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ABSTRACT

Positive-unlabeled (PU) learning is a weakly supervised binary classification
problem, in which the goal is to learn a binary classifier from only positive and
unlabeled data, without access to negative data. In recent years, many PU learning
algorithms have been developed to improve model performance. However, exper-
imental settings are highly inconsistent, making it difficult to identify which algo-
rithm performs better. In this paper, we propose the first PU learning benchmark
to systematically compare PU learning algorithms. During our implementation,
we identify subtle yet critical factors that affect the realistic and fair evaluation of
PU learning algorithms. On the one hand, many PU learning algorithms rely on
a validation set that includes negative data for model selection. This is unrealis-
tic in traditional PU learning settings, where no negative data are available. To
handle this problem, we systematically investigate model selection criteria for PU
learning. On the other hand, the problem settings and solutions of PU learning
have different families, i.e., the one-sample and two-sample settings. However,
existing evaluation protocols are heavily biased towards the one-sample setting
and neglect the significant difference between them. We identify the internal label
shift problem of unlabeled training data for the one-sample setting and propose
a simple yet effective calibration approach to ensure fair comparisons within and
across families. We hope our framework will provide an accessible, realistic, and
fair environment for evaluating PU learning algorithms in the future.

1 INTRODUCTION

In binary classification, both positive and negative data are usually necessary to train an effective
classifier. However, in many real-world applications, collecting negative data can be more challeng-
ing than collecting positive data (Hsieh et al., 2015} [Zhou et al., |2021). In positive-unlabeled (PU)
learning, only positive and unlabeled data are needed. The objective is to train a binary classifier
that assigns positive or negative labels to unseen instances. Therefore, PU learning is a promising
weakly supervised binary classification approach for many real-world problems where negative data
are difficult to obtain, including recommender systems (Y1 et al.| 2017;|Chen et al., [2023)), anomaly
detection (Ju et al., [2020; Tian et al., 2024} Takahashi et al., [2025)), knowledge graphs (Yin et al.,
2024), and link prediction (Wu et al., [2024; |Mao et al.|[2025).

In recent years, there has been significant progress in PU learning algorithms. PU learning can be
divided into three groups: cost-sensitive PU learning algorithms (du Plessis et al.l 2014} Zhao et al.,
2022), sample-selection PU learning algorithms (Chen et al., 2020b; [Wang et al.} 2023a), and biased
PU learning algorithms (Teisseyre et al.,|2025). Cost-sensitive algorithms assign different weights to
positive and unlabeled data to approximate the classification risk. Sample-selection algorithms select
high-confidence negative data from unlabeled data, which are then given to supervised learning
algorithms. Biased PU learning algorithms model the biased generation process of positive data and
exploit various correction approaches.

Although many PU learning algorithms have been developed to improve generalization perfor-
mance, there is a lack of a unified experimental setup in the literature for fairly comparing different
PU learning algorithms. The experimental settings of different papers are not consistent with each
other, making it difficult to tell which algorithm is better. It has been observed that subtle differ-
ences in experimental settings can greatly affect the model performance of PU learning algorithms.
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Additionally, subtle algorithm details, including data augmentation, algorithm tricks, and warm-up
strategies, can also greatly affect model performance (Zhu et al.,[2023b; Wang et al.| 2023a)). There-
fore, a unified experimental protocol is necessary to further promote the development of PU learning
algorithms. In this paper, we propose the first PU learning benchmark to systematically and fairly
compare state-of-the-art PU learning algorithms with unified experimental settings. We propose
careful and unified implementations of the data generation, algorithm training, and evaluation pro-
cesses for PU learning algorithms. This makes it easier for users to validate the effectiveness of their
newly developed algorithms.

In our implementations, we observe that many PU learning algorithms rely on a validation set con-
taining both positive and negative data for meta-learning, model selection, or early stopping (Chen
et al., 2020b; |[Zhu et al., [2023b; |Long et al., [2024). However, accessing negative data is unrealistic
and contradicts the original motivation of PU learning (Elkan & Noto} 2008)), which goes against
the advantages of PU learning in not depending on negative data. Actually, if we can obtain some
negative data, we can directly apply supervised learning techniques, which can greatly boost model
performance (Sakai et al.,2017). Therefore, standardizing the composition and use of the validation
set is vital to fairly and practically evaluating PU learning algorithms. In this paper, we system-
atically revisit the model selection criteria for PU learning by using only positive and unlabeled
validation data, and validate their effectiveness with both theoretical and empirical analyses.

In addition, there are different fam-

ilies and corresponding solutions of
PU learning algorithms, but exist-  _x
ing evaluations fail to consider the %,
differences between these families. 2
From the perspective of data gener-
ation processes, there are two types
of PU learning problems: the one-
sample (OS) and two-sample (TS)
settings. In the OS setting, the pos- Figure 1: An example of the comparison of the distribution
itive and unlabeled training sets are of unlabeled training data in different PU learning settings.
generated sequentially. An unlabeled

dataset is first sampled from the marginal density. Then, if an instance in the unlabeled dataset is
positive, its positive label is observed with a constant probability. If an instance in the unlabeled
dataset is negative, its label is never observed, and the instance remains unlabeled. Finally, the ob-
served positive data constitute the positive training set, while the remaining unlabeled data constitute
the unlabeled training set. In the TS setting, the positive and unlabeled training sets are generated in-
dependently, meaning that the density of unlabeled training data is the same as the marginal density.
This indicates that the density of unlabeled training data is different in these two settings. Figure ]
shows an example of the distribution of unlabeled data under the OS and TS settings. We can find
that the class priors of the two settings are different. This causes an internal label shift (ILS) problem
for the unlabeled training data when adopting the OS setting as the evaluation setting. Unfortunately,
this problem has typically been overlooked. Existing evaluation protocols are heavily biased towards
the OS setting and compare OS and TS algorithms together without specific manipulations. This can
deteriorate the performance of TS PU learning algorithms and lead to unfair experimental compar-
isons. Therefore, we identify the ILS problem for the first time in the PU learning literature and
propose a simple yet effective calibration approach to overcome it with theoretical guarantees.

One-sample Two-sample

(a) One-Sample (b) Two-Sample

We draw the following key takeaways from our benchmark results:

* No single algorithm outperforms all others on every dataset or evaluation metric; some early,
simple methods already achieve strong classification performance. Therefore, we should choose
which PU learning algorithm to use on a case-by-case basis.

* The model-selection problem in PU learning must be addressed when designing new algorithms
or conducting empirical comparisons, and different selection criteria should be used for different
test metrics.

* The performance of TS PU learning algorithms degrades significantly when they are evaluated in
the OS setting without adaptation, so OS protocols in the existing PU learning literature do not
reflect the true performance of TS methods. Hence, differences between OS and TS settings must
be considered to ensure fair cross-family comparisons.
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2 PRELIMINARIES
In this section, we present the background of PU learning and existing state-of-the-art algorithms.

2.1 POSITIVE-UNLABELED LEARNING

Problem Setting. Let X < R? denote the d-dimensional feature space and ) = {+1, —1} denote
the binary label space. Let p(x,y) denote the joint probability density over the random variables
(z,y) € X x Y. In PU learning, we are given a positive training set Dp = {(x;,+1)},", and an
unlabeled training set Dy = {mt}fj::fl Let 7 = p(y = +1) denote the class prior probability
of the positive class. Let p(x|y = +1) and p(x|y = —1) denote the positive and negative class-
conditional densities, respectively. Let p(x) denote the marginal density. The goal of PU learning is
to learn a binary classifier f : X — R from Dp | J Dy that maximizes the expected accuracy

where [E denotes the expectation and I denotes the indicator function. However, since the 0-1 loss
function is difficult to optimize, we usually use a surrogate loss function ¢, such as the logistic loss.
Then, the classification risk to be minimized can be expressed as

Data Generation Assumption. There are mainly two data generation assumptions for PU learn-
ing, i.e., the TS setting (du Plessis et al., 2014; Niu et al.,|2016; (Chen et al.,|2020a)) and the OS set-
ting (Elkan & Notol [2008}; |Coudray et al.,[2023). In the TS setting, we assume that Dp and Dy are
generated independently, where Dp is sampled from the positive conditional density p(x|y = +1)
and Dy is sampled from the marginal density p(«). In the OS setting, Dy and Dp are generated
sequentially. First, Dy is sampled from the marginal density p(x). Second, for each example in
Dv, if it is positive, its positive label is observed with a constant probability ¢ > 0. If an example is
negative, its negative label is never observed and the example remains unlabeled with probability 1.
Finally, the observed positive data constitute Dp and all the unlabeled data left constitute Dy.

2.2 POSITIVE-UNLABELED LEARNING ALGORITHMS

From a methodology taxonomy perspective, PU learning algorithms can be divided into three
groups: cost-sensitive algorithms, sample-selection algorithms, and biased PU learning algorithms.
Cost-sensitive algorithms assign different weights to positive and unlabeled data to approximate the
classification risk (du Plessis et al.,|2015; Kiryo et al.||2017;|Hsieh et al.,2019). Some algorithms are
equipped with other regularization techniques to further improve performance, such as entropy min-
imization (Zhao et al) [2022; Jiang et al., [2023) and mixup technique (Chen et al.| [2020a} [Li et al.,
2022). Sample-selection algorithms select reliable negative examples from the unlabeled dataset
for supervised learning (Chen et al.| [2020b; |Garg et al., [2021; Wang et al., 2023a; |Li et al., [2024).
Biased PU learning algorithms consider the density of positive data to be biased and adopt different
strategies to model the bias (Bekker et al.,[2019;Gong et al.|, [2022;|Coudray et al.,|2023;/Wang et al.,
2023b; [Teisseyre et al., 2025).

3 MODEL SELECTION FOR POSITIVE-UNLABELED LEARNING

In this section, we first explain our motivation for studying the model selection problem in PU
learning. Next, we review the criteria used for model selection in PU learning, including the proxy
accuracy, proxy area under the curve score, and oracle accuracy.

3.1 MOTIVATION

Although model selection is well established for supervised learning, it is non-trivial for PU learning
because negative data are inaccessible. This problem is particularly important for deep learning
algorithms because they have many hyperparameters, including universal hyperparameters (e.g.,
learning rates and weight decay) and algorithm-specific hyperparameters. Previous work has usually
conducted model selection by assuming a validation set with labels (i.e., both positive and negative
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labels) is available. However, this assumption is inconsistent with the definition of PU learning, in
which negative data are unavailable. Therefore, it is important to study the model selection problem
systematically for PU learning. According to the original definition of PU learning (Bekker & Davis|

2020), we assume that the validation set consists of a positive validation set Dp = {(x}, +1)};F,
. . / / np+ng

and an unlabeled validation set D, = {a:i}ijn,P -

3.2 PROXY ACCURACY

Although the validation accuracy cannot be directly calculated because of the absence of negative
data, it has been shown that the expected accuracy can be expressed using only positive and unla-
beled data (du Plessis et al., 2014). This motivates us to apply it for model selection.

Definition 1 (Proxy accuracy (PA)). The proxy accuracy of a binary classifier f on the PU validation
dataset is defined as
27r ”P ]I x’ > 0
pagpy - | EZELICE)
2” 7 21 L(f () 2 0

)+ ar Zjl’:”flﬂ(f( ') < 0), if the setting is TS;

n 3)
)+ W Z?Pf 5 (f(x}) < 0), if the setting is OS.

PA can be calculated using only PU validation data when the class prior 7 is known or estimated (Ra-
maswamy et al.| 2016; Yao et al.l2022; Zhu et al., 2023a). The following proposition then holds.

Proposition 1. For two classifiers fi and fo that satisfy E[PA(f1)] < E[PA(f2)], we have
ACC(f1) < ACC(f2).

The proof can be found in Appendix According to Proposition [1] a classifier with a higher
expected value of the proxy accuracy can achieve a higher expected accuracy even when the true
labels are inaccessible. This means that when the number of validation data is large, the best model
chosen using the PA metric will achieve the highest accuracy in expectation. One limitation of PA is
that knowledge of the class prior is necessary. However, knowledge of  is an intrinsic and common
issue in PU learning. Addressing this issue is beyond the scope of our paper. In practice, we can
estimate it using off-the-shelf estimation methods (Ramaswamy et al.| 20165 |Garg et al., 2021} |Yao
et al., [2022)), and we can even obtain this knowledge in some real-world applications (Sugiyama;
et al.l [2022).

3.3 Proxy AUC SCORE

It has been shown that the area under the curve (AUC) score can be robust to corrupted labels for
binary classification (Charoenphakdee et al.l [2019; Wei et al., [2022). Therefore, it is promising to
employ it for PU model selection. First, we introduce the expected AUC score as follows:

AUC(f) p(w|y +1)Ep(m’|y =-1) |:]I (f(.’I}) > f(.’l)/)) + %H (f(.’I}) = f(ml)):| : “4)

We then consider the unlabeled validation data to be corrupted negative data and calculate the AUC
score as follows, which is suitable for both OS and TS settings.

Definition 2 (Proxy AUC score (PAUC)). The proxy AUC of a binary classifier f on the PU vali-
dation dataset is defined as

PAUC(f

np+ny ( ) > f(a})) + 1]1 (f(z)) = f(m;))) (5

j=np+1 2

The following proposition then holds.

Proposition 2. Under both OS and TS settings, for two classifiers f1 and fo that satisfy
E [PAUC(f1)] < E[PAUC(f2)], we have AUC(f;) < AUC(f2).

The proof can be found in Appendix[A.2] Proposition[2]shows that a classifier with a higher expected
value of the proxy AUC score will achieve a higher expected AUC score, regardless of whether the
setting is OS or TS. Therefore, when the number of validation data is large, the model selected with
the highest PAUC can also achieve the highest expected value of the AUC score. An advantage is
that the class prior 7 is not necessary when calculating the PAUC.
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3.4 ORACLE ACCURACY

Finally, we introduce the oracle accuracy metric if the true labels of unlabeled data are available.

Definition 3 (Oracle accuracy (OA)). The oracle accuracy of a binary classifier f on the PU valida-
tion dataset is defined as

OA(f) = % Z?j;:;l I /(yif(:n’b) > 0), if the setting is TS;
L ST (g f (2)) = 0), if the setting is OS.

/ ’
np+ny

(6)

Here, y; is the true label of x.

Notably, the implementations for the OS and TS settings differ slightly, as it is important to en-
sure that the validation data have the same distribution as the test data. OA is a natural metric for
supervised learning. However, due to the absence of negative data, it cannot be calculated in the
traditional PU learning setting. Unfortunately, this metric has actually been widely used in the PU
learning literature because of a lack of standardized benchmarking. Therefore, this paper only in-
cludes the results of OA for comparison. We recommend using PA and PAUC in future PU learning
experiments, especially in real-world applications where negative data cannot be obtained.

4 INTERNAL LABEL SHIFT IN POSITIVE-UNLABELED LEARNING

In this section, we first introduce the ILS problem in PU learning. Then, we provide a calibration
approach to solve it with both theoretical and empirical analysis.

4.1 PROBLEM STATEMENT

The difference between the OS and TS settings lies in the density of the unlabeled training data.
Specifically, the density of the unlabeled training data equals the marginal density in the TS setting
but differs from it in the OS setting. We formalize the ILS problem as follows.

Definition 4 (Internal label shift in OS PU learning). In the OS setting, the density of Dy is p(x) =
mp(xly = +1) + (1 — T)p(x|y = —1), where 7 is the class prior under the OS setting. Here, the
positive and negative class-conditional densities are the same as those of the test data; however, the
class prior is @ = (1 — ¢)7/(1 — cmr), which differs from m, the class prior of the test data. This
mismatch causes an internal label shift between the unlabeled training data and the test data.

Many cost-sensitive PU learning algorithms have been developed for the TS setting. In these algo-
rithms, positive and unlabeled data are assigned different weights to approximate the classification
risk (du Plessis et al.l 2014} (Chen et al.| [2020a; |[Zhao et al.l [2022). Because the weights are the-
oretically derived, small discrepancies in data assumptions can degrade performance. Conversely,
sample-selection PU learning algorithms select reliable negative data from Dy and need not rely
strictly on the specific data generation process (Zhu et al., 2023b; Wang et al.l 2023a} |Li et al.
2024). However, many papers adopt only the OS setting and ignore the distribution mismatch, caus-
ing experimental datasets to violate the assumptions of TS approaches.

To demonstrate how ILS affects model performance, we use uPU (du Plessis et al.| [2015) as an
example in Section [} it is a representative TS algorithm and underpins many subsequent cost-

sensitive methods Under the TS assumption Dy o p(x), |du Plessis et al|(2015) proposed the
unbiased risk estimator (URE)

np np+nu
ﬁ(f):%Z(f(f(wz-)ﬁl)—ﬁ(f(wi),—l))Jr% Moo -1), @)
=1 i=np+1

which enjoys risk consistency because ]E[]%(f)] = R(f). Let f = argmingser E(f) and f* =
arg minger R(f) denote the classifiers that minimize the empirical risk in Eq. and the risk in

Eq. 1| respectively, where F is the model class. It is known that f — f*asnp —> wandny — ©

'Our analysis and calibration approach can be extended to other TS algorithms as well.
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Figure 2: Classification accuracies of TS PU learning algorithms in OS and TS settings of a PU
version of CIFAR-10 with varying amounts of positive data. Figures (a) to (f) are for Case 1, and
Figures (g) to (1) are for Case 2.

under the TS setting (Niu et al.,[2016). Under the OS setting, however, E[ﬁ(f)] # R(f),sof — f*
no longer holds (see Appendix [A.3). Consequently, minimizing losses designed for the TS setting
may not yield high-performing classifiers when datasets are generated under the OS setting, leading
to unfair comparisons when all methods are evaluated in the OS setting. The bias stems from the
ILS problem: under the OS setting, the class prior of Dy differs from 7, breaking the consistency of
many TS algorithms and degrading their performance.

4.2 THE PROPOSED CALIBRATION APPROACH

To address the bias, we incorporate the true densities of Dy for TS algorithms. The following
theorem shows that the risk rewrite for the uPU approach differs under the OS setting.

Theorem 1. Under the OS setting, the classification risk in Eq. ([2) can be equivalently expressed as
R(f) = mEp(aly=+1) [((f(2), +1) + (¢ = DI(f(2), =1)] + (1 — em) Epq) [€(f (), —1)].

The proof is given in Appendix[A.4] Theorem[I]shows that the classification risk can be equivalently
expressed as expectations w.r.t. the densities of positive and unlabeled data under the OS setting. We
then obtain a calibrated risk estimator using the positive and unlabeled datasets:

np —en np+nuy
R(P) = 2 3 (C(f @) 41) + (e = DE (), ~1) + ! S (@), -1). ®)
=1 i=np+1

When the class prior 7 is known or estimated, we obtain an unbiased estimate of cas ¢ = np /7 (np+
ny). Let f = argminger R(f) denote the optimal classifier that minimizes the calibrated risk
estimator in Eq. (8). Let R, (F) and ], (F) denote the Rademacher complexities defined in
Appendix [A.5] Then, the following theorem holds.

