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ABSTRACT

Modular neural networks outperform nonmodular neural networks on tasks rang-
ing from visual question answering to robotics. These performance improvements
are thought to be due to modular networks’ superior ability to model the composi-
tional and combinatorial structure of real-world problems. However, a theoretical
explanation of how modularity improves generalizability, and how to leverage
task modularity while training networks remains elusive. Using recent theoreti-
cal progress in explaining neural network generalization, we investigate how the
amount of training data required to generalize on a task varies with the intrinsic
dimensionality of a task’s input. We show theoretically that when applied to mod-
ularly structured tasks, while nonmodular networks require an exponential num-
ber of samples with task dimensionality, modular networks’ sample complexity is
independent of task dimensionality: modular networks can generalize in high di-
mensions. We then develop a novel learning rule for modular networks to exploit
this advantage and empirically show the improved generalization of the rule, both
in- and out-of-distribution, on high-dimensional, modular tasks.

1 INTRODUCTION

Modular neural network (NN) architectures have achieved impressive results in a variety of domains
ranging from visual question answering (VQA) (Andreas et al., 2016a;b; Hu et al., 2017; Johnson
et al., 2017; Yi et al., 2018; Kim et al., 2019), reinforcement learning (Goyal et al., 2021; Madan
et al., 2021), robotics (Alet et al., 2018b; Pathak et al., 2019; Yang et al., 2020) and natural language
processing for which modular architectures based on attention (Bahdanau et al., 2015) are standard.
Modular NNs are thought to be better generalized by facilitating combinatorial generalization, a
phenomenon where a learning system recombines previously learned components in novel ways to
generalize to unseen inputs (Alet et al., 2018b; D’Amario et al., 2021; Mittal et al., 2022a;b; Jarvis
et al., 2023). Yet, we lack a fundamental understanding of why modularity benefits generalization.

In parallel, the generalization properties of monolithic (nonmodular) NNs have been increasingly
well understood both theoretically and empirically. In particular, current theory can explain the
double descent phenomenon where NN generalization error decreases with increasingly large ca-
pacity (Belkin et al., 2019; Spigler et al., 2019; Neal et al., 2019; Rocks & Mehta, 2022). NN
learning in a certain regime can also be understood as kernel regression (Jacot et al., 2018). Exten-
sive empirical studies have also measured scaling laws of NN generalization error (Kaplan et al.,
2020), and moreover, these scaling laws can be explained theoretically (Bahri et al., 2021; Hutter,
2021; Hastie et al., 2022). However, these laws indicate that the sample complexity required to gen-
eralize on a task scales exponentially with the intrinsic dimensionality of the task’s input (McRae
et al., 2020; Sharma & Kaplan, 2022). This raises the question: how can we hope to generalize on
high-dimensional problems with limited training data?

In this work, we investigate how modular NNs can circumvent this exponential number of samples.
We first synthesize existing generalization results in a simple theoretical model of NN generalization
error and empirically validate it on tasks with varying intrinsic dimensionality. We then use our
model to show theoretically that appropriately structured modular NNs avoid using an exponential
number of samples on modular tasks. However, recent work shows that architectural modularity is
in practice not sufficient on its own to solve modular tasks efficiently (Csordás et al., 2021; Mittal
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et al., 2022a); a solution to align NN modules to a task’s modularity is lacking. We propose a novel
learning rule that aligns NN modules to approach the underlying modules of a task and empirically
demonstrate its improved generalization.

We summarize our contributions as follows:

• We propose a simple, theoretical model of NN learning that synthesizes existing general-
ization results. Our model predicts the generalization error of NNs under varying number
of model parameters, number of training samples, and dimensions of variation in a task
input. We empirically validate our theoretical model on a novel parametrically controllable
sine wave regression task and show that sample complexity varies exponentially with task
dimension.

• We apply the theoretical model to compute explicit, non-asymptotic expressions for gen-
eralization error in modular architectures; to our knowledge, we are the first to do so. Our
result demonstrates that sample complexity is independent of task dimension for modular
NNs applied to modular tasks of a specific form.

• Based on our theory, we develop a learning rule to align NN modules to the modules under-
lying high-dimensional modular tasks with the goal of promoting generalization on these
tasks.

• We empirically validate the improved generalizability (both in- and out-of-distribution)
of our modular learning approach on parametrically controllable, high-dimensional tasks:
sine-wave regression and Compositional CIFAR-10.

2 RELATED WORK

2.1 MODULAR NEURAL NETWORKS

Recent efforts to model cognitive processes show that functional modules and compositional repre-
sentations emerge after training on a task (Yang et al., 2019; Yamashita & Tani, 2008; Iyer et al.,
2022). Partly inspired by this, recent works in AI propose using modular networks: networks com-
posed of sparsely connected, reusable modules (Alet et al., 2018b;a; Chang et al., 2019; Chaudhry
et al., 2020; Shazeer et al., 2017; Ashok et al., 2022; Yang et al., 2022; Sax et al., 2020; Pfeiffer
et al., 2023). Empirically, modularity improves out-of-distribution generalization (Bengio et al.,
2020; Madan et al., 2021; Mittal et al., 2020; Jarvis et al., 2023), modular generative models are
effective unsupervised learners (Parascandolo et al., 2018; Locatello et al., 2019) and modular ar-
chitectures can be more interpretable (Agarwal et al., 2021). In addition, meta-learning algorithms
can discover and learn the modules without prespecifying them (Chen et al., 2020; Sikka et al., 2020;
Chitnis et al., 2019).

Recent empirical studies have investigated how modularity influences network performance and
generalization. The degree of modularity increases systematic generalization performance in VQA
tasks (D’Amario et al., 2021) and sequence-based tasks (Mittal et al., 2020). Rosenbaum et al.
(2019) and Cui & Jaech (2020) study routing networks (Rosenbaum et al., 2018), a type of modular
architecture, and identified several difficulties with training these architectures including training
instability and module collapse. Csordás et al. (2021) and Mittal et al. (2022a) extend this type
of analysis to more general networks to show that NN modules often may not be optimally used
to promote task performance despite having the potential to do so. These analyses are primarily
empirical; in contrast, in our work, we aim to provide a theoretical basis for how modularity may
improve generalization. Moreover, given that architectural modularity may not be sufficient to en-
sure generalization, we propose a learning rule designed to align NN modules to the modularity of
the task.

2.2 NEURAL NETWORK SCALING LAWS

Many works present frameworks to quantify scaling laws that map a NN’s parameter count or train-
ing dataset size to an estimated testing loss. Empirically and theoretically, these works find that
testing loss scales as a power-law with respect to the dataset size and parameter count on well-
trained NNs (Bahri et al., 2021; Rosenfeld et al., 2020), including transformer-based language mod-
els (Sharma & Kaplan, 2022; Clark et al., 2022; Tay et al., 2022).
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Many previous works also conclude that generalizations of power-law or nonpower-law-based dis-
tributions can also model neural scaling laws well, in many cases better than vanilla power-law
frameworks (Mahmood et al., 2022; Alabdulmohsin et al., 2022). For instance, Hutter (2021) shows
that countably infinite parameter models closely follow non-power-law-based distributions under
unbounded data complexity regimes. In another case, Sorscher et al. (2022) show that exponential
scaling works better than power-law scaling if the testing loss is associated with a pruned dataset
size, given a pruning metric that discards easy or hard examples under abundant or scarce data
guarantees, respectively.

Some works approach this problem by modeling NN learning as manifold or kernel regression.
For example, McRae et al. (2020) considers regression on manifolds and concludes that sample
complexity scales based on the intrinsic manifold dimension of the data. In another case, Canatar
et al. (2021) draws correlations between the study of kernel regression to how infinite-width deep
networks can generalize based on the size of the training dataset and the suitability of a particular
kernel for a task. Along these lines, several works use random matrix theory to derive scaling laws
for kernel regression (Hastie et al., 2022; Cui et al., 2021; 2022; Wei et al., 2022; Jin et al., 2021).

Among other observations, this body of work shows that in the absence of strong inductive biases,
high-dimensional tasks have sample complexity growing roughly exponentially with the intrinsic
dimensionality of the data manifold. In this work, we borrow the theoretical techniques from this
line of work to investigate if learning the modular structure of modular tasks will reduce the sample
complexity of training.

3 MODELING NEURAL NETWORK GENERALIZATION

Table 1: Table of symbols.

Symbol Meaning
x Task input

φ(x) Feature matrix
y(x) Desired task output
W Weights of target function
ŷ(x) Output of model
θ Weights of model
Λ Covariance matrix of W
λi Element of Λ
n # of training samples
p # of model parameters
P # of total features
d Task output dimensionality
m Task intrinsic dimensionality
ui Module projection vector
Ui Module projection matrix

In this section, we present a toy model of NN learning that treats
NNs as linear functions of their parameters; this is along with the
lines of prior work such as Bahri et al. (2021); Canatar et al. (2021).
Although this common theoretical assumption does not directly ap-
ply to practical, non-linear architectures, the assumption provides
analytical tractability and, moreover, can be shown to predict gen-
eralization even in nonlinear networks (e.g. in the Neural Tangent
Kernel literature (Jacot et al., 2018)). Our specific analytical ap-
proach follows that of Hastie et al. (2022). Under this setting, we
find exact closed-form expressions for expected training and test
loss, representing a simplified version of the results in Hastie et al.
(2022). We find that our toy model captures key features of NN gen-
eralization applied to a sine wave regression task. We summarize
our notation in Tab 1.

