-step following the CoT (a series of subtasks), and only the current thought step will
be revised based on the information retrieved with task prompt, the current and the past CoTs. This
strategy can be an analogy to the human reasoning process: we utilize outside knowledge to adjust
our step-by-step thinking during complex long-horizon problem-solving [22]. A comparison of RAT
and counterparts can be found in Figure 2.

We evaluate RAT on a wide collection of challenging long-horizon tasks, including code generation,
mathematical reasoning, embodied task planning, and creative writing. We employ several LLMs
of varied scales: GPT-3.5 [6], GPT-4 [41], CodeLLaMA-7b [46]. The results indicate that combing
RAT with these LLMs elicits strong advantages over vanilla CoT prompting and RAG approaches.
In particular, we observe new state-of-the-art level of performances across our selection of tasks:
1) code generation: HumanEval (+20.94%), HumanEval+ (+18.89%), MBPP (+14.83%), MBPP+
(+1.86%); 2) mathematical reasoning problems: GSM8K (+8.36%), and GSMHard (+31.37%); 3)
Minecraft task planning (2.96 times on executability and +51.94% on plausibility); 4) creative writing
(+19.19% on human score). Our additional ablation studies further confirm the crucial roles played
by the two key ingredients of RAT: revising CoT using RAG and progressive revision & generation.
This work reveals how can LLMs revise their reasoning process in a zero-shot fashion with the help
of outside knowledge, just as what humans do.

2 Related Works

Retrieval-augmented Generation (RAG). Recently, RAG has gained popularity for boosting the
performance of LLMs by guiding their generation process using the retrieved knowledge [65].
Without updating model parameters that may be expensive [29] or unstable [26, 25], RAG is a

2

DIRECT
Q: Introduce Jin Yong's life.
A: Jin Yong, born Louis Cha in 1924 …
Graduating from the University of Cambridge,
he later begin to write full-time, leaving an
indelible mark on Chinese literature and
culture... [not informative, loose structure]

😿

CoT
Q: Introduce Jin Yong's life. Let’s
think it step-by-step.
A: Jin Yong is a Chinese novelist...
The details of his life are
introduced as follows:
Early Life: Jin Yong, born on
February 6, 1924...
Education: ...He graduated from
the University of Cambridge
before dedicating himself to
writing full-time...
Literature: His first novel, "The
Book and the Sword," was
published in 1955, followed by
successful works including
"Handsome Siblings", ...

RAT
Q: Introduce Jin Yong's life. Let’s think it step-by-step.
A: Jin Yong is a Chinese novelist... The details of his life
are introduced as follows:
Early Life: Jin Yong, born on February 6, 1924, in
Haining, Zhejiang province, China, was a renowned
Chinese novelist known by his pen name Louis Cha....
Education: ...In his eighties, he applied at Cambridge
University for a doctorate in Asian Studies and
another doctorate in Chinese literature at
Peking University...
Literature: In 1955, Jin Yong published his first arts
novel, "The Book and the Sword," which achieved
immense success and marked the beginning of his
literary journey. He went on to write many acclaimed
novels, including the revered "Legends of the Condor
Heroes" and "The Deer and the Cauldron." 😸

RAG
Q: Introduce Jin Yong's life.
A: Jin Yong, born Louis Cha in 1924... In his
eighties, he applied at Cambridge University
for a doctorate in Asian Studies and another
doctorate in Chinese literature at Peking
University... [too specific, loose structure]

😾

😿

Figure 2: Top: An example of different LLM reasoning methods on creative generation tasks. Red text indicates
errors or illusions in the text generated by LLM, while green text represents correct generation. Methods without
RAG often generate incorrect information with hallucination, classical RAG is highly related to retrieved content
with a loose structure, and RAT-generated texts perform best in terms of accuracy and completeness. Bottom:
The quantitative performance comparison for different LLM methods on embodied planning, mathematical
reasoning, code generation, and creative writing tasks. RAT outperforms all the baselines on all tasks.

cost-effective way for LLMs to interact with the external world [18, 29]. RAG is widely applied to
downstream tasks, such as code generation [68, 38, 39], question answering [3, 48], and creative
writing [58, 1].

Reasoning-enhanced RAG. Some recent works also leverage reasoning to enhance the perfor-
mance of RAG [32]. For example, IRCoT [51] exploits CoT to generate better queries for retrieval,
IRGR [45] performs iteratively retrieval to search for suitable premises for multi-hop QA, GEEK [36]
can choose to query external knowledge or perform a single logical reasoning step in long-horizon
generation tasks, and ITRG [14] performs retrieval based on the last-step generation. Active RAG [24]
also utilizes reasoning to enhance the quality of language model retrieval for better completion of
QA tasks. These previous RAG methods simply adopt a single query to retrieve the knowledge
for question-answering tasks [17, 15, 24]. Our proposed RAT focuses on retrieval to refine LLM
reasoning outputs and ensure consistent results. The reasoning and retrieval processes are interlinked
to improve both aspects, as shown in Figure 2. Our approach is evaluated across long-horizon content
generation tasks such as code generation, math reasoning, embodied planning, and creative writing.

Language Model for Reasoning. The advancement of reasoning in language models has seen
notable methodologies emerge since CoT was proposed by Wei et al. [57], which showcased LMs’
ability to generate self-derived problem-solving strategies. This foundational work spurred further
innovations such as the least-to-most prompting [66], zero-shot CoT [27], self-consistency [53],
zero-shot CoT without prompting [52]. Moving beyond basic prompting, Creswell et al. [12]
introduced the Selection-Inference framework, while Zelikman et al. [63] developed STaR to refine
reasoning through model finetuning. Creswell and Shanahan [11] proposed a faithful reasoning
model, segmenting reasoning into dedicated steps, similar to Scratchpad’s approach by Nye et al.
[40] for enhancing multi-step computation. Tree-of-Thought [60] and Graph-of-Thought [5] also
expand the reasoning paths into a complex structure instead of linear CoT. These methods usually
aim to improve the reasoning ability of LLM by designing prompts or providing feedback from the
environment to assist in better planning and decision-making [56, 59, 47, 31, 64]. However, RAT
takes a different approach by using RAG to access external knowledge that can help LLM with its
reasoning process.

3

3 Retrieval Augmented Thoughts

Our goal is to support long-horizon reasoning and generation while mitigating hallucination when
using LLMs. To have satisfying performance on long-horizon tasks, two ingredients are indispensable.
Firstly, access to factual information can be facilitated by retrieval. Secondly, appropriate intermediate
steps that outline a scratchpad to finish complex tasks, can be facilitated by CoT. Yet, a naive
combination of the two would not necessarily yield improvements. Two questions still persist: (1)
what is relevant information to retrieve; (2) how to effectively correct reasoning steps with relevant
factual information. To better appreciate our method and why our method can address these two
questions, we first provide a brief preliminary introduction of RAG and CoT.

Algorithm 1 Retrieval augmented thoughts (RAT)

Input: Task Prompt I , Autoregressive Large Language Model pθ
1: T = {T1, T2, . . . , Tn} ← pθ(·|I) ▷ Generate zero-shot initial step-by-step thoughts T
2: T ⋆ ← T1, i← 1 ▷ Draft answer T ⋆ initialized with the first thought step T1

3: repeat
4: Qi ← ToQuery(I, T ⋆) ▷ Generate query Qi based on current draft answer T ⋆

5: Ri ← RetrieveFromCorpus(Qi) ▷ Retrieve information Ri from corpus or Internet
6: T ⋆ ← pθ(·|I, T ⋆, Ri) ▷ Revise draft answer T ⋆ based on retrieved text Ri

7: T ⋆ ← CONCAT(T ⋆, Ti+1) ▷ Append the next thought step Ti+1

8: i← i+ 1 ▷ Begin the next revision round
9: until i > n ▷ Repeat until all the revised thoughts T ⋆

1:n are obtained
10: return T ⋆ ▷ Output T ⋆ as the final generation

3.1 Preliminary

Retrieval-Augmented Generation targets the problem of generating fictitious facts by providing
LLMs with relevant text extracted from trusted sources. It is primarily used in question-answering
tasks [30]. Specifically, given a set of n candidate documents R := {Ri}ni=1, RAG aims to retrieve
the most relevant ones w.r.t. a query Q, which can be the question/task prompt itself or relevant
information generated by LLMs. To achieve this, RAG first extracts semantic-aware embeddings
of the documents ri := emb(Ri) ∈ RK (K is the size of the embedding) as well as the query
q := emb(Q) ∈ RK . emb(·) can be implemented with various text embedding models [44]. The
relevance between the query and a document is measured by their cosine similarity:

sim(Q,Ri) =
q · ri
∥q∥∥ri∥

.

Based on their relevance, the top-ranked k documents are then fed into the prompt for LLMs to
generate the final answer. With such rich and factual contexts, RAG mitigates the hallucination of
LLMs. However, complex reasoning tasks (e.g., those requiring multi-step reasoning) can be difficult
to translate into effective search queries, leading to challenges in finding relevant documents and
making RAG less applicable. Traditionally, RAG retrieves all relevant information at once. Yet, it
overlooks the fact that it is difficult to predict what “facts" or information is required in the subsequent
reasoning and generation steps. The task prompt itself is hardly sufficient to provide enough clues.