Theorem 2. Assume that there exists a constant C'y such that sup s | f|oo < Cy and a constant
Cy such that Yy, sup|, <c, U(z,y) < Cyp. We also assume that Yy, the binary loss function {(z,y)
is Lipschitz continuous in z with a Lipschitz constant Ly. For any 6 > 0, the following inequality
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Figure 3: Classification accuracies of TS PU learning algorithms in OS and TS settings of a PU
version of ImageNette with varying amounts of positive data. Figures (a) to (e) are for Case 1, and
Figures (f) to (j) are for Case 2.

holds with probability at least 1 — 6:

R(f) = R(f*) <(8 = 4e)T LRy (F) + (4 — dem) LRy, (F)

+<(4\/2%w04+(2\/2%)02>\/@' ©)

The proof is given in Appendix Theorem [2] shows that f — f* as np — o0 and ny — 0,
because R, 5(F) — 0and R, ,, (F) — 0 for all parametric models with a bounded norm, such
as deep neural networks trained with weight decay (Golowich et al.l |2018)). Notably, Eq. (8) can be
equivalently transformed into Eq. if we incorporate Dp into Dy when computing the last loss
term w.r.t. unlabeled data in Eq. (7) (see Appendix [A.6). Thus, when Dp is used in both loss terms,
the ILS bias is eliminated, because the union of positive and unlabeled data is unbiased w.r.t. the
marginal density. This motivates a simple yet effective calibration approach that adapts TS algo-
rithms to the OS setting, summarized in Algorithm[I} We augment Dy with Dp when computing the
loss on unlabeled data, so the replenished set is marginally unbiased and suitable for TS PU learners.

4.3 EMPIRICAL ANALYSIS Algorithm 1 Calibrated Two-Sample PU Learning

) ) Require: Two-sample PU learning algorithm .4, positive training
‘We validated the existence of the ILS set Dp, unlabeled training set Dy, maximum epochs Tiax,
problem and the effectiveness of the maximum iterations Imax.
proposed calibration approach. We Ensure: Classifier f produced by .A.
used uPU (du Plessis et al| 2015), [:fori=1,2,... Thydo
nnPU (Kiryo et al}, 2017), nnPU- § ?hulgﬂe ?P andlpu;d

. orrk =1,..., Imax dO
SAa(lKlrgg 16:9t)al.,\]219é7 )(’CPIE iBe(tKZ{O 4: Fetch mini-batch DY from Dp aPnd ?JkU frorFr’l Du;

= [ =5 Call A.TRAIN_ONE_BATCH(D;,, Dy, Dy )

2020a), gnd Dist-PU (Zhao et al., 6 end for
2022), six representative TS PU 7. ond for

learning algorithms. We used
CIFAR-10 (Krizhevsky & Hintonl 2009) and ImageNette (Deng et al., |2009)) as the datasets. We
synthesized PU training datasets with different definitions of positive and negative labels, where the
details are presented in Appendix|B} We did not include the results of Dist-PU on ImageNette since
Dist-PU did not work well on this dataset. We considered both the OS and TS cases using the same
experimental settings, and the only difference lay in how positive data were generated. Figures 2]
and[3|show the experimental results on CIFAR-10 and ImageNette with varying amounts of positive
data, respectively. We can observe that using TS approaches directly in the OS setting yields infe-
rior performance. Their performance consistently drops when the number of positive data increases,
even though we have more knowledge of the true labels of positive data in the unlabeled dataset.
By using our proposed calibration approach, the performance can be improved greatly and can even
sometimes surpass the performance in the TS setting. This shows the effectiveness of our calibration
approach in improving TS approaches under the OS setting.
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Table 1: Test results (mean+std) of accuracy, AUC, and F1 score for each algorithm on CIFAR-10
(Case 1) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-¢” indicates using the proposed calibration technique in Algorithm |}

Test metric ‘ Accuracy ‘ AUC ‘ F1

Val metric | PA PAUC OA | PA PAUC OA | PA PAUC OA
PUbN 86.46+0.46  86.24+0.84  87.33+0.28 93.9640.49 93.44+0.74  94.331+0.23 86.621+0.52 86.07+£0.98 86.98+0.24
PAN 76.64+0.78  77.561+0.41 78.91+0.59 87.11+0.86 87.2840.93  85.70+0.68 | 79.08+0.73 79.41+0.61 78.74+0.95
CVIR 8545+1.03  83.324+0.44  86.47+0.48 93.74+0.73 93.67+£0.62  93.73+0.31 86.1910.88 84.71+0.33 86.51+£0.40

P3MIX-E 72.68+6.26  50.00+0.00  73.96+5.63 88.80+2.65 92.62+0.67  89.56+2.18 | 77.65+3.65 66.67+0.00 67.45+12.03
P3MIX-C 86.36+0.58  85.75+0.76  86.651+0.57 92.70+0.71 93.09+0.65  93.16+0.43 86.4410.51 85.93+0.70 86.7240.58
LBE 82.71+0.73  73.60+129  85.034+0.38 92.09+0.15 93.21+£0.04  92.264+0.31 83.7940.49 78.72+0.76 84.3140.31
Count Loss 80.89+0.32  79.86+0.88  82.3940.37 90.63+0.69 90.40+0.45  89.20+1.27 82.6010.28 81.83+0.39 83.11+0.39
Robust-PU 85.5740.18  85.61+£0.55  85.9140.35 91.56+0.49 92.89+0.29  91.04+1.60 | 85.88+0.09 84.80+0.96 85.47+40.32
Holistic-PU | 50.204+0.10  50.00+0.00  81.814+0.49 | 64.56+11.51 69.45+5.04  90.60+0.41 66.64+0.03 66.67+0.00 82.97+40.37

PUe 77854085  78.51+0.33  80.45+0.46 86.8410.61 86.60+0.45  87.58+0.44 | 79.45+0.55 78.01+£0.48 78.99+0.28
GLWS 84.46+045  79.83+230  85.6610.44 93.55+0.07 93.54+0.14  93.48+0.16 | 85.65+0.36 82.69+1.46 86.26+0.32
uPU 80.24+1.25  76.07+2.83  82.041+0.49 88.7240.40 89.054+0.17  87.36+0.73 81.0540.90 77.01+1.41 80.34+0.56
uPU-c 85.80+0.44  84.20+0.49  86.484+0.21 92.65+0.38 93.03+£0.22  93.2240.15 | 85.96+0.43 83.04+0.92 86.12+0.10
nnPU 82.03+0.11  75.56+0.29  82.40+0.31 92.62+0.15 92324047  91.95+0.44 | 83.5140.05 79.64+0.25 83.49+0.05
nnPU-c 85.52+0.20  86.03+0.68  86.35+0.26 92.19+0.33 93.07+£0.55  92.95+0.38 | 85.90+0.28 85.71+0.70 86.29+0.30

nnPU-GA 84.26+0.80  84.18+0.40  84.931+0.70 92.79+0.47 92.26+0.36  92.251+0.46 | 84.871+0.62 84.631+0.42 84.58+0.53
nnPU-GA-c | 85.80+0.29  86.28+0.31  86.13+0.25 92.811+0.42 92.96+0.47  93.00+£0.42 | 85.90+0.31 85.66+0.27 85.57+0.19

PUSB 81.53+0.77  82.49+1.02  82.9140.70 81.53+0.77 82.49+1.02  82.9140.70 83.294+0.47 83.80+0.77 84.12+0.53
PUSB-c 86.15+0.37  84.76+0.17  86.49+0.17 86.15+0.37 84.76+0.17  86.49+0.17 86.09+0.44 83.89+0.19 86.23+0.18
VPU 84.93+0.52  65.71+£7.32  85.804+0.40 91.89+0.08 92.89+0.54  92.861+0.20 84.15+0.59  42.73£17.09 84.91+0.49
VPU-c 86.41+0.75 82.85+1.68  87.65+0.25 92.30£0.31 93.51+£0.53  91.79+1.62 86.73+0.55 84.56+1.15 87.41£0.29
Dist-PU 81.64+0.45  79.31+0.51 83.56+0.46 90.91+0.54 91.90+0.48  90.5940.49 83.344+0.26 81.94+0.23 83.26+0.60

Dist-PU-c 87.06+0.45  87.38+0.23  88.47+0.25 94.93+0.31 94.55+0.21  94.90+0.32 | 87.63+0.33 87.28+0.29 88.18+0.25

5 BENCHMARKING POSITIVE-UNLABELED LEARNING

In this section, we first introduce the benchmark settings, then we present the benchmark experi-
mental results. The code package is available at https://anonymous.4open.science/r/
ICLR26_PUbench-0C26/.

5.1 BENCHMARK SETTINGS

We included seventeen representative PU learning algorithms: uPU (du Plessis et al., |2015),
nnPU (Kiryo et al.| [2017), nnPU-GA (Kiryo et al [2017), PUSB (Kato et al.,|2019), PUbN (Hsieh
et al., 2019), VPU (Chen et al. 2020a), PAN (Hu et al.| 2021), CVIR (Garg et al.l [2021)), Dist-
PU (Zhao et al., 2022), P°MIX-E (Li et al., [2022), P°MIX-C (Li et al., 2022), LBE (Gong et al.,
2022), Count Loss (Shukla et al.| 2023)), Robust-PU (Zhu et al., 2023b), Holistic-PU (Wang et al.,
2023a), PUe (Wang et al., [2023b), and GLWS (Chen et al., 2024). We evaluated our methods on
two image datasets (CIFAR-10 (Krizhevsky & Hinton| 2009) and ImageNette (Deng et al., 2009))
and two UCI datasets (USPS and Letter) (Kelly et al.l 2023)). ImageNette is a curated subset of the
larger ImageNet corpus, containing ten easily distinguishable categories: tench, English springer,
cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, and parachute.
We synthesized PU versions of these datasets; detailed information can be found in Appendix [B] We
used ResNet-34 (He et al.,|2016) and for image datasets and a multilayer perceptron (MLP) with a
hidden layer width of 500 equipped with the ReLU (Nair & Hintonl [2010) activation function for
tabular datasets.

Following the widely used validation protocol (Raschkal |2018};|Gulrajani & Lopez-Paz,2021; Wang
et al.,|2025)), we divided some training data from the positive and unlabeled datasets into the positive
validation set D% and the unlabeled validation set Dy;, respectively. We used various test metrics,
including accuracy, AUC score, F1 score, precision, and recall. We first trained a model with training
sets Dp and Dy. Then, we evaluated its validation performance based on the metrics in Section E]
as well as its test performance on a test set with true labels. We randomly selected a set of hyper-
parameter configurations from a given pool. For each validation metric, we selected the checkpoint
with the best validation performance on Dy, | Dy, and recorded the corresponding test metrics. We
recorded the mean test metrics and standard deviations obtained with different data splits.

5.2 BENCHMARK RESULTS

Tables[I] [2] and[5]to[I8]in Appendix [C|report detailed experimental results in terms of different met-
rics on CIFAR-10, ImageNette, Letter, and USPS, and the hyperparameters are determined with PA,
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Table 2: Test results (mean+std) of accuracy, AUC, and F1 score for each algorithm on CIFAR-10
(Case 2) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-¢” indicates using the proposed calibration technique in Algorithm |}

Test metric | Test ACC | AUC | Test F1

Valmetric | PA PAUC oA | pa PAUC oA | pa PAUC oA
PUbN 78.26+1.01 79.50+0.38 79.9440.36 87.81+0.65 88.00+0.38 88.08+0.45 80.47+0.65 79.17+0.88 79.9140.21
PAN 61.43+2.74 60.61+4.34 63.48+2.71 68.71+5.63 71.54+4.68 69.63+5.43 70.73+1.40 70.87+1.72 69.25+3.04
CVIR 78494149  79.50+1.46  80.44+0.68 | 88.10+0.87 87.98+1.33  88.68+0.81 80.86+0.97 80.69+1.33 81.4440.58

P3MIX-E 59.04+4.54  50.00+0.00  59.13+4.62 7426+4.26  84.524+0.84  74.11+4.16 70.45+2.00 44.44+18.14  70.45+2.00
P3MIX-C 78.05+0.95 77.42+1.40  78.7040.50 85.87+£1.02  84.92+1.40  86.13+0.79 79.82+0.56 79.06+0.92 79.90+0.49
LBE 72474150  63.544+2.86  75.96+0.88 84.024+0.40  84.2640.78 83.47+0.97 77.13+£0.72 72.96+1.42 76.0440.83
Count Loss 7444+0.68 74754045  76.87+0.75 82.88+1.02  82.99+1.03 84.44+0.75 77.41£0.54 76.70+0.55 78.2740.99
Robust-PU 78.94+0.79  78.431+0.61 79.60+0.81 85.23+1.09  87.13+0.76  86.33+0.63 80.37£0.72 77.1640.68 79.7940.89
Holistic-PU 55.60+0.16  56.04+4.93  71.18+1.20 78.03+2.53  67.96+6.67  76.93+3.13 69.02+0.04  44.49+18.12  73.64+2.09

PUe 68.60+0.41 67.40+1.90  71.054+0.52 | 78.0640.31 79.2740.51 78.694+0.36 | 73.41+0.44 73.054+0.71 71.0641.35
GLWS 77.71£0.71 76.224+1.33  79.5840.61 87.86+0.33  88.08+0.43  87.44+0.51 80.40+0.37 79.75+0.81 80.47+0.47
uPU 66.21+1.40  69.03+1.04  70.46+0.70 | 76.46+1.65  78.80+0.74  77.97+£0.90 | 71.5240.73 72.78+0.47 70.894+1.53
uPU-c 77.2240.26  79.29+£0.37  79.024+0.99 | 85.194+0.46  87.76+0.38  87.11+0.83 79.48+0.22 78.194+0.45 78.60+1.22
nnPU 7427+£126  62.67+1.09  77.62+0.68 86.16+0.07  86.53+0.16  86.42+0.58 78.00£0.55 72.574£0.51 79.2040.52
nnPU-c 77.74+£0.53  78.494+0.35  79.37+£0.30 | 84.84+0.44  86.63+0.31 86.16+0.22 | 79.79+0.18 77.2540.61 79.0740.39
nnPU-GA 76.59+1.15  76.73+0.88  78.38+0.74 | 86.41+1.24  86.09+1.23  86.58+0.84 | 79.144+0.95 78.76+1.11 78.2240.53
nnPU-GA-c 78.004£0.52  78.3240.71 79.124+0.91 83754130  85.82+1.04  85.63%+1.27 79.2610.81 77.78+0.48 79.034+0.92
PUSB 75.7440.61 78.80+0.55  78.354+0.41 75.7440.61 78.80+0.55  78.354+0.41 79.18+0.43 79.834+0.59 79.7940.61
PUSB-c 79.06+0.45  77.98+0.54  79.1940.32 | 79.06+0.45  77.98+0.54  79.19+0.32 | 80.06+0.36 77.4340.40 79.2940.40
VPU 76.99+1.00 63224530  77.31+0.86 | 85474098  87.08+0.43  86.0740.67 75.15+1.31 39.92+15.74 75434133
VPU-¢ 77.70£0.41 78.20+0.90  79.81+0.66 | 86.904+0.39  87.50+0.46  86.3240.28 80.1240.27 80.52+0.53 80.56+0.71
Dist-PU 73.46+0.59  74.83+0.58  74.69+0.60 | 80.70+0.45  82.09+0.40  81.484+0.78 76.90+0.31 76.88+0.16 76.6540.15

Dist-PU-c 72.57+347  744142.67 7430+2.73 | 80.34+3.48  82.49+2.68  81.94+290 | 75.50+2.34 75.274+2.67 73.6843.25
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Figure 4: Overall performance w.r.t. accuracy and the F1 score across all datasets. Hyperparameters
were tuned using PA, PAUC and OA, respectively; bar colors indicate means.

PAUC, and OA, respectively. In addition, Figures []to[7] show the overall performance of different
algorithms. For ease of presentation in figures, we did not include the algorithms where the per-
formance is obviously inferior. We can draw the following conclusions based on the experimental
results: 1) The TS algorithms without calibration perform worse due to the ILS problem, indicating
the existence of an evaluation pitfall in the literature. The proposed calibration technique consis-
tently improves the classification performance for TS approaches, demonstrating the effectiveness
of the proposed calibration technique. 2) There is no algorithm that can win in every case of the
dataset and evaluation metric. Besides, some early algorithms can already achieve satisfactory clas-
sification performance. 3) Our proposed validation metrics are effective in hyperparameter selection.
However, the effectiveness may also depend on the test metric. For example, we can observe from
Table [T] that the model selected using PAUC can achieve better performance than using OA when
the test metric is the AUC score.
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6 CONCLUSION

In this paper, we conducted a comprehensive empirical study of PU learning algorithms. We pro-
posed the first PU learning benchmark to systematically compare different PU learning algorithms in
a unified framework. We investigated model selection criteria to facilitate realistic evaluation of PU
learning algorithms. We also identified the ILS problem for the one-sample setting of PU learning
and proposed a calibration approach to ensure fair comparisons of different families of PU learning
algorithms. We hope that our framework can facilitate accessible, realistic, and fair evaluation of PU
learning algorithms in the future. A limitation of our work is that we use relatively small benchmark
datasets following previous work. In the future, it is also promising to investigate the performance
of different algorithms on collected large-scale PU benchmark datasets.

ETHICS STATEMENT

This paper is not associated with any ethical issues.

REPRODUCIBILITY STATEMENT
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We only used LLMs to correct the grammar and spelling errors in the writing.

A PROOFS

A.1 PROOF OF PROPOSITIONII]

[[(f(z) = 0)] + (1 = m)Ep@py——1) [I(f(z) < 0)]
=TEp(@ly=1+1) [L1(f() = 0)] + Epay [L(f(2) < 0)] = TEp(@)y=11) [L(f(z) < 0)]
=TEp@ly=11) [L(f () = 0)] + Ep) [1(f(z) < )]—WE (@ly=+1) [1 =T (f(x) = 0)]
=2mEp (@y=+1) [H(f(-’v) 0)] + Epay [L(f(z) < 0)] —
=E[PA(f)] -

Here, the last equation is obtained since Dy i p(x) for the TS setting and Dp | Dy i4d p(x) for
the OS setting. Therefore, for two classifiers f; and f> that satisfy E[PA(f1)] < E[PA(f2)], we
have ACC(f1) < ACC(fz). The proof is complete.

A.2 PROOF OF PROPOSITION[Z]

For the TS setting,

AUC(S) =Epaly=+1Ep(arly=—1) [H (f@) > f) + 31 (7(w) = f(w’>)]
BB [1@) > 1(61) + 31 (o) = )
- 17_T7T]Ep<w|y=+1>]Ep<w'|y'=+1>[ (fx) > f(=) + ;H(f(w) — f(m’))]
=ﬁEp<m|y=+1>Ep<mq [H (f(z) > f(2') + %H (f(z) = f(:c’))] -3 _”%
=——E[PAUC())] - ;=5

For the OS setting,

AUC(f) =Ep(aly—+1)Epajy-—1) [H (f(m) > f(x)) + %JI (f(z) = f(:c’))]
Z%EPWZH)EPW) [H (f(@) > f(@) + %H (f(z) = f(w’))]
— Byl Epwy=s) [H (f(@)> f(a) + 51 (7() = f(w'>>]
B e [1(7(2) > @) + 31 (@) = 5@) | - 7o
=%E[PAUC( N5 _7?%.