3.1 MODEL SETUP

We defer the full details of our theoretical model setup to App A.
Here we present an overview: we consider a regression task with input x ∈ Rm and a feature
matrix φ(x) ∈ Rd×P such that over the data distribution, the features are distributed i.i.d. from a
unit Gaussian: φ(x)i,j ∼ N (0, 1); no other assumptions are made about φ. We consider the limit
when P → ∞. Suppose that our regression target function y : Rm → Rd (mapping from x to a d
dimensional output) is constructed linearly from φ(x):

y(x) = φ(x)W, (1)

where W ∈ RP×1. To accommodate multidimensional outputs, note that we shape input features
φ(x) as a matrix (with one row for each output dimension) and parameters W as a vector. This
choice is more general than parameterizing each output dimension independently (which can be cap-
tured as a special case of our approach) and , moreover, aligns with prior theoretical literature (Jacot
et al., 2018). Assume E[W ] = 0 and E[WWT ] = Λ, where Λ is diagonal and Tr(Λ) is finite. Sup-

pose we aim to approximate y(x) using a model ŷ(x) constructed as follows: ŷ(x) = φ(x)

[
I
0

]
θ,

where θ ∈ Rp×1 are model parameters and p is the number of parameters. This corresponds to
the model only being able to control p of the P true underlying parameters in the construction of
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Figure 1: Expected training (left) and test (right) set error in a toy model of NN generalization
as a function of the number of samples n and the number of model parameters p. The output
dimensionality is set as d = 1.

y. We decompose Λ blockwise as: Λ =

[
Λ1 0
0 Λ2

]
where Λ1 ∈ Rp×p and Λ2 ∈ R(P−p)×(P−p).

To capture the dependence of the target function on the input dimensionality m, we parameterize
Λ as having individual elements λi = c

[
i−Ω−m − (i+ 1)−Ω−m

]
. This corresponds to the number

of effective dimensions of variation of W scaling exponentially with m, which is consistent with
prior work (McRae et al., 2020). We also produce versions of our theoretical results without setting
a specific form for λi. Finally, we consider learning θ as the minimum norm interpolating solution.

3.2 THEORETICAL PROPERTIES

Next, we theoretically analyze the expected training and test set error of the above model.
Theorem 1. Given a target function y and model ŷ estimated as described above, in the limit that
P → ∞, the expected test loss when averaging over x and W is:

lim
P→∞

E
[
|y(x)− ŷ(x)|2

]
= dTr(Λ2)F (dn, p)− d

min(dn, p)

p
Tr(Λ1) + dTr(Λ)

= dF (dn, p)c(p+ 1)−Ω−m

− d
min(dn, p)

p
(c− c(p+ 1)−Ω−m

) + dc (2)

The expected training loss is:

lim
P→∞

1

n
E
[
∥y(X)− ŷ(X)∥22

]
= Tr(Λ2)(dn−min(dn, p))

=
dn−min(dn, p)

n
c(p+ 1)−Ω−m

(3)

with F (n, p) defined as F (n, p) = E
[∥∥R†

∥∥2
F

]
where R ∈ Rn×p has elements drawn i.i.d. from

N (0, 1).

Please see App B for a proof and App D for more details on F (n, p). Under general λi, training
and test error grow with Tr(Λ2); the specific rate at which they grow or shrink with parameters
m and p depends on how rapidly Tr(Λ2) grows with m and shrinks with p. Under the specific
parameterization for λi described above, Fig 1 plots the value of the training and test set error for
varying n and number of parameters, holding d = 1. Observe that there is a clear interpolation
threshold at p = n where the training loss becomes zero; for p ≥ n the model has sufficient capacity
to perfectly interpolate the training set. The training loss is positive and increases with n in the
underparameterized regime (p < n) since the model lacks the capacity to fit increasing amounts of
data n. At the p = n threshold, the test loss dramatically increases, then decreases as p increases
beyond n. This is consistent with empirically observed behavior of overparameterized NNs (Belkin
et al., 2019). Similarly, test loss decreases as n increases beyond p.
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Figure 2: Empirical trends of training (blue) and test (orange) loss over four parametric variations
for a NN trained on a sine wave regression task. The parameters varied are: k (number of modules),
m (input dimensionality), p (model size) and n (training set size). In the first two plots, each line
indicates a different model architecture, and in the last two plots, each line indicates a different
choice of m between 5 and 9, with n/p fixed at 1000/1153 respectively (left/right). The light lines
are averaged over all other parameters, and bold lines show averages over the light lines. Dashed
lines show theoretical predictions.

3.3 EMPIRICAL VALIDATION

Figure 3: Theoretically predicted
trend of m vs. n to achieve a
test loss of 1.2 on a sine wave re-
gression task. Each line indicates
a different fully connected NN
with a different width and depth.
m increases approximately ex-
ponentially with n.

We empirically validate our theoretical model on a
parametrically-variable modular sine wave regression task with
targets constructed as y(x) = 1√

k

∑k
i=1

∑τ
j=1 aij sin(ωiju

T
i x+

ϕij), where x ∈ Rm are inputs, y(x) ∈ R are outputs,
aij , ωij , ϕij ∈ R, ui ∈ Rm are parameters chosen randomly for
each target function and k and τ are fixed (see App E for further
task details). We train fully connected ReLU-activated NNs
of varying depth and width on the task. The task allows us to
quantify how NN generalization depends on a number of factors
such as the dimensionality m of the task input, the number of
model parameters p, the number of samples n and the number
of modules k in the construction of the target function. In Fig 2,
we find that our theoretical model matches empirical trends
of neural network training and test error (see App A for full
details). Nevertheless, we note two key discrepancies between
empirical and predicted trends: first, the test loss is empirically
larger than predicted under low training data. We hypothesize
that this may be because of difficulty optimizing for small n:
indeed, we find that the training loss is larger than expected for
small n (in the overparameterized regime (n < p), we expect a training loss of 0). Second, the error
spike at the interpolation threshold is smaller than theoretically predicted. This again may be due
to incomplete optimization, given that the interpolation threshold spike can be viewed as highly
adverse fitting to spurious training set patterns.

Our theoretical model predicts that the number of training samples required for generalization to
a fixed error rate scales exponentially with task dimensionality m (Fig 3). This raises a practical
challenge for high-dimensional problems, which may require massive amounts of training data.
Next, we aim to circumvent this exponential scaling.
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4 USING MODULARITY TO GENERALIZE IN HIGH DIMENSIONS

So far, we have shown that a theoretical model treating NN learning as linear regression can closely
model the generalization trends of actual NNs. In our model, the number of training samples re-
quired to generalize on a task with m dimensional input scales exponentially with m. Now, we
demonstrate that modular NNs (in contrast to the monolithic NNs studied so far) can avoid this
exponential dependence on m for tasks with an underlying modular structure. We will consider
modular networks in which model parameters are divided into separate modules, each of which pro-
cesses a projection of the input; monolithic (or nonmodular) networks in this context will correspond
to networks without an explicit separation of parameters into modules. We first demonstrate the the-
oretical advantages of modular NNs under a specific form of modularity, then develop a modular
NN learning rule to learn the underlying modular structure of a task. We then empirically validate
our approach and demonstrate that our approach can learn the true modules underlying the task.

4.1 SAMPLE COMPLEXITY OF MODULAR LEARNING

Recall in Sec 3, modeling a NN as a linear function of its parameters successfully captured its
generalization properties. We aim to use this model to demonstrate the improved generalization of
modular learning. For analytical traceability, we restrict our analysis to a specific modular setting
that captures crucial aspects of many real-world modular learning scenarios. In practical settings,
modules often handle low-dimensional inputs, such as attention maps in Andreas et al. (2016b). As
such, we assume modules receive projected versions of the task input x ∈ Rm. Our theoretical
analysis will assume linear projections, but our method and experiments are also applied to non-
linear projections. Moreover, we assume that the module outputs are summed to produce a final
output, a feature of architectures such as Mixture of Experts (Jacobs et al., 1991; Shazeer et al.,
2017). Specifically, consider a modular NN constructed as a linear combination of general NNs
(each constituting a module) of low-dimensional projections of the input:

ŷ(x) =
1√
K

K∑
j=1

ŷj(Û
T
j x), (4)

where Ûj ∈ Rm×b is a linear projection, ŷj : Rb → Rd is a NN. We will assume that b is small,
creating a bottleneck to each module’s input. We normalize by 1√

K
to make the scale of ŷ(x)

invariant to K (treating each term ŷj(Û
T
j x) as independent, the sum of the terms has variance

O(K), so dividing my
√
K makes their variance constant). Note that each module ŷj is itself a

monolithic NN with arbitrary architecture; we do not restrict the form of the modules themselves.
Assuming that the model is a linear function of its parameters, we may model this as:

ŷj(Û
T
j x) = φ(U)(x)F(Ûj) + φ(W )(x)

[
I
0

]
θj , (5)

where θj ∈ R1×p are the parameters of ŷj , φ(U)(x) ∈ Rd×mb and φ(W )(x) ∈ Rd×P are feature
matrices, F(·) denotes flattening a matrix into a vector, and we consider the limit when P → ∞.
Observe that this is derived simply by assuming the model output is linear in Uj and θj and defining
the coefficients multiplying them as features ϕ(U)(x) and ϕ(W )(x). As before, we assume the fea-
tures are distributed i.i.d from a unit Gaussian: φ(U)(x)i ∼ N (0, I), φ(W )(x)i ∼ N (0, I). We may
then write ŷ as a linear model:

