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ABSTRACT

Recently there has been growing interest in building “active” visual object recog-
nizers, as opposed to “passive” recognizers which classifies a given static image
into a predefined set of object categories. In this paper we propose to general-
ize recent end-to-end active visual recognizers into a controller-recognizer frame-
work. In this framework, the interfaces with an external manipulator, while the
recognizer classifies the visual input adjusted by the manipulator. We describe
two recently proposed controller-recognizer models– the recurrent attention model
Mnih et al. (2014) and spatial transformer network Jaderberg et al. (2015)– as rep-
resentative examples of controller-recognizer models. Based on this description
we observe that most existing end-to-end controller-recognizers tightly couple the
controller and recognizer. We consider whether this tight coupling is necessary,
and try to answer this empirically by investigating a decoupled controller and rec-
ognizer. Our experiments revealed that it is not always necessary to tightly couple
them, and that by decoupling the controller and recognizer, there is a possibility
to build a generic controller that is pretrained and works together with any subse-
quent recognizer.

1 INTRODUCTION

The success of deep learning, in particular convolutional networks, in computer vision has largely
been due to breakthroughs in passive object recognition from a static image (Krizhevsky et al., 2012;
LeCun et al., 1998). Most of the successful convolutional networks for object recognition (Szegedy
et al., 2014; Simonyan & Zisserman, 2014) are passive in the sense that they recognize an object
without having any ability to act on it to improve recognition. Also, they work with static images in
the sense that these models lack the ability or mechanism to manipulate an input image themselves.

It has been only very recently that these passive neural network recognizers have become more
active. This is often done by letting the model actively attend to a sequence of smaller regions of
an input image (Mnih et al., 2014; Ba et al., 2014; Denil et al., 2012) or by allowing the model to
distort the input image (Jaderberg et al., 2015). In general, these recognizers have become active
by allowing them access to a controller which acts upon an external manipulator that either adjusts
the recognizer’s view or controls an external mechanism that directly manipulates the environment
(which is viewed by the recognizer as an image.)

In this paper, we generalize this shift in the paradigm of object recognition with neural networks
by defining a controller-recognizer framework. In this framework, a neural network based object
recognition system consists of a controller and a recognizer. The recognizer can be any object
recognizer that perceives the surrounding environment as a 2-D image. The controller has access
to an external mechanism (often a black-box) which can either adjust the surrounding environment
directly or a view of the recognizer. A full controller-recognizer model is defined by the exact
specifications of how these recognizer and controller components are coupled with each other.
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We show that many recently proposed neural network based active object recognizers fall into this
controller-recognizer family. More specifically, we explain in detail the specifications of the recur-
rent attention model (RAM, Mnih et al., 2014) and the spatial transformer network (STN, Jaderberg
et al., 2015) under this controller-recognizer framework. From this we notice that these existing
controller-recognizers tightly, or sometimes completely, couple the controller and recognizer such
that the recognizer has deep access to the inner workings of the controller or that the controller relies
heavily on the recognizer.

Based on this observation, in this paper we ask ourselves whether this is the only option in designing
an end-to-end trainable controller-recognizer model. This question is natural considering the number
of potentially undesirable properties of a tightly-coupled pair of controller and recognizer such as
a lack of a clear way to use existing well-performing recognizer architectures (i.e. convolutional
classifiers) or limited compatibility with external black-box manipulators.

As a first stab at answering this question, we design a controller-recognizer model with a decou-
pled controller/recognizer. In this decoupled model, the controller first manipulates an input image
by issuing a sequence of image manipulation commands to an external, non-differentiable image
manipulator. After a fixed number of commands were issued, the resulting image is sent to the rec-
ognizer for it to detect an object. In this setting, the internal representations of the controller and
recognizer are completely separate.

With this decoupled controller-recognizer model, we test a wide variety of training strategies to
empirically confirm (1) the possibility of training a decoupled model jointly and (2) the possibility
of having a general, pretrained controller for a subsequent recognition task with potential mismatch
between the data used to train the controller and a recognizer. Furthermore, we aim to show that
the existing benchmark task of recognizing a randomly placed handwritten digit in a large canvas
(potentially with clutter) can in fact be solved by this decoupled model at a level comparable to a
tightly coupled model.