Chain of Thoughts (CoT) prompting is designed to enhance the performance of LLMs under tasks
that require complex reasoning steps [57], such as multi-step math word problems. Specifically,
instead of tasking LLMs to generate the correct answer directly, CoT prompting incentivizes LLMs
to first output intermediate reasoning steps, termed thoughts, that serve as a scratch space for the
task, before summarizing the thoughts into a final answer. Such behavior of LLMs can either be
stimulated in zero-shot by prompting terms that encourage CoT reasoning (e.g., “let’s think step by
step”) [27], or triggered by few-shot examples that perform CoT in similar tasks. However, since no
direct supervision is posed to the intermediate thoughts, LLMs could make errors due to the lack of
relevant domain knowledge [50] or biased by hallucinations [43].

3.2 Our Approach

Our intuition to mitigate the issues of CoT prompting and RAG mentioned above is to apply RAG
to revise every thought step generated by CoT prompting. An overview can be found in Figure 1

4

and Algorithm 1. Specifically, given a task prompt I , we first prompt LLM to generate step-by-step
thoughts in zero shot (“let’s think step-by-step”) T := {Ti}ni=1, where Ti represents the ith thought
step. In long-horizon generation tasks, T can either be the intermediate reasoning steps, e.g. the
pseudo code with comments in code generation, article outline in creative writing, etc., or the draft
response itself, e.g. a list of sub-goals in embodied task planning as shown in Figure 1.

Since T could be flawed (e.g., contains hallucination), we proceed to use RAG to revise every
generated thought step before generating the final response from these thoughts. Specifically,
assuming we have fixed the previous thought steps and now are about to revise T1:i, we begin by
converting the text {I , T1, . . . , Ti} into a query Qi:

Qi = ToQuery(I , T1, . . . , Ti),

where ToQuery(·) can either be a text encoder or an LLM that translates the task prompt I , the
current and the past thought steps T1, . . . , Ti into a query Qi that can be processed by the retrieval
system. We adopt RAG to retrieve relevant documents Ri using Qi, which are then prepended to the
prompt to generate a revised thought step T ⋆

i .

T ⋆
1:i = pθ(·|I , T1, . . . , Ti, Ri).

Finally, depending on the actual task, the revised thought steps T ⋆
1:n can simply be used as the final

model response, e.g., embodied task planning. For tasks like code generation, or creative writing, the
LLM will be further prompted to produce the complete response (code, passage) from each revised
thought step in a step-by-step fashion.

Note that, when revising the i-th thought step Ti, instead of using the current step Ti only, or the
complete chain of thoughts T1, . . . , Tn to produce the query for RAG, we ensure the query Qi is
produced from the current thought step Ti and previous revised thought steps T ⋆

1:i−1, i.e., we adopt a
casual reasoning to revise the thoughts using RAG:

Qi = ToQuery(I, T ⋆
1:i−1, Ti)

T ⋆
1:i = pθ(·|I, T ⋆

1:i−1, Ti, Ri).

This allows for the correction of errors in the original thoughts T by continually consulting different
reference texts and ensures that each step of reasoning is informed by the most accurate and relevant
information, significantly improving the quality and reliability of the generated output.

Our hypothesis why our method can address the two problems mentioned at the beginning of this
section is as follows. Firstly, the most straightforward way to know what information will be used
in complex reasoning is to “see” the reasoning steps. Our approach leverages all the generated
thoughts along with the task prompt to provide more clues for more effective retrieval. Secondly,
some information cannot be directly retrieved, especially information related to the final answer to a
hard complex question. Instead, retrieval of information relevant to intermediate questions, which are
assumed to be easier, is more accessible. Thanks to the compositional nature of many reasoning tasks,
an iterative retrieval process could also be more effective. Thirdly, correcting potential hallucinations
needs to be targeted. Revising a complete CoT with RAG could introduce errors at otherwise already-
correct steps. Revising every step one by one could be more reliable. The first two points address
question (1) and the last point addresses question (2). Quantitative evidence can be found in our
ablation studies in Section 4.3.

Previous methods have demonstrated that in tasks involving long-term planning and rigorous reason-
ing, like mathematical reasoning [34] and embodied planning [59, 47], supervision of intermediate
processes is necessary to ensure the accuracy of model outputs. However, these approaches typically
rely on feedback from humans or the environment, which can be costly in situations where exploration
and annotation expenses are high, such as in safe decision-making scenarios [19]. In contrast, RAT
can automatically access relevant information from external sources to validate and revise the content
of model outputs through a retrieval process. This allows RAT to autonomously verify each step
without requiring human labels [34], which explains its significant success in mathematical reasoning.

4 Experiments

We test our proposed method RAT on a diverse set of benchmarks that highlight long-horizon
generation and reasoning. Existing methods traditionally struggle in those benchmarks; “hallucinated"

5

Table 1: Code generation results on different benchmarks.∗All tests are evaluated under zero-shot (0-
demonstration) settings. We also report the relative improvements between RAT and DIRECT methods.

HumanEval HumanEval+ MBPP MBPP+ Average ↑Base Models Method
pass@1 pass@5 pass@1 pass@5 pass@1 pass@5 pass@1 pass@5 pass@1 pass@5

DIRECT 33.78% 40.85% 30.85% 36.59% 39.27% 54.27% 41.22% 48.17% 36.28% 44.97%
CoT 27.86% 29.58% 25.12% 27.83% 31.99% 55.91% 42.19% 47.51% 31.79% 40.21%

RAG_1 shot 37.50% 47.65% 33.66% 41.83% 35.41% 51.63% 43.66% 50.09% 37.56% 47.80%
RAG_5 shot 38.90% 47.90% 35.37% 42.75% 34.06% 53.90% 43.35% 51.08% 37.92% 48.91%

CodeLlama-7b

RAT 39.57% 51.34% 36.22% 46.50% 40.86% 60.63% 39.14% 48.04% 38.95% 51.63%
Relative Improvement 17.14% 25.68% 17.41% 27.08% 4.05% 11.72% -5.05% -0.27% 7.35% 14.80%

DIRECT 50.49% 72.56% 48.09% 70.55% 60.84% 72.95% 54.92% 64.09% 53.59% 70.04%
CoT 47.31% 75.88% 41.72% 74.85% 55.19% 65.49% 47.69% 62.94% 47.98% 69.79%

RAG_1 shot 50.61% 76.22% 48.22% 70.55% 55.23% 70.54% 53.62% 68.09% 51.92% 71.35%
RAG_5 shot 45.49% 74.39% 42.58% 70.55% 54.39% 69.73% 55.98% 70.10% 49.61% 71.19%

GPT-3.5

RAT 59.27% 80.49% 56.31% 76.07% 59.31% 74.74% 59.10% 72.61% 58.50% 75.98%
Relative Improvement 17.39% 10.93% 17.09% 7.82% -2.51% 2.45% 7.61% 13.29% 9.17% 8.48%

DIRECT 57.32% 78.66% 54.36% 76.69% 60.00% 76.07% 66.13% 78.53% 59.45% 77.49%
CoT 54.87% 72.56% 51.90% 66.25% 61.22% 74.23% 64.42% 79.75% 58.10% 73.20%

RAG_1 shot 61.10% 79.27% 58.04% 77.30% 58.53% 69.94% 65.77% 77.30% 60.86% 75.95%
RAG_5 shot 62.80% 82.93% 59.51% 79.75% 60.12% 74.23% 63.56% 78.53% 61.50% 78.86%

GPT-4

RAT 69.33% 88.40% 64.63% 82.21% 68.90% 79.85% 67.36% 82.14% 67.55% 83.15%
Relative Improvement 20.94% 12.38% 18.89% 7.20% 14.83% 4.97% 1.86% 4.60% 13.63% 7.31%

Table 2: Evaluation results on mathematical reasoning, creative writing, and embodied planning tasks.
Among them, mathematical reasoning and creative writing use gpt-3.5 as base models, while embodied
planning uses gpt-4 as base models. ∆ represents the relative improvements than DIRECT.

Method Math Reasoning Accuracy ∗ ↑ Creative Writing ↑ Embodied Planning ↑
GSM8K GSMHard Average (∆) Win Rate TrueSkill Rating (∆) Uncertainty Executablity Plausibitlity (∆) Uncertainty

DIRECT 65.85% 51.26% 58.56% 46.67% 24.39 1.17 19.33±2.08% 20.57 2.05
CoT 63.82% 44.72% 54.27(-7.32)% 41.67% 24.31(-0.0%) 1.09 49.33±3.05% 25.75(+25.2%) 2.33
RAG-1 shot 61.81% 51.26% 56.54(+4.17)% 38.71% 23.99(-1.6%) 1.11 31.00±5.29% 24.97(+21.4%) 2.11
RAG-5 shot 61.81% 56.78% 59.30(+4.88)% 31.67% 23.88(-2.1%) 1.22 33.00±3.61% 25.02(+21.6%) 2.11
RAT 71.36% 67.34% 69.35(+16.96)% 81.01% 29.07(+19.2%) 1.08 76.67±8.02% 29.37(+42.78%) 3.37

steps are obvious in LLMs’ outputs. Those steps either fail to stick to the original query or are plainly
invalid. We kindly refer readers to subsection 3.3 (case analysis) for a more detailed discussion. Due
to space constraints, we do not introduce each benchmark setting, nor do we discuss our results in
each benchmark in full length. Rather, this section provides a comprehensive demonstration of our
method’s performance and provides a spotlight to provide preliminary empirical analysis about why
and when our method works and when it fails.