ŷ(x) = φ(U)(x)
1√
K

K∑
j=1

F(Ûj) + φ(W )(x)

[
I
0

]
1√
K

K∑
j=1

θj . (6)

Next, we assume that the regression target y has the same modular structure with k modules:

y(x) =
1√
k

k∑
j=1

yj(U
T
j x), (7)
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where Uj ∈ Rm×b are the true projection directions and yj : Rb → Rc are the true modules
underlying the target. We apply the same linearity assumption to find:

y(x) = φ(U)(x)
1√
k

k∑
j=1

Uj + φ(W )(x)
1√
k

k∑
j=1

Wj (8)

where Wj ∈ RP are the parameters of yj . As in the case of monolithic networks, we assume
E[Wj ] = 0 and E[WjW

T
j ] = Λ where Λ is diagonal. In this case, observe that each Wj parameter-

izes a function with a b-dimensional input; thus it is appropriate to assume that Wj is distributed as
if m = b:

λi = c
[
i−Ω−b

− (i+ 1)−Ω−b
]

(9)

To preserve spherical symmetry in the distribution of Uj , we assume that E[Uj ] = 0 and
E[F(uj)F(uj)

T ] = I . To complete our model definition, we define φ(x) ∈ Rd×(mb+P ) as the
concatenation of φ(U)(x) and φ(W )(x): φ(x) =

[
φ(U)(x), φ(W )(x)

]
. We may then write:

y(x) = φ(x)

[
I
0

]
θ (10)

where θ ∈ Rmb+p is defined as: θ = 1√
K

[∑K
j=1 F(Ûj),

∑K
j=1 θj

]
. Similarly, we may write:

ŷ(x) = φ(x)W , where W ∈ Rmb+P is defined as: W = 1√
k

[∑k
j=1 F(Uj),

∑k
j=1 Wj

]
. Note

that this model is nearly identical to that of monolithic NNs in Sec 3: the key difference is the

different distribution of W . W has covariance Λ =

[
I 0
0 Λ

]
where Λ is not dependent on m; Λ

is parameterized analogously to Section 3. Assuming ŷ is trained to minimize squared loss on a
training set, we may adapt Theorem 1 to this setting to compute the expected training and test loss
of modular networks:
Theorem 2. Given a target function y and model ŷ estimated as described above, in the limit that
P → ∞, the expected test loss when averaging over x and W is:

lim
P→∞

E
[
||y(x)− ŷ(x)||2

]
= dTr(Λ2)F (dn, p)− d

min(dn, p)

p
Tr(Λ1) + dTr(Λ)

= dF (dn, p)c(p+ 1)−Ω−b

− d
min(dn, p)

p

(
mb+ c− c(p+ 1)−Ω−b

)
+ dmb+ dc (11)

The expected training loss is:

lim
P→∞

1

n
E
[
∥y(X)− ŷ(X)∥22

]
=

dn−min(dn, p)

n
Tr(Λ̄2)

=
dn−min(dn, p)

n
c(p+ 1)−Ω−b

(12)

with F (n, p) defined as:

F (n, p) = E
[∥∥R†∥∥2

F

]
(13)

where R ∈ Rn×p has elements drawn i.i.d. from N (0, 1).

The proof simply applies Theorem 1 with a different covariance matrix for Ŵ ; see App C for the full
proof. When Tr(Λ̄2) is independent of m, we see that unlike the monolithic network, the training
loss does not depend on m, and the dependence of the test loss on m is linear. This is because
the module inputs have effective dimensionality b instead of m due to the bottleneck caused by
the module projections Ûj . Furthermore, in the underparameterized regime (dn > p), the test loss
becomes (dF (dn, p) + d) Tr(Λ2) which does not depend on m, implying that the n required to
reach a specific loss can be bounded by a function of only p (assuming that some value of p can
achieve the desired loss). Thus, the sample complexity of modular NNs is independent of the task
dimensionality. This dimension independence holds regardless of the parameterization of λi; the
only condition is that the modules must have a dimension-independent input bottleneck (i.e. the
covariance Λ of module parameters must be independent of m). This result suggests that, unlike
monolithic NNs, modular NNs can scale to high-dimensional, modular problems without requiring
intractable amounts of data.
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(a) Sine Wave Regression Task (b) Compositional CIFAR-10

Figure 4: Comparison of our method with baselines of modular and monolithic architectures trained
from random initialization on the sine wave regression task (a) and Compositional CIFAR-10 (b).
(a): Required training sample size to achieve a desired test error vs. # of input dimensions. Each
light line indicates a different model architecture specified in App E averaged over five random
seeds. The bold lines show averages over the light lines. (b): Accuracy vs. # of component images
with a fixed number of training samples. Margins indicate standard errors over five random seeds.

4.2 MODULAR LEARNING RULE

Inspired by the improved theoretical generalizability of modular NNs, and the finding that modular
architectures trained with gradient descent on a task often cannot exploit these efficiencies (Csordás
et al., 2021; Mittal et al., 2022a), we develop a modular learning rule that practically exhibits this
advantage. Importantly, we now relax the assumption that module input projections are linear.

We consider modular regression tasks with targets constructed as follows:

y(x) =

k∑
j=1

yj(x;Uj) (14)

where yj are functions that depend on a potentially nonlinear projection of the input x as represented
by yj depending on both module projections Uj and inputs x. Observe that this generalizes the
linear projections considered before (in Eqn 7). Suppose we aim to model the target function by
approximating the Uj with Ûj and the yj with ŷj (parameterized as a neural network). We propose a
kernel-based rule to learn the initializations of Ûj from the training data; this allows us to efficiently
learn the modules ŷj . Assume we are provided a set of training data y(X) ∈ Rdn×1. Given the
modular structure, we first aim to approximate the data as:

y(X) ≈
K∑
i=1

φ(X; Ûi)θi, (15)

where X ∈ Rn×m, and φ is an arbitrary nonlinearity applied elementwise to the input data such that
φ(X; Ûi) ∈ Rdn×p, θi ∈ Rp and K is the number of expected modules.

We expect that if Ûi = Ui and φ is sufficiently expressive, then y(X) can be well approximated.
Assuming pK > dn, observe that the minimum norm solution for θi can be computed as:

θ1
θ2
...
θK

 =
[
φ(X; Û1) φ(X; Û2) · · · φ(X; ÛK)

]†
y(X) (16)

In general, such a solution exists for any choice of Ûi. However, we hypothesize that if the Ûi is far
from Ui, then the norm of the θi will be large: intuitively, interpolating the data along the ”incorrect”
projection directions Ûi will be more difficult. Thus, we optimize Ûi to minimize the squared norm
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of θi. Specifically, we minimize:
K∑
i=1

∥θi∥22 = y(X)TK−1y(X) (17)

where K ∈ Rdn×dn is a kernel matrix applied to the data corresponding to the following ker-
nel: K(x1, x2) =

∑K
i=1 φ(x

T
1 ; Ûi)φ(x

T
2 ; Ûi)

T = κ(x1, x2; Ûi), where κ(x1, x2; Ûi) is a module-
conditional kernel between x1 and x2. Experimentally, we tailor κ to the modular structure of the
problem we consider. Note that the above analysis only applies when ϕ is sufficiently expressive
(i.e. pK > dn), which is a natural assumption for typically overparameterized models like neu-
ral networks. When models do not satisfy this assumption, Eqn 16 yields a solution minimizing the
(generally nonzero) error between the predicted and true y(X). Importantly, in this case, minimizing
the norm of θ with respect to Ûi may not necessarily yield a lower prediction error.

App E describes the specific choice of κ. Alg 1 shows the full procedure to find a single module
projection Ûi; each step of the algorithm simply applies gradient on Eqn 17 with respect to Ûi. We
repeat this procedure K times with different random initializations to find the initial values of all K
module projections in our architecture. Then, we train all module parameters (including the Ûi) via
gradient descent on the task loss. We stress that our approach is applicable to a fairly general set of
modular architectures of the form

∑
j ŷj(x; Ûj): it does not restrict modules to receive only linear

projections of inputs, and, moreover, does not restrict the form of the modules.

4.3 EXPERIMENTAL RESULTS

Figure 5: Average cosine simi-
larity between learned and target
module directions over training
for a modular NN initialized with
our method vs. random initial-
ization (baseline).

We evaluate the generalizability of our method on a modular NN
vs. baselines of a randomly initialized monolithic and modular
NN trained on 1) sine wave regression tasks of varying dimen-
sionality (fixing k = m), 2) a nonlinear variant of the sine wave
regression task where the task has a nonlinear module struc-
ture, and 3) Compositional CIFAR-10 (based on Compositional
MNIST (Jarvis et al., 2023)), a modular task in which each input
consists of multiple CIFAR-10 images and the goal is to simul-
taneously predict the classes of all images; see App E Fig 7 for
an illustration. In Compositional CIFAR-10, each input is con-
structed as a concatenation of k flattened CIFAR-10 images (re-
sulting in a 3072k dimensional vector) and target outputs are k-
hot encoded 10k dimensional vectors encoding the class of each
component image. The modular architectures are constructed as
ŷ(x) =

∑k
j=1 ŷj(x;Uj) where yj are fully connected, ReLU-

activated networks, and the projection operation Uj parameter-
izes the first layer. Monolithic architectures are normal fully connected ReLU-activated networks.
See App E for further details on the datasets and the full experimental setup.

