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Abstract

How to conduct teacher training for knowledge distillation is still an open problem.
It has been widely observed that a best-performing teacher does not necessarily
yield the best-performing student, suggesting a fundamental discrepancy between
the current teacher training practice and the ideal teacher training strategy. To fill
this gap, we explore the feasibility of training a teacher that is oriented toward
student performance with empirical risk minimization (ERM). Our analyses are
inspired by the recent findings that the effectiveness of knowledge distillation hinges
on the teacher’s capability to approximate the true label distribution of training
inputs. We theoretically establish that ERM minimizer can approximate the true
label distribution of training data as long as the feature extractor of the learner
network is Lipschitz continuous and is robust to feature transformations. In light
of our theory, we propose a teacher training method SoTeacher which incorporates
Lipschitz regularization and consistency regularization into ERM. Experiments on
benchmark datasets using various knowledge distillation algorithms and teacher-
student pairs confirm that SoTeacher can improve student accuracy consistently.

1 Introduction

Knowledge distillation aims to train a small yet effective student neural network following the
guidance of a large teacher neural network (Hinton et al., 2015). It dates back to the pioneering idea
of model compression (Buciluǎ et al., 2006) and has a wide spectrum of real-world applications, such
as recommender systems (Tang & Wang, 2018; Zhang et al., 2020), question answering systems (Yang
et al., 2020; Wang et al., 2020) and machine translation (Liu et al., 2020).

Despite the prosperous interests in knowledge distillation, one of its crucial components, teacher
training, is largely neglected. The existing practice of teacher training is often directly targeted at
maximizing the performance of the teacher, which does not necessarily transfer to the performance
of the student. Empirical evidence shows that a teacher trained toward convergence will yield an
inferior student (Cho & Hariharan, 2019) and regularization methods benefitting the teacher may
contradictorily degrade student performance (Müller et al., 2019).

In this work, we explore the theoretical feasibility of training the teacher toward student performance.
Our analyses are built upon the recent understanding of knowledge distillation from a statistical
perspective. In specific, Menon et al. (2021) show that the soft prediction provided by the teacher is
essentially an approximation to the true label distribution, and true label distribution as supervision
for the student improves the generalization bound compared to one-hot labels. Dao et al. (2021) show
that the accuracy of the student is directly bounded by the distance between teacher’s prediction and
the true label distribution through the Rademacher analysis.
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Based on the above understanding, a teacher benefitting the student should be able to learn the true
label distribution of the distillation data 1. Since practically the distillation data is often reused from
the teacher’s training data, the teacher will have to learn the true label distribution of its own training
data. This might appear to be infeasible using standard empirical risk minimization, as the teacher
network often has enough capacity to fit all one-hot training labels, in which case, distilling from
teacher predictions should largely degrade to directly training with one-hot labels. Existing works
tend to evade this dilemma by distilling from teacher predictions only on data that is not used in
teacher training (Menon et al., 2021; Dao et al., 2021).

Instead, we directly prove the feasibility of training the teacher to learn the true label distribution
of its training data. We show that the standard empirical risk minimizer can approach the true label
distribution of training data under a mixed-feature data distribution, as long as the feature extractor of
the learner network is Lipschitz continuous and is robust to feature transformations.

In light of our theory, we show that explicitly imposing the Lipschitz and consistency constraint in
teacher training can facilitate the learning of the true label distribution and thus improve the student
performance (See Section D). We conduct extensive experiments on benchmark datasets using various
knowledge distillation algorithms and different teacher-student architecture pairs (See Section F),
which demonstrate that our method can improve student performance consistently and significantly.

2 Preliminaries

We study knowledge distillation in the context of multi-class classification. Specifically, we are given
a set of training samples D = {(x(i), y(i))}i∈[N ], where [N ] := {1, 2, · · · , N}. D is drawn from a
probability distribution pX,Y that is defined jointly over input space X and label space Y = [K]. For
convenience, we denote 1(y) ∈ RK as the one-hot encoding of label y.

Learning Objective of Teacher in Practice. In common practice, the teacher network f is
trained to minimize the empirical risk given a loss function ℓ, namely minf R̂(f), where R̂(f) =
E(x,y)∈D ℓ(f(x), y), and E(x,y)∈D is the empirical expectation. We consider cross-entropy loss
ℓ(f(x), y) = −1(y) · log f(x).
Ideal Learning Objective of Teacher. Recent advances in understanding knowledge distillation
suggest a teacher should approximate the true label distribution of the distillation data, which is often
reused from the teacher’s training data. From this perspective, ideally the teacher should learn the true
label distribution of its training data, namely minf R(f), where R(f) = E(x,y)∈D ∥f(x)− p∗(x)∥.
Here, p∗(x) := pY |X(·|x) denotes the true label distribution of an input x, namely the (unknown)
distribution that its label is sampled from, which is not necessarily one-hot. And ∥ · ∥ is a norm.

Our Research Question. One can find that there is a fundamental discrepancy between the
learning objective of the teacher in the common practice and that in the ideal case. In particular,
minimization of R̂(f) would lead to f(x) = 1(y) for any input x, which significantly deviates from
p∗(x) and thus challenges the effectiveness of knowledge distillation. Therefore, in this work, we
explore the following question.

• Can a teacher network learn the true label distribution of the training data with the standard
teacher training practice?

Note that our focus in the rest of the paper is teacher training, thus by “data” we refer to the data used
to train the teacher, and by “network” we refer to the teacher network.

3 Theoretical Feasibility to Learn True Label Distribution of Training Data
3.1 Notations and Problem Setup

Notation. We will use calligraphic typefaces to denote sets, e.g., the dataset D. We use |D|
to denote the size of the set. We use ◦ to denote function composition. We use Õ(η) to denote
polynomial terms of η.

1For simplicity, we refer to the training data of the student model in knowledge distillation as the distillation
data (Stanton et al., 2021)
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Data Distribution. We consider a data distribution referred to as the mixed-feature distribution.
Our distribution can be viewed as a simplified version of the “multi-view distribution” introduced
in Allen-Zhu & Li (2020). Our distribution can also be viewed as a variation of Latent Dirichlet
Allocation (LDA) (Blei et al., 2001), a generative data distribution widely used to model text data.

Definition 3.1 (Mixed-feature distribution). We first generate the input x following LDA. We define a
feature vocabulary Z that denotes the names of all possible features in the data inputs. For example,
in image classification we can have Z = {‘eye’, ‘tail’, ‘wheel’, ...}. Now for each data example i,

1. Sample M feature names, namely {zm}m∈[M ] ∼ pZ , where pZ is a discrete distribution over Z .

2. For each feature name z, we sample its input representation xz ∈ Rb, namely xz ∼ pX(·|z),
where pX(·|z) is a continuous distribution with finite variance 2, namely Var[X|z] ≤ νz .

3. For each feature name z, we transform its input representation by a function γ : Rb → Rb, namely
xz := γ(xz), where γ is sampled from a set of possible transformation functions T 3.

4. We concatenate the transformed representations of these features to obtain the input, namely
x = (xz1 , xz2 , · · · , xzM ), where x ∈ Rb×M . This views each data input as a concatenation of M
patches and each patch is a b-dimensional vector 4, which follows Allen-Zhu & Li (2020).

Now we generate the label y. We assume each feature name defines a label distribution pY (·|z) 5.
The label distribution of an input x is the geometric average of the label distributions of the feature
names, namely y ∼ pY (·|x) := (

∏
m pY (·|zm))1/M .

Network Architecture. We consider a multi-layer neural network that produces probabilistic
outputs, namely f : Rb×M → [0, 1]K . The network consists of a feature extractor and a classification
head, namely f := fC ◦ fE , defined as follows respectively.

• fE : Rb×M → RM×d denotes the feature extractor, whose architecture can be arbitrary as long as
it processes each patch independently 6.