4.1 Experimental Setups

We adopt four groups of benchmarks.2

Code Generation includess HumanEval [9], HumanEval+ [37], MBPP [2], and MBPP+ [37]. These
benchmarks encompass a wide range of programming problems, from simple function implementa-
tions to more complex algorithmic challenges, providing a robust testbed for assessing generative
capabilities.

Mathematical Reasoning evaluation is conducted on GSM8K and GSM-HARD dataset, which
comprises thousands of multi-step mathematical problems [10, 16].

Creative Writing tasks are conducted to evaluate the versatility of RAT, including survey, summa-
rization etc., highlighting different aspects of open-ended text generation.

Embodied Planning tasks are evaluated on open-ended environments Minecraft. A set of 100
tasks ranging from simple objectives to challenging diamond objectives are evaluated through MC-
TextWorld [35].

Evaluation Metrics. For code generation, the classical pass rate pass@k is selected as the evaluation
metrics [9, 37], k denotes the sampling number. We compute accuracy to evaluate every question in
mathematical reasoning tasks, aligning with the established metric for the GSM8K [10]. For embodied

2We used bigcode-evaluation as the tool library for code evaluation. The pass@1 result of DIRECT
in the table is slightly different from the result in the bigcode leaderboard, because we tested our pass@1 five
times in our original setup and calculated the average value. We used the same settings as DIRECT in all
experiments and reported on the relative improvement of RAT compared to baselines to promise fair evaluation
and comparison.

6

planning tasks, we compute the plan execution success rate in MC-TextWorld as executability [35].
We also conduct human elo rating evaluation to compute the trueskill rating score [21] for embodied
planning (as plausibility) and creative writing tasks. These indicators are better the higher they are.

Baselines. To establish a comprehensive and equitable comparison landscape, we incorporate a suite
of baseline methods. Our baselines include the original language models, referred to as DIRECT, and
the Retrieval-Augmented Generation (RAG) methodology with n retrieved examples, instantiated in
both single-shot (1 shot) and multi-shot (5 shots) configurations, as documented by Lewis et al. [30].
Additionally, we examine the zero-shot CoT (CoT) approach, as conceptualized by Kojima et al. [27],
which simulates a step-by-step reasoning process to facilitate complex problem-solving tasks under
zero demonstration. For different methods, the same language model is used as base models. To
ensure a fair comparison, none of the methods used examples from the benchmark as demonstrations
for in-context learning.

RAG Settings. RAT leverages the capabilities of Retrieval-Augmented Generation methods, which
enhance the performance of language models by integrating external knowledge sources. Specifically,
we employed the codeparrot/github-jupyter dataset as our primary search vector library
for code generation and mathematical reasoning tasks. For embodied planning tasks in Minecraft, we
utilized the Minecraft Wiki3 and DigMinecraft4 websites as the information sources accessible to
the LLMs. For open-ended creative writing tasks, we use Google to search the query on the Internet.
We utilized OpenAI’s text-embedding-ada-002 API service for all embedding calculations
across different methods and base models.

Acknowledging the risk of benchmark contamination (an issue where the code library may contain
solutions to the exact problems being evaluated), we adopted a rigorous pre-processing methodology
as described by Guo et al. [20]. The potential implications of benchmark contamination, along with
the effectiveness of our pre-processing strategy, are discussed in detail in Appendix D.

4.2 Results

The code generation results presented in Table 1 and results on other benchmarks presented in
Table 2 demonstrate the comprehensive evaluation of the RAT across multiple benchmarks. RAT
consistently outperforms the other methods across the majority of the benchmarks and metrics,
showcasing its superior ability to generate long-horizon context. Notably, in the HumanEval and
HumanEval+ benchmarks of code generation, RAT achieves remarkable improvements in pass@1
and pass@5 rates, indicating a significant enhancement in first-attempt accuracy and within the top
five attempts. For example, on the HumanEval benchmark, RAT improves pass@1 by up to 20.94%
and pass@5 by up to 25.68% relative to the base models’ performances. This trend is observed
across different underlying base models, highlighting RAT’s effectiveness regardless of the initial
model’s capabilities. For mathematical reasoning tasks, RAT demonstrates a significant relative
improvement, with an 8.37% increase in accuracy on GSM8K and a remarkable 31.37% increase
on GSMHard, culminating in an overall average improvement of 18.44% when deployed on the
GPT-3.5 model. RAT significantly outperforms all other methods on open-ended embodied planning
tasks in Minecraft, achieving the highest scores with 76.67±8.02% for executability and 29.37 human
rating score for plausibility, demonstrating its superior ability to generate feasible and contextually
appropriate plans in the complex open-world environment. RAT’s superior performance also keeps
across a broad spectrum of creative writing tasks. Its ability to generate high-quality content in
diverse scenarios was demonstrated, highlighting its potential as a powerful tool for enhancing the
general creative writing capabilities of LLMs in open-ended scenarios.

The tasks are extremely diverse, while RAT can have consistent improvements over all baselines.
These results underline the advantages of RAT’s approach, which leverages iterative refinement of
retrieval queries based on evolving reasoning thoughts. This strategy not only enhances the relevance
and quality of the information retrieved but also significantly improves the accuracy and efficiency of
the generated context.

7

Table 3: Comparative Impact of Retrieval Strategies on
RAT Performance.

Method
HumanEval HumanEval+

pass@1(∆) ↑ pass@5(∆) ↑ pass@1(∆) ↑ pass@5(∆) ↑

Baseline 50.6% 76.2% 48.2% 70.5%
CoT+RAG 53.9(+3.3)% 76.8(+0.6)% 51.3(+3.1)% 69.3(-1.2)%
RAT 59.2(+8.7)% 80.4(+7.9)% 56.3(+8.2)% 76.0(+5.5)%

Table 4: Ablation Study on Causal vs. Non-Causal
Reasoning in RAT.

Method
HumanEval HumanEval+

pass@1(∆) ↑ pass@5(∆) ↑ pass@1(∆) ↑ pass@5(∆) ↑

Baseline 47.3% 75.8% 41.7% 74.8%
Non-Causal 57.3(+10.0)% 78.0(+2.1)% 54.9(+13.2)% 74.8(+0.0)%
Causal 59.2(+11.9)% 80.4(+4.6)% 56.3(+14.6)% 76.0(+1.2)%

4.3 Ablation Study

Ablation on retrieval in RAT. In this ablation study, we investigate the influence of various
retrieval strategies on the efficacy of RAT, focusing on the optimization of content retrieval for
improving generative outputs. The experimental results, detailed in Table 3, highlight the significant
advancements achieved through the iterative refinement of retrieval queries in RAT compared to
baseline methods. The baseline denoted as RAG-1, employs a direct approach by using the question
itself as the retrieval query. In contrast, CoT+RAG enhances this process by utilizing the entirety of
the reasoning thoughts output by the language model as the query, aiming for a broader contextual
understanding. However, RAT introduces a more dynamic method by employing continuously
modified parts of reasoning thoughts as queries, which allows for a more focused and relevant
information retrieval process. The comparative analysis shows that RAT surpasses both the baseline
and the CoT+RAG method in terms of pass@1 and pass@5 metrics across the HumanEval and
HumanEval+ benchmarks. Specifically, RAT demonstrates an 8.7 percentage point increase in pass@1
and a 7.9 percentage point increase in pass@5 over the baseline in the HumanEval benchmark, and
similarly impressive gains in the HumanEval+ benchmark. These improvements underscore the
effectiveness of RAT’s retrieval strategy, which by iteratively refining next queries based on evolving
reasoning thoughts and previous queries, ensures the retrieval of highly pertinent information. This
process not only enhances the relevance of the information retrieved but also significantly improves
the quality and accuracy of the final generated outputs. The results firmly establish the superiority of
RAT’s dynamic retrieval method in leveraging contextual nuances to drive more precise and effective
generative processes.

Ablation on causal reasoning in RAT. In this ablation study, we systematically examine the impact
of causal and non-causal reasoning approaches on the performance of the RAT system, with the
Chain of Thought (CoT) serving as our baseline. Our findings, as summarized in Table 4, reveal
significant enhancements in generation capabilities when incorporating causal reasoning techniques.
Specifically, the causal approach, which iteratively performs reasoning and retrieval, leads to notable
improvements in both pass@1 and pass@5 metrics across HumanEval and HumanEval+ benchmarks.
For instance, the causal method outperforms the baseline (CoT) by 11.9 percentage points in pass@1
and by 4.6 percentage points in pass@5 on the HumanEval dataset. This approach contrasts with
the non-causal method, which, although also surpassing the baseline, leverages the initial reasoning
thought to directly retrieve all necessary steps and generate the final answer. The causal method’s
superior performance underscores the value of sequential reasoning and information retrieval in
enhancing the accuracy and reliability of generated outputs. This iterative process likely aids in
refining the search and reasoning steps based on continuously updated context, allowing for more
precise and relevant information retrieval, which in turn supports more accurate final answers. These
results firmly establish the efficacy of causal reasoning in long-horizon problem-solving tasks.

4.4 Robustness of RAT

RAT was rigorously validated across a diverse set of tasks, including code generation, mathematical
reasoning, creative writing, and embodied planning. This variety of tasks underscores the general-
ization capability of RAT, demonstrating its robust performance across highly diverse challenges.
Furthermore, all our experimental settings were conducted in a zero-shot manner; we did not design
task-specific prompts for RAT, but rather used the simplest possible prompts (which can be found in
Appendix B) to articulate questions or instructions for all methods. This approach ensures RAT’s
generalization ability in open-ended scenarios.