Therefore, under both OS and TS settings, for two classifiers f1 and f> that satisfy E [PAUC( f1)] <
E [PAUC(f2)], we have AUC(f1) < AUC(f3). O
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A.3 BIAS OF THE RISK ESTIMATOR
Under the OS setting, we have
E[R(/)] = R() =Epa) (£ (@), = )] = Epga [0 (@), ~1)]
=(7_T - 7T) (]Ep(w\y=+1) [E(f(a:), 71)] - Ep(m\y=fl) [g(f(a:)a *1)]) ;

which is not equal to 0. Therefore, it means that the bias of the risk estimator always exist. Then,
the minimizers of E []%( f )] and R(f) are not the same.

A.4 PROOF OF THEOREMII]

First, we have

p(x) =mp(zly = +1) + (1 — 7)p(zly = —1)

(1-o)r 1—7
= = 1 = _1 .
o Py = +1) + T ——p(zly )
Therefore, we have
1—cm_ (1-o)r
=—-1)= - = +1).
p(xly )= 7= p@) -5 ——ply=+1)

Then,

R(f) :7T]Ep(ac|y:+1) [g(f(w)a +1)] + (1 - 71—)]Ep(:n\y:—l) [f(f(ﬂ?), _1)]
=7TEp(m|y:+1) [g(f(w)a +1)] + (1 - CW)E;E(E) [E(f(w)7 _1>] - (1 - C)WEp(mly:+1) [f(f(il:), _1)]
=TEp(zly=+1) [((f(2), +1) + (¢ = )I(f(z), —1)] + (1 — em)Epa) [£(f (), —1)],

which conclude the proof. O

A.5 PROOF OF THEOREM [Z]

Definition 5 (Rademacher complexity). Let Xfp = {x1, - Tpp } denote np i.i.d. random variables

drawn from density p(zly = +1). Let XV = {@pp11, ** Tnpiny} denote ny iid. random
variables drawn from density p(x). Let F = ? f+ X — R} denote a class of measurable functions,
op = (01,02, ,0np), and oy = (Opp11,0np+2,°** » Onp+ny, ) denote Rademacher variables

taking values from {41, —1} uniformly. Then, the (expected) Rademacher complexities of F are
defined as

1 &
R, =Eyr Es — if(xi) ],
) =B o [y 1 S|

%, (F) — Exy B LS fa)
" = U Lo sup — g; L3 .
v XnU N JeF ny i=np+1

Lemma 1. Forany 6§ > 0, we have the following inequality with probability at least 1 — §:

?2?—' |R(f) - R(f)| <2(2 — )mLeRpp (F) + 2(1 — em) LR, (F)

Proof. First, we give the upper bound for the one-side uniform deviation sup ;. » (R(f) — R(f)).
When an instance in X} is replaced by another instance, the value of sup .z (R(f) — R(f))

changes at most 7(2 — ¢)Cy/np; when an instance in X,ILJU is replaced by another instance, the value

15
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of sup .+ (R(f) — R(f)) changes at most (1 — ¢m)Cy/ny. Therefore, according to McDiarmid’s
inequality, we have the following inequality with probability at least 1 — §/2:

N \/w2(2 —¢)2C? N (1—cm)2C? |[In2/6

np ny 2
— m2—¢)C;  (1—cem)Cp\ [In2/8

Then, by symmetrization (Vapnik, |1998), it is a routine work to have

sup (R(f) - R(f)) <E
feF

sup (R(f) — R(f))

feF

<E

E | sup (R(f) — R(f))

<2(2— )Ry (Lo F) +2(1 — em)R,, (Lo F).
feF

According to Talagrand’s contraction lemma (Shalev-Shwartz & Ben-David, 2014])), we have
Rpp (Lo F) < LR, (F), ER’TLU (LoF) < Lg‘ﬁim (F).
By combining the above inequalities, we have the following inequality with probability at least
1—-46/2:
sup (R(f) — R(f)) <2(2 = e)mLePR (F) + 2(1 — em) LRy, (F)

- . (ﬂz\/né)c@ L a \/%)cq \/@

In a similar way, we have the following inequality with probability at least 1 — 6/2:
sup (R(f) — R(f)) <2(2 — ¢)n LRy (F) + 2(1 — em) LR, (F)
feF

ny

N <7r(2 —)Cy N (1- c7r)04> [In2/6
A/ Np A/ U 2 '
Therefore, we have the following inequality with probability at least 1 — §:
sup [R(f) — R(f)| <2(2 — )7 LRy (F) + 2(1 — em) LR, (F)
feF

The proof is complete. O

Then, we give the proof of Theorem [2]

Proof of TheoremE] B B B
R(f) = R(f*) =R(f) — R((f) + R((f) = R(f*) + R(f*) = R(f*)
<R(f) = R((f) + R((f) = R(f*) + R(f*) = R(f*)
<2sup |R(f) - R(f)|
feF
By Lemmal([I] the proof is complete. O

A.6 DERIVATION OF EQUIVALENCE OF RISK ESTIMATORS

R(f)
=Y @)+ o= D, 1) + TN e(f), -1

R ™ 1 T 1 np+ny
:i=21 <nP€ (f(xL)7 +1) + (np—l—nU - TLP) E(f(mz)a _1)) + m i=§+lg(f($i)7 —1)
=T Y )+~ £ ~D) + 3, (-1, a0
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where the second equation uses the estimation ¢ = np/7(np + ny).

B MORE EXPERIMENTAL DETAILS

B.1 MORE DETAILS OF BENCHMARK DATASETS

Table [3] summarizes their key characteristics, including the number of examples, feature dimension-
ality, positive class configurations, and task domains. For all datasets, we vary the positive rate in
{10%, 20%, 30%, 40%, 50%}. For the benchmark experiments in SectionE], we used the positive

rate 30%.
Table 3: Summary of datasets used in this PU learning benchmark.

Dataset # Examples # Features Positive Classes (Case 1) Positive Classes (Case 2) Task Domain
CIFAR-10 20,000 3,072 {0,1,2,8,9} {2,3,5,7,9} Image classification
ImageNette 6,000 12,288 {0,1,2,8,9} {2,3,5,7,9} Image classification

USPS 4,000 256 {4,7,9,5,8} {1,6,4,9,8} Digit recognition
Letter 13,000 16 {B,V,L,R,LO,W,S,J.K,C,H,Z} {D,T,A,Y,Q,G,B,L,ILW,J.C,Z} Character recognition

B.2 DESCRIPTIONS OF ALGORITHMS

uPU (du Plessis et al.l 2015): An unbiased risk estimator that is convex when the loss function
satisfies certain linear-odd conditions.

nnPU (Kiryo et al., 2017): A non-negative risk estimator that alleviates the overfitting issue in PU
learning.

nnPU-GA (Kiryo et al.,|[2017)):

PUSB (Kato et al., 2019): A method that accounts for selection bias in the labeling process.
PUDBN (Hsieh et al.,[2019): A framework that incorporates biased negative data into empirical risk
minimization.

VPU (Chen et al.,[2020a): A variational approach that directly evaluates the modeling error of a
Bayesian classifier from data.

PAN (Hu et al} 2021): A predictive adversarial network built upon the generative adversarial
network framework.

CVIR (Garg et al.||2021)): A mixture-proportion estimation method combining best bin estimation
and conditional Value Ignoring Risk.

Dist-PU (Zhao et al.,[2022): A method that enforces consistency between predicted and ground-
truth label distributions.

P3MIX-E (Li et al.,[2022): A mixup-based method that pairs marginal pseudo-negative instances
with boundary-near positive instances, with early-learning regularization.

P3MIX-C (Li et al., 2022): A mixup-based method that pairs marginal pseudo-negative instances
with boundary-near positive instances, with pseudo-negative correction.

LBE (Gong et al.||[2022): An instance-dependent PU algorithm that jointly estimates labeling bias
and learns the classifier.

Count Loss (Shukla et al., 2023): A unified approach introducing a count-based loss penalizing
deviations from arithmetic label-count constraints.

Robust-PU (Zhu et al.|[2023b): A reweighted learning framework that dynamically adjusts sample
weights based on training progress and sample hardness.

Holistic-PU (Wang et al.,|2023a): A holistic method interpreting prediction scores as a temporal
point process.

PUe (Wang et al., [2023b): A causality-based method that reconstructs the loss via normalized
propensity scores and inverse probability weighting.

GLWS (Chen et al.| 2024): A general weak-supervision framework formulated as Expectation-
Maximization, accommodating PU data as one supervision source.

B.3 IMPLEMENTATION DETAILS

All algorithms were implemented in PyTorch (Paszke et al.,|2019), and all experiments were con-
ducted on a single NVIDIA Tesla V100 GPU. We used the SGD optimizer and trained for 20,000
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iterations across all datasets. Model performance on the validation and test sets was recorded every
100 iterations. For each dataset, we generated three random data splits. For each split, 10 random
hyperparameter configurations were sampled from a predefined pool. Table[d]provides the details of
the hyperparameter configurations used for all algorithms.

Table 4: Hyperparameters, their default values, and distributions for random search.

Condition = Parameter Default Value Random Distribution
learning rate 0.001 QUniform(—4.5,-2.5)
ResNet batch size 64 Uniform(5,8)
momentum 0.9 0.9
learning rate 0.001 1QUniform(—4.5,—2.5)
MLP batch size 128 Uniform(4,7)
momentum 0.9 0.9
nnPU tolerance threshold 0.0 0.0
PUbN importance of unlabeled data 0.5 RandomChoice([0.5,0.7,0.9])
PAN balance factor of the KL-divergences 0.0001 0.0001
predictive score threshold 0.85 0.85
size of the candidate mixup pool 96 96
3 weight of the positive loss 1 1
P"MIX-E weight of the unlabeled loss 1 1
weight of the entropy loss 0.5 0.5
weight of the early-learning regularization 5 5
predictive score threshold 0.8 0.8
size of the candidate mixup pool 96 96
3 mixup coefficient 1.0 1.0
P'MIX-C weight of the positive loss 1 1
weight of the unlabeled loss 1 1
weight of the entropy loss 0.1 0.1
LBE warm up iteration 2000 2000
warm up iteration 2000 2000
training scheduler linear linear
. temperature in the logistic loss 1 RandomChoice([1,1.3])
Robust-PU 4 Jiial threshold 0.1 RandomChoice([0.1,0.11])
final threshold 2 RandomChoice([1,2])
growing step 10 RandomChoice([5,10])
Holistic-PU  warm up iteration 2000 2000

C DETAILS OF EXPERIMENTAL RESULTS

Tables [5] to [T8] report detailed experimental results in terms of different metrics on CIFAR-10, Im-
ageNette, Letter, and USPS, and the hyperparameters are determined with PA, PAUC, and OA,
respectively.

D BENCHMARK RESULTS WITH VARYING RATIOS OF POSITIVE DATA

Tables[T9]to 22] show the experimental results of varying ratios of positive data.

E EXPERIMENTAL RESULTS WITH INACCURATE CLASS PRIORS

Tables 23]to 26 show the experimental results when the class priors are inaccurate for validation.
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Figure 5: Overall performance w.r.t. the AUC score of different algorithms across all datasets. Hy-
perparameters were tuned using PA, PAUC and OA, respectively; bar colors indicate means.

Table 5: Test results (mean=std) of precision and recall for each algorithm on CIFAR-10 (Case 1)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-¢” indicates using the proposed calibration technique in Algorithm [T]

Test metric | Precision | Recall

Val metric | PA PAUC OA | PA PAUC OA
PUDN 85.58+0.37 86.97+0.18 89.46+0.65 87.71£1.00 85.25+1.87 84.64+0.24
PAN 71.61+0.86 73.334+0.14 79.51+1.74 88.39+1.65 86.65+1.61 78.4143.09
CVIR 82.12+1.38 78.27+1.03 86.30+0.93 90.72+0.42 92.42+1.35 86.741+0.26

P3MIX-E 68.93+6.62  50.00£0.00  82.7745.96 | 90.99+£1.97  100.00+0.00 67.19+17.74
P3MIX-C 86.03+091  8491+1.00 86.271+0.66 | 86.861+0.24 86.9740.45 87.1940.81
LBE 79.00+1.37  66.06+1.22  88.64+0.96 | 89.31+0.95 97.45+0.33 80.4140.36
Count Loss 75.81+0.30  74.78+1.63  79.884+0.66 | 90.7340.31 90.57+1.51 86.65+1.07
Robust-PU 84.19+1.05  89.77£1.85  88.234+0.69 | 87.73+1.21 80.72+2.97 82.89+0.26
Holistic-PU | 50.10£0.05  50.00£0.00  78.03+0.77 | 99.49+0.22  100.00+0.00 88.6010.41

PUe 7423+127  80.12£1.97  85.70+2.17 | 85.52+0.48 76.394+2.72 73.494+1.77
GLWS 79.61+0.65  73.12+2.81  82.86+0.85 | 92.70+0.34 95.53+1.03 89.9940.32
uPU 78.14+1.90  78.06+7.35  88.69+0.56 | 84.2940.41 80.13+7.43 73.44+0.66
uPU-c 85.58+0.88  89.53+1.39  88.50+£0.93 | 86.3910.98 77.69+2.63 83.914+0.66
nnPU 77.17£0.27  68.25£0.27  78.73£1.19 | 91.00£0.32 95.6210.62 88.99+1.44
nnPU-c 83.724+0.48  87.75£0.73  86.66+0.46 | 88.22+0.98 83.76+0.68 85.95+0.77

nnPU-GA 81.92+1.66  8229+0.38 86.81+1.62 | 88.184+1.20 87.1240.72 82.5440.65
nnPU-GA-c | 85.33+0.90  89.78+1.03  89.25+0.78 | 86.55%+1.15 81.951+0.76 82.1940.41

PUSB 76.20+1.34  78.13+1.39  78.64+0.98 | 91.9340.81 90.41+0.19 90.44+0.20
PUSB-c 86.43+0.03  89.07£1.32  87.87+0.17 | 85.76+£0.84 79.38+1.23 84.6610.25
VPU 88.71+0.41  97.16+1.53  90.61+0.82 | 80.05+0.84  33.15+15.89 79.93+1.08
VPU-c 84.97+1.65 77431241  89.08%+0.15 | 88.671+0.83 93.37+0.83 85.8240.61
Dist-PU 76.3440.77  72.78+0.89  84.75+0.15 | 91.7940.56 93.8140.86 81.86+1.26

Dist-PU-c 84.07+£1.13  88.22+2.06  90.494+0.84 | 91.584+0.99 86.67+2.28 86.02+0.83
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Figure 6: Overall performance w.r.t. precision of different algorithms across all datasets. Hyperpa-
rameters were tuned using PA, PAUC and OA, respectively; bar colors indicate means.

Table 6: Test results (mean=+std) of precision and recall for each algorithm on CIFAR-10 (Case 2)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-¢” indicates using the proposed calibration technique in Algorithm [T]

Test metric | Precision | Recall

Val metric ‘ PA PAUC OA ‘ PA PAUC OA
PUbBN 73.21+1.41 80.55+1.72 80.14+1.05 89.424+0.70 78.254+3.04 79.754+0.94
PAN 57.234+1.87 56.98+2.87 59.50+1.67 92.774+0.38 94.704+2.27 83.05+5.42
CVIR 73.13+1.91 76.32+1.46 77.51+0.90 90.574+0.80 85.61+1.27 85.81+0.63

P3MIX-E 55914328  33.33£13.61 56.04+3.39 | 96.32+1.97  66.67+27.22  96.07+2.17
P3MIX-C 74.10+1.68 74.09+2.13 75.63+0.62 | 86.67£1.25 85.03+1.78 84.711+0.96
LBE 66.21+1.66 58.31+2.11 75.81+£1.05 92.61+1.25 97.81+0.77 76.30+0.92
Count Loss 69.39+0.70 71.2010.18 73.73+0.09 | 87.54+0.76 83.13£1.10 83.48+2.12
Robust-PU 75.324+1.11 82.16+1.82 79.06+0.85 86.25+1.51 72.97+1.95 80.59+1.55
Holistic-PU 53.0040.10 59.93+4.67 67.62+0.43 | 98.93+0.21  54.64+23.85  81.48+5.21

PUe 63.65+0.22 62.69+2.20 71.16+1.47 | 86.71£0.82 88.03+2.08 71.53+3.84
GLWS 71.86+1.10 69.66+1.62 77.16+0.93 | 91.35+1.11 93.40+0.68 84.1140.63
uPU 62.03+1.56 65.14+1.52 69.801+0.66 | 84.79+2.37 82.83+2.57 72.40+3.72
uPU-c 72.3140.26 82.55+0.25 80.15+0.99 | 88.23+0.26 74.2740.66 77.23£2.25
nnPU 68.39+1.63 57.414+0.78 74.034£0.92 | 91.01£1.51 98.65+0.40 85.1940.73
nnPU-c 73.19£1.09 81.98+0.60 80.25+0.74 | 87.81%+1.17 73.10+1.44 77.99+1.18

nnPU-GA 71.42+1.13 72.384+0.59 78.98+1.66 | 88.75+1.03 86.52+2.59 77.65+1.40
nnPU-GA-c | 74.9440.69 80.00+1.79 79.37£0.90 | 84.28+2.37 75.86+1.44 78.70+0.96

PUSB 69.38+0.61 76.30+1.64 74.7940.62 | 92.21£0.15 84.05+2.62 85.62+1.96
PUSB-c 76.451+0.77 79.544+1.37 78.93+0.69 | 84.07+0.83 75.54+1.16 79.71+£1.19
VPU 81.5410.63 92.661+1.97 82.10+0.62 | 69.74+1.96 29.59+11.86  69.91+2.43
VPU-c 72.30+0.58 72.93+1.34 77.65+0.43 | 89.87+0.48 90.00+0.94 83.71+1.10
Dist-PU 68.12+0.72 71.23£1.19 71274124 | 88.31+0.40 83.64+1.35 83.07+1.45

Dist-PU-c 69.461+4.49 72.97+2.81 75244254 | 83.36+0.70 78.05+3.74 72.8245.27
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Figure 7: Overall performance w.r.t. recall of different algorithms across all datasets. Hyperparam-
eters were tuned using PA, PAUC and OA, respectively; bar colors indicate means.