Modular NNs empirically generalize better in and out-of-distribution As shown in Fig 4, our
modular method generalizes better compared with both the monolithic baseline method and the
modular baseline method as evaluated by sample complexity for the sine wave regression task and
accuracy for Compositional CIFAR-10. On both tasks, our method’s advantage persists even on
higher-dimensional inputs. Interestingly, on the sine-wave task, the monolithic baseline outper-
forms the modular baseline, highlighting the difficulty of optimizing modular architectures. We also
conduct experiments on additional variants of Compositional CIFAR-10 that test out-of-distribution
generalization: 1) our method learns to classify unseen class combinations, thus generalizing com-
binatorially (App F Tab 3) and 2) our method is robust to small amounts of Gaussian noise added to
training inputs (App F Tab 4), thus generalizing to small distribution shifts.

Our learning rule finds the true task modules Fig 5 computes a similarity score between our
learned module projections (Û ) and the target module projections (U ) on the sine wave regression
task; our method indeed aligns with the target modules. App F Fig 11 plots a low-dimensional
representation of the target (U ) and learned (Û ) module projections: our learned NN initializations
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closely cluster around the target modules without any task training. On Compositional CIFAR-10,
the learned module projections can be directly visualized as in App F Fig 12; here, our module
initializations make each module sensitive to single component images without any task training,
suggesting that our approach promotes generalization by correctly learning the modular structure of
a task. We also conduct ablation studies in App F Fig 9 which show that 1) our method performs
nearly as well as using the ground-truth module directions and 2) allowing our learned module
directions to adapt directly to the task loss improves performance.

Table 2: Comparison of our
method with baselines on a
nonlinear variant of the sine
wave regression task where
k = m = 5. Test loss val-
ues are evaluated with stan-
dard errors over 5 trials.

Method Test Loss

Baseline monolithic 1.302± 0.223
Baseline modular 0.555± 0.136

Our method 0.393± 0.099

Our learning rule extends to nonlinear module projections So
far, we have considered modules (yj in Eqn 14) for which the input
is a linear function of both Uj and x. Next, we consider a nonlin-
ear variant of the sine wave regression task in which modules are a
function of ||uj − x||2, where uj are the vector module projection
directions, which is nonlinear in both uj and x. The modular archi-
tecture is constructed non-linearly as: 1√

K

∑K
j=1 ŷj(||ûj − x||2);

see App E for further details. Tab 2 illustrates that our method sig-
nificantly outperforms the baselines, indicating that our method ex-
tends to nonlinear settings as well.

5 DISCUSSION

Existing NN scaling laws show that in order to generalize on a task, monolithic NNs require an
exponential number of training samples with the task’s dimensionality. In this paper, we develop
theory demonstrating that modular NN can break this scaling law: they only require only a constant
number of samples to generalize in terms of task dimension when applied to modular tasks. To our
knowledge, we are the first to demonstrate such a result using explicit expressions for generalization
error in modular NNs. Based on this theoretical finding, we propose a novel learning rule for
modular NNs and demonstrate its improved generalization, both in and out of distribution, on a sine
wave regression task and Compositional CIFAR-10.

In pursuit of explicit, non-asymptotic expressions for generalization error in modular and monolithic
NNs, we make strong theoretical assumptions consistent with previous literature, which we hope can
be further relaxed in future work. Moreover, our results apply to a specific form of modularity that
captures structures in common real-world modular architectures but is not fully general. Notably,
our theory considers linear module projections (although our method is also applied to nonlinear
projections), and both the theory and the experiments assume that the model output is the sum of
module outputs. We expect that future analyses can demonstrate the benefits of modularity more
widely. For example, routing mechanisms are a popular type of modularity in which modules are
flexibly composed or combined based on a routing network. We expect analyses similar to ours to
show that, to the extent that routing mechanisms allow process low-dimensional inputs rather than
the full task input, they also generalize better. Similar theory may also explain the generalization
benefits of self-attention based architectures, which may learn modular substructures. Finally, we
find that while the theory predicts a task-dimension-independent sample complexity for modular
NNs, empirically we do not eliminate this dependence due to the difficulty of optimizing modular
NNs in high dimensions. Nevertheless, our learning rule significantly eases this challenge. Further,
our results suggest that more focus should be placed on optimization strategies for modern modular
architectures beyond naively applying gradient descent: this could unlock further generalization
benefits of commonly used modular motifs (such as routing mechanisms, attention, MoE etc.).

Practically, we expect that modularity provides the most benefit for modular tasks with high-
dimensional inputs; this is because the relative sample complexity improvement between nonmodu-
lar and modular tasks is greater when task dimensionality increases. Indeed, as discussed in Sec 2,
modularity empirically significantly improves generalization in domains ranging from reinforce-
ment learning and robotics to visual question answering and language modeling, all of which can
be highly compositional and can have high-dimensional task inputs. We speculate that the modular
structure of self-attention-based architectures may explain their success in many of these domains.
Our findings provide a step toward fundamentally understanding how modularity can be better ap-
plied to solve high-dimensional generalization problems.
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Stefano Spigler, Mario Geiger, Stéphane d’Ascoli, Levent Sagun, Giulio Biroli, and Matthieu Wyart.
A jamming transition from under-to over-parametrization affects generalization in deep learning.
Journal of Physics A: Mathematical and Theoretical, 52(47):474001, 2019.

Stanislaw J Szarek. Condition numbers of random matrices. Journal of Complexity, 7(2):131–149,
1991.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan
Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler. Scale efficiently: Insights from
pre-training and fine-tuning transformers. In ICLR, 2022.

Dietrich Von Rosen. Moments for the inverted wishart distribution. Scandinavian Journal of Statis-
tics, pp. 97–109, 1988.

13

osf.io/6ek2b


Published as a conference paper at ICLR 2025

Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models predict
how real-world neural representations generalize. In ICML, pp. 23549–23588. PMLR, 2022.

Yuichi Yamashita and Jun Tani. Emergence of functional hierarchy in a multiple timescale neural
network model: A humanoid robot experiment. PLOS Computational Biology, 4(11):1–18, 11
2008. doi: 10.1371/journal.pcbi.1000220. URL https://doi.org/10.1371/journal.
pcbi.1000220.

Guangyu Robert Yang, Madhura R. Joglekar, H. Francis Song, William T. Newsome, and
Xiao-Jing Wang. Task representations in neural networks trained to perform many cognitive
tasks. Nature Neuroscience, Jan 2019. URL https://www.nature.com/articles/
s41593-018-0310-2#.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. In NeurIPS, 2020.

Xingyi Yang, Jingwen Ye, and Xinchao Wang. Factorizing knowledge in neural networks. In ECCV,
pp. 73–91. Springer, 2022.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Joshua B. Tenenbaum.
Neural-symbolic vqa: Disentangling reasoning from vision and language understanding. In
NeurIPS, 2018.

14

https://doi.org/10.1371/journal.pcbi.1000220
https://doi.org/10.1371/journal.pcbi.1000220
https://www.nature.com/articles/s41593-018-0310-2#
https://www.nature.com/articles/s41593-018-0310-2#


Published as a conference paper at ICLR 2025

A THEORETICAL MODEL OF NEURAL NETWORK GENERALIZATION

A.1 SETUP

We consider a regression task with input x ∈ Rm and a feature matrix φ(x) ∈ Rd×P such that over
the data distribution, the features are distributed i.i.d. from a unit Gaussian: φ(x)i,j ∼ N (0, 1).
We consider the limit when P → ∞. Suppose that our regression target function y : Rm → Rd is
constructed linearly from φ(x):

y(x) = φ(x)W, (18)
where W ∈ RP×1. To accommodate multidimensional outputs, note that we shape input features
ϕ(x) as a matrix (with one row for each output dimension) and parameters W as a vector. This
choice is more general than parameterizing each output dimension independently (this can be cap-
tured as a special case of our approach) and , moreover, aligns with prior theoretical literature (Jacot
et al., 2018). Assume E[W ] = 0 and E[WWT ] = Λ, where Λ is diagonal and Tr(Λ) is finite.
Suppose we aim to approximate y(x) using a model ŷ(x) constructed as follows:

ŷ(x) = φ(x)

[
I
0

]
θ, (19)

where θ ∈ Rp×1 are model parameters and p is the number of parameters. This corresponds to the
model only being able to control p of the P true underlying parameters in the construction of y. We

decompose Λ blockwise as: Λ =

[
Λ1 0
0 Λ2

]
where Λ1 ∈ Rp×p and Λ2 ∈ R(P−p)×(P−p).

We make a specific choice of parameterization for the individual elements λi of Λ:

λi = c
[
i−Ω−m

− (i+ 1)−Ω−m
]

(20)

for some constants c and Ω. We justify this choice as follows: we define the effective dimensionality
of Λ as (

∑
i λi)

2∑
i λ

2
i

(this measure approximates the ℓ0 norm (Krishnan et al., 2011), and thus can be used

as a measure of Λ’s dimensionality). For large m, this can be approximated as: (
∑

i λi)
2∑

i λ
2
i

≈ Ω2m;

we interpret this as y having Ω2m free parameters. This is consistent with the observation that
regression on an m-dimensional input space has a function space that scales exponentially with
m (McRae et al., 2020). Intuitively, this is because the function must have enough free parameters
to express values at all points in volume of its input space, and volume scales exponentially with
m (Sharma & Kaplan, 2022).