3https://minecraft.wiki/
4https://www.digminecraft.com/

8

https://minecraft.wiki/
https://www.digminecraft.com/

The diversity of our evaluation was further enhanced by testing RAT across various language models
of differing capacities. This included CodeLlama-7b [46], ChatGPT (gpt-3.5-turbo) [42], and the
more advanced GPT-4 (gpt-4) model [41]. Remarkably, RAT maintained its generalization capability
across different scales of language models, showing improvements in benchmarks such as the
HumanEval for code generation tasks. Notably, the largest improvement was observed with GPT-4,
attributed to its superior ability for in-context learning from retrieved text. On MBPP+, CodeLlama-
7b based RAT has demonstrated performance degradation. This decline could be due to the limited
in-context learning ability of smaller language models.

For mathematical reasoning tasks, RAT demonstrated a significant relative improvement, with
an overall average improvement of 18.44% when applied to the GPT-3.5 model. This trend of
improvement persisted with GPT-4, which achieved a remarkable 10.26% relative improvement
from DIRECT to RAT. These findings highlight RAT’s robustness and its effective enhancement of
language models’ performance across a spectrum of computational and creative tasks.

5 Discussion on Limitations and Conclusion

One limitation of this work is that the performance of RAT relies on the chain-of-thought reasoning
and in-context learning (or RAG) capability of the base LLM. Since this work does not involve
any model training, the capability of base LLM will not change when applying RAT. Despite RAT
achieves significant improvement on powerful LLMs such as GPT-3.5 and GPT-4, the effect on
smaller and weaker LLMs is questionable. Another limitation of this work is that the performance of
RAT also relies on the quality of the retrieved knowledge. Another limitation of this work is that the
performance of RAT also relies on the quality of the retrieved knowledge.

We have presented Retrieval Augmented Thoughts (RAT), a simple yet effective prompting strategy
that synergies chain of thought (CoT) prompting and retrieval augmented generation (RAG) to
address the challenging long-horizon reasoning and generation tasks. Our key ideas involve revising
the zero-shot chain of thoughts produced by LLMs through RAG with the thoughts as queries, and
causally revising the thoughts & generating the response progressively. RAT, a zero-shot prompting
approach, has demonstrated significant advantages over vanilla CoT prompting, RAG, and other
baselines on challenging code generation, mathematics reasoning, embodied task planning, and
creative writing tasks.

Acknowledgments

This work is funded in part by the National Key R&D Program of China #2022ZD0160301. We
thank a grant from CCF-Tencent Rhino-Bird Open Research Fund. One author is funded in part by
NSF grants #IIS-1943641, #IIS-1956441, #CCF-1837129, an SRA from Meta and a research gift
from Amazon Alexa AI, and a gift from RelationalAI.

9

References
[1] A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi. Self-rag: Learning to retrieve, generate, and

critique through self-reflection. arXiv preprint arXiv:2310.11511, 2023.

[2] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,
Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,
2021.

[3] J. Baek, A. F. Aji, and A. Saffari. Knowledge-augmented language model prompting for
zero-shot knowledge graph question answering. arXiv preprint arXiv:2306.04136, 2023.

[4] B. Baker, I. Akkaya, P. Zhokhov, J. Huizinga, J. Tang, A. Ecoffet, B. Houghton, R. Sampedro,
and J. Clune. Video pretraining (vpt): Learning to act by watching unlabeled online videos.
arXiv preprint arXiv:2206.11795, 2022.

[5] M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, L. Gianinazzi, J. Gajda, T. Lehmann,
M. Podstawski, H. Niewiadomski, P. Nyczyk, et al. Graph of thoughts: Solving elaborate
problems with large language models. arXiv preprint arXiv:2308.09687, 2023.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[7] S. Cai, Z. Wang, X. Ma, A. Liu, and Y. Liang. Open-world multi-task control through goal-
aware representation learning and adaptive horizon prediction. 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 13734–13744, 2023.

[8] S. Cai, B. Zhang, Z. Wang, X. Ma, A. Liu, and Y. Liang. Groot: Learning to follow instructions
by watching gameplay videos. arXiv preprint arXiv:2310.08235, 2023.

[9] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[10] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

[11] A. Creswell and M. Shanahan. Faithful reasoning using large language models. arXiv preprint
arXiv:2208.14271, 2022.

[12] A. Creswell, M. Shanahan, and I. Higgins. Selection-inference: Exploiting large language
models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

[13] S. Dhuliawala, M. Komeili, J. Xu, R. Raileanu, X. Li, A. Celikyilmaz, and J. Weston. Chain-of-
verification reduces hallucination in large language models. arXiv preprint arXiv: 2309.11495,
2023.

[14] Z. Feng, X. Feng, D. Zhao, M. Yang, and B. Qin. Retrieval-generation synergy augmented large
language models. ArXiv, abs/2310.05149, 2023.

[15] Z. Feng, X. Feng, D. Zhao, M. Yang, and B. Qin. Retrieval-generation synergy augmented large
language models. arXiv preprint arXiv:2310.05149, 2023.

[16] L. Gao, A. Madaan, S. Zhou, U. Alon, P. Liu, Y. Yang, J. Callan, and G. Neubig. Pal: Program-
aided language models. arXiv preprint arXiv:2211.10435, 2022.

[17] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, and H. Wang. Retrieval-augmented
generation for large language models: A survey. arXiv preprint arXiv:2312.10997, 2023.

[18] J. Gu, Y. Wang, K. Cho, and V. O. Li. Search engine guided neural machine translation. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[19] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, Y. Yang, and A. Knoll. A review of safe
reinforcement learning: Methods, theory and applications. arXiv preprint arXiv:2205.10330,
2022.

[20] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi, Y. Wu, Y. K. Li, F. Luo,
Y. Xiong, and W. Liang. Deepseek-coder: When the large language model meets programming
– the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

10

[21] R. Herbrich, T. Minka, and T. Graepel. Trueskill™: a bayesian skill rating system. Advances in
neural information processing systems, 19, 2006.

[22] K. J. Holyoak and R. G. Morrison. The Oxford handbook of thinking and reasoning. Oxford
University Press, 2012.

[23] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. ICML, 2022.

[24] Z. Jiang, F. F. Xu, L. Gao, Z. Sun, Q. Liu, J. Dwivedi-Yu, Y. Yang, J. Callan, and G. Neubig.
Active retrieval augmented generation. Conference on Empirical Methods in Natural Language
Processing, 2023. doi: 10.48550/arXiv.2305.06983.

[25] Z. Ke, H. Lin, Y. Shao, H. Xu, L. Shu, and B. Liu. Continual training of language models for
few-shot learning. arXiv preprint arXiv:2210.05549, 2022.

[26] Z. Ke, Y. Shao, H. Lin, H. Xu, L. Shu, and B. Liu. Adapting a language model while preserving
its general knowledge. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 10177–10188, 2022.

[27] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are zero-shot
reasoners. Advances in neural information processing systems, 35:22199–22213, 2022.

[28] Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from transformers via speculative
decoding. arXiv preprint arXiv: 2211.17192, 2022.

[29] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t.
Yih, T. Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems, 33:9459–9474, 2020.

[30] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t.
Yih, T. Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems, 33:9459–9474, 2020.

[31] C. Li, J. Liang, A. Zeng, X. Chen, K. Hausman, D. Sadigh, S. Levine, L. Fei-Fei, F. Xia, and
B. Ichter. Chain of code: Reasoning with a language model-augmented code emulator, 2023.

[32] X. Li, R. Zhao, Y. K. Chia, B. Ding, S. Joty, S. Poria, and L. Bing. Chain-of-knowledge:
Grounding large language models via dynamic knowledge adapting over heterogeneous sources.
In The Twelfth International Conference on Learning Representations, 2023.

[33] S. Lifshitz, K. Paster, H. Chan, J. Ba, and S. McIlraith. Steve-1: A generative model for
text-to-behavior in minecraft. arXiv preprint arXiv:2306.00937, 2023.

[34] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,
I. Sutskever, and K. Cobbe. Let’s verify step by step. PREPRINT, 2023.

[35] H. Lin, Z. Wang, J. Ma, and Y. Liang. Mcu: A task-centric framework for open-ended agent
evaluation in minecraft. arXiv preprint arXiv:2310.08367, 2023.

[36] C. Liu, X. Li, L. Shang, X. Jiang, Q. Liu, E. Y. Lam, and N. Wong. Gradually excavating
external knowledge for implicit complex question answering. In Conference on Empirical
Methods in Natural Language Processing, 2023.

[37] J. Liu, C. S. Xia, Y. Wang, and L. Zhang. Is your code generated by chatGPT really correct?
rigorous evaluation of large language models for code generation. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

[38] S. Lu, N. Duan, H. Han, D. Guo, S.-w. Hwang, and A. Svyatkovskiy. Reacc: A retrieval-
augmented code completion framework. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 6227–6240, 2022.

[39] N. Nashid, M. Sintaha, and A. Mesbah. Retrieval-based prompt selection for code-related
few-shot learning. In Proceedings of the 45th International Conference on Software Engineering
(ICSE’23), 2023.