• fC : RM×d → RK denotes the probabilistic classification head, which consists of a 1x1 convolu-
tional layer and a modified Softmax layer, namely fC(h) = ˜Softmax(wCh), wherewC ∈ R1×K×d.
The 1x1 convolutional layer is similar to the assumption in (Allen-Zhu & Li, 2020), while the
modified Softmax is slightly different from the standard Softmax in terms of the denominator,

namely ˜Softmax(ĥ) = exp(1/M
∑

m ĥm)

(
∏

m

∑
k exp(ĥm,k))1/M

, where ĥ := wch.

3.2 A Hypothetical Case: Invariant Feature Extractor

For starters, we investigate a hypothetical case where the feature extractor is invariant, which means
that it always outputs the same feature map given the same feature patch, regardless of which input
this feature patch is located at or which transformation is applied to this feature patch. Given such
an assumption, showing the learning of true label distribution of the training data can be greatly
simplified. We will thus briefly walk through the steps towards this goal to shed some intuitions.

Definition 3.2 (Invariant feature extractor). We call fE an invariant feature extractor, if for any
two inputs i and j, for any two transformations γ and γ′, fE(γ(x

(i)
m )) = fE(γ

′(x
(j)
m′)), as long as

zm = zm′ , namely the feature names of the patches m and m′ match.

We first show that given an invariant feature extractor, the minimizer of the empirical risk has the
property that its probabilistic prediction of each feature converges to the sample mean of the labels
whose corresponding inputs contain this feature.

2The finite variance means that the representation of the same feature sampled in different inputs is similar.
3For example, in image classification γ can be rotation, mirroring, or resizing.
4Note that this is only to simplify the notations and can be generalized, as our theory is not dependent on it.

The specific shape of each patch can be arbitrary, for example, can be a 3-rank tensor (height, width, channel) in
image classification.

5For example, pY (·|‘eye’) = (0.5, 0.5, 0, · · · ), assuming the label set is given as (‘cat’, ‘dog’, ‘car’, · · · ).
6With a little abuse of notation, we will also write hm := fE(xm)

3



Lemma 3.3 (Convergence of the probabilistic predictions of features). Let ȳz :=
1
N

∑
{i|z∈Z(i)} 1(y

(i)), where Z(i) denote the set of feature names in the i-th input, and thus

{i|z ∈ Z(i)} denotes the set of inputs that contain feature z. Let f∗ = argminf R̂(f) and as-
sume f∗E is an invariant feature extractor. Let pf∗(xz) := Softmax(wCf

∗
E(xz)) be the probabilistic

prediction of feature z. We have pf∗(xz) = ȳz.

The intuition here is that since the feature extractor is invariant and the number of possible features
is limited, the feature maps fed to the classification head would be a concatenation of M vectors
selected from a fixed set of |Z| candidate vectors, where each vector corresponds to one feature in
the vocabulary. Therefore, the empirical risk can be regrouped as − 1

N

∑
i 1(y

(i)) · log f∗(x(i)) =
− 1

M

∑
z∈Z ȳz · log pf∗(xz). Then by Gibbs’ inequality, the empirical risk can be minimized only

when the probabilistic prediction of each feature pf∗(xz) is equal to ȳz .

We now show that the sample mean of multiple labels ȳz will converge to the average distribution
of these labels, even though they are non-identically distributed. Since each label is a categorical
random variable, this directly follows the property of multinomial distributions (Lin et al., 2022) 7.
Lemma 3.4 (Convergence of the sample mean of labels). Let p̄(·|z) = 1

N

∑
{i|z∈Z(i)} pY (·|x(i)),

then with probability at least 1− δ, we have ∥ȳz − p̄(·|z)∥ ≤ Õ
(√

KN−1M |Z|−1δ−1
)
.

Next, we show that the average label distribution p̄(·|z) approximates the true label distribution of
the corresponding feature z.
Lemma 3.5 (Approximation of the true label distribution of each feature). Following notations in
Lemma 3.4, we have ∥p̄(·|z)− pY (·|z)∥ ≤ Õ

(
M |Z|−1

)
.

The intuition is that since the average distributions p̄(·|z) here are all contributed by the true label
distribution of the inputs that contain feature z, it will be dominated by the label distribution of feature
z, given some minor assumption on the sampling process of features when generating each input.

Finally, combining Lemmas 3.3, 3.4, 3.5, one can see that the probabilistic prediction of each feature
given by the empirical risk minimizer will approximate the true label distribution of that feature.
Subsequently, we can show that the probabilistic prediction of each input approximates the true label
distribution of that input, which leads to the following main theorem.
Theorem 3.6 (Approximation error under a hypothetical case). Given the setup introduced in
Section 3.1, let f∗ = argminf R̂(f) and assume f∗E is an invariant feature extractor. Then for any
input x ∈ D, with probability at least 1− δ,

∥f∗(x)− p∗(x)∥ ≤ Õ
(√

KN−1M |Z|−1δ−1
)
+ Õ

(
M |Z|−1

)
. (1)

3.3 The Realistic Case: Robust Feature Extractor

In a realistic case where the feature extractor is not exactly invariant, it is still possible to approximate
the true label distribution, as long as the feature extractor is robust to the variation of features across
inputs and also robust to feature transformations. In fact, we only need to modify Lemma 3.3 in the
hypothetical case, where the probabilistic predictions of features pf∗(xz) will now converge to ȳz
with some constant error. This in turn causes additional error terms in Theorem 3.6. We will defer
the detailed discussion to Section A.1.

4 Conclusion and Future Work

In this work, we rigorously studied the feasibility to learn the true label distribution of the training data
under a standard empirical risk minimization framework. We also explore possible improvements of
current teacher training that facilitate such learning. We believe our work is among the first attempts to
explore the theory and practice of training a student-oriented teacher in knowledge distillation. In the
future, we plan to adapt our theory to other knowledge distillation scenarios such as transfer learning
and mixture of experts, and explore more effective student-oriented teacher training methods.

7It is also feasible to achieve this lemma by applying Lindeberg’s central limit theorem, with a weak
assumption that the variance of each label is finite.
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A Additional theory

A.1 Realistic Case

We now show that in a realistic case where the feature extractor is not exactly invariant, it is still
possible to approximate the true label distribution, as long as the feature extractor is robust to the
variation of features across inputs and also robust to feature transformations.

Definition A.1 (Lipschitz-continuous feature extractor). We call fE a LX -Lipschitz-continuous
feature extractor, if for any two inputs i and j, ∥fE(x(i)m )− fE(x

(j)
m′)∥ ≤ LX∥x(i)m − x

(j)
m′∥, as long

as zm = zm′ , namely the feature names of the patches m in i and patch m′ in j match.

Definition A.2 (Transformation-robust feature extractor). We call fE a LΓ-transformation-robust
feature extractor, if for any patch m in any input i, and for any transformation γ, ∥fE(γ(x(i)m )) −
fE(x

(i)
m )∥ ≤ LΓ.

Similar to Lemma 3.3, given a Lipschitz-continuous and transformation-robust feature extractor, the
probabilistic predictions of features will still converge to the sample mean of the labels where the
corresponding inputs contain this feature, up to some constant error. This requires the assumption
that the input representation of the same feature is similar across different inputs, which is intuitive
and covered by Definition 3.1. All other lemmas introduced in the hypothetical case still hold trivially
as they are not dependent on the network. Therefore, we can have the following result.

Theorem A.3 (Approximation error under a realistic case). Given the setup introduced in Section 3.1,
let f∗ = minf R̂(f) and assume f∗E is a LX -Lipschitz-continuous and LΓ-transformation-robust
feature extractor. Let ν = maxz νz . Then for any input x ∈ D, with probability at least 1− δ,

∥f∗(x)− p∗(x)∥ ≤ Õ
(√

KN−1M |Z|−1δ−1
)
+ Õ

(
M |Z|−1

)
+ Õ(LX δ̃

−0.5ν) + Õ(LΓ). (2)

B Proof

B.1 Modified Softmax

We provide more details for the modified Softmax we defined. Recall that

Definition B.1 (Modified Softmax).