Next, suppose we are given a set of training data X with associated feature matrix transformation
φ(X) ∈ Rdn×P , where n is the number of data points. Suppose θ is optimized to find the minimum
norm interpolating solution to the data:

min
θ

{∥∥∥∥φ(X)

[
I
0

]
θ − φ(X)W

∥∥∥∥2
2

+
γ

2
∥θ∥22

}
, (21)

where γ → 0. Recall that the solution can be found as:

θ =

[
φ(X)

[
I
0

]]†
φ(X)W. (22)

Thus, the model’s prediction on a point x is:

ŷ(x) = φ(x)

[
I
0

] [
φ(X)

[
I
0

]]†
φ(X)W. (23)

A.2 EMPIRICAL VALIDATION

Next, we empirically validate our theoretical model on a parametrically-variable modular sine wave
regression task (see App E for task details). The task allows us to quantify how NN generalization
depends on the number of dimensions of variation such as the dimensionality m of the task input,
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the number of model parameters p, the number of samples n and the number of modules k in the
construction of the target function. Note that our theoretical model does not include the number of
modules k since it does not explicitly construct the target modularly. Thus, directly applying our
theory, we would expect the loss to be invariant to k. Intuitively, this is because varying k increases
the complexity of the task in a way that is irrelevant for generalization.

Trends of generalization error of NNs Now, we train NNs of various architectures on the task
and observe error trends as a function of k,m, p and n. We fit parameters c and Ω of our theoretical
model to our task. Furthermore, because each parameter in our NNs may not correspond to a single
parameter in our theoretical model, we use a linear scaling of the number of true NN parameters
to estimate the number of effective parameters in our theoretical model; specifically, we estimate
p = αp′ where p′ is the actual number of NN parameters. See App E for more details.

Fig 2 shows that our theoretical model can capture many trends of the training and test loss as a
function of k,m, p and n. In particular, our model predicts the invariance of loss to k, the sub-linear
increase in loss with m, and the double descent behavior of loss with p and n. Notably, our model
predicts the empirical location of the interpolation threshold as seen in the last two plots of Fig 2.

We note two key discrepancies between our theory and empirical results: first, the loss is empir-
ically larger than predicted for small amounts of training data, and second, the error spike at the
interpolation threshold is smaller than predicted by the theory.

We believe the first discrepancy is due to imperfect optimization of neural networks, especially in
low data regimes. Note that the linearized analysis assumes that the linear model solution finds
the exact global optimum. However, the actual optimization landscape for modular architectures is
highly non-convex, and the global optimum may not be found especially for small datasets (indeed,
we find a significant discrepancy between predicted and actual training loss values for small data
size n; in the overparameterized regime, the predicted training error is exactly 0). We believe this
causes the discrepancy between predicted and actual test errors in low data regimes.

We hypothesize that the second discrepancy is also partly due to imperfect optimization. This is
because the interpolation threshold spike can be viewed as highly adverse fitting to spurious training
set patterns. This imperfect optimization is more pronounced at smaller m. Despite these discrep-
ancies, we nevertheless find that our theory precisely captures the key trends of empirical test error.

Finally, we consider the trend between m and n implied by our model. As Fig 3 reveals, for vari-
ous nonmodular architectures, the sample complexity grows approximately exponentially with the
task dimensionality, consistent with prior theoretical observations (see Sec 2.2). This implies that
generalizing on high-dimensional problems can require a massive number of samples.

B PROOF OF THEOREM 1

Proof. Test set error We first compute the expected test set error. Note that the squared error can
be written as:

||ŷ(x)− y(x)||2 =

∣∣∣∣∣
∣∣∣∣∣φ(x)

[
I
0

] [
φ(X)

[
I
0

]]†
φ(X)W − φ(x)W

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣φ(x)

[[
I
0

] [
φ(X)

[
I
0

]]†
φ(X)− I

]
W

∣∣∣∣∣
∣∣∣∣∣
2

(24)

For notational convenience, define A as the first p columns of φ(X) and B as the remaining P − p

columns such that φ(X) = [A,B]. Also, define M =

[
I
0

] [
φ(X)

[
I
0

]]†
φ(X) =

[
I
0

]
A†[A,B] =[

A†A A†B
0 0

]
. Then, using the cyclic property of trace, the squared error can be written as

||φ(x)(M−I)W ||2 = Tr
(
φ(x)(M − I)WWT (M − I)Tφ(x)T

)
= Tr

(
(M − I)WWT (M − I)Tφ(x)Tφ(x)

)
(25)
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Next, we can take the expectation with to x and W and use the fact that E[φ(x)Tφ(x)] = dI and
E[WWT ] = Λ to find that:

E
[
||ŷ(x)− y(x)||2

]
= dE

[
Tr((M − I)Λ(M − I)T )

]
(26)

Finally, expanding:

dE
[
Tr((M − I)Λ(M − I)T )

]
= dE

[
Tr(MTMΛ)

]
− 2dE [Tr(MΛ)] + dTr(Λ) (27)

Next, we compute E
[
Tr(MTMΛ)

]
:

E
[
Tr(MTMΛ)

]
= E

[
Tr

([
A†A 0

BTA†T 0

] [
A†A A†B
0 0

]
Λ

)]
= E

[
Tr

([
A†A A†AA†B

BTA†TA†A BTA†TA†B

]
Λ

)]
(28)

Next, we decompose Λ blockwise as:

Λ =

[
Λ1 0
0 Λ2

]
(29)

where Λ1 ∈ Rp×p and Λ2 ∈ R(P−p)×(P−p). Then:

E
[
Tr(MTMΛ)

]
= E

[
Tr

([
A†AΛ1 A†AA†BΛ2

BTA†TA†AΛ1 BTA†TA†BΛ2

])]
= E

[
Tr(A†AΛ1)

]
+ E

[
Tr(A†TA†BΛ2B

T )
]

(30)

Next, consider, E[Tr(MΛ)]:

E[Tr(MΛ)] = E
[
Tr

([
A†A A†B
0 0

]
Λ

)]
= E

[
Tr(A†AΛ1)

]
(31)

Combining this result with the earlier result, the expected squared error can be expressed as:

E
[
||ŷ(x)− y(x)||2

]
= dE

[
Tr(A†TA†BΛ2B

T )
]
− dE

[
Tr(A†AΛ1)

]
+ dTr(Λ) (32)

Next, we evaluate E
[
Tr(A†TA†BΛ2B

T )
]
. By linearity of trace, and the independence of A and B,

we have:
E
[
Tr(A†TA†BΛ2B

T )
]
= Tr

(
E[A†TA†] · E[BΛ2B

T ]
)

(33)

Define the following quantities:
α = E

[
A†T

:,1A
†
:,1

]
(34)

and
β = E

[
B1,:Λ2B

T
1,:

]
(35)

where ·i,j indicates the ith row and jth column of the argument. Note that by symmetry over the
data points and output dimensions, both E

[
A†TA†] ∈ Rdn×dn and E

[
BΛ2B

T
]
∈ Rdn×dn must

be proportional to the identity matrix. Thus, the expectation of their top left entry is the same as the
expectation of any other entry:

E
[
A†TA†] = αI (36)

and
E
[
BΛ2B

T
]
= βI (37)

Then,
E
[
Tr(A†TA†BΛ2B

T )
]
= Tr(αIβI) = αβn (38)

To evaluate α, observe that since A has elements distributed from N (0, 1):

F (dn, p) = E
[
∥A†∥2F

]
= Tr

(
E[A†TA†]

)
(39)

Using the definition of α:
F (dn, p) = αdn (40)
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Therefore, α = F (dn,p)
dn . To evaluate β, note that B1,: has elements distributed from N (0, 1). Thus,

β is simply:

β = E
[
B1,:Λ2B

T
1,:

]
=

P−p∑
i=1

E[B2
1,i]Λ2,i = Tr(Λ2) (41)

Substituting α and β into the expression for E
[
Tr(A†TA†BΛ2B

T )
]
:

E
[
Tr(A†TA†BΛ2B

T )
]
= Tr(Λ2)F (dn, p) (42)

Next, we evaluate E
[
Tr(A†AΛ1)

]
. First, define the singular value decomposition of A as A =

UΣV T . Then, expanding A and using the cyclic property of trace:

E
[
Tr(A†AΛ1)

]
= E

[
Tr(V Σ†UTUΣV TΛ1)

]
= E

[
Tr(V Σ†ΣV TΛ1)

]
(43)

Applying the linearity of trace:

E
[
Tr(A†AΛ1)

]
= Tr

(
E[V Σ†ΣV T ]Λ1

)
(44)

Now, we examine E
[
V Σ†ΣV T

]
∈ Rp×p. First, note that Σ†Σ is a diagonal matrix with entries 1

and 0: specifically, it has min(dn, p) 1s and remaining entries (if any) 0. Thus, we may write:

E
[
V Σ†ΣV T

]
=

min(dn,p)∑
i=1

E
[
V:,iV

T
:,i

]
(45)