[40] M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D. Dohan,
A. Lewkowycz, M. Bosma, D. Luan, et al. Show your work: Scratchpads for intermediate
computation with language models. arXiv preprint arXiv:2112.00114, 2021.

[41] OpenAI. Gpt-4 technical report, 2023.

11

[42] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
arXiv preprint arXiv:2203.02155, 2022.

[43] V. Rawte, A. Sheth, and A. Das. A survey of hallucination in large foundation models. arXiv
preprint arXiv:2309.05922, 2023.

[44] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

[45] D. Ribeiro, S. Wang, X. Ma, R. Dong, X. Wei, H. Zhu, X. Chen, Z. Huang, P. Xu, A. Arnold,
et al. Entailment tree explanations via iterative retrieval-generation reasoner. arXiv preprint
arXiv:2205.09224, 2022.

[46] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. Tan, Y. Adi, J. Liu, T. Remez,
J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton, M. P. Bhatt, C. C. Ferrer, A. Grattafiori,
W. Xiong, A. D’efossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and
G. Synnaeve. Code llama: Open foundation models for code. ArXiv, abs/2308.12950, 2023.

[47] N. Shinn, B. Labash, and A. Gopinath. Reflexion: an autonomous agent with dynamic memory
and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

[48] S. Siriwardhana, R. Weerasekera, E. Wen, T. Kaluarachchi, R. Rana, and S. Nanayakkara.
Improving the domain adaptation of retrieval augmented generation (rag) models for open
domain question answering. Transactions of the Association for Computational Linguistics, 11:
1–17, 2023.

[49] G. P. Team. Palm: Scaling language modeling with pathways. arXiv preprint arXiv: 2204.02311,
2022.

[50] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[51] H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal. Interleaving retrieval with
chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv preprint
arXiv:2212.10509, 2022.

[52] X. Wang and D. Zhou. Chain-of-thought reasoning without prompting. arXiv preprint
arXiv:2402.10200, 2024.

[53] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou.
Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

[54] X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery, and D. Zhou.
Self-consistency improves chain of thought reasoning in language models. In The Eleventh
International Conference on Learning Representations, ICLR 2023, 2023.

[55] Z. Wang, S. Cai, A. Liu, Y. Jin, J. Hou, B. Zhang, H. Lin, Z. He, Z. Zheng, Y. Yang, X. Ma,
and Y. Liang. Jarvis-1: Open-world multi-task agents with memory-augmented multimodal
language models. ArXiv, abs/2311.05997, 2023.

[56] Z. Wang, S. Cai, A. Liu, X. Ma, and Y. Liang. Describe, explain, plan and select: Interactive
planning with large language models enables open-world multi-task agents. arXiv preprint
arXiv:2302.01560, 2023.

[57] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought
prompting elicits reasoning in large language models. 36th Conference on Neural Information
Processing Systems (NeurIPS 2022), 2022.

[58] Z. Wen, Z. Tian, W. Wu, Y. Yang, Y. Shi, Z. Huang, and D. Li. Grove: a retrieval-augmented
complex story generation framework with a forest of evidence. arXiv preprint arXiv:2310.05388,
2023.

[59] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing
reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

[60] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models, 2023.

12

[61] H. Yuan, C. Zhang, H. Wang, F. Xie, P. Cai, H. Dong, and Z. Lu. Plan4mc: Skill reinforcement
learning and planning for open-world minecraft tasks. arXiv preprint arXiv:2303.16563, 2023.

[62] H. Yuan, Z. Mu, F. Xie, and Z. Lu. Pre-training goal-based models for sample-efficient
reinforcement learning. In The Twelfth International Conference on Learning Representations,
2024.

[63] E. Zelikman, Y. Wu, J. Mu, and N. Goodman. Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

[64] C. Zhang, K. Yang, S. Hu, Z. Wang, G. Li, Y. Sun, C. Zhang, Z. Zhang, A. Liu, S.-C. Zhu,
et al. Proagent: Building proactive cooperative ai with large language models. arXiv preprint
arXiv:2308.11339, 2023.

[65] R. Zhao, H. Chen, W. Wang, F. Jiao, X. L. Do, C. Qin, B. Ding, X. Guo, M. Li, X. Li, and
S. R. Joty. Retrieving multimodal information for augmented generation: A survey. ArXiv,
abs/2303.10868, 2023.

[66] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, C. Cui, O. Bousquet,
Q. Le, et al. Least-to-most prompting enables complex reasoning in large language models.
arXiv preprint arXiv:2205.10625, 2022.

[67] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, C. Cui, O. Bousquet,
Q. V. Le, and E. H. Chi. Least-to-most prompting enables complex reasoning in large language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
2023.

[68] S. Zhou, U. Alon, F. F. Xu, Z. Jiang, and G. Neubig. Docprompting: Generating code by
retrieving the docs. In The Eleventh International Conference on Learning Representations,
2022.

13

A Task Details

A.1 Code Generation

Benchmarks. We select HumanEval [9], HumanEval+ [37], MBPP [2], and MBPP+ [37] as the code
generation evaluation benchmark. These benchmarks are commonly used to test the performance of
code generation models, which are briefly introduced below:

• HumanEval consists of 164 Python programming problems, each with a function signature,
docstring, body, and multiple unit tests [9].

• HumanEval+ includes the same programming problems as HumanEval, but with an addi-
tional 80 times more unit tests for each of the 164 problems [37].

• MBPP is a collection of approximately 1,000 Python programming problems that are
intended to be solvable by beginner programmers. Each problem includes an English task
description, a code solution, and three automated test cases. We assess the sample test set
from index 11 to 175 [2].

• MBPP+ consists of 399 tasks [37], which are a subset of the original MBPP dataset.
Additionally, MBPP+ includes extra unit tests for each of the 399 problems (35 times more
than the original MBPP). We utilized the first 164 questions as our test set.

These benchmarks encompass a wide range of programming problems, from simple function im-
plementations to more complex algorithmic challenges, providing a robust testbed for assessing the
generative capabilities of various models.

Metrics. We adopt the pass@k metric for evaluating the efficacy of various code generation
algorithms, following the methodology proposed by Chen et al. [9] and extended by Liu et al. [37].
This metric quantifies the rate at which generated code snippets successfully execute and pass all
test cases, where k represents the number of attempts or samples generated by the model for each
problem. This approach allows us to rigorously assess the precision and reliability of code generation
models in producing functionally correct code across a diverse set of programming challenges.

Baselines. To establish a comprehensive and equitable comparison landscape, we incorporate a suite
of baseline methods and diverse code generation models. Our baselines include the original code
generation language models, referred to as DIRECT, and the Retrieval-Augmented Generation (RAG)
methodology with n retrieved examples, instantiated in both single-shot (1 shot) and multi-shot
(5 shots) configurations, as documented by Lewis et al. [30]. Additionally, we examine the zero-
shot CoT (CoT) approach, as conceptualized by Kojima et al. [27], which simulates a step-by-step
reasoning process to facilitate complex problem-solving tasks under zero demonstration. To ensure
a fair comparison, none of the methods used examples from the benchmark as demonstrations for
in-context learning.

The diversity of our evaluation is further enriched by testing across various language models with
differing capacities, including CodeLlama-7b [46], along with ChatGPT(gpt-3.5-turbo) [42],
and the more advanced GPT-4(gpt-4) model [41]. Recognizing the potential format discrepancies
in code outputs, especially considering that models like gpt-3.5-turbo and gpt-4 may produce
code in markdown format which is not immediately executable, we implement post-processing steps
to convert the original language model outputs into a form that can be executed within a sandbox
environment. This normalization ensures that all models are evaluated under uniform execution
conditions, thereby facilitating a fair and direct comparison of their code generation capabilities.
Through this methodological framework, we aim to provide a detailed and nuanced understanding of
the performance landscape across a spectrum of LLM-driven code generation approaches.

RAG Settings. RAT leverages the capabilities of Retrieval-Augmented Generation methods, which
enhance the performance of language models by integrating external knowledge sources. Specifically,
we employed the codeparrot/github-jupyter dataset as our primary search vector library.
This dataset is a comprehensive compilation of 452k markdown and code pairs, meticulously extracted
from Jupyter notebooks hosted on GitHub BigQuery, representing a rich repository of programming
knowledge and examples. We utilized OpenAI’s text-embedding-ada-002 API service for
all embedding calculations across different methods and base models.

14

A.2 Mathematical Reasoning

Benchmarks. Our evaluation framework for assessing mathematical reasoning capabilities leverages
two primary benchmarks: the GSM8K dataset, which comprises over 8,000 multi-step mathematical
problems [10], and the GSM-HARD dataset, an adaptation of GSM8K where numbers in the questions
are replaced with larger values to increase problem complexity [16]. This study employs the PAL
methodology to scrutinize the mathematical reasoning results, involving the utilization of Large
Language Models (LLMs) to parse natural language problems, generate intermediary programmatic
solutions, and subsequently execute these solutions via a Python interpreter. The test set for each
benchmark consists of samples ranging from index 1 to 200. Uniquely, our approach does not use
any examples for in-context learning, differing from the original PAL methods.

Metrics and Baselines. Accuracy serves as our principal metric for evaluation, aligning with the
established metric for the GSM8K benchmark. Each question undergoes three execution attempts,
with the average score recorded as the final result. The baselines, including DIRECT, CoT, RAG
(1 shot), and RAG (5 shots), are consistent with those outlined in code generation, facilitating a
comprehensive and comparative analysis across different code generation benchmarks. The RAG
settings are consistent with the code generation tasks.