˜Softmax(ĥ) =
exp( 1

M

∑
m ĥm)

(
∏

m

∑
k exp(ĥm,k))1/M

. (3)

Our modified Softmax layer maps ĥ ∈ RM×K to the probabilistic output f(x) ∈ RK . It can be
viewed as a combination of an average pooling layer and a Softmax layer, where the denominator of
the softmax layer is a geometric average of the sum-exp of the probabilistic output of each batch ĥm.
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B.2 Lemma 3.3

Proof. Given the labeled dataset D = {(x(i), y(i))}, the empirical risk of the network function f
under cross-entropy loss can be written as

− 1

N

∑
i

1(y(i)) · log f(x(i))

=− 1

N

∑
i

1(y(i)) · log ˜Softmax(wCfE(x
(i)))

:=− 1

N

∑
i

1(y(i)) · log ˜Softmax
(
ĥ(i)
)

=− 1

N

∑
i

1(y(i)) · log
exp( 1

M

∑
m ĥ

(i)
m )

(
∏

m

∑
k exp(ĥ

(i)
m,k))

1/M

=− 1

N

∑
i

1(y(i)) · log

( ∏
m exp ĥ

(i)
m )∏

m

∑
k exp(ĥ

(i)
m,k)

)1/M

=− 1

MN

∑
i

1(y(i)) · log
∏

m exp(ĥ
(i)
m )∏

m

∑
k exp(ĥ

(i)
m,k)

=− 1

MN

∑
i

1(y(i)) ·
∑
m

log
exp(ĥ

(i)
m )∑

k exp(ĥ
(i)
m,k)

=− 1

MN

∑
i

1(y(i)) ·
∑
m

log Softmax(ĥ(i)m )

:=− 1

MN

∑
i

1(y(i)) ·
∑
m

log p(i)m ,

(4)

where we have defined p(i)m = Softmax(ĥ(i)m ) ≡ Softmax(wcfE(x
(i)
m )). Here x(i)m indicates the m-th

patch of the input x.

Now recall our assumption that fE is an invariant feature extractor, which means that for any i
and j, any m and m′, and any γ and γ′, fE(γ(x

(i)
m )) = fE(γ

′(x
(j)
m )) as long as zm = zm′ . Since,

p
(i)
m = Softmax(ĥ(i)m ) = Softmax(wCfE(γ(x

(i)
m ))), this means that p(i)m = p

(j)
m′ as long as zm = zm′ .

Therefore, the empirical risk can be regrouped as

− 1

MN

∑
i

1(y(i)) ·
∑
m

log p(i)m

=− 1

MN

∑
i

1(y(i)) ·
∑
z∈Zi

log pz

=− 1

M

∑
z∈Z

 1

N

∑
{i|z∈Z(i)}

1(y(i))

 · log pz,

where we have let pz := p
(i)
m where zm = z.

Now we use the KKT condition to approach the empirical risk minimization problem since the only
variable is pz . The first-order stationarity condition gives

∇pz · = − 1

MN

∑
i

1(y(i))⊙ 1

pz
+ λ1 = 0, (5)

where ⊙ indicates the Hadamard product. Now Hadamard product both sides by pz we have

− 1

MN

∑
i

1(y(i)) + λpz = 0,

9



and thus
pz =

1

MNλ

∑
i

1(y(i)).

Now consider the condition 1 · pz = 1, we have

1

MNλ

∑
i

1(y(i)) · 1 = 1.

Since
∑

i 1(y
(i)) · 1 = |{i|z ∈ Z(i)}|,

λ =
|{i|z ∈ Z(i)}|

MN
.

This leads to
pz =

1

Nz

∑
{i|z∈Z(i)}

1(y(i)),

where Nz := |{i|z ∈ Z(i)}|.

B.3 Lemma 3.4

Proof. The sum of independently but non-identically distributed multinomial random variables is
known as the Possion multinomial distribution (PMD). We utilize a known result of PMD to prove
this lemma.

Proposition B.2 (Lin et al. (2022)). Let Ii = (Ii1,··· ,Iim), i = 1, · · · , n be n independent random
indicators where Iij ∈ {0, 1} and

∑m
j=1 Iij = 1 for each i. Let pi = (pi1, · · · , pim) be the

probability vector that Ii is sampled from, where
∑m

j=1 pij = 1. Let X be the sum of these n random
indicators, namely X = (X1, · · · , Xm) =

∑n
i=1 Ii. Then we have

E[X] = (p·1, · · · , p·m), (6)

where p·j =
∑n

i=1 pij .

And

Σjk =

{∑n
i=1 pij(1− pij), if j = k,

−
∑n

i=1 pijpik, if j ̸= k,
(7)

where Σ is the covariance matrix of X .

Following this result, since 1(y(i)) is a random indicator and y(i) ∼ pY (·|x(i)), we have

E[ȳz] = p̄(·|z) := 1

N

∑
{i|z∈Z(i)}

pY (·|x(i)). (8)

And let the covariance matrix of ȳz to be Σȳz
. Let Nz := |{i|z ∈ Z(i)}| be the number of inputs that

contain feature z, we have

tr[Σȳz ] =
1

N2

∑
{i|z∈Z(i)}

K∑
k=1

pY (k|x(i))(1− pY (k|x(i)))

=
1

N2

∑
{i|z∈Z(i)}

K∑
k=1

(
1− p2Y (k|x(i))

)
≤ (K − 1)Nz

N2
,

(9)

where we utilized the fact that
∑

k p
2
Y (k|x(i)) ≥ 1

K by the Cauchy-Schwarz inequality.

10



Then by a multivariate Chebyshev inequality (see, e.g., Chen (2007)), we have with probability 1− δ,

∥ȳz − p̄(·|z)∥22 ≤ tr(Σȳz )

δ
≤ (K − 1)Nz

N2
· 1
δ
. (10)

Now finally, we derive an estimation of Nz . Recall that each input contains M feature names
sampled from the feature vocabulary |Z| subject to the distribution pZ . Therefore,

E
[
Nz

N

]
= P (z ∈ Z(i)) = 1− (1− pZ(z))

M ≈MpZ(z). (11)

For simplicity, we assume pZ is a uniform distribution, which means pZ(z) ≈ 1/|Z|, for any z. Note
that this is not a necessary assumption since Nz can also be trivially bounded by N . Therefore we
have

∥ȳz − p̄(·|z)∥22 ≤ (K − 1)M

N |Z|
· 1
δ
. (12)

Recall that M is the number of features (patches) in each input, and |Z| is the total number of
features in the vocabulary. This result thus indicates a larger feature vocabulary can improve the
approximation while a more complicated input can hurt the approximation.

B.4 Lemma 3.5

Proof. To prove this lemma we need an additional weak assumption on the true label distribution of
features that are “similar”.

Assumption B.3. Let I(z, z′) define the pointwise mutual information (PMI) between features z and
z′. Let ψ be a concave and monotonically decreasing function. We assume

DKL (pY (·|z) ∥pY (·|z′) ) = ψ (I(z, z′)) . (13)

Eq. (13) indicates that when sampling the features in an input, if two features are more likely to be
sampled together, their true label distribution should be more similar.

Given Eq. (13) and recall that

pY (·|x(i)) =

(∏
m

pY (·|zm)

)1/M

=

 ∏
z∈Z(i)

pY (·|z)

1/M

,

it can be shown that the difference between the true label distribution of the input that contains feature
z and the true label distribution of feature z can be bounded. In specific, for i ∈ {i′|z ∈ Z(i′)}, we
have

DKL

(
pY (·|z)

∥∥∥pY (·|x(i))) = −
∑
k

pY (k|z) log
(
pY (k|x(i))
pY (k|z)

)

= − 1

M

∑
k

pY (k|z) log

 ∏
z′∈Z(i)

pY (k|z′)
pY (k|z)


= − 1

M

∑
k

pY (k|z)
∑

z′∈Z(i)

log

(
pY (k|z′)
pY (k|z)

)

= − 1

M

∑
z′∈Z(i)

∑
k

pY (k|z) log
(
pY (k|z′)
pY (k|z)

)
=

1

M

∑
z′∈Z(i)

DKL (pY (·|z) ∥pY (·|z′) )

=
1

M

∑
z′∈Z(i)

ψ (I(z, z′)) ,

≤ ψ(Ī(i, z)).