Table 7: Test results (mean+std) of accuracy, AUC, and F1 score for each algorithm on ImageNette
(Case 1) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm [T}

Test metric ‘ Test ACC ‘ AUC ‘ Test F1

Valmetric | PA PAUC oA | PA PAUC oA | PA PAUC 0A
PUbN 75.6940.02  77.07+£047  78.9940.57 | 84.82+0.28  86.25+0.83  87.45+0.37 | 77.63+0.16 76.30+1.26 79.25+0.76
PAN 50.74+1.17  51.524+046  56.93+1.83 | 53.714+3.39  5548+1.03  5573+1.79 | 6524+0.19 32.31+14.81  45.43+2.65
CVIR 78.78+0.86  78.26+1.62  81.01+0.67 | 87.98+0.35  88.29+0.65  89.28+0.38 | 80.12+0.36 79.524+0.78 81.51+0.45

P3MIX-E 74.81£2.36  49.71+048  75.194239 | 82.71+2.74  85.84+0.68 82914292 | 76.23+197 439241793  76.41+2.04
P3MIX-C 78.81+1.61  7891+1.84 80.25+0.82 | 85.85+1.50  86.41+1.31 87.33+1.27 | 80.26+1.24 80.35+1.27 80.48+0.37
LBE 78.5240.41 78.73£0.65  79.20+0.36 | 86.844+0.37  86.31+0.61 86.16+0.78 | 78.90+0.32 77.09+1.48 78.144+0.75
Count Loss 74984085  7595+1.56  78.07+0.73 | 85.50+0.23  85.444+0.52  85.75+0.74 | 77.84+0.40 77.95+0.87 78.9240.91
Robust-PU 77.67+£0.27  75.53+£2.04 78731043 | 83.93+0.64  85.22+0.11 84.46+0.93 | 77.86+0.47 71.78+4.44 78.061+0.59
Holistic-PU 51.16£047  54.4243.66  53.62+0.24 | 58.85+1.01 56.454+6.07  55.25+0.43 | 65.18+0.31 64.23+1.18 51.58+1.27

PUe 67474188  71.46+1.27  70.90+1.28 | 7535+1.52 77294149  77.47+1.55 | 70.39+0.48 70.97+1.81 71.46+1.56
GLWS 76.14+0.86  74.96+1.62  78.684+0.70 | 87.00+0.40  86.89+0.71 86.96+0.74 | 78.93+0.45 78.52+1.01 79.5610.67
uPU 71.07£0.95  64.14+6.15  73.69+0.74 | 8224+0.61  81.60+1.06  81.941+0.41 74.88+0.50 71.58+2.45 74.954+0.78
uPU-c 75.00£0.97  72.54+4.40 77.76+0.66 | 84.13+0.33  85.824+0.55  84.65+0.65 | 77.16+0.27 63.334+9.88 77.1940.67
nnPU 75.63+1.34  66.81+1.09  77.80+0.74 | 86.56+0.38  86.12+0.71 86.72+0.26 | 78.52+0.77 73.974+0.57 78.1940.46
nnPU-c 76.51+0.61  76.95+0.75  77.66+0.63 | 83.87+0.71  85.084+0.67  83.93+1.24 | 77.89+0.33 74.59+1.65 77.334+0.99

nnPU-GA 75.70+0.36  78.72+0.64  79.40+0.47 | 83.74+0.65  86.06+0.88  84.45+1.58 | 78.33+0.16 78.98+1.22 79.134+0.24
nnPU-GA-¢c | 77.65+0.58  7291+2.33  78.564+0.06 | 81.45+1.32  84.75+0.53  82.69+1.21 77.88+0.51 65.4245.22 78.344+0.42

PUSB 72.73+0.54  77.03£0.74  76.73+0.35 | 73.10£0.53  77.1940.68  76.91+£0.33 | 77.26%0.33 78.65+0.09 78.66+0.16
PUSB-c 76.37+0.16  77.36+0.36  77.81+0.60 | 76.48+0.15  77.31+£0.33  77.86+0.60 | 77.3740.17 76.4210.04 78.1540.80
VPU 56.36+2.98  50.91+£0.03  61.724+0.41 61214222  82.35+0.27  73.844+4.69 | 53.86+6.31 0.14+0.11 45.88+4.26
VPU-c 77.48+0.83  78.00£0.50  78.06+0.91 83.35+0.33  84.63+0.49  84.28+0.96 | 78.09+0.69 78.6010.40 77.6410.69
Dist-PU 70.40+2.37  71.86+2.34  74.6840.79 | 83.97+1.16  83.18+1.51 83.92+0.73 | 75.58+1.50 75.76+1.61 77.00+0.75

Dist-PU-c 72.03+0.99  65.88+3.33  73.84+1.06 | 79.51+044  77.83+0.61 80.91+1.18 | 74.78+£0.58  52.05+10.16  74.1040.81
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Table 8: Test results (mean+std) of precision and recall for each algorithm on ImageNette (Case 1)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm|T]

Test metric | Precision | Recall

Val metric ‘ PA PAUC OA ‘ PA PAUC OA
PUbN 70.84+0.32 78.57+4.30 77.10+1.61 85.89+0.85 76.09+5.82 81.90+2.84
PAN 50.00+0.66 53.434+1.40 60.2243.11 94.12+2.52 38.73+23.64 36.64+2.60
CVIR 74.49+1.81 75.114+3.74 78.284+1.36 86.93+1.69 85.67+3.79 85.13+1.14

P3MIX-E 71374270  32.754+13.37  71.98+2.64 81.92+1.42 66.67+27.22  81.48+1.38
P3MIX-C 74.23+1.92 74.56+2.46 78.594+2.18 87.4740.80 87.3440.62 82.78+1.94
LBE 76.29+0.82 81.74%1.60 80.73+0.77 81.76+0.93 73.48+3.85 75.86+2.11
Count Loss 69.02+1.15 71.41£2.49 74.81£1.18 89.37+0.93 86.22+1.82 83.77+2.66
Robust-PU 75.8910.38 81.60+2.37 79.1640.86 80.00+1.31 66.11+7.91 77.07+1.53
Holistic-PU 50.174+0.26 54.20+3.82 52.95+0.29 93.12+1.81 84.661+10.32  50.48+2.51

PUe 64.331+2.68 70.7440.59 68.854+0.95 78.4942.87 71.33+3.07 74.381+2.68
GLWS 69.81+1.18 68.10+1.82 75.17£0.67 90.92+1.13 92.88+0.54 84.51+0.74
uPU 65.37+1.04 60.87+4.80 70.38+0.55 87.71£0.58 89.47+4.66 80.15+1.07
uPU-c 70.53+2.49 85.36+2.00 77.92+1.59 86.05+3.74 545041220  76.69+1.98
nnPU 69.49+1.81 60.22+0.88 76.11+2.64 90.46+1.00 95.924+0.48 81.15+3.55
nnPU-c 72.51+£1.01 81.53+2.56 77.0440.57 84.204+0.62 69.524+4.15 77.774£2.26

nnPU-GA 69.7440.60 76.681+1.43 79.13+2.26 89.37+0.77 81.95+3.81 79.631+2.88
nnPU-GA-c | 75.88+1.16 86.08+2.79 77.78+0.87 80.10+1.46 54.93+8.53 79.05+1.77

PUSB 65.46+0.55 72.7242.12 71.63+0.81 94.26+0.58 86.17+2.78 87.31+1.24
PUSB-c 73.08+0.57 78.35+1.28 75.79+£1.41 82.2440.99 74.69£1.16 80.96+2.74
VPU 61.324+555 333342722 80.12+£7.64 | 59.47+17.51 0.0740.06 34.73+6.80
VPU-c 74.86+1.16 75.3240.83 77.88+1.56 81.67+0.95 82.234+0.80 77.4610.23
Dist-PU 63.85+2.20 66.01+2.40 69.52+0.61 92.79+0.44 89.14+1.38 86.31+1.05

Dist-PU-c 67.29+1.38 81.49+4.56 72.42+1.95 84.35+1.74 43.02£11.82  76.214+2.39

Table 9: Test results (mean+std) of accuracy, AUC, and F1 score for each algorithm on ImageNette
(Case 2) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm|T]

Test metric | Test ACC | AUC | Test F1

Valmetic | PA PAUC oA | P PAUC oA | P PAUC oA
PUbN 75.3040.58 75.9740.61 77.394+0.45 83.97+0.64 84.03+0.50 85.20+0.66 76.8940.51 75.98+1.24 76.4440.60
PAN 53.31£0.36 64.73+1.69 64.374+2.18 65.28+1.32 70.38+1.92 69.1942.61 66.49+0.27 58.68+5.06 63.034+2.55
CVIR 76.60+0.74 77.87+0.67 79.29+0.47 85.8410.26 86.25+0.32 87.22+0.49 78.434+0.48 78.67+0.35 79.39+0.09

P3MIX-E 60424427  49.86+0.23  60.82+4.16 | 70.79+2.16  81.61+0.76  71.514+2.47 67.11£1.54  44.194+18.04  67.384+1.42
P3MIX-C 74.174£0.90  75.40+0.81 75.354+0.81 83.92+0.88  83.97+1.13  83.68+0.43 76.854+0.73 77.21£0.65 77.13+0.44
LBE 74.51£0.94  74.6740.54  76.31+£0.92 | 83.06+1.01 82.33+0.45  83.33+0.99 | 76.85+0.74 73.814+1.63 74.99+1.41
Count Loss 73274028  73.624+0.23  74.43+0.66 | 82.20+0.51 82.04+0.66  82.05+0.72 | 76.284+0.22 76.114+0.30 76.461+0.45
Robust-PU 72.58+1.19 72784043  75.52+0.68 80.1940.81 80.57£0.71 81.69+0.38 73.7540.62 69.94+1.57 74.06+1.05
Holistic-PU 56.124+0.93  54.704+2.16  59.19+0.53 61.46+0.21 59.83+1.01 62.2240.69 | 64.75+1.38 60.81+1.16 58.834+0.57

PUe 64.65+0.59  65.89+1.36  67.63+0.53 | 72.74+1.48  72.62+1.26  74.27+0.79 | 69.33+1.07 68.66+0.71 69.4240.90
GLWS 75.61£0.65  75384+0.24  76.99+0.21 85.81+0.55  86.55+0.37  85.77+0.29 | 78.47+0.34 78.40+0.13 78.654+0.19
uPU 60.424+2.82  66.42+1.08  66.29+1.00 | 67.49+3.09  73.24+0.86  72.82+0.52 | 67.95+0.68 67.50+1.57 66.46+1.37
uPU-c 72.57+1.56  73.20£1.05  75.0740.54 | 79.1942.25  81.76+0.92  82.224+0.87 | 72.60+1.24 69.524+2.07 74.58+0.79
nnPU 69.83+0.52  55.99+3.35  72.76+0.55 | 82.83+1.26  80.53+0.83  82.65+0.76 | 74.92+0.35 69.09+1.48 75.65+0.45
nnPU-c 74.4240.75  73.55£1.07  74.17+1.07 | 82.13+0.89 82444097  81.77£1.05 | 75.24%1.25 71.4942.66 73.68+1.79
nnPU-GA 72.194+1.31 75.23+1.08  75.8740.60 | 81.3740.66  82.62+1.08  83.374+0.99 | 75.444+0.43 74.2442.14 74.8540.80
nnPU-GA-c | 72274125 73.854+0.58  74.6210.11 79.16+1.52  81.60+£0.47  79.72+1.52 | 73.86%0.71 71.0240.68 74.7910.81
PUSB 71.29+1.80  72.5740.76  75.30+£0.56 | 71.44+1.78  72.65+0.76  75.35+0.54 | 75.761+0.85 74.734+0.74 76.774+0.29
PUSB-c 72.98+1.11 73.691+0.38  74.86+0.52 | 73.00£1.10  73.64+0.38  74.86+0.50 | 73.69+0.94 71.854+0.48 74.704+0.37
VPU 70.42+1.87 58374643  73.28+0.73 | 78.68+1.11 78.52+1.50  80.21+0.47 | 73.2940.72  24.24+19.50  70.20+£1.70
VPU-c 76.30+£0.79  77.754+0.57  77.38+1.00 | 84.37+0.45 84.11+049  83.80+0.79 | 78.34+0.83 78.3240.40 77.884+0.75
Dist-PU 63.97+1.03  67.74+0.50  68.58+1.04 | 72.64+0.26  75.26+0.57 74.62+0.96 | 69.88+0.13 71.9240.37 70.9240.75

Dist-PU-c 60.43+4.37  68.02+1.27 67.29+1.74 | 67.51£390 74.10+1.29 71.97+2.69 | 67.65+0.89 69.06+1.11 65.3943.35
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Table 10: Test results (mean+std) of precision and recall for each algorithm on ImageNette (Case 2)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-¢” indicates using the proposed calibration technique in Algorithm [T]

Test metric | Precision | Recall

Val metric ‘ PA PAUC OA ‘ PA PAUC OA
PUbBN 71.79+1.10 75.30+1.17 79.28+1.74 82.94+1.86 77.08+3.45 74.084+2.39
PAN 51.63+0.24 70.75+3.83 64.81+2.19 93.47+1.86 53.01+8.18 61.434+3.03
CVIR 72.31+1.00 75.51+1.45 78.53+1.48 85.71+0.51 82.27+1.44 80.42+1.40

P3MIX-E 59.73+£5.02  33.05£13.49  60.00+5.03 | 82.05+£9.32  66.674+27.22  82.13%£9.07
P3MIX-C 69.19+0.86 71.4240.87 71544130 | 86.45+0.93 84.04+0.35 83.784+0.78
LBE 70.02+1.26 75.72+1.63 78.5240.55 | 85.34+1.94 72.71+4.32 71.914+2.57
Count Loss 68.131+0.40 69.07+0.31 70.39+0.88 | 86.66+0.67 84.794+0.94 83.73+0.75
Robust-PU 70.5242.00 77.7742.80 78.01+1.20 | 77.58+1.81 64.58+4.76 70.69+2.37
Holistic-PU | 54.06%+1.09 53.98+1.86 58.961+0.87 | 82.10£6.17 71.70£7.18 58.89+1.87

PUe 60.79+0.12 63.24+1.65 65.2540.23 | 80.82+2.80 75.25+0.71 74.24+2.00
GLWS 69.8410.87 69.39+0.41 72.88+0.68 | 89.59+0.58 90.12+0.64 85.49+1.26
uPU 57.42+2.33 65.47+2.34 66.401+2.65 | 84.31+3.94 71.10+5.64 68.14+6.00
uPU-c 72.56+2.89 79.46+1.02 75394026 | 73.4243.51 62.21+3.91 73.83+£1.50
nnPU 63.81+0.91 53.314+2.09 68.00+0.93 | 91.01+2.53 98.56+0.94 85.41£1.95
nnPU-c 72.2410.48 76.75+2.56 74.2540.69 | 78.73£3.00 68.48+6.78 73.47+3.67

nnPU-GA 67.45+1.90 76.34+0.93 77.55+1.48 | 85.99+2.22 72.88+4.68 72.56+2.15
nnPU-GA-c | 69.67+2.08 78.80+0.62 73.81+1.46 | 78.90+1.89 64.65+0.71 76.22+3.06

PUSB 65.5242.07 68.7610.60 72.14+£1.68 | 90.15+1.50 81.844+0.98 82.394+2.42
PUSB-c 71.30+1.31 76.51+0.32 74.72+1.46 | 76.28+0.92 67.7310.61 74.87+1.76
VPU 66.96+2.61  55.05£22.59  78.424+1.24 | 81.55£2.30 224941822  63.98+3.62
VPU-c 71.58+0.54 75.824+0.96 75.76+1.51 86.54+1.40 81.02+0.43 80.18+0.64
Dist-PU 59.86+1.20 63.301+0.69 65.65+1.35 | 84.36+2.94 83.38+1.52 77.27+£1.64

Dist-PU-c 58.89+4.09 66.51+1.59 68.25+0.62 | 83.16+7.58 72.05+2.14 63.51+5.76

Table 11: Test results (mean+std) of accuracy, AUC, and F1 score for each algorithm on Letter
(Case 1) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm |}

Test metric | Test ACC | AUC | Test F1

Valmetic | PA PAUC OA | PA PAUC oA | PA PAUC 0A
PUbBN 88.92+1.90 89.05+2.11 89.70+1.38 94.24+1.48 94.48+1.35 94.61+1.20 89.59+1.58 89.43+1.70 89.57+1.46
PAN 49.2840.27 48.20+0.54 52.18+1.24 47.05+2.18 55.92+0.51 46.6942.30 65.40+0.26 65.04+0.49 42.19417.25
CVIR 83.3540.56 82.60+0.75 84.6740.58 86.40+0.65 87.63+0.99 87.78+0.90 85.1610.50 84.3340.62 85.86+0.35

P3MIX-E 51.80+£1.39  49.62+0.87 61.42+4.12 | 60.70+5.00 81.42+026  67.00+7.82 | 67.12+0.64  43.85+17.57 42.69+17.49
P3MIX-C 80.03+1.13  77.58+2.53  80.92+1.14 | 85.08+1.23  84.43+1.62  84.50+0.68 82.46+0.83 80.56+1.73 82.83+0.96
LBE 85.63+1.13  81.374+2.19  87.554+0.28 | 91.81+1.52  93.96+0.29  94.38+0.23 87.17+0.85 83.32+1.15 87.44+0.32
Count Loss 77.67£0.86  73.15£1.96  78.27+1.01 86.31+1.48  87.17+£1.55  84.67+0.78 80.27+0.67 77.19£1.62 79.98+0.84
Robust-PU 90.02+0.67  89.17+£0.33  90.63+0.31 95.30+£0.29  95.51+0.32  95.91+0.31 90.20+0.61 89.09+0.66 90.58+0.32
Holistic-PU 85.80+0.99 75224945  87.32+1.27 | 94124136  95.72+1.49  94.74+1.64 | 87.144+0.83 80.97+5.61 88.17+1.02

PUe 79.50+0.24  81.83+1.08  82.00+0.78 | 89.77+£1.07  91.42+0.98  90.88+0.50 | 81.5440.21 82.32+1.64 81.95+1.08
GLWS 85.87+0.95  80.93+1.54  86.32+0.58 | 92.91+0.63  93.62+045  92.65+0.83 | 87.03+0.75 83.53+1.17 87.28+0.54
uPU 74.98+1.19  79.75+£0.63  77.72+£0.79 | 85.874+0.59  88.34+0.29  86.194+0.71 78.05+1.00 79.6240.40 77.65+1.10
uPU-c 92.23+0.26  85.97+4.01  92.73+0.15 | 96.84+0.15 97.26+0.05  96.40+0.18 | 92.18+0.14 83.09+6.02 92.60+0.14
nnPU 85.13+0.46  79.53+1.62  85.60+0.31 94.16+0.51  95.44+0.44  94.49+0.66 | 86.1940.37 82.46+1.10 85.85+0.40
nnPU-c 91.87+0.34  89.25+1.14  91.82+0.14 | 96.15+0.30  96.394+0.69  96.36+0.38 | 91.85+0.25 88.24+1.71 91.58+0.21

nnPU-GA 85.12+0.13  82.85+0.68  84.27+0.58 | 93.17+0.44  93.56+0.61  91.18+0.41 85.74+0.25 82.86+1.69 84.46+0.64
nnPU-GA-¢ | 90.97+£0.30  88.60+0.57  90.97+£0.30 | 94.724+0.23  96.37+1.16  94.724+0.23 | 90.86+0.25 87.75+0.25 90.8640.25