A.3 Embodied Planning

We further conduct experiments on embodied planning benchmarks on open-ended environments
Minecraft [35].

Benchmarks. The complexity and vast item interconnectivity within the open-world Minecraft
present an ideal testbed for evaluating the LLM’s capability to generate long-horizon plans [61, 56, 55].
With thousands of items and intricate relationships between them, obtaining a specific item in survival
mode from scratch may involve dozens of intermediate items and their quantitative relationships,
such as crafting 1 crafting table from 4 planks. This setting rigorously tests the planning abilities
of LLMs instead of low-level control policies [8, 4, 7, 33, 62]. Moreover, Wang et al. [55] have
identified instances of hallucinations about Minecraft knowledge in OpenAI’s ChatGPT and a general
scarcity of Minecraft-related knowledge in open-source language models, making this task a suitable
benchmark for assessing the RAG algorithm’s effectiveness.

The planning prompts are aligned with those used in DEPS [56], structured as Python templates
and evaluated using MC-TextWorld as detailed by Lin et al. [35]. A set of 100 tasks were randomly
selected for the test set, ranging from simple objectives like obtaining a crafting table to more complex
goals such as crafting an iron helmet and even challenging making an enchanting table. The task
instruction is formulated as:

• Give you nothing in the inventory, generate a step-by-step plan for the task of obtaining a
{placeholder:acacia_boat} in Minecraft survival mode, and describe the object Minecraft
item and its number at every step. For every step, start with ’STEP’ as start.

• Give you nothing in the inventory, generate a step-by-step plan for the task of obtaining a
{placeholder:diamond_pickaxe} boat in Minecraft survival mode, and describe the object
Minecraft item and its number at every step. For every step, start with ’STEP’ as start.

There are over 100 tasks involving different Minecraft items.

RAG Settings. For the retrieval component of the RAG algorithm, we utilized the Minecraft Wiki5 and
DigMinecraft6 websites as the information sources accessible to the LLMs. Data from these websites
was cleaned and formatted into markdown text, then segmented into trunks not exceeding 2000 tokens
each, with embedding calculations performed using OpenAI’s text-embedding-ada-002 API
service.

Evaluation Metrics. Based on the methodology of Huang et al. [23], our evaluation of open-ended,
long-horizon planning in Minecraft focuses on both executability and plausibility. Executability
primarily examines whether a plan can be carried out, including the accuracy of each step’s precondi-
tions and effects. The executability is automatically calculated using MC-TextWorld [35]. However,

5https://minecraft.wiki/
6https://www.digminecraft.com/

15

https://minecraft.wiki/
https://www.digminecraft.com/

executability only evaluates if an objective-level plan can be executed, without considering the
specific details involved in executing individual objectives. For instance, crafting a wooden pickaxe
requires placing a crafting table and arranging three planks and two sticks in a particular pattern,
which are important details for human execution but not assessed by MC-TextWorld. Therefore, we
complement our evaluation with human ratings to assess the plausibility of plans.

A.4 Creative Writing

To further understand the potential of Retrieval-Augmented Generation (RAG) models in enhancing
the creativity and relevance of generated content, we extend our investigation to open-ended text
generation tasks within the realm of creative writing.

Benchmarks. The versatility of RAT was tested through a series of creative writing tasks, each
chosen to highlight different aspects of open-ended text generation. These tasks include:

• Write a survey paper to summarize the placeholder:Retrieval-augmented
Generation methods for Large Language Models.

• Describe of placeholder:Jin-Yong’s life.

• Summarize the placeholder:American Civil War according to the timeline.

For each task, three variants for placeholder were created to ensure a comprehensive evaluation
of the model’s performance across different contexts and requirements.

RAG Settings. Differing from previous tasks, creative writing is categorized as an open-ended
generation task, demanding a broader scope of information retrieval to aid content generation. To
accommodate this, Google was utilized as the search engine, with the top-k web pages converted into
markdown text to assist the LLM in generating outputs. This approach allowed LLM to leverage a
wide array of information sources.

Baselines and Evaluations. To benchmark RAT’s performance, we compared it against DIRECT,
RAG-1 shot, and RAG-5 shot methods, all based on the gpt-3.5-turbo model. The evaluation
was conducted by human experts, employing the TrueSkill rating system [21] to calculate scores
for each method. This evaluation framework enabled a comprehensive assessment of each model’s
creative output quality, accuracy, relevance, and innovativeness.

B Prompt Details

Our prompts consist of three parts: prompt for generating initial answer, prompt for generating search
query, and prompt for revising answers according to retrieved context.

Prompt B.1: Prompt for generating initial answers in creative writing tasks

{user}
##Question:
{question}
##Instruction:
Try to answer this question/instruction with step-by-step thoughts and make the answer more structural.
Use /n/n to split the answer into several paragraphs.
Just respond to the instruction directly. DO NOT add additional explanations or introducement in the answer
unless you are asked to.
{assistant}
...

The process of query generation is omitted in code generation tasks. Instead, we use the generated
code draft as a query and compute the embedding of it based on OpenAI Embedding services. For
embodied planning and creative writing tasks, we will generate an additional query.

16

Prompt B.2: Prompt for generating open-search query in creative writing tasks

##Question:
{question}
##Content:
{answer}
##Instruction:
I want to verify the content correctness of the given question, especially the last sentences.
Please summarize the content with the corresponding question.
This summarization will be used as a query to search with Bing search engine.
The query should be short but need to be specific to promise Bing can find related knowledge or pages.
You can also use search syntax to make the query short and clear enough for the search engine to find relevant
language data.
Try to make the query as relevant as possible to the last few sentences in the content.
IMPORTANT
Just output the query directly. DO NOT add additional explanations or introducement in the answer unless
you are asked to.
{assistant}
...

Prompt B.3: Prompt for revising answer according to retrieved materials in creative writing tasks

{user}
##Existing Text in Wiki Web:
{content}
##Question:
{question}
##Answer:
{answer}
##Instruction:
I want to revise the answer according to retrieved related text of the question in WIKI pages.
You need to check whether the answer is correct.
If you find some errors in the answer, revise the answer to make it better.
If you find some necessary details are ignored, add it to make the answer more plausible according to the
related text.
If you find the answer is right and do not need to add more details, just output the original answer directly.
IMPORTANT
Try to keep the structure (multiple paragraphs with its subtitles) in the revised answer and make it more
structural for understanding. Split the paragraphs with /n/n characters. Just output the revised answer directly.
DO NOT add additional explanations or annoucement in the revised answer unless you are asked to.
{assistant}
...

C TrueSkill Evaluation Framework

Part of the tasks in “Embodied planning” and “creative writing” involve using humans for labeling.
Human labelers have 4 choices: “A is better”, “B is better”, “Tie” or “Both are bad”. In this case,
“Tie” and “Both are bad” will be counted as a tie. For each task group, we have selected more than
10 professional annotators to provide labels. We use the Python “trueskill” package to calculate
the win rate and score. The default score for every method is set as 25. In order to facilitate user
understanding and selection, we also provide prompts when entering the system.

17

Figure C.1: The human evaluation UI. We will display responses from two different methods for the same
instruction on the page simultaneously. The source of the response will be marked as [MASK], and after human
labeling, [MASK] will be replaced with the specific method name.

Chatbot Arena : Benchmarking LLMs in the Wild
##Rules
- Refresh to obtain the question and its corresponding answers from two anonymous models.
- Vote for the better answer. And then click "New Round" to get a new question.
- If both answers are bad, vote for "Both are bad".
- If you want to skip, click "Skip".

Principle
You can evaluate the performance of the model from the following aspects:
1. **Relevance**: Does it answer the question accurately?
2. **Accuracy**: Is it accurate? For example, a crafting table is made by combining 4 wooden planks, not 4
logs; a diamond axe requires 3 diamonds and 2 sticks to craft, not 3 sticks and 2 diamonds.
3. **Completeness**: Is it complete? For example, crafting a wooden pickaxe from logs requires
first crafting wooden planks and then crafting sticks before finally being able to craft the pickaxe. The
intermediate steps cannot be ignored.
4. **Readability**: Is it coherent?
5. **Executability**: Considering the characteristics of the game, is it executable?

Vote now!

D Disscussions on Benchmark Contamination

To avoid the code library containing solutions to the exact problems being evaluated) in code
generation benchmarks, we adopted a rigorous pre-processing methodology as described by Guo
et al. [20]. This process was meticulously designed to remove any direct matches or overly similar

18

code snippets from our search vector library, thereby ensuring that our evaluation remains fair and
uncontaminated by pre-existing solutions. This examination aims to underscore the importance of
maintaining the integrity of the evaluation process while utilizing external knowledge sources to
augment the capabilities of language models in code-generation tasks.

Table 5: Benchmark contamination study based on CodeLlama-7b-Python models. We find using the code
corpus finetuning the CodeLlama models directly will damage model performance on the code generation

benchmark, while using RAT for in-context generation yields better performance.

Method HumanEval HumanEval+

pass@1 pass@5 pass@1 pass@5

DIRECT 40.85% 53.65% 37.43% 48.78%
FINETUNE 29.02% 40.24% 26.34% 35.98%
RAT 45.73% 59.75% 43.29% 53.66%

To further explore the potential benchmark contamination, we also conducted additional finetuning
on CodeLLaMA-7B-Python using the code corpus in Table 5.