Next, note that the distribution of A is symmetric to rotations of its p columns. Thus V:,i must also
have a rotationally symmetric distribution. Since ∥V:,i∥2 = 1, E

[
V:,iV

T
:,i

]
= 1

pI . Thus:

E
[
V Σ†ΣV T

]
=

min(dn, p)

p
I (46)

Substituting into the expression for E
[
Tr(A†AΛ1)

]
:

E
[
Tr(A†AΛ1)

]
=

min(dn, p)

p
Tr(Λ1) (47)

Combining the results from earlier, the expected squared error can be written as:

E
[
||ŷ(x)− y(x)||2

]
= dTr(Λ2)F (dn, p)− d

min(dn, p)

p
Tr(Λ1) + dTr(Λ) (48)

Next, using the definition of λi = c
[
i−Ω−m − (i+ 1)−Ω−m

]
, observe that:

Tr(Λ1) =

p∑
i=1

λi =

p∑
i=1

c
[
i−Ω−m

− (i+ 1)−Ω−m
]
= c− c(p+ 1)−Ω−m

(49)

Tr(Λ2) =

∞∑
i=p+1

λi =

∞∑
i=p+1

c
[
i−Ω−m

− (i+ 1)−Ω−m
]
= c(p+ 1)−Ω−m

(50)

Tr(Λ) = Tr(Λ1) + Tr(Λ2) = c (51)
We finally use the expressions for Λ1 and Λ2 to write the result in terms of c and Ω:

E
[
||ŷ(x)− y(x)||2

]
= dF (dn, p)c(p+ 1)−Ω−m

− d
min(dn, p)

p

(
c− c(p+ 1)−Ω−m

)
+ dc (52)

Training set error Now, we compute the training set error. Writing out the summed training set
error over all data points:

∥ŷ(X)−y(X)∥22 =

∥∥∥∥∥φ(X)

[
I
0

] [
φ(X)

[
I
0

]]†
φ(X)W − φ(X)W

∥∥∥∥∥
2

2

=
∥∥(AA† − I)[A,B]W

∥∥2
2

=
∥∥[(AA† − I)A, (AA† − I)B]W

∥∥2
2
=

∥∥[0, (AA† − I)B]W
∥∥2
2

(53)
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Expressing this squared norm as a trace and using the cyclic property of trace:∥∥[0, (AA† − I)B]W
∥∥2
2
= Tr

(
WT [0, (AA† − I)B]T [0, (AA† − I)B]W

)
= Tr

(
[0, (AA† − I)B]T [0, (AA† − I)B]WWT

)
(54)

Taking the expectation with respect to W :

E
[
Tr

(
[0, (AA† − I)B]T [0, (AA† − I)B]WWT

)]
= Tr

(
E
[
BT (AA† − I)2B

]
Λ2

)
(55)

Note that (AA† − I)2 = I −AA† Again using the cyclic property of trace and the independence of
A and B, we find:

Tr
(
E[BT (AA† − I)2B]Λ2

)
= Tr

(
E[I −AA†]E[BΛ2B

T ]
)

(56)

From the calculations for test set error, we have:

E
[
BΛ2B

T
]
= Tr(Λ2)I (57)

Substituting into the earlier expression:

Tr
(
E[I −AA†]E[BΛ2B

T ]
)
= Tr

(
E[I −AA†] Tr(Λ2)I

)
= Tr(Λ2)E[Tr(I −AA†)] (58)

To evaluate E[Tr(I−AA†)], we use the singular value decomposition of A = UΣV T and the cyclic
property of trace:

E
[
Tr(I −AA†)

]
= E

[
Tr(I − UΣV TV Σ†UT )

]
= E

[
Tr(I − UΣΣ†UT )

]
= E

[
Tr(I − ΣΣ†)

]
(59)

Observe that A has full rank with probability 1. Thus, Σ also has full rank with probability 1,
implying that ΣΣ† is with probability 1 a diagonal matrix with min(dn, p) 1s and remaining entries
(if any) 0:

E
[
Tr(I − ΣΣ†)

]
= dn−min(dn, p) (60)

Substituting into the earlier expression, we have a result for the total training set error over all
training points:

E
[
∥ŷ(X)− y(X)∥22

]
= Tr(Λ2)(dn−min(dn, p)) (61)

To arrive at the final result for expected training set error we simply divide by n and express Tr(Λ2)
in terms of c and Ω

1

n
E[||ŷ(X)− y(X)||22] =

dn−min(dn, p)

n
Tr(Λ2) =

dn−min(dn, p)

n
c(p+ 1)−Ω−m

(62)

C PROOF OF THEOREM 2

Proof. Test set error Using the same techniques as in the proof of Theorem 1, we may write the
expected test set error in terms of Λ as:

E
[
||ŷ(x)− y(x)||2

]
= dTr(Λ2)F (dn, p)− d

min(dn, p)

p
Tr(Λ1) + dTr(Λ) (63)

Using the definition λi = c
[
i−Ω−b − (i+ 1)−Ω−b

]
and the assumption p > mb, observe that:

Tr(Λ1) = mb+

p∑
i=1

λi = mb+

p∑
i=1

c
[
i−Ω−b

− (i+ 1)−Ω−b
]
= mb+ c− c(p+ 1)−Ω−b

(64)

Tr(Λ2) =

∞∑
i=p+1

λi =

∞∑
i=p+1

c
[
i−Ω−b

− (i+ 1)−Ω−b
]
= c(p+ 1)−Ω−b

(65)

Tr(Λ̄) = Tr(Λ̄1) + Tr(Λ̄2) = mb+ c (66)
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Substituting these expressions, the expected test set error is:

E
[
||ŷ(x)− y(x)||2

]
= dF (dn, p)c(p+1)−Ω−b

−d
min(dn, p)

p

(
mb+ c− c(p+ 1)−Ω−b

)
+dmb+dc

(67)

Training set error Again, using the techniques in the proof of Theorem 1, we write the expected
training set error in terms of Λ̄2

1

n
E
[
∥ŷ(X)− y(X)∥22

]
=

dn−min(dn, p)

n
Tr(Λ̄2) (68)

Using the expression for Tr(Λ̄2):

1

n
E
[
∥ŷ(X)− y(X)∥22

]
=

dn−min(dn, p)

n
c(p+ 1)−Ω−b

(69)

D PROPERTIES OF F (n, p)

In this section, we summarize some known properties about the function F (n, p), which appears in
Theorem 1. Recall that

F (n, p) = E
[
∥R†∥2F

]
,

where R ∈ Rn×p has elements drawn i.i.d. from N (0, 1).

In the regime |n− p| ≥ 2, an exact closed form is given by

F (n, p) =
min(n, p)

|n− p| − 1
if |n− p| ≥ 2.

Computing the square of the Frobenius norm of R† is equivalent to finding Tr(R†R†T ) =
Tr(R†TR†).

When n− p ≥ 2, R†R†T is a p× p matrix with Inverse-Wishart distribution of identity covariance,
which has mean 1

n−p−1I (Von Rosen, 1988). Therefore, the expected value of its trace is n
n−p−1 .

Analogously, when p−n ≥ 2, R†TR† is a n×n matrix with Inverse-Wishart distribution of identity
covariance, which has mean 1

p−n−1I , so the expected value of its trace is n
p−n−1 .

In the case where p = n, bound on the Frobenius norm of R† are known (Szarek, 1991). However,
for the cases where |p − n| ≤ 1, F (n, p) has no known explicit form, so it was computed by
averaging over 100 random trials.

E EXPERIMENTAL DETAILS

E.1 DATASET DETAILS

Sine Wave Regression Task We construct a regression problem where the regression target is
constructed as a sum of k functions of one-dimensional linear projections of the input x ∈ Rm.
Specifically, the regression target function y : Rm → R is constructed as follows:

y(x) =
1√
k

k∑
i=1

τ∑
j=1

aij sin(ωiju
T
i x+ ϕij) (70)

where aij , ωij , ϕij ∈ R, ui ∈ Rm, τ is the number of sine waves that comprise each function of
one-dimensional linear projection uT

i x. We sample these parameters of the target function indepen-
dently from the following distributions: aij ∼ N (0, 1), ωij ∼ N (0, 4π2), ϕij ∼ U(−π, π) where
N denotes a Gaussian distribution and U denotes a uniform distribution. ui is drawn uniformly from
a unit sphere. Note that the full function is made of k separate functions of one-dimensional projec-
tions of x, each of which has τ sine components. We normalize by 1√

k
so that y(x) does not scale
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with k. Note that the task is modular: although the task takes an m dimensional input, the target
is constructed as a combination of k modules operating on 1 dimensional projections of the input.
Given the projections, parameterizing functions of the projections are sufficient to parameterize the
full task.

A training dataset is generated by first drawing n training samples x from a mean-zero Gaussian:
x ∼ N(0, I). Then, for each x, the regression target y(x) is computed. The test dataset is con-
structed analogously. See Fig 6 for an illustrated example target function in one dimension.

Recall that any square integrable function can be approximated on a finite interval to arbitrary pre-
cision by a sufficiently large Fourier series. Thus, we may expect that as T approaches infinity, the
functional form in Equation 70 can express any function constructed as a sum of square integrable
functions of the uT

i x:
∑k

i=1 yi(u
T
i x) for any square integrable yi.