PUSB 85.73+0.70  87.431+0.21 86.82+0.54 | 86.094+0.63  87.424+0.25 86.814+0.56 | 86.63+0.67 87.66+0.50 86.70+0.78
PUSB-¢ 91.42+0.86  90.68+0.58 91.43+0.92 | 91.45+0.87 90.66+0.57 91.46+0.92 | 91.35+1.02 90.30+0.67 91.29+1.04
VPU 89.85+1.07  67.88+£8.64  90.13+0.77 95.674+0.40  96.03+0.77  95.4440.57 89.69+0.98  44.13420.00 89.86+0.67
VPU-c 91.831+0.54  90.284+0.98  92.154+0.52 | 96.32+0.38  97.06+£0.26  96.96+0.30 | 91.9540.42 89.38+1.17 91.931+0.48
Dist-PU 77.07£0.77  7745+0.78  77.55+£0.78 | 81.95+1.07 82.71+1.23  82.07+1.66 | 80.15+0.45 79.68+0.14 80.07+0.40

Dist-PU-c 67.65+2.41  69.33£2.52  70.03+£2.28 | 72.96+2.78  75754+2.56  74.7242.66 | 72.61+1.10 68.78+2.64 72.81£2.05
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Table 12: Test results (mean=+std) of precision and recall for each algorithm on Letter (Case 1)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-¢” indicates using the proposed calibration technique in Algorithm [T]

Test metric | Precision | Recall

Val metric ‘ PA PAUC OA ‘ PA PAUC OA
PUbN 84.12+2.75 86.86+4.01 88.33+1.64 96.00+0.44 92.7942.16 90.85+1.27
PAN 49.1140.23 48.201+0.54 34.01+13.90 97.89+1.15 100.00+0.00 56.40+23.56
CVIR 75.824+0.92 74.754+0.73 77.2840.52 97.17+0.70 96.731+0.42 96.58+0.14

P3MIX-E 50.7940.93  65.70+14.00  4523+18.89 | 99.04+0.74  66.80+27.10  42.64+18.48
P3MIX-C 73.49+1.22 71.37+£2.78 75.15+£0.90 94.00+1.10 92.77+0.92 92.26+1.02
LBE 78.58+1.20 75.84+4.43 85.17+1.79 97.89+0.29 93.97+3.87 90.14+2.36
Count Loss 69.56+1.08 64.88+1.99 72.33+0.83 94.95+0.69 95.42+1.62 89.44+0.97
Robust-PU 87.9440.82 86.68+1.06 90.3240.77 92.60+0.67 91.84+2.47 90.86+0.32
Holistic-PU | 79.361+1.07 71.38+8.69 82.391+2.08 96.62+0.46 96.74+1.50 94.99+1.21

PUe 73.33+0.21 78.59+0.74 80.4740.23 91.82+0.32 86.90+4.26 83.62+2.52
GLWS 78.56+1.32 72.32+1.87 79.44+0.61 97.60+0.27 98.98+0.30 96.84+0.48
uPU 67.244+1.28 77.654+2.09 74.984+0.74 93.054+0.71 81.96+1.61 80.56+1.73
uPU-c 89.1040.60 93.954+2.97 92.0040.92 95494048  77.42410.67 93.26+0.91
nnPU 79.2740.28 70.89+1.82 81.97+1.57 94.44+40.61 98.70+0.39 90.42+2.48
nnPU-c 90.57+0.67 93.06+1.83 93.26+1.26 93.18+0.49 84.51+4.36 90.08+1.46

nnPU-GA 81.01+0.13 81.2243.50 80.81+1.19 91.07+0.63 86.51+6.63 88.48+0.53
nnPU-GA-c | 89.6010.51 92.3743.02 89.60+0.51 92.1740.32 84.05+2.57 92.17£0.32

PUSB 79.01+£1.09 84.954+0.84 84.96+1.33 95.94+0.96 90.70+2.01 88.78+2.76
PUSB-c 90.00+1.00 90.134+0.90 89.87+0.76 92.7941.59 90.4940.97 92.774+1.40
VPU 89.11£1.55  65.54+26.76 91.24+1.24 90.42+1.99  35.30+£17.59 88.61+1.31
VPU-c 88.60+0.48 95.21+0.75 92.09+0.68 95.5740.65 84.40+2.68 91.84+1.42
Dist-PU 70.131+0.47 72.05+1.16 71.50+1.04 93.5140.55 89.28+1.49 91.14+1.75

Dist-PU-c 63.03+3.53 68.8543.51 66.07+3.28 87.01+3.71 68.80+1.90 81.544+2.35

Table 13: Test results (mean+std) of accuracy, AUC, and F1 score for each algorithm on Letter
(Case 2) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm |}

Test metric Test ACC AUC Test F1

Val metric | PA PAUC oA | PA PAUC oA | PA PAUC OA
PUbBN 87.474+0.58 88.98+1.45 89.63+0.98 94.15+1.14 93.88+1.45 94.59+1.09 88.40+0.61 89.15+1.44 89.74+1.02
PAN 50.024+0.48  49.884+0.85 51.73+1.43 | 4539+4.63  57.60+£2.16  51.85+4.33 | 66.64+0.40  44.18+18.05  21.43+17.50
CVIR 84.83+0.73  84.22+0.89  84.72+0.76 | 88.63+1.49  88.1840.65  88.67+1.62 | 86.57+0.61 85.38+0.87 86.38+0.63

P3MIX-E 55.70£2.92  5557+2.96  65.08+3.09 | 71.43+439  81.48+2.05 71.1943.66 | 68.60+0.97  52.06+13.86 64.2240.99
P3MIX-C 81.80+2.04  80.70+2.16  83.324+2.22 | 89.68+2.56  90.09+2.58  88.23+3.66 | 83.89+1.46 83.35+1.46 83.46+2.56
LBE 87.32+0.50  80.82+3.97  88.18+£0.96 | 94.514+0.18  94.4310.11 95.3440.57 88.44+0.39 82.61+2.51 88.65+1.08
Count Loss 81.35+0.64  8220+1.16  82.934+0.85 90.22+0.71 90.35+£0.73  90.08+1.03 83.36+0.36 83.1940.35 83.30+0.37
Robust-PU 90.88+0.52  90.18+0.84  91.07+0.39 | 96.31+0.65  96.92+0.53  96.63+0.57 | 91.00+0.44 89.64+1.06 90.83+0.42
Holistic-PU 87.88+1.37  86.12+1.82  88.65+1.12 | 95.09+0.62  95.36+0.69  95.40+0.83 88.79+0.90 87.58+1.22 89.49+0.85

PUe 79.50+0.70  78.03+1.17  82.534+0.04 | 88.18+1.99  91.92+0.19  90.65+0.40 | 80.9740.48 80.73+0.63 81.94+0.20
GLWS 86.27+0.43  79.88+1.42  88.1840.67 | 93.00+0.61 94.46+0.33  93.754+0.14 | 87.50+0.43 82.97+0.76 89.07+0.51
uPU 75224107  72.034+2.17  77.5240.34 | 84.07+£1.04  8549+0.25  85.72+0.35 | 77.801+0.45 75.4940.59 77.9340.57
uPU-c 91.3240.57  89.7240.59  92.134+0.18 | 96.48+0.25  96.86+0.22  96.30+0.53 | 91.714+0.35 89.0540.91 92.1440.27
nnPU 84.68+0.34  75.22+2.11 87.38+0.39 | 94.024+0.74  95.3040.51  95.34+0.24 | 85.90+0.44 79.94+1.42 87.7340.39
nnPU-c 91.274+0.43  90.50+0.17  91.65+0.19 | 96.21+0.40  96.92+0.12  97.09+0.22 | 91.44+0.44 90.42+0.19 91.65+0.22

nnPU-GA 85.63+0.60  83.43+1.40  86.15+0.13 | 93.84+0.34  93.79+0.09  93.68+0.02 | 86.37+0.67 85.00+1.00 86.42+0.41
nnPU-GA-c | 91.554+0.33  89.284+1.89  91.70+0.39 | 96.79+042  96.65+0.43  96.61+£0.56 | 91.5840.37 88.44+2.57 91.6940.41

PUSB 87.42+40.31 87.83+0.13  87.63+0.24 | 87.39+0.34  87.85+0.13  87.61+0.23 88.15+0.18 88.30+0.24 87.98+0.44
PUSB-¢ 91.33+0.77  91.48+0.40  91.53+0.71 91.34+0.76  91.46+0.41 91.47+0.76 | 91.2940.84 91.23+0.51 91.2240.95
VPU 90.85+0.28  74.93+6.54  91.18+£0.08 | 96.26+0.24  95914+0.10  96.23+0.26 | 90.60+£0.36  64.86+10.97 90.9840.10
VPU-c 91.95+0.38  89.554+0.05  92.854+0.29 | 96.63+0.26  96.40+£0.48  96.89+0.12 | 91.9440.33 89.13+0.38 92.7410.27
Dist-PU 78.924+0.89  77.52+0.51  79.42+0.71 84.82+0.29  84.29+0.73  85.17+0.34 | 81.734+0.94 79.36+0.51 81.10+0.82

Dist-PU-c 75.33+£122  77.58+£0.65 76.87+0.77 | 82.69+0.74  84.55+0.23  83.731+043 | 78.14+1.03 77.51£1.23 78.00£1.36
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Table 14: Test results (mean+std) of precision and recall for each algorithm on Letter (Case 2)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm [T}

Test metric | Precision | Recall

Val metric ‘ PA PAUC OA ‘ PA PAUC OA
PUbN 81.40+0.45 87.45+1.99 87.75+1.02 96.721+0.84 90.94+0.83 91.83+1.24
PAN 50.0440.51 33.054+13.52 18.13+14.80 99.7410.21 66.67127.22 26.22421.41
CVIR 78.354+0.93 79.004+0.54 78.58+1.09 96.73+0.14 92.88+1.34 95.95+0.56

P3MIX-E 53.00+1.72  69.22+12.66 66.29+4.29 97.68+1.77  67.78+23.64 63.34+2.72
P3MIX-C 75.69+1.88 73.75+1.92 82.40+1.72 94.13+0.75 9591+1.19 85.25+5.36
LBE 81.36+0.74 79.1616.57 84.70+1.08 96.8940.35 89.61+6.60 93.03+1.51
Count Loss 75.71£1.09 80.1743.40 82.45+2.34 92.84+1.32 87.33+3.35 84.47+1.68
Robust-PU 89.96+1.62 94.75+0.38 93.22+0.86 92.17+0.98 85.16+2.21 88.58+0.79
Holistic-PU 84.3442.63 81.0943.15 85.4242.12 94.05+1.39 95.65+1.66 94.18+1.43

PUe 74.35+1.10 70.714+1.81 82.6940.51 89.04+1.83 94.32+1.43 81.254+0.86
GLWS 78.89+0.68 71.48+1.33 83.681+0.94 98.23+0.11 98.94+0.40 95.21+0.38
uPU 70.01+1.43 67.60+4.04 77.28+0.22 87.70+1.18 87.40+4.78 78.61+1.09
uPU-c 87.67+0.95 94.08+1.70 92.56+0.46 96.1940.92 84.81+2.70 91.7240.28
nnPU 79.59+0.97 66.88+1.98 85.51+1.48 93.41+1.66 99.49+0.08 90.21+1.41
nnPU-c 91.19+1.12 91.8540.63 92.7140.80 91.80+1.68 89.0540.60 90.66+1.05

nnPU-GA 82.094+1.25 78.07+1.98 86.18+1.35 91.33+2.21 93.4440.65 86.84+1.84
nnPU-GA-c | 91.1040.34 93.73+£1.91 91.70+0.36 92.09+0.96 84.69+5.82 91.69+0.83

PUSB 83.69+1.06 85.2740.95 86.211+0.86 93.19+1.01 91.66+1.39 89.95+1.78
PUSB-c 89.8440.67 92.0440.36 92.96+0.25 92.80£1.20 90.4440.72 89.58+1.67
VPU 92.35+0.79 98.331+0.85 92.564+0.96 89.00+1.39  51.86+13.08 89.524+0.97
VPU-c 92.0240.61 93.71+1.97 92.7610.53 91.85+0.15 85.284+2.42 92.75+40.68
Dist-PU 72.28+1.26 72.46+1.03 75.23+1.44 94.04+0.38 87.89+1.96 88.08+1.38

Dist-PU-c 70.1942.12 77.82+0.81 73.93+0.49 88.32+0.66 77.27£1.93 82.61+2.50

Table 15: Test results (mean+std) of accuracy, AUC, and F1 score for each algorithm on USPS
(Case 1) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm|T]

Test metric | Test ACC | AUC | Test F1

Valmetic | PA PAUC oA | P PAUC oA | P PAUC oA
PUbN 93.761+0.23 92.89+0.24 93.95+0.13 98.2810.03 98.01£0.08 98.29+0.04 92.60+0.28 91.4240.36 92.774+0.17
PAN 84.52+0.50 84.5240.65 84.97+0.48 89.98+0.20 90.8940.48 90.06+0.46 81.23£0.46 80.56+1.19 80.61+0.58
CVIR 82.79+1.48 82.01+0.96 82.98+1.39 94.88+0.36 93.80+0.16 93.42+0.69 82.72+1.31 81.95+0.79 82.76+1.26
P3MIX-E 88.99+1.40 89.49+1.29 89.84+1.17 96.18+0.44 96.33+0.43 96.23+0.47 87.54+1.30 88.02+1.23 87.90+1.30
P3MIX-C 92.69+0.66 93.47+0.49 93.22+0.31 97.98+0.22 98.16+0.14 98.09+0.11 91.41+0.78 92.38+0.57 92.0540.36
LBE 91.45+0.62 87.10+1.25 92.29+4+0.33 97.67+0.12 97.04+0.46 97.60+0.18 90.52+0.55 86.49+1.17 91.164+0.18

Count Loss 91.994+0.34  90.0840.84  91.76+0.81 97444027  97.2740.09  97.60+0.09 90.97+0.31 88.91+0.66 90.6410.69
Robust-PU 91.73£0.27  88.1943.28  92.79+0.12 97.51£0.20  97.484+0.22  97.73+0.15 89.88+0.20 83.74+5.36 91.2040.14
Holistic-PU 91.944+0.82  92.56+0.11 93.46+0.36 97.224+0.34  97.4740.17  97.76+0.16 90.88+0.84 91.12+0.02 92.2740.40

PUe 84.82+1.01 84.2240.30  86.93+0.27 | 954140.12  9525+0.13  94.40+1.03 | 84.234+0.76 83.60+0.19 85.24+0.59
GLWS 91.13£0.37  86.784+0.60  90.52+0.47 | 98.21+0.02  97.78+0.17  98.18+0.09 | 90.40+0.36 86.38+0.55 89.81+0.45
uPU 83.14£0.93  83.8740.11 83.86+0.83 | 92.88+0.15  93.10+0.18  93.01+£0.05 | 81.51+0.81 81.98+0.19 82.0440.70
uPU-c 93444026  91.30£1.16  93.3240.10 | 97.95+0.12  97.79+0.11  97.854+0.09 | 92.054+0.34 88.94+1.72 91.9410.16
nnPU 90.60+0.28  87.4940.81 90.224+0.42 | 97.94+0.09  97.63+0.06  97.704+0.15 | 89.824+0.27 87.0240.73 89.44+0.42
nnPU-c 92.644+0.08  90.82+0.94  93.24+0.18 | 97.60£0.05  97.34+0.17  97.994£0.03 | 91.03£0.12 88.41+1.37 91.761+0.23
nnPU-GA 91.284+0.16  92.4640.11 92.514+0.31 96.794£0.10  97.4140.11 97.1740.27 | 89.80+0.36 91.0940.07 91.304+0.35
nnPU-GA-c | 92.76+£0.38  90.60+1.44 92794022 | 97.5840.05 97.46+0.16  97.66+0.11 91.2340.55 88.05+2.15 91.33+0.32
PUSB 89.90+0.73  91.73+0.26  91.38+0.83 | 90.98+0.65  92.514+0.26  92.1740.70 | 89.1740.71 90.914+0.29 90.5640.80
PUSB-c 92914+0.30  92.84+0.24  92.83+0.18 | 92.30+0.29  92.26+0.27  92.254+0.29 | 91.34+0.35 91.28+0.31 91.2640.28
VPU 88.14+2.21 57.71£0.04  89.89+1.71 92984398  97.31+0.13  97.76+0.19 | 84.36+3.09 0.314+0.17 86.5842.62
VPU-c 92.9240.07  80.17£7.36  93.294+0.32 | 97.554+0.13  97.82+0.24  97.79+0.18 | 91.40+0.08 63.80+17.92  91.974+0.38
Dist-PU 87.73£0.55  82.154+2.23  86.10+0.14 | 92.52+0.85  92.58+043  91.03+0.77 | 86.6940.55 81.64+1.82 84.77+0.17

Dist-PU-c 92.014+0.19  90.47+0.77  91.504+0.34 | 97.924+0.16  97.954+0.21 97.744+0.21 90.16+0.22 87.84+1.11 89.44+0.44
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Table 16: Test results (mean=+std) of precision and recall for each algorithm on USPS (Case 1)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-¢” indicates using the proposed calibration technique in Algorithm [T]

Test metric | Precision | Recall

Val metric ‘ PA PAUC OA ‘ PA PAUC OA
PUbBN 92.9340.28 93.46+0.72 93.9340.10 92.2740.31 89.53+1.26 91.6540.35
PAN 84.90+5.07 87.64+5.36 90.59+5.35 79.49+4.77 76.59+6.00 74.27+5.22
CVIR 72.19+1.80 71.37+1.25 72.62+1.66 96.901+0.42 96.274+0.23 96.2740.86

P3MIX-E 85.21+3.71 86.0413.34 89.31+3.14 | 90.474+1.33 90.43+1.08 87.02+2.80
P3MIX-C 90.96+0.73 91.40+0.59 91.484+0.43 | 91.88+0.91 93.37+0.55 92.63+0.31
LBE 85.53+1.52 78.00+1.86 89.02+2.12 | 96.2440.81 97.18+1.13 93.69+1.91
Count Loss 87.21+1.11 85.104+2.53 88.05+2.45 | 95.14+0.74 93.45+1.97 93.65+1.43
Robust-PU 93.4941.50 95.161+0.47 94.461+0.25 | 86.63+0.95 75.96+8.06 88.16+0.16
Holistic-PU 87.611+1.66 92.29+1.53 92.361+0.77 | 94.47+£0.28 90.12+1.45 92.20+0.26

PUe 75.50+1.85 74.7140.58 81.82+1.80 | 95.45+1.08 94.90+0.45 89.4143.20
GLWS 83.504-0.64 76.68+0.78 82.474+0.75 | 98.55+0.12 98.90+0.19 98.59+0.06
uPU 76.29+1.56 77.81£0.18 77.77+1.65 | 87.57+0.17 86.63+0.61 86.90+0.47
uPU-c 94.5140.21 95.48+0.55 94.10+£0.32 | 89.73+0.68 83.45+3.19 89.88+0.60
nnPU 83.014+0.49 77.78+1.21 82.434+0.66 | 97.84+0.22 98.7810.14 97.7640.36
nnPU-c 94.11+0.36 94.52+0.71 94.85+0.20 | 88.16+0.50 83.18+2.52 88.861+0.44

nnPU-GA 89.02+1.35 91.22+0.96 89.89+0.46 | 90.78+2.06 91.02+0.92 92.75+0.37
nnPU-GA-c | 93.4940.40 94.184+0.39 93.02+0.36 | 89.14+1.38 82.98+3.91 89.7340.94