E More Results

E.1 Emboddied Planning

Embodied planning involves multiple steps, each of which relies on specific world knowledge and
causal knowledge (i.e., preceding steps are usually preconditions for subsequent steps), including
recipes for items in Minecraft, tools for performing related actions, and quantity restrictions. There-
fore, although the plan generated by ChatGPT may appear complete and correct, there are often
errors within the steps that can affect the proper execution of the plan.

We mark the errors found in the generated plan in red.

Response E.1: Response from Zero-Shot CoT(based on ChatGPT-3.5) in embodied planning tasks

{instruction}
Give you nothing in the inventory, generate a step-by-step plan for the task of obtaining a golden apple in
Minecraft survival mode, and describe the object Minecraft item and its number at every step. For every step,
start with ’STEP’ as start.

{response from Original ChatGPT}
STEP 1: Start by punching trees to gather at least 4 logs. - Minecraft item: 4x Logs
STEP 2: Craft the logs into a crafting table. - Minecraft item: 1x Crafting Table
STEP 3: Place the crafting table on the ground and right-click on it to open the crafting interface.
STEP 4: Use the crafting interface to turn 4 of the oak planks into a wooden pickaxe.
- Minecraft item: Wooden Pickaxe
STEP 5: Find a cave or dig into the ground to gather some stone. Mine at least 8 blocks of stone using your
wooden pickaxe. - Minecraft item: 8x Cobblestone
STEP 6: Craft the cobblestone into a furnace using the crafting table. - Minecraft item: 1x Furnace
STEP 7: Place the furnace on the ground and right-click on it to open the furnace interface.
STEP 8: Use the furnace interface to smelt some iron ore. Place at least 3 iron ore in the top slot of the
furnace and use wooden planks as fuel in the bottom slot. - Minecraft item: 3x Iron Ingots
STEP 9: Craft the iron ingots into a bucket using the crafting table. - Minecraft item: 1x Bucket
STEP 10: Find a water source (such as a lake or a river) and right-click on it while holding the bucket to fill
it with water. - Minecraft item: 1x Water Bucket
STEP 11: Look for an apple tree in a forest biome. Break some leaves until you find an apple. - Minecraft
item: 1x Apple
STEP 12: Combine the water bucket and the apple in the crafting table to craft a golden apple. - Minecraft
item: 1x Golden Apple
Congratulations! You have successfully obtained a golden apple in Minecraft survival mode.

Although the Zero-shot CoT has generated a step-by-step plan overall, there are many factual errors
within it. These include recipe errors in STEP 2, where the crafting table requires planks instead of
wood; missing raw materials in STEP 4, as the wooden pickaxe needs 2 sticks but lacks the relevant

19

step in the plan; absence of instructions to use a stone pickaxe to mine iron ore in STEP 8; and an
incorrect recipe for golden apple in STEP 12, which should include gold ingots and an apple rather
than a water bucket.

Response E.2: Response from RAT(based on ChatGPT-3.5) in embodied planning tasks

{instruction}
Give you nothing in the inventory, generate a step-by-step plan for the task of obtaining a golden apple in
Minecraft survival mode, and describe the object Minecraft item and its number at every step. For every step,
start with ’STEP’ as start.

{response from Original ChatGPT}

STEP 1: Find a tree and chop it down to get wood. You need at least 4 Oak Logs.
- Minecraft items: 4x Oak Logs
STEP 2: Craft the oak log into oak planks.
- Minecraft items: 16x Oak Planks
STEP 3: Convert some oak planks into sticks.
- Minecraft items: 4x Stick
STEP 4: Use the crafting table to create a wooden pickaxe.
- Minecraft items: 1x Wooden Pickaxe
STEP 5: Start digging down to find stone and gather at least three pieces of cobblestone.
- Minecraft items: 3x Cobblestone
STEP 6: Use the crafting table to create a stone pickaxe.
- Minecraft items: 1x Stone Pickaxe
STEP 7: Explore caves and mineshafts to find iron ore. Collect 3 iron ore for crafting an iron pickaxe.
- Minecraft items: 3x Iron Ore
STEP 8: Smelt the iron ore using a furnace to obtain iron ingot.
- Minecraft items: 3x Iron Ingot
STEP 9: Use the crafting table to create an iron pickaxe.
- Minecraft items: 1x iron pickaxe
STEP 10: Explore caves and mineshafts to find gold ore. Use an iron pickaxe or higher to mine the gold ore
block. Collect as much gold ore as needed for crafting a golden apple.
- Minecraft items: 8x Gold Ore
STEP 11: Smelt the raw gold using a furnace to obtain a gold ingot.
- Minecraft items: 8x Gold Ingot
STEP 12: Find an oak tree and chop it down until an apple falls.
- Minecraft items: 1x Apple
STEP 13: Open the crafting menu and place the items in the correct pattern to craft a Golden Apple. In the
3x3 crafting grid, place 8 Gold Ingots in the first and third rows, leaving the middle square empty. In the
second row, place 1 Gold Ingot in the first and third squares, and place an Apple in the middle square.
- Minecraft items: 1x Golden Apple
Congratulations! You have successfully obtained a golden apple in Minecraft survival mode.

There are still errors in the plan generated by RAT, such as the lack of tools before "STEP 8: smelt
iron ore into iron ingots", which should be “Mine 8 cobblestone to craft 1 furnace”. However,
compared to the errors in ChatGPT, the error rate in the plan has been significantly reduced.

We have also listed the links of the retrieved pages involved in different steps in Table 6 and Table 7.
We can see that the text sources retrieved in each step generated by RAT are usually highly related to
the synthesized item of that step. Traditional RAG (with 5 retrieval documents) uses instructions for
retrieval and can only find the final step and other unrelated items, which may even harm the model’s
output. Compared to standard RAG, RAT extracts more pertinent knowledge from the database and
provides more accurate answers. Furthermore, RAT does not directly generate answers based on
retrieved content but evaluates previously generated content using both external information and
internal knowledge. If inconsistencies or inaccuracies are detected in previous responses, revisions
are made accordingly. By leveraging LLM’s reasoning capabilities, RAT can decrease its reliance on
retrieved data.

E.2 Creative Writing

Discussions on Computational Efficiency.

20

Table 6: Page link of retrieved text by RAT in embodied Minecraft planning tasks.
Step Item Recipe Link

1 4x Oak Log - https://minecraft.fandom.com/wiki/Log
2 16x Oak Planks 4x Oak Log https://www.digminecraft.com/basic_recipes/make_oak_wood_plank.php
3 4x Stick 2x Oak Planks https://www.digminecraft.com/basic_recipes/make_stick.php
4 1x Wooden Pickaxe 3x Oak Planks, 2 Stick https://www.digminecraft.com/tool_recipes/make_wooden_pickaxe.php
5 3x Cobblestone Wooden Pickaxe https://minecraft.fandom.com/wiki/Cobblestone
6 1x Stone Pickaxe 3x Cobblestone, 2 Stick https://www.digminecraft.com/tool_recipes/make_stone_pickaxe.php
7 3x Iron Ore Stone Pickaxe https://minecraft.fandom.com/wiki/Iron_Ore
8 3x Iron Ingot 3x Iron Ore https://www.digminecraft.com/basic_recipes/make_iron_ingot.php
9 1 Iron Pickaxe 3x Iron Ingot, 2x Stick https://www.digminecraft.com/tool_recipes/make_iron_pickaxe.php
10 8x Gold Ore Iron Pickaxe https://minecraft.fandom.com/wiki/Gold_Ore
11 8x Gold Ingot 8x Gold Ore https://www.digminecraft.com/basic_recipes/make_gold_ingot.php
12 1x Apple - https://minecraft.fandom.com/wiki/Apple
13 1x Golden Apple 8x Gold Ingot, 1x Apple https://www.digminecraft.com/food_recipes/make_golden_apple.php

Table 7: Page link of retrieved text by conventional RAG methods in embodied Minecraft planning tasks.
Step Item Recipe Link

1 4x Oak Log - -
2 16x Oak Planks 4x Oak Log -
3 4x Stick 2x Oak Planks -
4 1x Wooden Pickaxe 3x Oak Planks, 2 Stick -
5 3x Cobblestone Wooden Pickaxe -
6 1x Stone Pickaxe 3x Cobblestone, 2 Stick -
7 3x Iron Ore Stone Pickaxe -
8 3x Iron Ingot 3x Iron Ore -
9 1 Iron Pickaxe 3x Iron Ingot, 2x Stick -
10 8x Gold Ore Iron Pickaxe -
11 8x Gold Ingot 8x Gold Ore -
12 1x Apple - https://minecraft.fandom.com/wiki/Apple

13 1x Golden Apple 8x Gold Ingot, 1x Apple
https://minecraft.fandom.com/wiki/Golden_Apple

https://www.digminecraft.com/food_recipes/make_golden_apple.php

14 Other unrelated Items -
https://minecraft.fandom.com/wiki/Enchanted_Golden_Apple

https://www.digminecraft.com/game_commands/enchant_command.php
https://www.digminecraft.com/tool_recipes/make_golden_pickaxe.php

In our experiment, we used RAG-5 as the baseline, which retrieves 5 content sources (commonly
the default choice for most current RAG algorithms). We also set an upper limit on RAT retrieval
times, ensuring that RAT does not retrieve more than 5 contents. Therefore, RAT does not exceed the
standard RAG algorithm in terms of content retrieval.