Note that m controls the dimensionality of x; thus, we may make the task test generalization over
arbitrarily high dimensions by simply increasing m. This is significant because prior work shows
that the number of samples required to generalize to a fixed precision on a regression problem scales
exponentially with the intrinsic dimensionality of the task input (McRae et al., 2020; Sharma &
Kaplan, 2022). Thus, even with a relatively simple task construction, we may expect to produce
tasks with arbitrary difficulty as measured by sample complexity.

Figure 6: An illustration of a single one-dimensional projection in our sine wave regression task
with sampled training points. The target function in this projection direction is made of three sine
wave components summed together.

Nonlinear Sine Wave Regression Task We also test our approach on a non-linear variation of
our sine wave regression task. Recall that in the original sine wave regression task, outputs are
constructed as:

y(x) =
1√
k

k∑
i=1

τ∑
j=1

aij sin(ωiju
T
i x+ ϕij) (71)

where ui are module projection directions. Note that this task has linear module input projections
(the projections uT

i x are linear functions of x and ui). In our nonlinear variant, we consider the
following outputs constructed with non-linear module input projections:

y(x) =
1√
k

k∑
i=1

τ∑
j=1

aij sin(ωij ||ui − x||2 + ϕij) (72)

where uT
i x is replaced with ||ui − x||2, which is non-linear in both ui and x. Remaining task

parameters are set the same way as in the original sine wave regression task.
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Figure 7: An example input from the Compositional CIFAR-10 task with 4 component images. The
goal of the task is to predict the classes of all component images in the input. In this case, with 4
component images, the output target would be a 4-hot encoded 40-dimensional vector representing
the true class of each of the 10 possible classes for each component image.

Compositional CIFAR-10 We conduct experiments on a Compositional CIFAR-10 dataset in-
spired by the Compositional MNIST dataset of (Jarvis et al., 2023). In the task, combinations of k
CIFAR-10 images are concatenated together and the model is asked to predict the class of all com-
ponent images simultaneously. Fig 7 illustrates an example input. Inputs are flattened to remove all
spatial structure. Outputs are k-hot encoded vectors constructed by concatenating the 1-hot encoded
labels for each component image; thus, targets are 10k dimensional. For this task, accuracies are
reported on average over component images (for instance, if a model correctly guesses the class of
two out of four images, the accuracy would be 50%).

Training and test sets for this task are constructed respectively as follows: each input in the training
(or test) set is produced by randomly selecting k images without replacement from the original
CIFAR-10 training (or test) set and concatenating them in a random permutation. With k images,
there are 10k possible class permutations for each input. We use a fixed training set size of 106;
thus, the probability of a test set point having the same class permutation as a training set point is
at most 106

10k
. For large k, we expect each test set point to test a class permutation unobserved in the

training set.

Note that this task fits the modular structure of Equation 14: yj(x;Uj) is a 1-hot encoded label of
dimensionality 10k indicating both the label of the j-th component image and which of the k images
is being predicted by the module. The full output is constructed as a sum of the k labels yj(x;Uj).
As with the sine wave regression task, by increasing the number of component images, we may test
generalization in arbitrarily high dimensions.

Class combination experiments: Compositional CIFAR-10 We consider a Compositional
CIFAR-10 variant in which the training inputs are constructed to have a distinct set of class la-
bel combinations compared to the test inputs (e.g. with k = 3, if any training set input has the class
combination cat, airplane, ship, then this class combination is not permitted on any test set
input). This is done by partitioning the full set of class combinations into a set allocated for the train-
ing inputs and another disjoint set allocated for the test inputs. Thus, this tests out-of-distribution
generalization. All other dataset parameters are set the same way as in the original Compositional
CIFAR-10 task.

Noisy inputs experiment: Compositional CIFAR-10 We consider a Compositional CIFAR-10
variant in which the training inputs have added Gaussian noise drawn from N (0, σI) of varying
magnitude σ; this is done after the concatenation of k images together. Test inputs do not have any
added noise added. All other dataset settings are identical to the original Compositional CIFAR-10
task.

E.2 EXPERIMENTS ON MONOLITHIC NETWORKS

Architecture and hyperparameter settings: sine wave regression In our experiments, all neu-
ral networks are fully connected and use ReLU activations except at the final layer. We do not
use additional operations in the network such as batch normalization. Networks are trained using
Adam (Kingma & Ba, 2015) to minimize a mean squared error loss. We perform a sweep over
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learning rates in {0.001, 0.01, 0.1} and find that the learning rate of 0.01 performs best in general
over all experiments, as justified by Fig 8 in Appendix E. Our results are reported in this setting. All
networks are trained for 10000 iterations which we find to be generally sufficient for convergence of
the training loss.

The network architectures are varied as follows: the width of the hidden layers is selected from
{8, 32, 128}, and the number of layers is selected from {3, 5, 7}. This yields 9 total architectures. In
order to consistently measure the number of parameters for an architecture as the input dimension-
ality varies, when we count the number of parameters we treat the input dimensionality m as fixed
at m = 1. Note that this slightly underestimates the true number of parameters in each NN. The
values of k and m range from 2 to 9. The value of n ranges from 100 to 100000.

All experiments are run over 5 random seeds and results are averaged. Experiments are run on a
computing cluster with GPUs ranging in memory size from 11 GB to 80 GB.

Fitting our theoretical model: sine wave regression task Our theoretical model of generaliza-
tion has three free parameters c, Ω and α. We select these parameters to best match the empirically
observed trends of training set performance on the sine wave regression task; we find that c = 1.15,
Ω = 1.57, and α = 0.85.

Architecture and hyperparameter settings: Compositional CIFAR-10 In our experiments, all
neural networks are fully connected and use ReLU activations except at the final layer. Note that the
inputs are flattened; our networks do not use the spatial structure of the input. Batch normalization
is applied before each ReLU. Images are normalized with standard normalization.

Networks are trained using Adam (Kingma & Ba, 2015) to minimize softmax cross-entropy loss
using a learning rate of 0.0001 and batch size of 128. Note that the loss is averaged over all com-
ponent images for each input. All networks are trained for a single epoch on 1000000 random
training points; note that with a moderately large number of images in each input, the total number
of possible training inputs can be much larger. We use a test set of size 10000.

The network architecture consists of fully connected layers of size 512, 512, 512, 256 and 128 before
a final fully connected layer to predict the output label.

Experiments are run over five random seeds for each hyperparameter configuration. Experiments
are run on a computing cluster with GPUs ranging in memory size from 11 GB to 80 GB.

E.3 EXPERIMENTS ON MODULAR NETWORKS

Architecture and hyperparameter settings: sine wave regression task Each module ŷj(x; Ûj)

is constructed as follows: Ûj consists of two vector components ûj and v̂j . The module output is
constructed as:

ŷj(x; Ûj) = fj(û
T
j x) (73)

where fj represents a neural network with scalar input and output.

We set the kernel κ as follows:

κ(x1, x2; (û, v̂)) = e
− 1

2σ2

(
xT
1 û

v̂T û
− xT

2 û

v̂T û

)2

+ e
− 1

2σ2

(
x1−

xT
1 û

v̂T û
v̂−x2+

xT
2 û

v̂T û

)2

v̂

(74)

where σ is a hyperparameter. Intuitively, v̂ ∈ Rm corresponds to a direction along which projection
directions û of other modules are not sensitive. This choice of kernel is motivated by the observation

that if v̂T ûj for j ̸= i, then
(
x− xT ûi

v̂T ûi
v̂
)T

ûj = xT ûj and
(
x− xT ûi

v̂T ûi
v̂
)T

ûi = 0: x − xT ûi

v̂T ûi
v̂

removes all the information in x relevant to module ui while retaining information relevant to all
other modules.

Due to the computational cost of computing sample complexity via binary search (Algorithm 2),
we fix several hyperparameters by small-scale experiments before the final experiment to control
the total runtime. We first sweep through some parameters of in our module initialization method
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(Algorithm 1). Specifically, we perform sweep over module batch size in {32, 128, 512}, module
learning rate in {0.001, 0.01, 0.1}, and module iteration number in {100, 1000}. The combination
of module batch size 128, module learning rate 0.1, and 1000 module iterations has the lowest test
error in our experiment.

Then, we sweep through number of architectural modules in {1, k, 2 × k, 5 × k}, learning rate
in {0.001, 0.01, 0.1} and σ in {0.3, 1.0, 3.0}. We find that the combination of module number
5 × k, learning rate = 0.01 and σ = 1.0 achieves best test performance. In addition, for our
main experiments on modular NNs, all networks for dimension (k = m) smaller than 7 are trained
for 1000 iterations, while dimension 7 and 8 networks are trained for 700 iterations, dimension 9
networks are trained for 500 iterations and dimension 10 networks are trained for 200 iterations.
The high-dimension networks are stopped early since a smaller number of iterations was sufficient
to converge on the training set; these numbers are determined based on small-scale experimental
observations.

In binary search, we stop the search when the higher bound and the lower bound are close enough
(r − l < 0.3) to shorten our runtime. Also, due to GPU memory limitations, we can only support
a sample size up to 106, so we stop our experiments when the current sample size reaches 222

(c = 22). We set the maximum search iteration (B) to be 18.

We test our network in 9 network architectures: the width of the hidden layers is selected from
{8, 32, 128}, and the number of layers is selected from {2, 4, 6}. We also have three different values
({0.5, 1.0, 1.5}) for the desired test error ϵ in binary search so as to pinpoint the most suitable value
for further application of our method; we select a desired error of 1.5 for our results. We keep k = m
in all experiments and the values range from 2 to 9. All experiments are run over 5 random seeds
and on the same computing cluster described in the previous section.