(14)
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where Ī(i, z) = 1
M

∑
z′∈Z(i) I(z, z′) is the average PMI between feature z and other features z′ in

an input that contains z. Here we utilize Jensen’s inequality on concave functions.

Now we can show that the average true label distribution of inputs that contain feature z approximates
the true label distribution of feature z. Recall the definition of average true label distribution of inputs
that contain feature z is p̄(·|z) := 1

N

∑
{i|z∈Z(i)} pY (·|x(i)). And we have

∥p̄(·|z)− pY (·|z)∥1 =

∥∥∥∥∥∥
 1

N

∑
{i|z∈Z(i)}

pY (·|x(i))

− pY (·|z)

∥∥∥∥∥∥
1

≤ 1

N

∥∥∥∥∥∥
∑

{i|z∈Z(i)}

(
pY (·|x(i))− pY (·|z)

)∥∥∥∥∥∥
1

≤ 1

N

∑
{i|z∈Z(i)}

∥∥∥pY (·|x(i))− pY (·|z)
∥∥∥
1

≤ 21/2

N

∑
{i|z∈Z(i)}

D
1/2
KL

(
pY (·|z)∥ pY (·|x(i))

)
≤ 21/2

N

∑
{i|z∈Z(i)}

ψ1/2(Ī(i, z))

≤ 21/2Nz

N
ψ1/2

(
Ī(z)

)
≈ 21/2M

|Z|
ψ1/2

(
Ī(z)

)
,

(15)

where Ī(z) = 1
Nz

min{i|z∈Z(i)} Ī(i, z) is the average PMI over all inputs that contain feature z.

B.5 Theorem 3.6

Proof. Recall the probabilistic output of the minimizer of the empirical risk is

f∗(x(i)) =

(∏
m

p(i)m

)1/M

=

 ∏
z∈Z(i)

pz

1/M

, (16)

where pz defined in Section B.2 is the network’s probabilistic output of each feature z.
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Note that for all k, f(x(i))(k) ≤ 1 and pY (k|x(i)) ≤ 1. Therefore,∥∥∥f∗(x(i))− pY (·|x(i))
∥∥∥
2
≤ exp

(∥∥∥log(f∗(x(i)))− log(pY (·|x(i)))
∥∥∥
2

)
= exp

 1

M

∥∥∥∥∥∥
∑

z∈Z(i)

(log pz − log pY (·|z))

∥∥∥∥∥∥
2


≤ exp

 1

M

∑
z∈Z(i)

∥ log pz − log pY (·|z)∥2


≤ exp

 1

M

∑
z∈Z(i)

β log ∥pz − pY (·|z)∥2


≤
(

max
z∈Z(i)

∥pz − pY (·|z)∥2
)β

=

(
max
z∈Z(i)

∥ȳz − pY (·|z)∥2
)β

=

(
max
z∈Z(i)

(∥ȳz − p̄(·|z)∥2 + ∥p̄(·|z)− pY (·|z)∥2)
)β

≤
(

max
z∈Z(i)

(∥ȳz − p̄(·|z)∥2 + ∥p̄(·|z)− pY (·|z)∥1)
)β

=

(√
(K − 1)M

N |Z|
1

δ
+

21/2M

|Z|
ψ1/2(Īmin)

)β

,

(17)

where β := min(mink f(x
(i))(k),mink pY (k|x(i))) and Īmin = minz∈Z(i) Ī(z).

B.6 Theorem A.3

Proof. We first present a Lemma similar to Lemma 3.3, which shows that the probabilistic predictions
of features will still converge to the sample mean of the labels where the corresponding inputs contain
this feature, up to some constant error.

Lemma B.4 (Convergence of the probabilistic predictions of features with Lipschitz-continuous
and transformation-robust feature extractor). Let ȳz := 1

N

∑
{i|z∈Z(i)} 1(y

(i)), where Z(i) denote
the set of feature names in the i-th input, and thus {i|z ∈ Z(i)} denotes the set of inputs that
contain feature z. Let f∗ = argminf R̂(f) and assume f∗E is a LX -Lipschitz-continuous and
LΓ-transformation-robust feature extractor. Let pf∗(xz) := Softmax(wCf

∗
E(xz)). We have with

probability 1− δ,
∥pf∗(xz)− ȳz∥ ≤ Lz, (18)

where Lz := 2LΓ + LXÕ(νz

δ ).

Proof. Since f∗E is a LX -Lipschitz-continuous and LΓ-transformation-robust feature extractor, for
any i, j, for any m,m′ and any γ, γ′, as long as zm = zm′ ≡ z, we will have ,

∥fE(x(i)m )− fE(x
(j)
m′)∥

=∥fE(γ(x(i)z ))− fE(γ
′(x(j)z ))∥

≤∥fE(γ(x(i)z ))− fE(x
(i)
z )∥+ ∥fE(γ′(x(j)z ))− fE(x

(j)
z )∥+ ∥fE(x(i)z )− fE(x

(j)
z )∥

≤2LΓ + LX∥x(i)z − x(j)z ∥

(19)
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Now since the feature representation in the input space is always concentrated, by Chebyshev’s
inequality we will have with probability 1− δ

∥x(i)z − x(j)z ∥ ≤ Õ
(νz
δ

)
.

Therefore, we have with probability 1− δ,

∥fE(x(i)m )− fE(x
(j)
m′)∥ ≤ Lz,

where Lz := 2LΓ + LXÕ
(
νz

δ

)
.

The empirical loss minimization now becomes

min
f

− 1

MN

∑
i

1(y(i)) ·
∑
m

log p(i)m

s.t. ∥p(i)m − p
(j)
m′∥ ≤ Lz, if zm = zm′ .

(20)

Let Sz := {i|z ∈ Z(i)} for simplicity, we can have

− 1

MN

∑
i

1(y(i)) ·
∑
m

log p(i)m = − 1

MN

∑
i

1(y(i)) ·
∑

z∈Z(i)

log p(i)z

= − 1

MN

∑
z∈Z

∑
{i|z∈Z(i)}

1(y(i)) · log p(i)z ,

= − 1

MN

∑
z∈Z

∑
i∈Sz

1(y(i)) · log p(i)z ,

(21)

Note that this basically means that we assign the label of an example y(i) to each feature z contained
in this example’s input.

Therefore, (20) will be equivalent to the following problem.

min
{p(i)

z }
− 1

MN

∑
z∈Z

∑
i∈Sz

1(y(i)) · log p(i)z

s.t. ∥p(i)z − p(j)z ∥ ≤ Lz,1 · p(i)z = 1, ∀ z, ∀ i, j ∈ Sz, i ̸= j.

Note that the constraint ∥ · ∥ ≤ Lz is only imposed in each subset Sz .

Using the KKT condition, the above problem can be further formulated as follows.

min
{p(i)

z }
− 1

MN

∑
z∈Z

∑
i∈Sz

1(y(i)) · log p(i)z

+
∑
z

∑
j,k∈Sz,j ̸=k

µz;jk

(
∥p(j)z − p(k)z ∥ − Lz

)
+
∑
z

∑
l∈Sz

λz;l(1 · p(l)z − 1),

s.t. µz;jk(∥p(j)z − p(k)z ∥ − Lz) = 0, µz;jk ≥ 0, ∀ z, ∀ j, k ∈ Sz, j ̸= k,

∥p(j)z − p(k)z ∥ ≤ Lz, 1 · p(l)z = 1, ∀ z, ∀ j, k, l ∈ Sz, j ̸= k.