Our experimental results show that a decoupled controller-recognizer model achieves a level of
performance comparable with a tightly coupled model and performs well in transfer settings. This
opens the potential of having a model with a single, generic controller manipulating the environment
to maximize the performance of multiple recognizers.

2 CONTROLLER-RECOGNIZER FRAMEWORK

In this paper, we are interested in models that exploit the ability of control in order to recognize an
object based on vision. These models can be described as consisting of a controller and a recognizer.
In general, a controller of this type of models manipulates either the external environment or the
model itself to adjust the model’s view. This adjusted view of the external environment is used by
a recognizer, and therefore the controller’s objective is to adjust the view so as to maximize the
recognizer’s performance. See Fig. 1 for a graphical illustration.

Figure 1: Graphical illustration of a general
controller-recognizer model. Solid arrows indi-
cate the flow of information, and a dashed arrow
is an optional information path.

This is in contrast to existing supervised ob-
ject recognition models such as the widely used
convolutional neural network (see, e.g., LeCun
et al., 1998; Krizhevsky et al., 2012). This ap-
proach to vision-based object recognition using
neural networks is static approach in the sense
that the model does have any means of influ-
encing the environment. This means that the
model has to work with whatever input, but has
no control over how it can be manipulated in
order to maximize recognition rate.

2.1 CRITERIA FOR CATEGORIZING
CONTROLLER-RECOGNIZER MODELS

Our controller-recognizer framework includes
a broad family of models. Among these we are
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interested in fully-trainable end-to-end models,
often implemented as a deep neural network.
Although we focus on a subset of models, com-

prised of end-to-end trainable deep neural networks, there are many possible variants, either already
proposed or not, and in this section, we try to describe how they can be categorized.

First, we can classify each of these controller-recognizer models based on the type of manipulator
used by the controller. A controller may manipulate the model itself in order to move its gaze over
a static input.1 In recent literature, this is often referred to as an attention mechanism (see, e.g.,
Denil et al., 2012; Zheng et al., 2014; Mnih et al., 2014; Ba et al., 2014). On the other hand, a
controller may also have access to an external, often black-box, mechanism, and this external black-
box manipulates the input actively based upon the commands issued by the controller.

Second, a controller-recognizer model can be classified based upon the training objective(s) of the
controller. The ultimate goal of the controller is eventually to maximize the recognition rate by the
recognizer, but this does not necessarily imply that this is the only training objective available. For
instance, a controller may be trained jointly to focus on an object of interest as well as to explore
the input scene (i.e., maximize the model’s coverage over the input scene) in order to detect the
existence of an object which will ultimately be recognized. In this case, the training objectives for
the controller are (1) to maximize the recognition rate and (2) to maximize the exploration.

Another closely-related criterion is the level of generality of the controller. By the generality of
the controller, we mean specifically whether a given controller can be used for multiple recognition
tasks. As evident in animals, a single controller can be utilized for multiple downstream recognition
tasks (visual recognition, speech recognition, haptic perception etc.) One can use the controller to
bring an object in interest to the center of view to better recognize, or at the same time use it to
remove distractions in the scene (i.e., denoising.)

Yet another criterion is specific to neural network based controller-recognizer models. Regardless of
its end goal, a deep neural network automatically extracts a continuous vector representation of the
input. A neural controller will have a continuous vector representation of the original input, adjusted
input (by itself) and potentially a sequence of control commands. This representation may be used
by a recognizer, rather than having the recognizer work directly on the adjusted input returned as a
result of the controller.

This criterion reflects the strength of coupling between the controller and the recognizer, and is
closely related to the generality of the controller. Stronger coupling implies that the controller’s
behaviour as well as its internal representation are highly customized for a subsequent recognizer,
leading to less generality of the controller. On the other hand, when the controller and recognizer
are weakly coupled, the generality of the controller increases and may be more suitable to be used
with multiple training objectives and recognition models. Therefore, we consider the generality of
the controller as a sub-criterion of the coupling strength.

The coupling strength also has consequences on the training strategy. If the controller and recog-
nizer are strongly coupled, it is quite likely that they will have to be trained simultaneously. This is
not necessary true if the coupling strength is weak. In this case, one can think of bootstrapping, or
pretraining, the controller with another training objective, which is useful for a wide set of potential
downstream recognition tasks, before coupling this pretrained controller with other recognizers.