Algorithm 1 Finding a single module projection Û

Require: Supervised training set (X , y(X)), iterations iters, number of training points n, learning
rate η, batch size b, kernel function κ
Randomly initialize Û
for iter = 1, . . . , iters do

Initialize b× b kernel matrix K
Randomly subsample b training points from X and store in X̃
for i = 1, . . . , b do

for j = 1, . . . , b do
K[i, j] = κ(x̃i, x̃j ; Û); index points from X̃

end for
end for
L = y(X̃)TK−1y(X̃)
Compute gÛ = ∇ÛL; can be found with automatic differentiation
Û = Û − ηgÛ

end for
Return Û

24



Published as a conference paper at ICLR 2025

Algorithm 2 Binary search for sample complexity
Require: A training algorithm T (n) which outputs test loss of model when trained on n samples;

the desired error ϵ; the number of binary search iterations B.
Initialize l = 0 and r = ∞: our current guess for the number of required samples lies in [2l, 2r].
Initialize c = 12: our current guess for the number of required samples is 2c.
for b = 1, . . . , B do

Find test loss e = T (2c)
if e > ϵ then

Increase number of samples
l = c
if r = ∞ then

c = c+ 2
else
c = (c+ r)/2

end if
else

Decrease number of samples
r = c
c = (l + c)/2

end if
end for
Return 2c

Disentanglement experiments: sine wave regression task For our disentanglement experiments
evaluating whether modular NNs can find the true modules underlying the task, we use the following
hyperparameter settings: m = k = 10, n = 1000. We use a modular NN with 20 modules. Each
module uses a fully connected architecture with 5 layers and a hidden layer width of 32. We train
the modular NN with a learning rate of 0.001 for 1000 iterations.

For learning our module initialization, we use 100 iteration steps with a learning rate of 0.01 and a
batch size of 128. σ is set to 1.0.

For constructing a t-SNE embedding, we use a perplexity of 5. For computing similarity scores, we
first compute the absolute value of the cosine similarity between each pair (ui, ûj) of learned and
target module directions. For each learned module direction ûi, we then find the target module with
the largest absolute cosine similarity. Finally, we average the maximum absolute cosine similarities
across all modules to produce a similarity score:

∑K
i=1 maxkj=1

ûT
i uj

||ûi||2||uj ||2 .

Ablation experiments: sine wave regression task For our ablation experiments, we train on
10000 points. k = m is varied from 2 to 9 and the number of architectural modules is set to 5× k.
Each module uses a fully connected architecture with 5 layers and a hidden layer width of 32. We
train the modular NN with a learning rate of 0.001 for 1000 iterations.

For learning our module initialization, we use 100 iteration steps with a learning rate of 0.01 and a
batch size of 128. σ is set to 1.0.

Architecture and hyperparameter settings: nonlinear sine wave regression task To learn
the nonlinear sine wave regression function, we consider modular architectures of the form:
1√
K

∑K
j=1 ŷj(||ûj − x||2) where ŷj is a neural network and ûj are learned parameters. We apply

our method to learn an initialization for modules ûj using the following kernel:

κ(x1, x2; ûi) = e−
1

2σ2 (||x1−ûi||−||x2−ûi||)2 (75)

We consider modules constructed as fully connected networks with 6 layers and width 128. We set
k = m = 5 and set n = 1000. All other hyperparameter settings are consistent with our original
sine wave regression experiments.
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Architecture and hyperparameter settings: Compositional CIFAR-10 Note that given an in-
put composed of k images, the flattened input dimensionality is 3072k. Each module ŷj(x; Ûj) is
constructed as follows: Ûj ∈ R3072k×512 and the module output is constructed as:

ŷj(x; Ûj) = fj(Û
T
j x) (76)

where fj represents a neural network with a 512 dimensional input and an output of dimension 10k.

We set the kernel κ as follows:

κ(x1, x2; Û) = e−
1

2σ2 ||xT
1 Û−xT

2 Û||2
2I (77)

where σ is a hyperparameter; we set σ = 20.0 to match the scale of the distances between projected
inputs. To make kernel optimization more efficient, we stochastically optimize only the components
of y(X)TK−1y(X) corresponding to a single class at a time.

Unless otherwise specified, hyperparameters are set to be consistent with the monolithic network.
Additional hyperparameters are set as module batch size 128 and module learning rate 0.01. Module
optimization is performed over a single pass over the training data. We fix the number of architec-
tural modules as 32. Each module is a ReLU-activated neural network with hidden layer sizes 256,
128 and 64. Each ReLU is preceded by batch normalization. The module outputs are all concate-
nated and fed into a final linear layer to produce the 10k dimensional output. Critically, all the
modules have the same weights. This is done to match the properties of the task: each modular
component of the task is the same, namely to predict the class of a single CIFAR-10 image. This
is unlike the sine wave regression task, where each modular component corresponds to a different
function.

We vary the number of images k from 1 to 8. All experiments are run on 5 random seeds and on the
same computing cluster described in the previous section.
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F ADDITIONAL EXPERIMENTS

Figure 8: Performance of monolithic architecture on a sine wave regression task across learning rates
of {0.001, 0.01, 0.1} (left), widths of {8, 32, 128} (center), and number of layers {3, 5, 7} (right).
Each line represents a different architecture and desired test error, and the average performance is
shown in bold. Note in the left plot that a learning rate of 0.01 tends to perform the best, so all our
experiments are reported in this setting.

Table 3: Comparison of our method with baselines on a Compositional CIFAR-10 variant in which
the training inputs are constructed to have a distinct set of class label combinations compared to the
test inputs (e.g., if any training set input has the class combination cat, airplane, ship, then this class
combination is not permitted on any test set input). Thus, this tests combinatorial out-of-distribution
generalization. We find test set accuracies for inputs with 6 component images. Standard errors over
5 trials are reported.

Method Test Accuracy

Baseline monolithic 42.56%± 0.07%
Baseline modular 45.26%± 0.06%

Our method 49.90%± 0.15%

Table 4: Comparison of our method with baselines on a Compositional CIFAR-10 variant in which
the training inputs have added Gaussian noise drawn from N (0, σI) of varying magnitude σ. We
find test set accuracies for inputs with 6 component images (note that the test points do not have
added noise). This tests out-of-distribution generalization to small distribution shifts. Standard
errors over 4 trials are reported.

Noise Level Baseline Monolithic Baseline Modular Our Method

0 42.92± 0.05% 45.66± 0.14% 50.49± 0.09%
0.3 42.57± 0.05% 45.42± 0.10% 50.27± 0.08%
1 39.47± 0.09% 43.07± 0.08% 46.95± 0.11%
3 31.75± 0.03% 34.71± 0.05% 34.67± 0.13%

10 21.76± 0.10% 24.31± 0.34% 24.41± 0.13%
30 11.09± 0.33% 12.50± 0.55% 12.29± 0.40%
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Figure 9: Test loss of various training methods of training a modular NN on a sine wave regression
task as the dimensionality of the task k = m is varied. Margins indicate standard deviations over 5
random seeds. Ours indicates that NN module directions û are initialized using our method and then
trained on the task. Fixed initialization indicates that module directions are learned with our method
and are fixed during task training. True modules indicates that û is set to the underlying module
directions of the task u (which are generally unknown) and fixed during task training. Observe
that when k = m is large, using the true, ground-truth module directions slightly outperforms our
method, although interestingly our method performs better for low-dimensional tasks. Fixing the
initialization found by our method results in significantly worse performance relative to allowing
the module directions to vary.

Figure 10: Test loss of a modular NN initialized with our method with different numbers of modules
on a sine wave regression task. The experiment is conducted with all hyperparameters fixed at the
optimal value detailed in App E except the learning rate and σ. The experiment is run under 5
random seeds. The lines are averaged over all runs. Model performance increases as the number
of modules increases. Intuitively, as the number of modules increases, the model can contain more
information, thus achieving lower error.

28



Published as a conference paper at ICLR 2025

20 0 20 40
40

20

0

20

150 100 50 0 50 100 150

50

0

50

100

150

60 40 20 0 20 40

50

0

50

Learned Target

Figure 11: t-SNE embedding of target (u) and learned module projections (û) learned by a randomly
initialized modular NN without training (left), randomly initialized modular NN trained with gradi-
ent descent (center), and our initialized modules (right) on a sine wave regression task. From left to
right, learned modules cluster more closely around target modules.

(a) Baseline Modular, Initialization

(b) Baseline Modular, After Training

(c) Our Method, Initialization

(d) Our Method, After Training

Figure 12: Illustration of the weights Û before and after training using the baseline modular method
and our method on the Compositional CIFAR-10 task with 6 component images. A single column
of the Û corresponding to a single module is plotted. The weights are organized into 6 groups
corresponding to which of the component images each weight is sensitive to. Intuitively, this plots
the sensitivity of a single module to each of the component images. (a) At initialization, the baseline
modular method has randomly initialized Û . (b) After training, it learns to be mostly sensitive to
a particular image in the input. (c) Our method learns to be sensitive to only a single image (the
rightmost image) in the input before any training on the task, thus correctly learning the underlying
modular structure of the task. (d) The module in our method retains its sensitivity to the original
rightmost image over the course of training.
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