(22)

Using the first-order stationarity condition we have, ∀ z, ∀ i ∈ Sz ,

∇
p
(i)
z
· = − 1

MN
1(y(i))⊙ 1

p
(i)
z

+ 2
∑
k ̸=i

µik(p
(i)
z − p(k)z ) + λi1 = 0, (23)

where for simplicity we neglected the subscript z since the condition is the same for all z.

Sum (23) over i we have

− 1

MN

∑
i

1(y(i))⊙ 1

p
(i)
z

+ 2
∑
i

∑
k ̸=i

µik(p
(i)
z − p(k)z ) +

∑
i

λi1 = 0. (24)
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Note that
∑

i

∑
k ̸=i µik(p

(i)
z − p

(k)
z ) = 0 since each pair of i, k appears twice in the sum, where µik

is the same but the sign of p(i)z − p
(k)
z is different. Therefore

− 1

MN

∑
i

1(y(i))⊙ 1

p
(i)
z

+
∑
i

λi1 = 0. (25)

Notice that to minimize the loss, if y(i) = y(j), it is necessary that p(i)z = p
(j)
z .

Now we dot product both sides of (25) with 1(k), we have

− 1

MN

|{i|y(i) = k}|
p
(i)
z [k]

+
∑
i

λi = 0, ∀ i ∈ {i|y(i) = k},

which means that

p(i)z [k] =
|{i|y(i) = k}|
MN

∑
i λi

, if y(i) = k.

Now recall the constraint that when i ̸= j,

∥p(i)z − p(j)z ∥ ≤ Lz.

This at least indicates that
∥p(i)z − p(j)z ∥∞ ≤ Lz.

Therefore,

p(i)z [k′]− |{i|y(i) = k′}|
MN

∑
i λi

≤ Lz, if k′ ̸= y(i).

This implies that ∥∥∥∥∥p(i)z − 1

MN
∑

i λi

∑
i

1(y(i))

∥∥∥∥∥ ≤ Lz

Now consider the condition 1 · p(i)z = 1, we will have∑
i

λi =
Nz

MN
.

Thus ∥∥∥p(i)z − ȳz

∥∥∥ ≤ Lz,

where we recall ȳz = 1
Nz

∑
i 1(y

(i)).

Now to prove Theorem A.3, we only need to combine Lemma B.4 and Lemmas 3.4, 3.5, where the
reasoning is exactly same as the proof of Theorem 3.6.

C Limitations

In this paper we focus on the theoretical feasibility of learning the true label distribution of training
examples with empirical risk minimization. Therefore we only analyze the existence of such a
desired minimizer, but neglect the optimization process to achieve it. By explore the optimization
towards true label distribution, potentially more dynamics can be found to inspire new regularization
techniques.

Also, our proposed method for training a student-oriented teacher may not be able to advance the
state-of-the-art significantly, as the regularization techniques based inspired by our analyses (e.g.,
Lipschitz regularization and consistency regularization) may more or less be leveraged by existing
training practice of deep neural networks, either implicitly or explicitly.

15



D SoTeacher

Based on our theoretical findings, we investigate practical techniques for training the teacher model
to more accurately approximate the true label distribution of the training data.

Lipschitz regularization. Theorem A.3 suggests that it is necessary to enforce the feature extractor
to be Lipschitz continuous. This may also be achieved by current teacher training practice, as neural
networks are often implicitly Lipschitz bounded (Bartlett et al., 2017). Nevertheless, we observe that
explicit Lipschitz regularization (LR) can still help in multiple experiments (See Sect. F). Therefore,
we propose to incorporate a global Lipschitz constraint into teacher’s training. For the implementation
details, we follow the existing practice of Lipschitz regularization (Yoshida & Miyato, 2017; Miyato
et al., 2018) and defer them to Appendix E.

Consistency regularization. Theorem A.3 also shows that to learn the true label distribution, it is
necessary to ensure the feature extractor is robust to feature transformations. This is aligned with
the standard practice which employs data augmentation as regularization. However, when data is
scarce, it is better to explicitly enforce the model to be robust to transformations. This is known as
consistency regularization (CR) (Laine & Aila, 2017; Xie et al., 2020; Berthelot et al., 2019; Sohn
et al., 2020) that is widely used in semi-supervised learning.

Considering the training efficiency of consistency regularization, we utilize temporal ensem-
bling (Laine & Aila, 2017), which penalizes the difference between the current prediction and
the aggregation of previous predictions for each training input. In this way, the consistency under data
augmentation is implicitly regularized since the augmentation is randomly sampled in each epoch.
And it is also efficient as no extra model evaluation is required for an input.

To scale the consistency loss, a loss weight is often adjusted based on a Gaussian ramp-up curve in
previous works (Laine & Aila, 2017). However, the specific parameterization of such a Gaussian curve
varies greatly across different implementations, where more than one additional hyperparameters
have to be set up and tuned heuristically. Here to avoid tedious hyperparameter tuning we simply
linearly interpolate the weight from 0 to its maximum value, namely λCR(t) =

t
T λ

max
CR , where T is

the total number of epochs.

Summary. To recap, our teacher training method introduces two additional regularization terms.
The loss function can thus be defined as ℓ = ℓStand. + λLRℓLR + λCRℓCR, where ℓStand. is the standard
empirical risk R̂(f) and λLR is the weight for Lipschitz regularization. Our method is simple to
implement and incurs only minimal computation overhead (see Section F.2).

E Implementation details

Lipschitz regularization. Following previous practice using Lipschitz regularization for gener-
alization on unseen data (Yoshida & Miyato, 2017) or stabilizing generative model (Miyato et al.,
2018), we regularize the Lipschitz constant of a network by constraining the Lipschitz constant
of each trainable component. The regularization term is thus defined as ℓLR =

∑
f Lip(f), where

f denotes a trainable component in the network f . The Lipschitz constant of a network compo-
nent Lip(f) induced by a norm ∥ · ∥ is the smallest value L such that for any input features h, h′,
∥f(h)− f(h′)∥ ≤ L∥h− h′∥. Here we adopt the Lipschitz constant induced by 1-norm, since its
calculation is accurate, simple and efficient. For calculating the Lipschitz constants of common
trainable components in deep neural networks, we refer to (Gouk et al., 2021) for a comprehensive
study.

Consistency regularization. We design our consistency regularization term as ℓCR =

1
N

∑
i

∥∥∥f(xi)− f(xi)
∥∥∥2
2
, where we follow previous work (Laine & Aila, 2017) and employ MSE to

penalize the difference. Here f(x) is the aggregated prediction of an input x, which we calculate
as the simple average of previous predictions f(x)t = 1

t

∑t−1
t′=0 f(x)t′ , where we omit the data

augmentation operator for simplicity. At epoch 0 we simply skip the consistency regularization. Note
that such a prediction average can be implemented in an online manner thus there is no need to store
every previous prediction of an input.
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F Experiments

In this section, we evaluate the effectiveness of our teacher training method in knowledge distillation.
We focus on compressing a large network to a smaller one where the student is trained on the same
data set as the teacher.

F.1 Experiment setup

We denote our method as student-oriented teacher training (SoTeacher), since it aims to learn the
true label distribution to improve student performance, rather than to maximize teacher performance.
We compare our method with the standard practice for teacher training in knowledge distillation
(Standard). We conduct experiments on benchmark datasets including CIFAR-100 (Krizhevsky,
2009), Tiny-ImageNet (Tin, 2017), and ImageNet (Deng et al., 2009). We experiment with various
backbone networks including ResNet (He et al., 2016), Wide ResNet (Zagoruyko & Komodakis,
2016) and ShuffleNet (Zhang et al., 2018b; Tan et al., 2019). We test the applicability of SoTeacher
from different aspects of model compression in knowledge distillation including reduction of the
width or depth, and distillation between heterogeneous neural architectures.