Compared to including all 5 retrieved contents at once in context for generation in RAG-5, RAT
incorporates one external content at a time to reduce prompt length. This approach prevents exceeding
the language model’s context length limitation that may occur when inputting all knowledge into the
prompt with RAG-5. Using only one external content per revision in RAT avoids issues related to
excessive content length and allows more token space for generating longer content.

Additionally, we utilized the Google search engine directly for RAT searches and compared time
consumption between RAT and RAG-5 when creating creative writing prompts. Our findings indicate
that while increased search time plays a role, more time is consumed during crawling and generation
processes. And RAT does not have a significant efficiency gap compared to RAG-5. The detailed time
consumption of every method is listed in Table 8. However, since RAT must be processed causally, it
is worth further exploring how to improve the efficiency of RAT by referring to speculative decoding
and other methods [28].

21

Table 8: Comparison of time consumed by different methods in creative writing tasks.

Method CoT RAG-5 RAT

Search Time(s) - 0.12 0.47
Crawl Content Time(s) - 5.17 4.26
Generation Time(s) 3.59 10.72 12.75
Total Time(s) 3.59 17.37 18.45

Response E.3: Response from ORIGINAL ChatGPT-3.5 in creative writing tasks

{instruction}
Describe the history of the United States. {response from Original ChatGPT}

The history of the United States dates back thousands of years, with indigenous peoples such as the Native
Americans inhabiting the land long before the arrival of European settlers. However, the official history of
the United States begins in 1776 when the Founding Fathers declared independence from Great Britain. This
marked the start of the American Revolution, a conflict that ultimately led to the creation of the United States
as an independent nation.
After gaining independence, the United States went through a period of rapid expansion in the 19th century.
The country acquired vast amounts of territory, including the Louisiana Purchase and the annexation of Texas.
This expansion was accompanied by conflicts, such as the Mexican-American War and the Civil War, which
tested the unity of the nation.
In the 20th century, the United States emerged as a global superpower. The country played a significant role
in both World War I and World War II, eventually becoming the leader of the free world during the Cold War
with the Soviet Union. The United States experienced social and cultural shifts during this time, including
the Civil Rights Movement and the rise of consumerism.
Today, the United States remains a powerful nation, with a diverse population and a complex history that
continues to shape its identity.

Response E.4: Response from Zero-shot CoT in creative writing tasks

{instruction}
Describe the history of the United States.
{response from Zero-shot CoT}
Pre-Columbian Era
The history of the United States begins long before the arrival of European explorers in the 15th century.
The land was initially inhabited by diverse Native American tribes, such as the Apache, Sioux, Iroquois,
and Cherokee. These societies had rich cultures, with their own languages, traditions, and social structures.
They lived off the land, flourishing through hunting, fishing, farming, and trade. However, the indigenous
populations faced significant challenges, including conflicts, displacement, and diseases brought by the
European settlers.
Colonial Period
In the 16th century, European powers began to claim territories in what is now the United States. The
Spanish were the first to establish colonies, initially focusing on Central and South America. Later, English,
French, and Dutch explorers arrived, establishing their own colonies along the Atlantic coast. These colonies
varied in purpose and organization, with the English colonies primarily seeking economic opportunities and
religious freedom. Over time, thirteen British colonies emerged, forging their own identities, developing
local governments, and experiencing an increase in population due to immigration.
American Revolution and Beyond
Tensions between the British colonies and their colonial masters grew, leading to the American Revolution in
1775. The colonies, unified under the Continental Congress, fought for independence from British rule. The
war lasted several years, until the signing of the Treaty of Paris in 1783, which granted the newly formed
United States of America independence. After achieving independence, the founding fathers convened to
draft the Constitution, establishing the framework for the new nation’s government.
This is just a brief overview, and the history of the United States is vast and complex. However, these steps
provide a simplified understanding of how the nation evolved from Native American civilizations to a group
of British colonies, to an independent country.

22

Response E.5: Response from RAG(1-shot) in creative writing tasks

{instruction}
Describe the history of the United States.
{response from RAG-1}
The history of the United States is a complex and rich tapestry that spans over four centuries. The story
begins with the arrival of European explorers and settlers in the 16th century. In 1492, Christopher Columbus
reached the Americas, which led to subsequent expeditions and colonization by the Spanish, French, Dutch,
and English. The first successful English settlement was established at Jamestown, Virginia in 1607.
Over the next few centuries, the colonies grew and developed their own unique cultures, economies, and
systems of government. Tensions rose between the American colonies and the British Crown, leading to the
American Revolutionary War in 1775. The colonies declared their independence in 1776 and formed the
United States of America, which became a republic based on democratic ideals and principles.
The young nation faced numerous challenges in its early years, including establishing a central government,
expanding westward, and dealing with the issue of slavery. The 19th century saw rapid westward expansion,
the Industrial Revolution, and the Civil War. The United States emerged from the Civil War as a more unified
and powerful nation, with the abolition of slavery and the preservation of the Union. In the 20th century, the
United States became a global superpower, playing a crucial role in both World Wars and the Cold War. It
witnessed significant social movements for civil rights and equality, as well as advancements in technology
and innovation.
Today, the United States is a diverse and influential country with a strong economy, global military presence,
and a complex political landscape. Its history continues to shape its present and future, as the nation grapples
with ongoing social, economic, and political challenges.

Response E.6: Response from RAG(5-shot) in creative writing tasks

{instruction}
Describe the history of the United States.
{response from RAG-5}
The history of the United States dates back to the colonization of the Americas by European explorers in the
16th century. The first permanent English settlement was established in Jamestown, Virginia in 1607. This
marked the beginning of British colonization in North America.
Over the next century, more British colonies were established along the eastern seaboard, including Mas-
sachusetts, New York, Pennsylvania, and Georgia. These colonies grew and developed their own distinct
cultures and economies.
Tensions between the colonies and the British government grew in the mid-18th century, leading to the
American Revolutionary War in 1775. The colonists, led by figures such as George Washington, Thomas
Jefferson, and Benjamin Franklin, fought for their independence from British rule.
In 1776, the Second Continental Congress adopted the Declaration of Independence, which declared the
thirteen American colonies to be independent states. This marked the birth of the United States of America.
Following the Revolutionary War, the Founding Fathers drafted the Constitution of the United States, which
established a federal government and outlined the rights and freedoms of American citizens. The Constitution
was ratified in 1788 and is still the supreme law of the land.
Since its founding, the United States has experienced significant growth and development. It expanded
westward through the Louisiana Purchase and the annexation of Texas, and it eventually stretched from coast
to coast. The country also faced significant challenges, such as the Civil War, the Great Depression, and the
Civil Rights Movement.
Today, the United States is a global superpower with a diverse population and a strong economy. It is known
for its democratic system of government, individual freedoms, and cultural influence.

23

Response E.7: Response from RAT in creative writing tasks

{instruction}
Describe the history of the United States.
{response from RAT}
The history of the United States is characterized by several significant phases. The pre-colonial period
witnessed diverse Native American populations with unique cultures inhabiting the land. This era transitioned
into colonialism through European exploration and settlement by powers such as the Spanish, French, Dutch,
and British, leading to the establishment of colonies along the East Coast with distinct economic and political
frameworks.
A pivotal moment in American history was the American Revolution, beginning in 1775, as the colonies
sought independence from British rule. The Declaration of Independence in 1776 marked the nation’s
founding on principles of liberty and democracy, establishing autonomy from Great Britain. This revolutionary
period not only birthed a republic based on the will of the people but also forged American national identity,
fostering a collective ethos entrenched in history and culture, inspiring revolutions worldwide and aiding in
the establishment of republican governments elsewhere.
The United States stands out as the first modern nation to achieve independence through a national war of
liberation, articulating its motives and aspirations in a declaration of independence. This event had global
reverberations, spreading fundamental values like liberty, equality, natural and civil rights, and civic duty. The
formative years were shaped by the drafting of the Constitution in 1787, defining the federal government’s
framework. The subsequent ratification of the Bill of Rights further cemented individual freedoms and
outlined governance principles that have endured across the nation’s history, ensuring a system of checks and
balances that protect citizens’ rights.
The 19th century in the United States witnessed significant developments, including westward expansion,
industrialization, and conflicts like the Civil War (1861-1865), which decisively addressed issues of slavery
and reinforced federal authority over the states. The late 19th and early 20th centuries were marked by rapid
industrial growth, extensive immigration, urbanization, and overseas expansion, including involvement in
conflicts such as the Spanish-American War and World War I. The 20th century saw the United States emerge
as a global superpower after World War II, engaging in the Cold War with the Soviet Union and participating
in conflicts like the Korean and Vietnam Wars, significantly impacting the nation’s foreign policy and global
standing.
Recent history includes social movements for civil rights, gender equality, and environmental protection,
as well as economic shifts, advancements in technology, and challenges in areas such as healthcare and
international relations.

24

	Introduction
	Related Works
	Retrieval Augmented Thoughts
	Preliminary
	Our Approach

	Experiments
	Experimental Setups
	Results
	Ablation Study
	Robustness of rat

	Discussion on Limitations and Conclusion
	Task Details
	Code Generation
	Mathematical Reasoning
	Embodied Planning
	Creative Writing

	Prompt Details
	TrueSkill Evaluation Framework
	Disscussions on Benchmark Contamination
	More Results
	Emboddied Planning
	Creative Writing