We summarize this criteria here as a list, and next describe representative examples under this frame-
work:

1. Manipulator: attention mechanism, external black-box, internal white-box, etc.
2. Training objectives: final recognition rate, exploration rate, etc.
3. Strength of coupling: how tightly a controller and recognizer are coupled

(a) Generality of controller: single recognition task vs. multiple recognition tasks
(b) Training strategy: sequential vs. simultaneous

1 By static input we mean a situation when a model does not actively, directly manipulate the observed
environment.
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2.2 EXAMPLE 1: RECURRENT ATTENTION MODEL

A recurrent attention model (RAM) is a representative example of controller-recognizer models,
recently proposed by Mnih et al. (2014). RAM was designed to work on a large image efficiently by
controlling the model’s gaze of a small view area over the input image.

At each time step, RAM receives as input a subset of the whole input image from the gaze’s location
determined at the previous step. This subset is used to update the hidden state (continuous vector
representation of the input.) Based on this updated state RAM computes the next location of the
gaze, which is equivalent to adjusting itself to move its gaze to the next location. RAM also predicts
when to stop and finally what is the object type.

Figure 2: Graphical illustration of a recurrent at-
tention model by Mnih et al. (2014). (1) Attention
mechanism is used as a manipulator, (2) the con-
troller is trained to maximize the recognition rate,
and (3) the controller and recognizer are tightly
coupled.

We analyze this model according to the criteria
we have defined earlier. See Fig. 2 as a refer-
ence.

The manipulator used by the RAM is an atten-
tion mechanism. Mnih et al. (2014) however
also showed that it is indeed possible to use
the RAM for playing a game, meaning that the
RAM is able to interact with the external black-
box to maximise the final objective.

Both the controller and the recognizer in RAM
are tuned to maximize the final recognition rate
(or the reward from the game) which is the only
training objective.

The controller introduced as a part of the RAM
is tightly coupled with the recognizer by being a
part of one recurrent neural network. The con-
troller and recognizer share the same set of pa-
rameters and the internal hidden state, meaning
that it is not possible to use the controller on
another task once it is trained together with the

existing recognizer. This makes it difficult to reuse the pretrained controller for another downstream
recognition task, unless all of them are trained simultaneously (i.e., multitask learning, Caruana,
1997; Collobert et al., 2011).

2.3 EXAMPLE 2: SPATIAL TRANSFORMER NETWORKS

More recently, Jaderberg et al. (2015) proposed to modify a convolutional neural network, which is
a recognition only model, to include a controller. The overall network is called a spatial transformer
network (STN).

The STN employs a differentiable spatial transformer as a manipulator. The spatial transformer is
able to warp an input image based on transformation parameters computed by a localisation network
embedded inside a convolutional neural network. The biggest advantage of having this differentiable
spatial transformer is that one can take the derivative of the final recognition rate with respect to
the transformation performed based on the transformation parameters, which enables the use of
backpropagation to compute a low-variance gradient estimate.

Similarly to what we have done with the RAM, let us analyse the STN according to the criteria for
controller-recognizer models. See Fig. 3 as a reference.

First, the target of the STN’s controller is the internal, transparent manipulator–the spatial trans-
former (ST). The ST works on either the raw input image or the intermediate feature maps from the
convolutional neural network. This manipulator, which works directly on the input image, is more
flexible in transforming the input than the attention mechanism of the RAM.

Second, one important characteristics of the STN is that both the controller–localisation network–
and its target manipulator–spatial transformer– are all tuned to maximise the final recognition rate.
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As it is quite clear from its description, the controller and recognizer in the STN are completely
coupled. The controller works directly on the internal continuous vector representation of the rec-
ognizer, and the recognizer’s hidden states are used as an input to the controller. The controller,
recognizer as well as the manipulator must be trained simultaneously.

3 IS IT NECESSARY TO TIGHTLY COUPLE CONTROLLER AND RECOGNIZER?

Figure 3: Graphical illustration of a spatial trans-
former network by Jaderberg et al. (2015). (1)
Spatial transformer is used as a white-box manip-
ulator, (2) the controller is trained to maximize the
recognition rate, and (3) the controller and recog-
nizer as well as the manipulator are completely
coupled.

We noticed that both the recurrent attention
model (RAM) and spatial transformer network
(STN) tightly, or completely, couple the con-
troller and recognizer. This is also observed
in most of the recently proposed controller-
recognizer models such as the Fixation NADE
by Zheng et al. (2014).