PUSB 81.80+1.12 85.0740.28 84.724+1.55 | 98.04+0.28 97.61+0.28 97.3340.42
PUSB-c 94.59+0.58 94.2940.46 94.23+0.58 | 88.31+£0.42 88.47+0.62 88.51£1.03
VPU 94.38+2.09  66.67£27.22  97.19+0.39 | 76.55+4.48 0.1640.08 78.43+4.44
VPU-c 94.22+0.79 96.82+0.89 93.304+0.50 | 88.78+0.76  55.53+18.31  90.67+0.28
Dist-PU 80.19+0.78 73.2743.53 79.18+1.24 | 94.35+0.22 92.71+1.44 91.41+1.93

Dist-PU-c 94.2440.58 95.2240.37 94.2740.38 | 86.43+0.43 81.614+2.06 85.1040.71

Table 17: Test results (mean+std) of accuracy, AUC, and F1 score for each algorithm on USPS
(Case 2) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm |}

Test metric | Test ACC | AUC | Test F1

Valmetic | PA PAUC OA | PA PAUC oA | PA PAUC 0A
PUbBN 94.45+0.26 95.45+0.14 95.45+0.20 98.62+0.18 98.83+0.08 98.85+0.10 94.23+0.29 95.31+0.13 95.29+0.20
PAN 80.70+3.24 83.54+1.27 84.22+1.12 88.16+3.61 92.49+0.23 92.89+0.18 78.89+3.82 81.47+2.11 82.45+1.90
CVIR 90.93+0.26 88.57+0.29 90.55+0.20 96.74+0.23 96.34+0.22 96.69+0.21 91.37+0.23 89.34+0.24 91.05+0.16

P3MIX-E 94.04+0.43 93.90+0.43 93.90+0.39 98.26+0.27  98.24+0.26  98.14+0.19 93.92+0.39 93.79+0.38 93.81+0.36
P3MIX-C 94.2740.52 94.5440.51 94.7240.35 98.38+0.24  98.56+0.17  98.66+0.13 94.20+0.48 94.4740.48 94.6240.34

LBE 94.6740.20 90.82+1.28 94.8840.05 | 98.51+£0.16  98.17+£0.08  98.60+0.07 | 94.65+0.16 91.1840.98 94.7340.10
Count Loss 92.734£0.22 93.7640.45 93.174£0.14 | 97.154£0.27  97.7240.20  97.3340.26 | 92.87£0.16 93.8440.40 93.18+0.14
Robust-PU 93.7240.41 93.64+0.31 94.934+0.19 | 98.13+0.11 98.34+0.15  98.62+0.23 | 93.4440.45 93.334+0.31 94.69+0.20
Holistic-PU | 95.15+0.28 94.83+0.24 95.024+0.53 | 98.76+0.11  98.73+0.17  98.49+0.20 | 94.99+0.29 94.65+0.24 94.84+0.57
PUe 8527+1.11 85.00+0.63 86.05+0.33 | 93.95+048 95264023  93.48+0.92 | 86.55+0.96 86.38+0.50 87.08+0.25
GLWS 92.4840.50 88.19+0.44 92.184+0.26 | 98.58+0.05  98.09+0.29  98.454+0.06 | 92.76+0.44 89.15+0.35 92.4940.23
uPU 83.36+0.48 82.68+0.81 84.12+0.06 | 92.33+0.30  93.99+0.25  92.79+0.79 | 84.51+0.42 84.34+0.56 85.14+0.27
uPU-c 94.67+0.10 93.36+0.76 94574028 | 98.78+0.10  98.50+0.30  98.68+0.11 94.36+0.11 92.854+0.88 94.2640.32
nnPU 93.64+1.13 88.01+1.30 94.104+0.37 | 98.50+0.15  98.37+0.09  98.71+0.08 | 93.79+1.03 89.01+1.07 94.2040.33
nnPU-c 94.3240.20 94.00+0.24 94.804+0.12 | 98.69+0.02  98.48+0.04  98.6740.04 | 94.03+0.23 93.67+0.27 94.56+0.10

nnPU-GA 94.4240.26 94.9540.13 94.7840.07 | 98.61+£0.10  98.68+0.10  98.44+0.12 | 94.2840.24 94.7610.14 94.5940.08
nPU-GA-c | 94.1240.04 94.2740.17 94.074£0.36 | 98.66+0.06  98.79+0.07  98.73+0.07 | 93.77+0.04 93.9240.17 93.6940.40

PUSB 92.4140.67 91.96+1.50 93.56+0.34 | 92.57+0.65  92.10+1.45  93.684+0.33 | 92.69+0.59 92.25+1.30 93.70+0.30
PUSB-¢ 94.09+0.18 93.64+0.21 94.5740.25 94.01+0.18  93.55+0.22  94.50+0.25 | 93.76+0.19 93.24+0.24 94.2740.26
VPU 89.82+2.61  76.63+10.29  89.54+1.88 | 97.91+£0.35 98.58+0.10  97.9940.57 88.33+3.43  58.65+23.78  88.11+2.41
VPU-c 94.9340.13 94.8240.12 95.054+0.14 | 98.78+0.06  98.86+0.09  98.91+0.11 | 94.724+0.17 94.5540.16 94.8140.14
Dist-PU 94.8240.12 94.0240.18 94.7240.38 | 98.09+0.17  97.94+0.28  98.12+0.19 | 94.63+0.13 93.7240.25 94.554+0.39

Dist-PU-c 94.10£0.44 92.09£0.50 94.144+0.37 | 98.49+0.16  98.53+0.20  98.5040.03 | 93.73£0.49 91.30£0.59 93.7740.42
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Table 18: Test results (mean+std) of precision and recall for each algorithm on USPS (Case 2)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-¢” indicates using the proposed calibration technique in Algorithm [T}

Test metric | Precision | Recall

Val metric ‘ PA PAUC OA ‘ PA PAUC OA
PUbN 95.384+0.94 95.68+0.48 95.974+0.59 93.18+1.09 94.954+0.27 94.64+0.42
PAN 83.76+3.59 89.42+1.97 89.52+2.59 75.134+5.70 75.67+5.30 77.354+5.13
CVIR 85.15+0.42 81.844+0.41 84.48+0.37 98.57+0.05 98.36+0.22 98.7440.18

P3MIX-E 93524127 93304132  92.824+0.87 | 94.3740.51 94.3440.58 94.8540.29
P3MIX-C 93.07+1.19  93.2840.94  93.88+0.75 | 95.39+0.26 95.7040.08 95.3940.10
LBE 92.574+0.82  86.94+3.54  95.05+£0.89 | 96.86+0.56 96.45+2.16 94.47+1.09
Count Loss 88.88+0.75  90.40£0.96  90.754+0.87 | 97.27+0.57 97.58+0.41 95.80+1.05
Robust-PU 95.00+0.46  95.31+0.48  96.73+£0.26 | 91.95+0.83 91.4440.17 92.73+0.39
Holistic-PU 95.5240.49  95.53+0.63  95.60+0.47 | 94.4740.42 93.7940.31 94.1040.92

PUe 77.96+120  77.46+0.78  79.31+£0.72 | 97.30£0.88 97.6510.21 96.594+0.91
GLWS 87.39+0.88  80.72+£0.66  86.83+0.38 | 98.84+0.12 99.56+0.20 98.94+0.06
uPU 77.294+0.61  7545+1.20  78.20£0.75 | 93.24£0.79 95.67+0.58 93.55+1.69
uPU-c 97.19+0.48  97.26+0.65  96.97+0.16 | 91.71£0.50 88.88+1.65 91.71+0.70
nnPU 89.86+1.86  80.69+1.82  90.47+0.71 98.16+0.35 99.3240.07 98.26+0.13
nnPU-c 96.3240.13  96.26+0.18  96.46+0.51 91.8540.53 91.2340.63 92.734+0.29

nnPU-GA 94.11+0.67  95.824+0.28  95.61+£0.20 | 94.47+0.26 93.7210.44 93.59+0.28
nnPU-GA-c | 96.77+0.20  97.194+0.29  97.114+0.18 | 90.96+0.16 90.86+0.11 90.52+0.59

PUSB 87.44+1.11  87.68+2.47  89.524+0.75 | 98.64+0.10 97.48+0.32 98.29+0.27
PUSB-c 96.44+0.41  96.58+0.49  96.84+0.41 91.23+0.44 90.1440.63 91.85+0.27
VPU 96.674+0.70  98.82+0.56  97.26+0.20 | 82.02+596  52.954+21.53  80.76+3.82
VPU-c 96.094+0.48  96.87+0.51  96.80+£0.21 | 93.42+0.78 92.36+0.79 92.90+0.07
Dist-PU 95.454+0.21  95.77£0.70  95.01+£0.40 | 93.82+0.18 91.81+1.11 94.10+0.50

Dist-PU-c 97.044+0.15  98.274+0.26  96.98+0.06 | 90.65+0.83 85.2640.88 90.79+0.80

F MORE EXPERIMENTAL RESULTS

Tables|27|and [28| show experimental results on a real-world dataset of fraud detectionﬂ

Zwww.kaggle.com/datasets/mlg-ulb/creditcardfraud
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Table 19: Test results (mean+std) in terms of test accuracy, AUC score, and F1 score for each
algorithm on Letter (Case 1) with different ratios of positive data. The validation metric is OA.
The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the
proposed calibration technique in Algorithm [T}

Test Metric | Test ACC | AUC | Test F1

Ratio 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10%  20% 30% 40%  50%

61.77 7647 8970  62.75 7857 66.34 7893 9461 6720 8049 | 72.81 8193 89.57 7382 84.05

4063  +0.63 +228 +063 4063 | £191 +£206 +2.66 +1.84 +1.89 | +0.58 +058 +205 +058 +0.58

\ \ \
PUPN ‘¢10,44 +1072 +£138 +11.24 111.57‘111.01 +12.63 +£120 +1158 113.13‘15‘73 +6.16 +146 +6.60 +7.02
PAN 4830 4830 5218 4830 4830 | 5207 5201 4669 5189 5179 | 6512 65.02 4219 65.12 65.12
4091 4091 +124 +091 4091 | £147 +148 +£230 +148 +148 | £082 +0.82 +1725 +0.82 +0.82
CVIR 82.63 8355 8467 7990 7435 | 87.56 8672 8778 8209 7557 | 83.86 8497 8586 8271 78.99
4086 4039 4058 +064 4027 | £1.15 +055 +£090 +1.07 +£1.63 | £058 +023 +035 +047 +0.23
paMIxE | 4943 4943 6142 4943 4943 | 5057 5038 67.00 5049 5059 | 66.16 66.16 4269 66.16 66.16
g 4021 4021 4412 4021 4021 | £055 +0.55 +£7.82 +0.54 +071 | £0.19 +0.19 +1749 +0.19 +0.19
pavix.c | 7343 7602 8092 80.87 8168 | 77.34 7800 8450 8446 8563 | 7726 7730 8283 8242 8317
- +140 4125 +114 4033 4004 | £205 +2.12 4068 +034 +069 | £134 +1.56 +096 +0.19 +0.08
LBE 80.07 81.82 87.55 8418 8642 | 8483 8499 9438 9027 9355 | 8059 8183 8744 8466 86.84
+047 4101 +028 +0.19 4072 | £1.03 +176 +023 +020 +006 | £0.83 +1.05 +032 +0.53 +0.52
ComntLoss | 7307 7078 7827 5683 5590 | 8033 7767 8467 5581 56.64 | 7560 7654 7998 6474 58.60
OUNLLOSS | 4415 4547 4101 +284 +253 | +6.64 +843 +078 +359 +322 | +439 +3.69 +084 +0.61 +2.52
Robustpy | 84350 8908 9063 9277 93.98 | 9089 9389 0591 9660 9839 | 8474 8873 9058 9265 94.00
obust: +0.66  +1.14 +031 +0.15 4042 | 4064 +093 +031 +032 +0.13 | £055 +131 +032 +0.18 +042
Holisticpy | 8080 8200 87.32 8537 8688 | 8553 8869 90474 9311 9512 | 8197 8437 8817 8658 8777
onsties +043  +0.66 +127 +041 4030 | +123 +065 +1.64 +078 +038 | +020 +043 +1.02 +021 +0.19
U 8213 8118 8200 7698 7472 | 9046 8945 90.88 8517 8371 | 8235 8132 8195 7784 76.65
¢ 4059  +1.02 +078 +044 4046 | 4025 +077 +050 +0.68 +030 | £032 +1.22 +1.08 +041 +0.11
GLWS 8553 8660 8632 8215 77.80 | 9205 9256 92.65 8653 8378 | 8622 8727 8728 8429 8144
+046  +025 4058 +022 4032 | 4031 +0.16 +083 +027 +084 | £051 +027 +054 +039 +0.46
U 81.22 8012 7772 7530 7252 | 89.86 8833 86.19 8423 7970 | 80.64 7932 77.65 7554 7417
u 4076 4048 4079 +074 4055 | £056 +033 +£071 +030 +085 | £091 +048 +1.10 +0.99 +0.25
p— 86.17 8955 9273 9333 9453 | 90.84 9358 9640 9675 9871 | 8525 89.04 92.60 9307 94.22
urt-e +0.53 4045 4015 +041 4041 | £093 +086 +£0.18 +049 +0.09 | £0.74 +0.56 +0.14 +0.33 +041
- 8657 8855 8560 8040 7693 | 93.80 9548 9449 9210 8587 | 8637 88.63 8585 8249 79.01
n +0.28 4009 +031 +043 4057 | £039 +0.17 +066 +031 +046 | £0.40 +0.11 +040 +042 +0.78
o 86.08 9038 9182 93.60 9472 | 9137 9308 9636 97.09 9854 | 8544 90.10 91.58 93.42 94.60
nnEL-e 4036 4025 +0.04 +022 4015 | £072 +032 +038 +035 +0.13 | £0.65 +0.29 +021 +0.26 +0.13
PU.GA | 8212 8578 8427 8490 8438 | 9019 9266 9LI8 9225 9191 | 8173 8537 8446 8506 8478
e +0.50 4034 4058 +1.10 4033 | £054 +0.11 4041 +126 +051 | £1.00 +037 +0.64 +096 +0.17
PUGAc| 8512 8965 9097 9332 9438 | 9060 9292 9472 9659 9826 | 8409 8936 9086 93.16 94.19
MEUOAC] 1024 4027 4030 4028 4016 | £027 4019 4023 +0.12 4023 | £035 +£0.19 +025 +028 +0.16
PUSE 8540  87.68 86.82 80.00 7408 | 8544 87.67 8681 80.13 7419 | 8490 88.05 8670 8222 7833
+072 4022 4054 +095 4062 | 4067 +029 +056 +078 +0.79 | £0.74 +0.15 +078 +1.11 +042
— 8523  89.60 9143 9340 9435 | 8521 89.59 9146 9336 9430 | 8440 8922 9129 9332 9420
+045 4055 4092 +008 4006 | £039 +051 +092 +0.08 +0.06 | £044 +047 +1.04 +0.23 +0.11
VPU 7987 8622 90.13 88.12 6890 | 8855 9283 9544 9515 7521 | 7799 8578 89.86 8741 64.84
+0.55 4043 +077 +0.19 +1.88 | 071 +0.15 +057 +047 +1.00 | +0.89 +0.52 +0.67 +0.25 +8.61
— 8378  89.67 9215 9313 9452 | 90.61 9485 9696 97.31 9832 | 8448 89.60 91.93 9331 9458
+074 4059 +052 +038 4042 | £150 +0.86 +030 +0.41 +034 | £076 +0.39 +048 +0.32 +0.37
Dist.PU 4797 4797 7755 4797 4797 | 5084 5118 8207 5132 5097 | 64.83 64.83 80.07 64.83 64.83
1St 4063 4063 +078 +0.63 4063 | £192 +£229 +1.66 +195 +1.79 | £0.58 +058 +040 +058 +0.58
—— ‘ 4797 4797 7003 4797 47.97 ‘ 5064 5084 7472 5095  51.00 ‘6483 6483 7281 6483 64.83
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Table 20: Test results (mean+std) in terms of precision and recall for each algorithm on Letter
(Case 1) with different ratios of positive data. The validation metric is OA. The best performance
w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the proposed calibration
technique in Algorithm|[T]