For knowledge distillation algorithms, we experiment with the original knowledge distillation
method (KD) (Hinton et al., 2015), and a wide variety of other sophisticated knowledge distil-
lation algorithms (see Sect. F.2). We report the classification accuracies on the test set of both teacher
and the student distilled from it. All results except ImageNet are presented with mean and standard
deviation based on 3 independent runs. For Tiny-ImageNet, we also report the top-5 accuracy. For
hyperparameters, we set λmax

CR = 1 for both datasets, λLR = 10−5 for CIFAR-100 and λLR = 10−6

for Tiny-ImageNet/ImageNet. More detailed hyperparameter settings for neural network training and
knowledge distillation can be found in Appendix G.

Table 1: Test accuracy of the teacher and student with knowledge distillation conducted on CIFAR-
100. SoTeacher achieves better student accuracy than Standard for various architectures, depsite a
lower teacher accuracy.

WRN40-2/WRN40-1 WRN40-2/WRN16-2 ResNet32x4/ShuffleNetV2

Student Teacher Student Teacher Student Teacher

Standard 73.73± 0.13 76.38± 0.13 74.87± 0.45 76.38± 0.13 74.86± 0.18 79.22± 0.03
SoTeacher 74.35± 0.23 74.95± 0.28 75.39± 0.23 74.95± 0.28 77.24± 0.09 78.49± 0.09

no-CR 74.34± 0.11 74.30± 0.12 75.20± 0.24 74.30± 0.12 76.52± 0.52 77.73± 0.17
no-LR 73.81± 0.15 76.71± 0.16 75.21± 0.13 76.71± 0.16 76.23± 0.18 80.01± 0.18

Table 2: Test accuracy of the teacher and student with knowledge distillation conducted on Tiny-
ImageNet and ImageNet. The student network is ResNet18, while the teacher network is ResNet34
for Tiny-ImageNet and ResNet152 for ImageNet. Due to computation constraints, we are not able to
perform ablation experiments on ImageNet.

Tiny-ImageNet ImageNet

Student (Top-1) Student (Top-5) Teacher (Top-1) Teacher (Top-5) Student (Top-1) Teacher (Top-1)

Standard 66.19± 0.17 85.74± 0.21 64.94± 0.32 84.33± 0.40 71.30 77.87
SoTeacher 66.83± 0.20 86.19± 0.22 64.88± 0.48 84.91± 0.41 71.45 77.11

no-CR 66.39± 0.27 86.05± 0.17 64.36± 0.43 84.10± 0.27 - -
no-LR 66.48± 0.43 86.20± 0.40 64.26± 1.54 84.48± 0.84 - -

F.2 Results

End-to-end Knowledge Distillation Performance. Tables 1 and 2 show the evaluation results
on CIFAR-100 and Tiny-ImageNet/ImageNet, respectively. Our teacher training method SoTeacher
can improve the student’s test accuracy consistently across different datasets and teacher/student
architecture pairs. Note that the success of our teacher training method is not due to the high accuracy
of the teacher. In Tables 1 and 2, one may already notice that our regularization method will hurt the
accuracy of the teacher, despite that it can improve the accuracy of the student distilled from it.
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On ImageNet particularly, the gain in student’s accuracy by SoTeacher is minor, potentially because
the large size of the dataset can already facilitate the learning of true label distribution as suggested
by our theory. Nevertheless, one may observe that the teacher’s accuracy is significantly lower when
using SoTeacher, which implicitly suggests our teacher regularization method is tailored towards the
student’s accuracy.

Table 3: Estimation of the uncertainty quality of the teacher network trained by Standard and
SoTeacher. The uncertainty quality is estimated by the ECE and NLL both before and after tempera-
ture scaling (TS).

Dataset Teacher Method ECE NLL ECE (w/ TS) NLL (w/ TS)

CIFAR-100 WRN40-2 Standard 0.113± 0.003 1.047± 0.007 0.028± 0.004 0.905± 0.008
SoTeacher 0.057± 0.002 0.911± 0.013 0.016± 0.003 0.876± 0.012

CIFAR-100 ResNet32x4 Standard 0.083± 0.003 0.871± 0.010 0.036± 0.001 0.815± 0.008
SoTeacher 0.037± 0.001 0.777± 0.006 0.021± 0.001 0.764± 0.003

Tiny-ImageNet ResNet34 Standard 0.107± 0.007 1.601± 0.037 0.043± 0.002 1.574± 0.015
SoTeacher 0.070± 0.007 1.496± 0.031 0.028± 0.002 1.505± 0.033

Ablation Study. We toggle off the Lipschitz regularization (LR) or consistency regularization
(CR) in SoTeacher (denoted as no-LR and no-CR, respectively) to explore their individual effects. As
shown in Tables 1 and 2, LR and CR can both improve the performance individually. But on average,
SoTeacher achieves the best performance when combining both LR and CR, as also demonstrated
in our theoretical analyses. Note that in Table 2, using Lipschitz regularization is not particularly
effective because the regularization weight might not be properly tuned (see Figure 1).

Quality of True Distribution Approximation. To further interpret the success of our teacher
training method, we show that our regularization can indeed improve the approximation of the true
label distribution thus benefiting the student generalization. Directly measuring the quality of the
true distribution approximation is infeasible as the true distribution is unknown for realistic datasets.
Follow previous works (Menon et al., 2021), we instead estimate the approximation quality by
reporting the Expected Calibration Error (ECE) (Guo et al., 2017) and NLL loss of the teacher on a
holdout set with one-hot labels. Since scaling the teacher predictions in knowledge distillation can
improve the uncertainty quality (Menon et al., 2021), we also report ECE and NLL after temperature
scaling, where the optimal temperature is located on an additional holdout set (Guo et al., 2017). As
shown in Table 3, our teacher training method can consistently improve the approximation quality for
different datasets and teacher architectures.

Effect of Hyperparameters. We conduct additional experiments on Tiny-ImageNet as an example
to study the effect of two regularization terms introduced by our teacher training method. For
Lipschitz regularization, we modulate the regularization weight λLR. For consistency regularization,
we try different maximum regularization weights λmax

CR and different weight schedulers including
linear, cosine, cyclic, and piecewise curves. Detailed descriptions of these schedulers can be found
in Appendix G. As shown in Figure 1, both Lipschitz and consistency regularizations can benefit
the teacher training in terms of the student generalization consistently for different hyperparameter
settings. This demonstrates that our regularizations are not sensitive to hyperparameter selection.
Note that the hyperparameter chosen to report the results in Tables 1 and 2 might not be optimal since
we didn’t perform extensive hyperparameter search in fear of overfitting small datasets. It is thus
possible to further boost the performance by careful hyperparameter tuning.

In particular, Figure 1(a) shows that, as Lipschitz regularization becomes stronger, the teacher
accuracy constantly decreases while the student accuracy increases and converges. This demonstrates
that excessively strong Lipschitz regularization hurts the performance of neural network training, but
it can help student generalization in the knowledge distillation context.

Other Knowledge Distillation Algorithms. Besides the original knowledge distillation algorithm,
we experiment with various feature distillation algorithms including FitNets (Romero et al., 2015),
AT (Zagoruyko & Komodakis, 2017), SP (Tung & Mori, 2019), CC (Peng et al., 2019), VID (Ahn
et al., 2019), RKD (Park et al., 2019), PKT (Passalis & Tefas, 2018), AB (Heo et al., 2019), FT (Kim
et al., 2018), NST (Huang & Wang, 2017), CRD (Tian et al., 2020) and SSKD (Xu et al., 2020). For the
implementation of these algorithms, we refer to existing repositories for knowledge distillation (Tian
et al., 2020; Shah et al., 2020; Matsubara, 2021) and author-provided codes. Although these distillation
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Figure 1: Effect of varying the hyperparameters in our teacher training method, including the weight
for Lipschitz regularization λLR, the weight for consistency regularization λCR, and its scheduler.
The settings of our method used to report the results (e.g. Table 2) are denoted as “▲”. The standard
teacher training practice is denoted as “■” for comparison.

algorithms match all types of features instead of predictions between teacher and student, they will
achieve the best distillation performance when combined with the prediction distillation (i.e. original
KD). Therefore, our teacher training method should still benefit the effectiveness of these distillation
algorithms. We also experiment with a curriculum distillation algorithm RCO (Jin et al., 2019) which
distills from multiple checkpoints in teacher’s training trajectory. Our teacher training method should
also benefit RCO as the later teacher checkpoints become more student-oriented. As shown in Table 6,
our SoTeacher can boost the distillation performance of almost all these distillation algorithms,
demonstrating its wide applicability.