There are a number of implications from this
tight coupling of the controller and recognizer.

This tight coupling, especially the complete
coupling such as in the spatial transformer net-
work, implies that they need to be trained si-
multaneously. This simultaneous training nat-
urally and obviously makes the controller spe-
cialized for the recognition tasks used during
training. Consequently, it is unclear whether
the trained controller will be any useful for
other subsequent recognition tasks that arise af-
ter the original controller-recognizer is trained.
In other words, if there is another recognition
task that may benefit from having a controller,
the whole new controller-recognizer will have

to be trained from scratch.

A further consequence of this reliance on a single objective of recognition rate is that the controller
of a controller-recognizer model can only be trained in a supervised manner. This is unsatisfactory
as the role of the controller is often to bring an object to the center of the recognizer’s view, which
is substantially a weaker, or easier, objective than the full recognition.

This reliance on the simultaneous training of the controller and recognizer is quite contrary to what
is observed in infant development. Infants are known to exhibit visual attention already in the first
few weeks after their birth (Chapter 3 of Ruff & Rothbart, 2001). This happens without any strong
external reward, which is in the case of controller-recognizer framework a recognition rate, implying
that the controller, in this case an attention mechanism similar to the one from the RAM, is being
trained/tuned on its own. This serves as an existence proof of the possibility of training a controller
separately from a recognizer also in this controller-recognizer framework.

Earlier in 1991, Schmidhuber & Huber (1991) proposed a very specific approach to training a con-
troller on its own without a subsequent recognizer, as in Fig. 4 (a). Similarly to the RAM discussed
earlier in Sec. 2.2, the controller in their case is an attention mechanism implemented as a recurrent
neural network, but without any recognizer. Their goal was to show that it is possible to train a
controller–attention mechanism without explicit supervision on the types of objects the controller is
following. They achieved this by training the controller with a reward given only when the controller
managed to move its attention to a part of the input image that contains an object.

The significance of the work by Schmidhuber & Huber (1991) is that the controller pretrained in
their method can be used later with a separate recognizer that takes as input only a small subset of
the input image selected by this controller. There are two advantages in this procedure. First, the
recognizer can be made substantially simpler as it does not need to be invariant to translation or
rotation, as this is handled by the pretrained controller. Second, as the recognizer takes as input only
a small subset of the input image, computational efficiency of the recognizer greatly increases.
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(a) (b)

Figure 4: (a) Graphical il-
lustration of a controller-only
model by Schmidhuber & Hu-
ber (1991). Note that there is
no recognizer in this case. (b)
A controller-recognizer model
with decoupled controller and
recognizer.

These observations on infant development and the earlier work by Schmidhuber & Huber (1991)
raise a question on the necessity of strongly coupling a controller and a recognizer in the controller-
recognizer framework. The success of those recent controller-recognizer models, such as the recur-
rent attention model and spatial transformer network, does not answer this question. This question
naturally leads us to ask what other competitive variants within general controller-recognizer frame-
work, according to the criteria outlines in Sec. 2.1, are possible.

4 DECOUPLED CONTROLLER AND RECOGNIZER

In this paper, we aim at answering the questions posed in the previous section. Among them, the
main question is the possibility and extent of building a controller-recognizer model with decoupled
controller and recognizer. First, let us describe what we mean by “decoupled”.

A recognizer decoupled from a controller takes as input an image manipulated by the controller
only. In other words, the recognizer does not have access to the internal state of the controller. One
obvious consequence of this is that a recognizer can be trained on its own regardless of the state of
the controller, although the ability of the controller in manipulating an input image will significantly
influence the final recognition quality. Similarly, a controller decoupled from a recognizer works
independently from the recognizer. See from Fig. 4 (b) that there is no direct path between the
controller and recognizer.

4.1 MODEL DESCRIPTION

Input Canvas The world is a large w×h canvasX . On the canvas, a number of objects, including
the target object, are placed. The controller and recognizer have their own window of view into the
world. The recognizer always observes the canvas through the center window of size wr×hr, while
the controller has two possible views. Similarly to the recognizer, the controller may observe the
canvas through the center window of size wc × hc (cropped view), or the controller may view the
whole canvas but in a lower resolution of wc× hc (subsampled view.) Additionally, we test the case
where the controller is allowed the full view of the canvas (full view.)