Test Metric | Precision

Recall

Ratio 10% 20% 30% 40% 50% 10%  20%  30% 40%  50%

61.52 7490 8833 6254 7685 | 9576 9455 90.85 96.76 96.85

+0.63 +0.63 +£328 4063 +0.63 |+0.00 £0.00 +2.35 +0.00 +0.00

\ \
PUbN
‘¢10.24 +10.11 +1.64 +11.07 110.86‘i3447 +223 4127 +265 +1.46
PAN 4830 4830 3401 4830 4830 |100.00 100.00 56.40 100.00 100.00
4091 +091 +13.90 +091 +0.91 |+0.00 +0.00 +23.56 +0.00 +0.00
VIR 7712 7692 7728 7146 6591 | 9204 9503 96.58 9820 98.54
+1.66 +1.10 +052 +0.83 +0.11 |+092 +134 +0.14 4030 +0.53
PAMIXE | 4943 4943 4523 4943 4943 |100.00 100.00 42.64 100.00 100.00
] £021 4021 +1889 +£021 4021 [£0.00 +0.00 +18.48 +0.00 +0.00
paMix.c | 7090 7222 7515 7525 7590 | 8494 8338 9226 9LI4 9204
SMIAE 062 £133 0 4£090 4077 4067 | £244 £3.04 £1.02 068 +0.80
LBE 7773 8092 8517 8130 83.67 | 8394 8280 90.14 8844 90.48
4099 +154 +179 4068 +2.03 |+2.85 +096 +236 +196 +147
CountLoss | 6748 6438 7233 5522 5458 | 86.60 9496 89.44 8046 6329
OUNtLOSS | 1931 4454 4083 +3.11 4262 | +744 +1.16 +097 +585 +2.40
RobuspU | 8294 9052 9032 9329 9305 | 8673 87.03 90.86 92.04 9499
obust: +1.63 +091 +077 +0.58 +1.05|+092 +167 +032 +042 +043
Holistie.py | 7628 76.80 8239 7808 8116 | 8866 93.67 9499 0587 9556
OMSUCEL | 1097 +1.17 4208 +092 +0.55 | +0.84 +085 +121 +085 +0.52
U 7896 7799 8047 7279 69.32 | 8621 8498 83.62 83.68 85.87
¢ +1.53 4061 4023 4070 +1.15|+132 4200 +2.52 +072 +1.51
GLWS 80.97 8179 7944 7416 69.04 | 9224 9357 9684 97.65 99.28
+120 +089 +0.61 +051 +0.58 |+041 +0.54 +048 +048 +0.17
U 7960 79.09 7498 7233 6749 | 81.81 79.67 80.56 80.09 82.33
u 4032 4095 +074 4267 +0.62|+206 +1.64 +1.73 +442 +0.52
- 87.03 89.54 9200 9292 9557 | 83.65 88.82 9326 9328 92.92
urhee +0.58 +1.67 4092 +1.11 +023 |+199 +244 +091 4094 +0.69
U 8534 8577 8197 7296 7083 | 87.55 9172 9042 9489 8936
o +1.05 +043 +1.57 4038 +0.24 i +072 +248 +0.64 +1.61
- 8699 9028 9326 9347 9411 | 8419 89.96 90.08 9340 95.10
e +126 +062 +126 +047 +028 |+252 +090 +146 4099 +0.02
PU.GA | 8119 8554 8081 8221 8070 | 8261 8522 8848 8817 8935
nnEL- +1.10 4020 +1.19 +146 +0.74 | +3.03 +094 +053 +090 +0.89
PUGAL| §7:68 8955 8960 9201 9490 | 8083 8921 9217 9342 9351
IEUDAC] 1062 4086 +0.51 +053 4042 | +1.12 +0.64 +032 +0.70 +0.69
PUSB 87.03 8474 8496 7327 6688 | 83.02 9171 8878 9370 9470
4101 4081 +£133 +1.04 4090 |+2.02 +125 +276 +1.72 +2.03
— 88.53 9172 89.87 9338 9572 | 80.74 86.88 9277 9329 9276
4096 +020 +076 4050 +0.66 | +1.57 +1.00 +140 +096 +0.82
VPU 85.81 8842 9124 9284 76.66 | 71.67 8341 8861 8275 68.00
4126 4129 +124 +1.67 +867 |+£226 +149 +131 +1.61 +1635
— 80.94 9039 9209 9096 93.61 | 88.55 8896 91.84 9579 9559
+135 +192 +0.68 4066 +098 |+233 +1.05 +142 +0.17 +0.50
DistPU 4797 4797 7150 47.97 47.97 |100.00 100.00 91.14 100.00 100.00
18t 4063 4063 +£1.04 4063 4063 |+0.00 £0.00 +1.75 +0.00 +0.00
) 4797 4797 6607 47.97 47.97 |100.00 100.00 8154 100.00 100.00
Dist-PU-c ‘
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Table 21: Test results (mean+std) in terms of test accuracy, AUC score, and F1 score for each
algorithm on USPS (Case 1) with different ratios of positive data. The validation metric is OA.
The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the
proposed calibration technique in Algorithm [T}

Test Metric | Test ACC | AUC | Test F1

Ratio 10%  20%  30% 40%  50% 10%  20%  30% 40%  50% 10%  20%  30%  40% 50%

90.68 9292 9395 9420 94.83 | 97.11 97.88 98.29 98.38 98.62 | 88.34 91.44 9277 93.17 94.04

+0.15 +037 4034 +0.17 +020| +0.04 +005 +021 +0.04 +0.10| +024 +058 +044 +023 4023

\ \ \
PUBN ‘10440 H0.15 +£0.13 £0.25 io.u‘io.m £0.05 +£0.04 +0.09 +OO6‘+0.59 £020 +£0.07 +028 +0.13
PAN 8560 8557 8497 79.59 5634 | 89.84 89.84 90.06 89.93 6121 | 80.06 81.62 80.61 6836 37.85
4026 +£0.70 +048 +0.84 +042| 4030 +056 +046 +020 +0.99 | £049 +0.16 +058 +1.78 +15.65
CVIR 9231 8460 8298 7936 73.64 | 97.66 9501 9342 9337 8506 | 90.93 8390 8276 80.03 7597
4028 +£301 +139 +0.17 4009 | £0.17 +£124 +0.69 +0.68 +0.15| 4031 +293 +126 +0.13 +0.08
paMix.p | 8836 8877 8984 8954 0043 | 9537 9556 9623 9577 9599 | 8521 8602 87.90 §7.12 8830
14041 4004 £1.07 £005 +0.08 | £032 +£0.09 +047 +£0.07 +£0.10| £0.74 +045 +130 +025 +0.20
pavix.c | 9120 9L03 9322 9146 9201 | 97.10 9723 98.09 97.36 9749 | 89.55 8944 9205 90.00 90.62
14008 4002 +031 4023 4010 | £0.18 +0.12 +0.11 +£0.10 +0.10 | £0.10 +0.03 +036 +026 +0.11
LBE 89.97 91.03 9229 9292 9430 | 9618 9650 97.60 97.72 9846 | 88.09 89.59 91.16 91.74 9333
4054 4011 +033 +0.14 +0.15| 4005 +032 +0.18 +0.15 +001 | +1.02 +020 +0.18 +0.05 +0.20
Count Loss | 9118 9236 9176 9023 8621 | 96.01 97.38 07.60 9742 95.13 | 89.63 90.04 90.64 8925 8572
OunthosS 1 1000 +0.26 +0.81 4022 +0.76 | £0.00 +0.09 +0.09 +0.02 +0.86 | +0.00 +0.34 +0.69 +024 =+0.69
Robustpy | 8919 OL41 9279 9449 9542 | 9638 9745 07.73 9831 9885|8614 8935 9120 9349  94.69
obust: +027 4036 +0.12 +0.05 +022| +0.15 +005 +0.15 +0.07 +0.02| 4037 +050 +0.14 +0.06 +0.25
Holistic.py | 8861 9213 9346 0381 9334 | 9599 0702 97.76 9786 O8.18 | 8574 9068 9227 9279 9235
OWUET ] 4024 4027 4036 +0.07 +0.14 | 025 +0.11 +0.16 +001 +0.10 | +0.34 +042 +040 +0.08 +0.13
U 8791 87.11 8693 79.94 7839 | 9502 9537 9440 9358 9123 | 86.11 8571 8524 79.71 77.87
¢ 4054 4033 +027 +1.16 4079|4023 +028 +1.03 +0.19 +048| 4075 +023 +0.59 +096 =+0.71
GLWS 91.65 91.60 9052 83.04 81.02 | 97.15 98.06 98.18 9633 9472 | 9037 9071 89.81 8326 81.64
+044 4050 +047 +0.84 +008 | 4021 +0.03 +0.09 +0.31 +0.07 | +046 +047 +045 +0.68 +0.07
U 87.10 8655 8386 8025 77.01 | 9441 9440 9301 9111 89.79 | 8541 8480 8204 7890 76.65
u +0.67 +£1.07 +083 +092 4050 | £0.57 +044 +005 +0.16 +0.10 | +£0.66 +1.14 +0.70 +073 +036
p— 89.01 9095 9332 9415 95.13 | 9689 9747 97.85 9821 98.84 | 8573 88.56 9194 9299 9432
urt-e 4032 4033 +0.10 +0.13 £009| £021 +£0.14 +0.09 +0.14 4007 | £043 +051 +0.16 +0.16 =+0.11
U 9138 9096 9022 7198 49.51 | 9694 97.53 9770 9598 90.55 | 90.19 90.09 89.44 75.16 6247
o 4027 4064 +042 +1.90 +097 | £023 +0.13 +0.15 +0.37 +052| 4020 +0.60 +042 +125 +047
- 8924 9150 9324 9417 9520 | 9619 9772 97.99 98.12 9883 | 8625 8925 9176 93.03 9441
nnEL-e 4020 4021 +0.18 +0.19 +0.11| 4036 +007 +0.03 +0.05 +003|+026 +034 +023 +024 =+0.13
PU.GA | 8994 9143 9251 9287 0359 | 9581 9657 9717 97.60 97.82 | 88.18 89.95 9130 9149 9249
el 4031 4038 +031 +024 4025|4033 +034 +027 +0.15 +0.09 | 4042 +040 +035 +028 +028
PUGALc | 8889 9025 9279 9390 9535 | 9578 96.54 07.66 98.04 9885|8578 8785 9133 9272 9459
MEROAC 1036 4025 4022 4018 +0.03 | £024 +0.13 +0.11 4006 +0.02| +054 +031 +032 +023 +0.03
PUSE 89.92 90.80 9138 7246 53.84 | 9044 91.62 9217 7593 5970 | 8875 89.93 9056 7521 6429
+0.09 +026 +083 +0.55 +148|+0.12 +020 +0.70 +046 +126|+0.12 +024 +080 +0.36 +0.70
— 8876 92.11 9283 9389 9492 | 87.58 9137 9225 9360 9494 | 8572 9028 9126 9270  94.06
+047 4032 +0.18 +024 +0.18| +0.65 +036 +0.29 +0.28 +0.18| +0.80 +042 +0.28 +0.30 =021
vPU 8246 8236 89.89 8200 87.06 | 93.67 9557 9776 9578 67.01 | 7440 7438 8658 73.08 82.56
+127 4040 +171 +1.77 +1.14| 4064 +0.13 +0.19 +090 +595| +2.51 +0.65 +2.62 +3.38 +2.00
— 8524 9110 9329 9447 9520 | 9427 9771 9779 98.19 9848 | 80.09 88.63 9197 9339 9428
+138 4090 +0.32 +0.14 +0.15| +0.68 +0.14 +0.18 +0.04 +003 | +2.19 +133 +038 +0.17 =+0.17
DisPU 87.36 8874 8610 84.16 85.07 | 9295 9370 91.03 90.64 90.87 | 8529 87.51 8477 8285 83.38
1S £158 +£1.65 +0.14 +0.67 +0.04| £1.62 £137 +077 +0.81 +043 | +1.55 +£1.80 +0.17 +028 +0.11
DistPU-c ‘ 89.14 9027 9150 9344 94.04 ‘ 9723 97.68 97.74 98.38 98.06 ‘ 8596 8755 89.44 9205 93.02
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Table 22: Test results (mean+std) in terms of precision and recall for each algorithm on USPS
(Case 1) with different ratios of positive data. The validation metric is OA. The best performance
w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the proposed calibration
technique in Algorithm|[T]

Test Metric | Precision | Recall

Ratio 10%  20%  30%  40% 50% 10%  20%  30%  40% 50%

9385 9378 9393 9298 9275 | 8349 89.22 91.65 9337 9537

+0.19 +047 +0.38 +0.09 +0.25 | £045 +1.28 +0.71 +0.51 4022

\ \
PUbN
+039 +026 +0.10 +042 +0.04 | +125 +040 +035 +0.14 +022
PAN 96.79 90.14 9059 9920 3255 | 6827 7569 7427 5224 46.75
+0.27 +474 4535 +0.14 +1329 | +084 +388 +522 +2.07 +20.52
CVIR 90.89 7625 7262 6778 6188 | 9098 9349 9627 97.69 98.35
+0.69 +4.04 +1.66 +0.18 +0.07 | +0.53 +£128 +0.86 +0.12 +0.10
pavpeE | 9212 9100 8931 0105 0157 | 7937 8176 87.02 8369 8529
SVIAE 14078 £1.52 4304 £146 4062 | £1.89 £209 +£280 +1.72 +092
paMix.c | 9008 8920 9148 89.34 00.15 | 89.02 89.69 9263 90.67 9110
+0.12 £020 +043 +035 4023 | £0.17 +022 +031 +027 +0.22
LBE 88.33 8845 89.02 90.86 9250 | 8831 9129 9369 9275 9420
+170 4258 4212 +125 4025 | £354 +£305 +191 +124 +0.54
Count Loss | 8926 9134 8805 8358 7644 | 90.00 90.55 93.65 9576  97.61
OuntLOSS 1 40,00 +0.06 +245 +039 +1.05 | £0.00 +0.70 +143 +048 +0.23
RobustpU | 9419 9406 0446 0349 0204 | 79.37 8510 8816 9349 9651
opust: +044 4007 4025 +020 +034 | +0.58 +085 +0.16 +021 +0.19
Holistic.py | 9126 9097 9236 0148 8999 | 80.94 0055 9220 9416 9486
OMUCEL | 1116 +131 +077 +038 +0.75 | £1.20 +1.92 4026 +039 +0.75
U 8376 80.87 8182 69.86 68.80 | 88.67 9122 8941 9286 89.73
¢ +0.53 +089 +180 +145 +089 | £1.68 +0.72 +320 +050 +0.66
GLWS 8837 8542 8247 7162 69.13 | 9247 9675 9859 9945  99.69
4086 +1.12 +075 +1.02 +0.10 | +028 +047 40.06 +0.03 -+0.08
U 8206 8142 7777 7222 6729 | 89.06 8851 8690 87.02 89.06
u +1.15 +157 +1.65 +147 +0.64 | +031 +084 +047 +042 +0.15
— 95.17 9519 94.10 9449 9322 | 78.00 8282 89.88 91.53 9545
urbee +038 +030 4032 +021 +025 | +049 +1.11 +0.60 +0.11 +032
U 87.19 8430 8243 6035 4560 | 9345 9678 9776 99.73  99.18
"“ +1.01 4125 4066 +1.63 +049 | £0.77 +042 +036 +0.06 +0.17
o 9399 9597 9485 9425 9317 | 79.69 8345 8886 91.84 95.69
e +030 +048 4020 +0.16 +0.13 | +0.23 +096 +0.44 +047 +0.13
PU.GA | 8775 8938 8989 9262 9185 | 8871 0055 9275 9039 9314
el +1.05 +074 +046 +0.50 +046 | £150 +0.14 +0.37 +037 +0.25
PUGAL | 93:56 9304 9302 9375 9319 | 7922 8322 8973 9173  96.04
MEUDAC] 1007 4048 +036 4029 +0.12 | £092 +0.34 +094 +057 +0.16
PUSE 8416 83.83 8472 6080 47.86 | 93.88 97.02 97.33 9859 98.00
+033 4063 +155 +0.52 +082 | £0.56 +0.42 +042 +062 +0.33
— 9261 9443 9423 9375 9310 | 79.92 8651 8851 91.69 95.06
+1.03 4076 +0.58 +036 +043 |+£194 +089 +1.03 +061 +0.39
VU 96.67 96.61 97.19 9830 9536 | 6075 6047 7843 5851 7325
4055 4041 +039 +0.19 +139 | +345 +0.69 4444 +427 +4.12
— 9280 9605 9330 9457 9517 | 70.55 8239 90.67 9224 9341
4072 4024 4050 +025 +030 | £2.93 +£242 4028 +0.11 +0.06
DistPU 85.15 8272 79.18 7690 78.87 | 8576 9294 9141 9027 88.47
s 4376 4212 +124 4209 +043 | £073 +£181 +193 +277 +0.79
9497 9545 9427 9451 9228 | 7851 8090 85.10 89.73 93.76
Dist-PU-c ‘ ‘
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Table 23: Test results (mean+std) of accuracy, AUC, and F1 score for each algorithm on Letter
(Case 1) with estimated inaccurate class priors. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm T}

Test metric | Test ACC | AUC | Test F1

Val metric ‘ PA PAUC OA PA PAUC OA ‘ PA PAUC OA
PUbN 76.78+10.83 77.23+11.02 77.65+11.19 80.11+12.97 80.37+13.07 80.09+12.95 82.49+6.37 82.34+6.31 83.03+6.60
PAN 48.3040.91 48.3040.91 48.304+0.91 51.99+1.47 51.97+1.14 51.99+1.47 65.12+0.82 65.12+0.82 65.1240.82
CVIR 81.82+0.22 81.30+0.43 82.23+0.55 84.21+0.65 84.46+0.67 84.26+0.73 83.89+0.23 83.69+0.33 84.19+0.44
P3MIX-E 49.434+0.21 49.431+0.21 49.43140.21 50.48+0.78 50.48+0.78 50.48+0.78 66.16+0.19 66.16+0.19 66.16+0.19
P3MIX-C 76.80+2.47 77.25+2.39 78.05+1.51 82.45+0.78 82.7640.70 82.02+1.14 79.99+1.54 80.12+1.54 80.11+£1.42
LBE 81.354+0.44 76.8342.00 83.98+0.25 88.38+0.77 87.84+1.54 88.9140.45 83.13£0.56 77.5742.38 83.41+0.38

Count Loss 63.07+4.67 63.0744.67 62.50+4.23
Robust-PU 91.1740.54 89.8240.04 90.9740.47
Holistic-PU 83.8740.82 78.68+3.95 84.3540.46

68.24+8.72 68.2448.72 66.154+7.13 69.574+3.70  69.5743.70  68.431+2.80
95.86+0.31 96.031+0.36 95.761+0.25 91.33+£0.65  89.80+£0.23  90.93+0.49
91.2240.68 91.9540.77 90.2740.28 85514+0.53  82.144+2.54  85.684+0.37

PUe 74.93+1.18 76.20+1.72 78.454+0.67 86.50+0.65 87.714+0.88 87.0610.83 78.33+0.73  77.95+0.96  78.35+0.75
GLWS 85.0540.62 81.9040.92 85.50+0.26 91.144+0.21 91.65+0.13 90.8940.19 86.414£0.50  84.294+0.43  86.66+0.29
uPU 76.60+0.99 76.82+1.98 78.07+0.64 85.60+0.58 87.8240.21 87.28+0.57 78.71+0.72  78.17+0.50  78.40+0.52
uPU-c 91.98+0.31 90.90+0.57 91.78+0.46 95.574+0.43 96.39+0.38 95.46+0.44 91.784+0.29  90.1840.75  91.53+0.46
nnPU 86.1240.31 76.33+3.01 87.2840.50 | 94.95+0.15 95.76+0.07 95.64+0.17 86.97+0.09  80.53+2.01 87.71+0.36
nnPU-c 91.97+0.27 90.43+0.85 92.05+0.19 95.7140.10 95.78+0.44 95.79+0.14 91.90+0.22  89.76+1.30  91.89+0.18
nnPU-GA 84.67+0.92 83.87+0.47 85.98+0.48 ‘ 93.0840.45 94.37+0.38 93.3440.51 85.37+0.64  85.02+0.40  86.27+0.46

nnPU-GA-c 90.98+0.29 87.10+0.93 90.98+0.29 94.70+0.24 96.08+0.34 94.70+0.24 90.89+0.24  85.10+1.36  90.89+0.24

PUSB 86.08+0.51 86.08+0.51 85.73+0.77 ‘ 86.2440.40 86.2440.40 85.854+0.70 87.00+0.37  87.00+0.37  86.49+0.75
PUSB-c 91.731+0.22 91.08+0.60 92.174+0.28 91.76+0.20 91.1240.55 92.1940.28 91.74+0.28  90.80+£0.58  92.17+0.30
VPU 87.0740.60 66.0312.83 88.8540.52 | 94.39+0.25 96.0840.20 94.6940.32 87.58+0.15  47.88+6.12  88.82+0.45
VPU-c 91.38+0.33 87.83+2.25 91.931+0.44 95.89+0.17 96.81+0.29 96.68+0.30 91.64+0.24  86.29+3.05  91.92+0.42
Dist-PU 47.97+0.63 47.97+40.63 47.9740.63 | 50.95+1.86 50.95+1.86 50.95+1.86 64.83+0.58  64.83+0.58  64.83+0.58