Student fidelity. Recent works have underlined the importance of student fidelity in knowledge
distillation, namely the ability of the student to match teacher predictions (Stanton et al., 2021).
Student fidelity can be viewed as a measure of knowledge distillation effectiveness that is orthogonal
to student generalization, as the student is often unable to match the teacher predictions although its
accuracy on unseen data improves (Furlanello et al., 2018; Mobahi et al., 2020). Here we measure
the student fidelity by the average agreement between the student and teacher’s top-1 predicted labels
on the test set. As shown in Table 4, our teacher training method can consistently and significantly
improve the student fidelity for different datasets and teacher-student pairs, which aligns with the
improvement of student generalization shown by Table 1 and 2. This demonstrates that the teacher
can better transfer its “knowledge” to the student with our training method.

Table 4: Average agreement (%) between the student and teacher’s top-1 predictions on the test set.

CIFAR-100 Tiny-ImageNet

WRN-40-2/WRN-40-1 WRN-40-2/WRN-16-2 ResNet32x4/ShuffleNetV2 ResNet34/ResNet18

Standard 76.16± 0.14 76.92± 0.29 76.63± 0.25 71.33± 0.07
SoTeacher 77.92± 0.27 79.41± 0.11 80.36± 0.13 73.36± 0.25

G Details of experiment setting

G.1 Hyperparameter setting for teacher network training

For all the experiments on CIFAR-100, we employ SGD as the optimizer and train for 240 epochs
with a batch size of 64. The learning rate is initialized at 0.05 and decayed by a factor of 10 at the
epochs 150, 180 and 210, with an exception for ShuffleNet where the learning rate is initialized
at 0.01 following existing practice (Tian et al., 2020; Park et al., 2021). The weight decay and
momentum are fixed as 0.0005 and 0.9 respectively. The training images are augmented with random
cropping and random horizontal flipping with a probability of 0.5.

For Tiny-ImageNet experiments, we employ SGD as the optimizer and conduct the teacher training
for 90 epochs with a batch size of 128. The learning rate starts at 0.1 and is decayed by a factor of 10
at epochs 30 and 60. The weight decay and momentum are fixed as 0.0005 and 0.9 respectively. The
training images are augmented with random rotation with a maximum degree of 20, random cropping
and random horizontal flipping with a probability of 0.5. For student training the only difference is
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Table 5: β for different feature distillation algorithms

β β β
Standard SoTeacher Standard SoTeacher Standard SoTeacher

FitNets 100 50 AT 1000 500 SP 3000 1500
CC 0.02 0.01 VID 1.0 0.5 RKD 1.0 0.5
PKT 30000 15000 AB 1.0 0.5 FT 200 100
NST 50 25 CRD 0.8 0.5

that we train for additional 10 epochs, with one more learning rate decay at epoch 90, aligned with
previous settings (Tian et al., 2020).

For consistency regularization in our teacher training method, we experiment with various weight
schedules besides the linear schedule mentioned in the main paper. We list the formulas for these
schedules in the following. Here t denotes the epoch number, T denotes the total number of epochs,
and λmax

CR denotes the maximum weight.

• Cosine schedule:

λCR(t) = cos

[(
1− t

T

)
π

2

]
λmax
CR

• Cyclic schedule:

λCR(t) =

√
1−

(
1− t

T

)2

λmax
CR

• Piecewise schedule:

λCR(t) =


0, 0 < t ≤ T/3,

λmax
CR /2, T/3 < t ≤ 2T/3,

λmax
CR , 2T/3 < t ≤ T.

G.2 Hyperparameter setting for knowledge distillation algorithms

For knowledge distillation algorithms we refer to the setting in RepDistiller 8. Specifically, for
original KD, the loss function used for student training is defined as

ℓ = αℓCross-Entropy + (1− α)ℓKD.

We grid search the best hyper-parameters that achieve the optimal performance, namely the loss
scaling ratio α is set as 0.5 and the temperature is set as 4 for both CIFAR-100 and Tiny-ImageNet.
For all feature distillation methods combined with KD the loss function can be summarized as (Tian
et al., 2020)

ℓ = γℓCross-Entropy + αℓKD + βℓDistill,

where we grid search the optimal γ and α to be 1.0 and 1.0 respectively. When using our teacher
training method, all these hyperparameters are kept same except that for all feature distillation
algorithms the scaling weights corresponding to the feature distillation losses β are cut by half, as we
wish to rely more on the original KD that is well supported by our theoretical understanding. Table 5
list β used in our experiments for all feature distillation algorithms. For SSKD (Xu et al., 2020)
the hyperparameters are set as λ1 = 1.0, λ2 = 1.0, λ3 = 2.7, λ4 = 10.0 for standard training and
λ1 = 1.0, λ2 = 1.0, λ3 = 1.0, λ4 = 10.0 for our methods. For the curriculum distillation algorithm
RCO we experiment based on one-stage EEI (equal epoch interval). We select 24 anchor points (or
equivalently every 10 epochs) from the teacher’s saved checkpoints.

H Additional experiment results

Training overhead. Compared to standard teacher training, the computation overhead of SoTeacher
is mainly due to the calculation of the Lipschitz constant, which is efficient as it only requires simple
arithmetic calculations of the trainable weights of a neural network (see Section D). Empirically

8https://github.com/HobbitLong/RepDistiller
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Table 6: SoTeacher consistently outperforms Standard on CIFAR-100 with various KD algorithms.

WRN40-2/WRN40-1 WRN40-2/WRN16-2 ResNet32x4/ShuffleV2

Standard SoTeacher Standard SoTeacher Standard SoTeacher

FitNet 74.06± 0.20 74.88± 0.15 75.42± 0.38 75.64± 0.20 76.56± 0.15 77.91± 0.21
AT 73.78± 0.40 75.12± 0.17 75.45± 0.28 75.88± 0.09 76.20± 0.16 77.93± 0.15
SP 73.54± 0.20 74.71± 0.19 74.67± 0.37 75.94± 0.20 75.94± 0.16 78.06± 0.34
CC 73.46± 0.12 74.76± 0.16 75.08± 0.07 75.67± 0.39 75.43± 0.19 77.68± 0.28
VID 73.88± 0.30 74.89± 0.19 75.11± 0.07 75.71± 0.19 75.95± 0.11 77.57± 0.16
RKD 73.41± 0.47 74.66± 0.08 75.16± 0.21 75.59± 0.18 75.28± 0.11 77.46± 0.10
PKT 74.14± 0.43 74.89± 0.16 75.45± 0.09 75.53± 0.09 75.72± 0.18 77.84± 0.03
AB 73.93± 0.35 74.86± 0.10 70.09± 0.66 70.38± 0.87 76.27± 0.26 78.05± 0.21
FT 73.80± 0.15 74.75± 0.13 75.19± 0.15 75.68± 0.28 76.42± 0.17 77.56± 0.15
NST 73.95± 0.41 74.74± 0.14 74.95± 0.23 75.68± 0.16 76.07± 0.08 77.71± 0.10
CRD 74.44± 0.11 75.06± 0.37 75.52± 0.12 75.95± 0.02 76.28± 0.13 78.09± 0.13
SSKD 75.82± 0.22 75.94± 0.18 76.31± 0.07 76.32± 0.09 78.49± 0.10 79.37± 0.11
RCO 74.50± 0.32 74.81± 0.04 75.24± 0.34 75.50± 0.12 76.75± 0.13 77.59± 0.31

Table 7: Performance of the knowledge distillation when training the teacher using existing regular-
ization methods for learning quality uncertainty on unseen data.