Manipulator In this paper, we use an external black-box manipulator M which permits a set
of possible actions

{
a1, a2, . . . , aNa

}
and a gain knob p which decides on the degree to which a

selected action is performed. The manipulator we used is implemented using an imaging library
with the following actions; (1) shift up, (2) shift down, (3) shift right, and (4) shift left. For these
actions, the gain knob p ∈ [0, 1] corresponds to the percentage of a pre-specified maximum shift
rounded to the nearest integer. Additionally, the manipulator may decide not to act on the input
canvas by issuing a no-action.

Controller The controller is implemented as a recurrent neural network. At each time step, the
controller looks at the current configuration of the input canvas and updates its internal hidden state:

ht = φ (ht−1,xt) ,

where φ is a recurrent activation function such as long short-term memory units (LSTM, Hochreiter
& Schmidhuber, 1997) and gated recurrent units (GRU, Cho et al., 2014). In our experiments, we
use 40 GRU’s to implement φ.
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(a) Joint Training (b) Decoupled Training A (c) Decoupled Training B

Figure 5: Three training strategies. (a) Joint training. (b) Decoupled training with a single training
set Djoint. (c) Decoupled training with separate training sets Dpre and Dpost. Solid arrows indicate
training by backpropagation, and dashed arrows by REINFORCE.

The internal hidden state is initialized as a function of the initial input canvas x0:

h0 = finit(x0),

which is a small multilayer perceptron.

Given a new hidden state ht, the controller computes the action distribution by

p(at = aj |x<t) =
exp

(
w>ajht

)∑Na

j′=1 exp
(
w>ajht

) ,
where waj is a parameter vector for the j-th action. The controller then either samples, or selects
the most likely, action ãt from this distribution.

Similarly, the controller computes the gain distribution

pt|x<t ∼ N
(
m(ht), s(ht)

2
)
,

where N (m, s2) is a normal distribution with mean m and variance s2, and

m(ht) = σ(w>mht), s(ht) = σ(w>s ht)

We choose the gain p̃0t to be either a sample or the mean of this distribution. The selected gain is
further processed to lie between 0 and 1:

p̃t = σ(5.5 · (p̃0t − 0.5)).

Output
Type Size Stride Size Activ.
Conv. 5x5 1,1 28x28x32 tanh

Max Pool 3x3 3,3 9x9x32 –
Conv. 5x5 1,1 5x5x64 tanh

Max Pool 2x2 2,2 2x2x64 –
Linear – – 200 tanh
Linear – – 10 softmax

Table 1: The configuration of the recognizer.

The selected action and associated gain are fed
into the manipulator. The manipulator adjusts
the input canvas X accordingly to result in the
next time step’s view xt. We let the controller
manipulate the input canvas for at most T steps,
and we write by

xT = fcont(x0, ã1:T , p̃1:T ) (1)

to represent this whole process. Note that the
manipulator M is included in fcont, and that
ã1:T and p̃1:T are the sampled action and gain
variables.

Recognizer As the controller is completely decoupled from a recognizer, we can use any existing
off-the-shelf image recognizer. More specifically, we use a generic convolutional neural network
with the configuration presented in Table 1. The recognizer returns a class-conditional probability
distribution over the labels p(y = k|xT ), where xT is the final canvas configuration from Eq. (1).

4.2 TRAINING STRATEGIES

4.2.1 JOINT STRATEGY

Although the controller and recognizer are decoupled, we can jointly train them to maximize

Cjoint =
1

N

N∑
n=1

cjoint(x
n
0 , y

n),
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where

cjoint(x0, y) = − log
∑

a1:T ,p1:T

p(y|fcont(x0, a1:T , p1:T )).

(xn
0 , y

n) is the n-th example from a training set Djoint.

We use stochastic gradient descent (SGD) algorithm to update the parameters of both the controller
and recognizer, where the gradient∇l is approximated by

∇cjoint ≈−
1

M

M∑
m=1

∇ log p(y|fcont(x0, a
m
1:T , p

m
1:T ))

+ log p(y|fcont(x0, a
m
1:T , p

m
1:T )

(
T∑

t=1

∇ log p(at = amt |x<t) +∇ log p(pt = pmt |x<t)

)
,

where am1:T and pm1:T are the action and gain variables sampled at the m-th trial. In our experiment,
we set M = 1, meaning that we run the controller only once for each training example. This
approximation is necessary, as the manipulatorM is non-differentiable.