Dist-PU-c 47.97+40.63 47.97+40.63 47.97+0.63 50.884+1.92 50.884+1.92 50.884+1.92 64.83+£0.58  64.831+0.58  64.83+0.58

Table 24: Test results (mean+std) of precision and recall score for each algorithm on Letter (Case 1)
with estimated inaccurate class priors. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm [T}

Test metric | Precision ‘ Recall

Val metric ‘ PA PAUC OA ‘ PA PAUC OA
PUbN 73.37+£9.45 78.69+11.63 76.87+10.88 97.61+1.20 91.60+3.43 94.69+2.17
PAN 48.30+0.91 48.30+0.91 48.30+0.91 100.00+0.00 100.00+0.00 100.00+0.00
CVIR 74.0440.38 73.0340.65 74.60+0.75 96.80+0.56 98.03+0.52 96.63+0.38

P3MIX-E 49.434+0.21 49.43+0.21 49.434+0.21 100.00+0.00  100.00+0.00  100.00-+0.00
P3MIX-C 70.0642.67 70.831+2.62 72.24+1.18 93.554+0.90 92.504+0.79 89.93+2.01
LBE 75.1740.22 77.62+7.31 85.55+1.12 93.004+1.20 83.47£10.21 81.48+1.39
Count Loss 58.66+2.88 58.66+2.88 58.99+3.12 85.59+5.38 85.59+5.38 81.63+2.17
Robust-PU 88.73+0.25 89.35+2.10 90.46+0.85 94.12+1.40 90.63+2.56 91.43+0.14
Holistic-PU 76.80+1.40 71.33+4.12 77.9740.63 96.58+0.90 97.57+0.91 95.094+0.14

PUe 67.40£1.35 71854401 76414214 | 93.61£096  87.24+5.67  80.91+3.08
GLWS 78.10+1.16  73.60+0.86  78.98+0.50 | 96.76+0.60  98.66+0.39  96.01+0.32
uPU 69.87+1.49 72464346 74214036 | 90.23+0.61  86.10£4.07  83.10+0.74
uPU-c 90.20+0.63 93234173 90.42+0.53 | 93.45+0.94  87.66+293  92.70+1.10
nnPU 80.1340.90  67.84+3.08  82.93+125 | 95.16+1.06  99.45+032  93.1640.80
nnPU-c 9033£0.90  9293+1.88 91264036 | 93.57+0.73  87.32+3.88  92.5340.11
nPU-GA | 80.05+2.14  77.60+£0.78 82474070 | 91.74%+1.59 94054051  90.4640.54
nmPU-GA-c | 89.52+050  96.71+0.78  89.52+0.50 | 92304022 76144255  92.30+022
PUSB 81.08+1.87  81.08+1.87  8146+1.64 | 9411+1.62  9411+1.62  92.2940.90
PUSB-c 90.72+1.01 92924125  91.22+0.58 | 92.83+0.75  8893+1.95  93.144+027
VPU 84.64+£2.59  99.48+0.42  89.00£1.49 | 91304296 32174534  88.7240.57
VPU-c 88.924+0.73 95844096  91.94+051 | 94554031  79.18+5.69  91.9240.75
Dist-PU 47.97+0.63 47974063  47.9740.63 | 100.00+0.00  100.00+0.00  100.00+0.00

Dist-PU-c 47.9740.63 47.9740.63 47.9740.63 100.00+0.00  100.00+0.00  100.00+0.00
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Table 25: Test results (mean+std) of accuracy, AUC, and F1 score for each algorithm on USPS
(Case 1) with estimated inaccurate class priors. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm T}

Test metric | Test ACC | AUC | Test F1

Val metric ‘ PA PAUC OA ‘ PA PAUC OA ‘ PA PAUC OA
PUbN 93.7240.25  93.66+0.35  93.90+0.18 | 98.184+0.04  98.14+0.04  98.224+0.03 | 92.48+0.33 92.34+0.45 92.7440.23
PAN 85.70£0.15 83.89+0.28 85.68+0.14 90.46+0.13 90.92+0.12 90.50+0.12 80.20+0.27 76.92+0.46 80.16+0.25
CVIR 81.12+0.22 81.03+0.24 81.1740.18 93.21+0.72 93.25+0.73 93.08+0.80 81.25+0.22 81.214+0.19 81.284+0.15

P3MIX-E 88.774+0.28  89.2740.15  88.94+0.16 | 95.48+0.07  95.70+0.05  95.57+0.09 | 86.17+0.26 86.79+0.13 86.37+0.24
P3MIX-C 91.26+0.07  91.354+0.12  91.41+0.11 97.2440.09  97.2240.03  97.25+0.04 | 89.73+0.09 89.80+0.14 89.88+0.14
LBE 90.7740.20  91.93+0.45  92.01+0.46 | 97474024  97.36+0.21 98.05+0.11 89.90+0.17 90.41+0.74 90.9840.30
Count Loss 91.76+0.66  91.584+0.40  92.14+0.34 | 97.54+0.22  97.44+0.21 97.404+0.10 | 90.55+0.75 90.30+0.54 90.8640.35
Robust-PU 92.9940.21 92.814+0.29  93.074+0.19 | 97.764+0.15  97.70+£0.08  97.7940.17 91.514+0.28 91.2740.40 91.624+0.23
Holistic-PU 93.2940.24  93.164+0.10  93.24+0.23 97.40+0.20  97.434+0.16  97.40+0.23 92.18+0.30 91.9940.19 92.1040.27

PUe 84.5540.31 84.354+0.71 84.84+0.39 | 9436+0.32  94.56+0.08  94.40+0.15 | 83.52+0.37 83.14+0.57 83.55+0.47
GLWS 88.82+0.39  87.784+0.44  88.39+0.24 | 98.28+0.05 98.31+0.05  98.23+0.05 | 88.26+0.36 87.29+0.40 87.84+0.21
uPU 82.74+0.60  83.9940.49  83.56+0.84 | 92.97+0.18  93.36+0.13  92.06+0.66 | 81.39+0.60 82.14+0.37 81.89+0.77
uPU-c 92.64+0.46  9223+0.04  93.16+0.32 | 98.0740.03  97.80£0.08  98.0610.01 90.9140.65 90.43+0.04 91.6440.40
nnPU 85.50+0.38  80.154+0.58  84.80+0.63 | 97.65+0.07  97.734+0.02  97.594+0.04 | 85.2440.31 80.97+0.45 84.65+0.53
nnPU-c 92.734£0.05  91.93+£0.14  93.14+0.27 | 97.7840.12  97.63£0.20  97.904+0.10 | 91.0940.10 90.00£0.17 91.6240.36

nnPU-GA 92.56+0.61 91.50+0.44  92.7940.12 | 97.3440.35  97.04+0.20  97.41+0.18 91.35+0.58 90.26+0.44 91.6640.11
nnPU-GA-¢ | 92.18+0.35  92.1440.63  92.63+0.21 97.86+0.11 97.814+0.05  97.90+0.04 | 90.3240.45 90.214+0.91 90.9640.27

PUSB 84974126  8497+1.26  85.19+1.09 | 86.82+1.06 86.82+1.06  86.83+1.05 | 84.83+1.04 84.83+1.04 84.82+1.05
PUSB-c 92.7940.40  92.58+0.18  92.874+0.12 | 92.184+047  91.86+0.28  92.27+0.15 | 91.19£0.52 90.86+0.29 91.3040.16
VPU 83.74+1.41 60.62+2.37  83.74+1.41 95.794£0.95  97.564+0.06  95.79+0.95 | 76.55+2.48 11.80£9.35 76.5542.48
VPU-¢ 93.56+0.29  82.03+8.04 93.36+0.29 | 98.08+0.05  97.794+0.38  97.97+0.10 | 92.09+0.43  66.66+19.02  91.894+0.41
Dist-PU 86.31+0.07  83.624+0.93  86.26+0.21 89.91+0.36  91.63+0.03  90.75+0.27 | 85.56+0.13 81.76+0.93 85.50+0.19

Dist-PU-c 92.014+0.42  90.90+0.54  91.94+0.46 | 98.20+0.14  98.2840.03  98.28+0.10 | 90.00+0.57 88.34+0.81 89.88+0.64

Table 26: Test results (mean+std) of precision and recall score for each algorithm on USPS (Case 1)
with estimated inaccurate class priors. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm T}

Test metric | Precision ‘ Recall

Val metric ‘ PA PAUC OA ‘ PA PAUC OA
PUbN 93.78+0.63 94.39+0.20 93.614+0.24 91.254+0.89 90.394+0.70 91.88+0.49
PAN 96.94+0.10 97.76+0.23 97.004+0.14 68.39+0.42 63.4140.55 68.314+0.39
CVIR 70.104+0.23 69.96+0.30 70.184+0.22 96.63+0.35 96.784+0.14 96.554+0.22

P3MIX-E 90.374+2.19 90.94+2.03 90.53+2.05 | 82.63+2.08 83.25+2.00 82.86+2.16
P3MIX-C 89.38+0.09 89.68+0.17 89.754+0.15 | 90.08+0.19 89.924+0.28 90.004+0.25
LBE 83.77+0.51 90.85+1.93 87.7242.62 | 97.02+0.40 90.39+3.13 94.9442.40
Count Loss 88.101+0.84 88.05+0.55 89.66+0.91 93.14+0.70 92.75+1.49 92.12+0.49
Robust-PU 93.97+0.10 93.87+0.27 93.954+0.42 | 89.18+0.58 88.82+0.88 89.4140.44
Holistic-PU | 91.0240.12 91.1940.77 91.20£0.38 | 93.37£0.53 92.86+1.14 93.02+0.36

PUe 76.1940.55 76.66+1.52 77.2840.54 | 92.47+1.15 91.02+1.72 90.98+1.15
GLWS 79.531+0.59 78.01+0.65 78.9440.39 | 99.14+0.03 99.1040.03 99.02+0.08
uPU 74.921+0.76 77.96+1.11 76.85+1.34 | 89.10£0.50 86.86+0.75 87.6910.28
uPU-c 95.1410.44 94.45+0.30 94.914+0.25 | 87.10£1.39 86.75+0.26 88.59+0.58
nnPU 74.95+0.56 68.20+0.63 74.041+0.88 | 98.82+0.15 99.65+0.00 98.82+0.11
nnPU-c 94.68+0.40 94.71+£0.23 94.8740.10 | 87.76+0.53 85.73+0.14 88.59+0.58

nnPU-GA 90.45+2.08 87.77+1.24 89.8840.51 92.43+1.14 92.984+1.08 93.5340.42
nnPU-GA-c | 94.90%0.35 95.20+0.45 94.624+0.10 | 86.16£0.57 85.80+1.89 87.571+0.45

PUSB 74.33+1.73 74.33+1.73 75.01+1.24 | 98.90+0.32 98.90+0.32 97.61+£0.94
PUSB-c 94.4610.35 94.9140.66 94.514+0.18 | 88.16+0.95 87.18+1.03 88.3140.40
VPU 97.5240.14  66.12427.00  97.52+0.14 | 63.224+3.43 7.14+5.68 63.2243.43
VPU-c 95.761+0.49 96.074+1.55 95.03+0.26 | 88.75+£1.24  60.90+20.31 88.98+0.98
Dist-PU 77.3310.16 77.99+3.06 77344049 | 95.76+0.55 86.90+4.14 95.61+0.67

Dist-PU-c 95.67+0.22 96.36+0.23 95.954+0.18 | 84.98+0.88 81.61+1.52 84.55+1.14
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Table 27: Test results (mean=std) of accuracy, AUC, and F1 score for each algorithm on the Credit

Fraud dataset. The best performance w.r.t. each validation metric is shown in bold. Here, “-c
indicates using the proposed calibration technique in Algorithm ]

Test metric ‘ Test ACC ‘ AUC ‘ Test F1

Valmewic | PA PAUC OA | PA PAUC OA | PA PAUC 0A
PUbN 96.314+2.01 90.0245.66 97.13+0.89 | 95224049  97.83+1.28  94.76+1.20 | 98.0941.06 94.45+3.24 98.5340.46
PAN 94.54+2.90 19.44+7.80 94.09+1.58 87.74+3.86 95.15+0.33 87.72+1.99 97.12+1.55 30.26+10.65 96.93+0.83
CVIR 98.6940.95 99.6140.20 99.884+0.04 | 87.01+1.57  90.36+0.36  91.14+0.86 | 99.33+0.48 99.80+0.10 99.9440.02

P3MIX-E 98.3840.45 96.3841.55 98214+1.09 | 9561+£1.36  9455+1.77  98.08+0.55 | 99.1840.23 98.1440.80 99.0940.56
P3MIX-C 99.07£0.58 98.714£0.48 97.264+1.13 | 88.81+£1.27 94.64+£1.97  9543+0.66 | 99.5340.30 99.354+0.25 98.6040.58
LBE 90.96+3.02 83.66+8.10 95.024+1.73 | 96.41+0.04  96.51+1.02  96.02+0.62 | 95.18+1.63 90.41£5.12 97.4240.92
Count Loss 90.46+2.26 94.78+2.16 94.8240.95 | 91.06+2.28  93.08+1.16  94.9440.73 | 94.94+1.25 97.28+1.13 97.3340.50
Robust-PU 92.514+2.86 80.53+7.39 94.88+1.73 | 96.48+0.46  96.41+0.64  96.26+1.82 | 96.03+1.54 88.61+4.73 97.3540.90
Holistic-PU | 90.11£0.30 85.14+2.38 90.96+1.49 | 96.31+£0.40 95854094  93.754+0.68 | 94.79+0.16 91.90+1.40 95.2440.82

PUe 97.21£1.51  74.09£20.61  98.49+0.46 | 94.174+1.36  94.22+1.86  97.94+0.58 | 98.57+0.78  79.12+16.78  99.24+0.23
GLWS 99.20+0.53 99.8140.05 99.234+0.55 | 9435+1.77  95284+1.79  95.73+1.89 | 99.60+0.27 99.90+0.03 99.61£0.28
uPU 96.97+1.72 98.12+0.88 99.124+0.20 | 94.03+2.03  94.03+1.23  9528+1.80 | 98.44+0.90 99.04+0.45 99.56+0.10
uPU-c 95.4610.73 88.54+4.56 93.80+0.71 96.84+1.25 97.12+0.95  96.80+1.10 | 97.6740.38 93.7242.65 96.7940.38
nnPU 98.9840.61 99.9240.01 99.8940.02 | 92.4143.14  9599+1.14  93.62+1.97 | 99.48+0.31 99.96+0.00 99.954+0.01
nnPU-c 92.96+1.83 92.44+3.60 94.9940.09 | 95.10+1.35  97.31+0.67  94.62+0.88 | 96.32+0.99 95.95+1.99 97.4340.04

nnPU-GA 88.02+6.19 78.64+3.11 95.334+2.10 | 96.80+1.28  93.94+0.82  96.60+1.66 | 93.26+3.66 87.92+2.00 97.57+1.11
nnPU-GA-¢c | 90.35+4.04 83.02+6.83 92.7440.14 | 9545+0.34  94.87+0.16  96.73+£0.79 | 94.784+2.27 90.24+4.15 96.2310.08

PUSB 99.0040.56 99.0040.56 99.034+0.74 | 92.20+0.56  92.20+0.56  91.06+0.73 | 99.50+0.28 99.50£0.28 99.5140.38
PUSB-¢c 94.4140.81 90.41+2.41 96.024+0.50 | 92.784+2.08  93.26+1.38  93.224+0.41 97.11£0.43 94.91+1.35 97.96+0.26
Dist-PU 99.94+0.01 99.92+0.00 99.93+0.01 84.69+125  88.55+2.63  84.25+2.41 99.97+0.00 99.96+0.00 99.96+0.00

Dist-PU-c 99.5940.29 99.1640.62 99.584+0.28 | 88.68+1.83  91.36+3.18  86.33+3.47 | 99.7940.15 99.5840.31 99.7940.14

Table 28: Test results (mean+std) of precision and recall for each algorithm on the Credit Fraud
dataset. The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates
using the proposed calibration technique in Algorithm|[T]

Test metric | Precision \ Recall

Val metric ‘ PA PAUC OA ‘ PA PAUC OA
PUbN 99.9840.00 99.9940.00 99.9840.00 96.324+2.01 90.0145.68 97.154+0.90
PAN 99.9740.00 99.9840.01 99.9540.01 94.56+2.91 19.30+7.82 94.124+1.58
CVIR 99.9640.00 99.9740.00 99.97+0.00 98.7240.95 99.64+0.20 99.91+0.04

P3MIX-E 99.984+0.00  99.9840.00  99.974+0.01 | 98.40+0.45 96.40+1.55 98.23+1.10
P3MIX-C 99.96+0.01  99.96+0.01  99.9840.00 | 99.11£0.59 98.75+0.49 97.28+1.13
LBE 99.9840.00  99.9940.00  99.984+0.00 | 90.96+3.03 83.6418.12 95.03+1.73
Count Loss 99.9840.00  99.96+0.01  99.9840.00 | 90.47+2.26 94.81+2.18 94.83+0.95
Robust-PU 99.9840.00  99.984+0.00  99.994+0.00 | 92.51+2.87 80.51+7.41 94.89+1.74
Holistic-PU | 99.984+0.00  99.994+0.00  99.984+0.00 | 90.11£0.30 85.12+2.39 90.97+1.50

PUe 99.984+0.00  99.98+0.01  99.98+0.01 | 97.22+1.51  74.07420.65  98.5240.47
GLWS 99.9740.01  99.96+0.00  99.974+0.00 | 99.22+40.53 99.8540.05 99.26+0.56
uPU 99.984+0.00  99.974+0.00  99.984+0.00 | 96.99+1.73 98.1410.88 99.14+0.19
uPU-c 99.9840.00  99.9940.00  99.994+0.00 | 95.47+0.73 88.53+4.57 93.8040.72
nnPU 99.96+0.00  99.96+0.00  99.97+0.01 99.024-0.62 99.9610.01 99.9240.02
nnPU-c 99.9840.00  99.9940.01  99.9840.00 | 92.96+1.83 92.4413.62 95.00+0.08

nnPU-GA 99.9940.01  99.98+0.00  99.99+0.00 | 88.01+£6.20 78.62+3.11 95.34+2.10
nnPU-GA-c | 99.984+0.00 99.984+0.00  99.994+0.00 | 90.35+4.05 83.01+6.85 92.74+0.14

PUSB 99.974£0.00  99.97+£0.00  99.97£0.00 | 99.03+0.56 99.03+0.56 99.06+0.74
PUSB-c¢ 99.984+0.01  99.994+0.00  99.98+0.00 | 94.41+0.81 90.4042.42 96.0310.51
Dist-PU 99.96+0.01  99.954+0.00  99.964+0.01 99.98+0.00 99.97+0.00 99.97+0.00

Dist-PU-c 99.96+£0.00  99.96+0.01  99.961+0.01 | 99.63+0.29 99.20+0.62 99.62+0.28
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