WRN40-2/WRN40-1

Student Teacher

Standard 73.73± 0.13 76.38± 0.13
SoTeacher 74.35± 0.23 74.95± 0.28

ℓ2 (5× 10−4) 73.73± 0.13 76.38± 0.13
ℓ1 (10−5) 73.60± 0.15 73.52± 0.05
Mixup (α = 0.2) 73.19± 0.21 77.30± 0.20
Cutmix (α = 0.2) 73.61± 0.26 78.42± 0.07
Augmix (α = 1, k = 3) 73.83± 0.09 77.80± 0.30
CRL (λ = 1) 74.13± 0.29 76.69± 0.16

we observe that training with SoTeacher is only slightly longer than the standard training for about
5%. The memory overhead of SoTeacher is incurred by buffering an average prediction for each
input. However, since such prediction requires no gradient calculation we can simply store it in a
memory-mapped file.

I Experiments with uncertainty regularization methods on unseen data

Uncertainty learning on unseen data. Since the objective of our student-oriented teacher training
is to learn label distributions of the training data, it is related to those methods aiming to learn quality
uncertainty on the unseen data. We consider those methods that are feasible for large teacher network
training, including (1) classic approaches to overcome overfitting such as ℓ1 and ℓ2 regularization, (2)
modern regularizations such as label smoothing (Szegedy et al., 2016) and data augmentations such
as mixup (Zhang et al., 2018a) and Augmix (Hendrycks et al., 2020), (3) Post-training methods such
as temperature scaling (Guo et al., 2017), as well as (4) methods that incorporate uncertainty as a
learning ojective such as confidence-aware learning (CRL) (Moon et al., 2020).

We have conducted experiments on CIFAR-100 using all these methods and the results can be found
in Appendix I. Unfortunately, the performance of these regularization methods is unsatisfactory in
knowledge distillation — only CRL can slightly outperform the standard training. We believe the
reasons might be two-folds. First, most existing criteria for uncertainty quality on the unseen data
such as calibration error (Naeini et al., 2015) or ranking error (Geifman et al., 2019), only require the
model to output an uncertainty estimate that is correlated with the probability of prediction errors.
Such criteria may not be translated into the approximation error to the true label distribution. Second,
even if a model learns true label distribution on unseen data, it does not necessarily have to learn true
label distribution on the training data, as deep neural networks tend to memorize the training data.

Experiment setup. We conduct experiments on CIFAR-100 with teacher-student pair WRN40-
2/WRN40-1. We employ the original KD as the distillation algorithm. The hyperparameter settings
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are the same as those mentioned in the main results (see Appendix G). For each regularization
method we grid search the hyperparameter that yields the best student performance. The results are
summarized in Table 7.

Classic regularization. We observe that with stronger ℓ2 or ℓ1 regularization the student
performance will not deteriorate significantly as teacher converges. However, it also greatly reduces
the performance of the teacher. Subsequently the performance of the student is not improved as
shown in Table 7.

Label smoothing. Label smoothing is shown to not only improve the performance but also the
uncertainty estimates of deep neural networks (Müller et al., 2019). However, existing works have
already shown that label smoothing can hurt the effectiveness of knowledge distillation (Müller et al.,
2019), thus we neglect the results here. An intuitive explanation is that label smoothing encourages
the representations of samples to lie in equally separated clusters, thus “erasing” the information
encoding possible secondary classes in a sample (Müller et al., 2019).

Data augmentation. Previous works have demonstrated that mixup-like data augmentation
techniques can greatly improve the uncertainty estimation on unseen data (Thulasidasan et al., 2019;
Hendrycks et al., 2020). For example, Mixup augmented the training samples as x := αx+(1−α)x′,
and y := αy + (1− α)y′, where (x′, y′) is a randomly drawn pair not necessarily belonging to the
same class as x.

As shown in Table 7, stronger mixup can improve the performance of the teacher, whereas it can
barely improve or even hurt the performance of the student. Based on our theoretical understanding
of knowledge distillation, we conjecture the reason might be that mixup distorts the true label
distribution of an input stochastically throughout the training, thus hampering the learning of true
label distribution.

Temperature scaling. Previous works have suggested using the uncertainty on a validation set to
tune the temperature for knowledge distillation either in standard learning (Menon et al., 2021) or
robust learning (Dong et al., 2021). However, the optimal temperature may not be well aligned with
that selected based on uncertainty (Menon et al., 2021). We neglect the experiment results here as the
distillation temperature in our experiments is already fine-tuned.

Uncertainty learning. CRL designs the loss function as ℓ = ℓCE + λℓCRL, where ℓCE is the
cross-entropy loss and ℓCRL is an additional regularization term bearing the form of

ℓCRL = max (0,−g(c(xi), c(xj))(p(xi)− p(xj)) + |c(xi)− c(xj)|) , (26)

where p(x) = maxk f(x)
k is the maximum probability of model’s prediction on a training sample x

and

c(x) =
1

t− 1

t−1∑
t′=1

1(argmax
k

f(x)kt′ = y)

is the frequency of correct predictions through the training up to the current epoch. Here g(ci, cj) = 1
if ci > cj and g(ci, cj) = −1 otherwise. Although originally proposed to improve the uncertainty
quality of deep neural networks in terms of ranking, we found that CRL with a proper hyperparameter
can improve the distillation performance, as shown in Table 7.

We note that the effectiveness of CRL on distillation can be interpreted by our theoretical understand-
ing, as its regularization term (26) is essentially a special form of consistency regularization. To see
this we first notice (26) is a margin loss penalizing the difference between p(x) and c(x) in terms of
ranking. We then rewrite c(x) as

c(x) = 1y ·
1

t− 1

t−1∑
t′=1

Onehot[f(x)t′ ], (27)

which is similar to our consistency regularization target, except the prediction is first converted into
one-hot encoding. Such variation may not be the best for knowledge distillation as we wish those
secondary class probabilities in the prediction be aligned as well.
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J Related Work

Understand knowledge distillation. There exist multiple perspectives in understanding the
effectiveness of knowledge distillation. Besides the statistical perspective which views the soft
prediction of the teacher as an approximation of the true label distribution (Menon et al., 2021;
Dao et al., 2021), another line of work understands knowledge distillation from a regularization
perspective, which views the teacher’s soft predictions as instance-wise label smoothing (Yuan et al.,
2020; Zhang & Sabuncu, 2020; Tang et al., 2020). More recently, (Allen-Zhu & Li, 2020) understands
knowledge distillation from a feature learning perspective by focusing on the data that possesses a
“multi-view” structure, that multiple features co-exist in the input and can be used to make the correct
classification. Knowledge distillation is effective because the teacher can learn different features and
transfer them to the student. Our theory is built on a similar assumption on the data structure, albeit
we require the teacher to learn the true label distribution of the feature. Our theory thus can also be
viewed as a bridge between the statistical perspective and feature learning perspective.

Alleviate “teacher overfitting”. Since in knowledge distillation, the distillation data is often
reused from the teacher’s training data, a teacher trained toward convergence is very likely to overfit
its soft predictions on the distillation data. Intuitively, it is possible to tackle this problem by early
stopping the teacher training (Cho & Hariharan, 2019). However, a meticulous hyperparameter search
may be required since the epoch number to find the best checkpoint is often sensitive to the specific
training setting such as the learning rate schedule. It is also possible to save multiple early teacher
checkpoints for the student to be distilled from sequentially (Jin et al., 2019). Additionally, one can
utilize a “cross-fitting” procedure to prevent the teacher from memorizing the training data. Namely,
the training data is first partitioned into several folds, where the teacher predictions on each fold are
generated by the teacher trained only on out-of-fold data (Dao et al., 2021). One can also train the
teacher network jointly with student’s network blocks, which imposes a regularization toward the
student performance (Park et al., 2021). Different from these attempts, we train the teacher to directly
learn the true label distribution of its training data, leading to a simple and practical student-oriented
teacher training framework with minimum computation overhead.
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