This approximation to the gradient is known as REINFORCE (Williams, 1992). We use REIN-
FORCE to jointly train the decoupled controller-recognizer model, augmented by the variance re-
duction techniques proposed by Mnih & Gregor (2014).

We call this training approach the joint strategy.

4.2.2 DECOUPLED STRATEGY

Because the controller is separate from the recognizer, we can pretrain it in advance of training the
recognizer. We use the objective proposed by Schmidhuber & Huber (1991), where the controller’s
goal is to bring an object in interest (which is known to the trainer) to the center of visual perception
which is in our case the center of the canvas. We define the cost of each trial (i.e., running the
controller for a single example) as

cpre(x0,m) = 1− cosine(fcont(x0, ã1:T , p̃1:T ),m),

where m is a mask vector corresponding to an input canvas with its w′ × h′ center window set to 1
and 0 otherwise, and

cosine(a,b) =
a>b

‖a‖‖b‖
.

Similarly to joint training, we can minimize this pretraining cost function by REINFORCE. Note
that this pretraining does not require any labelled example and can be done purely in a unsupervised
manner. We denote by the training set used to pretrain the controller as Dpre .

Training Recognizer Once the controller is pretrained, we freeze it and train the recognizer. This
is done, for each training example, by running the controller (and manipulator) on the input canvas,
feeding in the center window to the recognizer, computing the gradient of the recognition cost, to
which we refer as cpost, w.r.t. the recognizer’s parameters and updating them accordingly:

∇cpost = ∇ log p(y|fcont(x0, ã1:T , p̃1:T )).

We use Dpost to refer to the training set used for tuning the recognizer. Because the recognizer is
trained separately from the controller, we may either use the same training set, i.e., Dpost = Dpre, or
a different set, i.e., Dpost 6= Dpre.

We call this training approach a decoupled strategy. See Fig. 5 (a)–(c) for graphical illustrations of
these training strategies.

In addition, we also test a strategy where the decoupled strategy is followed by finetuning the con-
troller toward minimizing Cpost, which we call the decoupled+finetune strategy.
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Controller’s Error
View Training Strategy Dpre Djoint/Dpost Rate (%)

(a) Full Joint – CT-MNIST-Full 3.82%
(b) Full Decoupled CT-MNIST-Full CT-MNIST-Full 4.79%
(c) Full Decoupled+Finetune CT-MNIST-Full CT-MNIST-Full 3.57%
(d) Full Decoupled CT-MNIST-Thin CT-MNIST-Thick 2.68%
(e) Subsampled Joint – CT-MNIST-Full 3.42%
(f) Subsampled Decoupled CT-MNIST-Full CT-MNIST-Full 4.89%
(g) Subsampled Decoupled+Finetune CT-MNIST-Full CT-MNIST-Full 3.53%
(h) Subsampled Decoupled CT-MNIST-Thin CT-MNIST-Thick 2.28%
(i) Cropped Joint – CT-MNIST-Full 4.28%
(j) Cropped Decoupled CT-MNIST-Full CT-MNIST-Full 5.42%
(k) Cropped Decoupled+Finetune CT-MNIST-Full CT-MNIST-Full 4.51%
(l) Cropped Decoupled CT-MNIST-Thin CT-MNIST-Thick 3.32%

(m) Full Decoupled CT-MNIST-Full CT-MNIST-Natural-0.15 4.24%
(n) Full Decoupled CT-MNIST-Full CT-MNIST-Natural-0.25 6.03%
(o) Recurrent Attention Model (RAM)� 4.04%†

Table 2: The results by all the combinations of controller’s view (Full, Subsampled or Cropped),
training strategy (Joint, Decoupled or Decoupled+Finetune), Dpre and Dpost/Djoint. See Sec. 4.1 for
the detailed exposition of each column. (�) The best performance reported by Mnih et al. (2014). †
Should be used for comparison primarily for CT-MNIST-Full experiments.

5 EXPERIMENTS

5.1 DATASET

We evaluate the proposed decoupled controller-recognizer model on the classification task using
the cluttered and translated MNIST (CT-MNIST), closely following (Mnih et al., 2014) where the
recurrent attention model (RAM, see Sec. 2.2) was proposed.

Each example in the CT-MNIST consists of a 60 × 60 canvas on which a target handwritten digit
together with multiple partial digits are randomly scattered. The controller sees and manipulates
the canvas by issuing commands to the image library based manipulator. When the controller is
done, the recognizer looks at the 28 × 28 center window of the final canvas and outputs the label
distribution.

We build the following subsets of the CT-MNIST for the decoupled training strategies:

1. CT-MNIST-Full: CT-MNIST as it is

2. CT-MNIST-Thin: Digits with labels {0, 1, 2, 3, 9}
3. CT-MNIST-Thick: Digits with labels {4, 5, 6, 7, 8}
4. CT-MNIST-Natural-X: CT-MNIST with natural image background2 of opacity set to X

(see Fig. 6)

These datasets are used with the decoupled training strategy. By having Dpre 6= Dpost, we test the
generality of the pretrained controller.

Figure 6: (a) CT-MNIST-Natural-
0.15 and (b) CT-MNIST-Natural-
0.25 (best viewed digitally)

(a) (b)

2 We use the Berkeley Segmentation Dataset Martin et al. (2001).
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Figure 7: Example se-
quence of manipula-
tions by the decoupled
controller.

x0 → xT

5.2 RESULTS AND ANALYSIS

In Table 2, we report the recognition error rate on the test set for each combination. We use the
alphabet index to refer to a specific row in the table.

How well does the decoupled model do? From (a) and (o), we see that the proposed decou-
pled controller-recognizer model, when jointly trained, works as well as the more tightly coupled
controller-recognizer model (RAM). However, we notice that when the controller and recognizer are
separately trained (row (b)), the performance slightly degrades, but this is overcome by finetuning
the controller subsequently (row (c)). See Fig. 7 for an example of the controller moving a digit to
the center window. This confirms that it is indeed possible to decouple the controller and recognizer
in the controller-recognizer framework.

One potential criticism of the settings (a–c) is that the controller has the full view of the canvas
unlike the RAM of which controller has only a partial view of the canvas, via attention mechanism,
at a time. In the rows (e–g) and (i–k), we present the results using the controller that has a more
restricted view of the canvas. In both cases, we see that the decoupled model works as well as, or
sometimes better than, the RAM, further supporting the decoupled model as a viable model in the
controller-recognizer framework.

How transferable is the pretrained controller? First, let us consider rows (d), (h) and (l). In
these cases, the controller was trained on CT-MNIST-Thin but was used for CT-MNIST-Thick. From
the low error rates, it is clear that the controller is able to easily manipulate the digits that were not
seen before for recognition. We further observed qualitatively that this is indeed the case. This
weakly supports that a full-extent, fine-grained recognition is not necessary nor useful for control.

Finally, from the rows (m–n) we see that the controller can manipulate the canvas even when its
background is covered with natural images which the controller has never been exposed to before.
As expected, the controller’s ability to manipulate degrades as the natural image background be-
comes brighter, i.e., higher opacity, but despite the visible differences, recognition performance
degrades gracefully.

6 CONCLUSION

The main contribution of this paper is the introduction of a controller-recognizer framework under
which many recently proposed active recognizers, such as recurrent attention model (RAM) and
spatial transformer network can be studied and analyzed. This framework allows us to view the
active recognizer as a composite of two separate modules, controller and recognizer, and by doing
so, gives us a systematic way to build a novel controller-recognizer model and evaluate it.

As an example, we proposed a decoupled controller-recognizer model, which separates the con-
troller and recognizer. This decoupling allows us to devise a diverse set of learning and inference
scenarios, such as pretraining a controller on one data set and using it together with a recognizer
on another data set (transfer setting.) Our empirical evaluation confirms that the proposed decou-
pled model indeed works well for most of these scenarios. These experiments opens a door to a
possibility of having a single, generic controller is weakly coupled with a variety of subsequent
recognizers.
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Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. The Journal of Machine Learning
Research, 12:2493–2537, 2011.

Misha Denil, Loris Bazzani, Hugo Larochelle, and Nando de Freitas. Learning where to attend with
deep architectures for image tracking. Neural Computation, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer
networks. arXiv preprint arXiv:1506.02025, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.
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