

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ACCESsible, REALISTIC, AND FAIR EVALUATION OF POSITIVE-UNLABELED LEARNING ALGORITHMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Positive-unlabeled (PU) learning is a weakly supervised binary classification problem, in which the goal is to learn a binary classifier from only positive and unlabeled data, without access to negative data. In recent years, many PU learning algorithms have been developed to improve model performance. However, experimental settings are highly inconsistent, making it difficult to identify which algorithm performs better. In this paper, we propose the first PU learning benchmark to systematically compare PU learning algorithms. During our implementation, we identify subtle yet critical factors that affect the realistic and fair evaluation of PU learning algorithms. On the one hand, many PU learning algorithms rely on a validation set that includes negative data for model selection. This is unrealistic in traditional PU learning settings, where no negative data are available. To handle this problem, we systematically investigate model selection criteria for PU learning. On the other hand, the problem settings and solutions of PU learning have different families, i.e., the one-sample and two-sample settings. However, existing evaluation protocols are heavily biased towards the one-sample setting and neglect the significant difference between them. We identify the internal label shift problem of unlabeled training data for the one-sample setting and propose a simple yet effective calibration approach to ensure fair comparisons within and across families. We hope our framework will provide an accessible, realistic, and fair environment for evaluating PU learning algorithms in the future.

1 INTRODUCTION

In binary classification, both positive and negative data are usually necessary to train an effective classifier. However, in many real-world applications, collecting negative data can be more challenging than collecting positive data (Hsieh et al., 2015; Zhou et al., 2021). In positive-unlabeled (PU) learning, only positive and unlabeled data are needed. The objective is to train a binary classifier that assigns positive or negative labels to unseen instances. Therefore, PU learning is a promising weakly supervised binary classification approach for many real-world problems where negative data are difficult to obtain, including recommender systems (Yi et al., 2017; Chen et al., 2023), anomaly detection (Ju et al., 2020; Tian et al., 2024; Takahashi et al., 2025), knowledge graphs (Yin et al., 2024), and link prediction (Wu et al., 2024; Mao et al., 2025).

In recent years, there has been significant progress in PU learning algorithms. PU learning can be divided into three groups: cost-sensitive PU learning algorithms (du Plessis et al., 2014; Zhao et al., 2022), sample-selection PU learning algorithms (Chen et al., 2020b; Wang et al., 2023a), and biased PU learning algorithms (Teisseire et al., 2025). Cost-sensitive algorithms assign different weights to positive and unlabeled data to approximate the classification risk. Sample-selection algorithms select high-confidence negative data from unlabeled data, which are then given to supervised learning algorithms. Biased PU learning algorithms model the biased generation process of positive data and exploit various correction approaches.

Although many PU learning algorithms have been developed to improve generalization performance, there is a lack of a unified experimental setup in the literature for fairly comparing different PU learning algorithms. The experimental settings of different papers are not consistent with each other, making it difficult to tell which algorithm is better. It has been observed that subtle differences in experimental settings can greatly affect the model performance of PU learning algorithms.

054 Additionally, subtle algorithm details, including data augmentation, algorithm tricks, and warm-up
 055 strategies, can also greatly affect model performance (Zhu et al., 2023b; Wang et al., 2023a). Therefore,
 056 a unified experimental protocol is necessary to further promote the development of PU learning
 057 algorithms. In this paper, we propose the first PU learning benchmark to systematically and fairly
 058 compare state-of-the-art PU learning algorithms with unified experimental settings. We propose
 059 careful and unified implementations of the data generation, algorithm training, and evaluation pro-
 060 cesses for PU learning algorithms. This makes it easier for users to validate the effectiveness of their
 061 newly developed algorithms.

062 In our implementations, we observe that many PU learning algorithms rely on a validation set con-
 063 taining both positive and negative data for meta-learning, model selection, or early stopping (Chen
 064 et al., 2020b; Zhu et al., 2023b; Long et al., 2024). However, accessing negative data is unrealistic
 065 and contradicts the original motivation of PU learning (Elkan & Noto, 2008), which goes against
 066 the advantages of PU learning in not depending on negative data. Actually, if we can obtain some
 067 negative data, we can directly apply supervised learning techniques, which can greatly boost model
 068 performance (Sakai et al., 2017). Therefore, standardizing the composition and use of the validation
 069 set is vital to fairly and practically evaluating PU learning algorithms. In this paper, we system-
 070 atically revisit the model selection criteria for PU learning by using only positive and unlabeled
 071 validation data, and validate their effectiveness with both theoretical and empirical analyses.

072 In addition, there are different fam-
 073 ilies and corresponding solutions of
 074 PU learning algorithms, but exist-
 075 ing evaluations fail to consider the
 076 differences between these families.
 077 From the perspective of data gener-
 078 ation processes, there are two types
 079 of PU learning problems: the one-
 080 sample (OS) and two-sample (TS)
 081 settings. In the OS setting, the pos-
 082 itive and unlabeled training sets are
 083 generated sequentially. An unlabeled
 084 dataset is first sampled from the marginal
 085 density. Then, if an instance in the unlabeled dataset is
 086 positive, its positive label is observed with a constant probability. If an instance in the unlabeled
 087 dataset is negative, its label is never observed, and the instance remains unlabeled. Finally, the ob-
 088 served positive data constitute the positive training set, while the remaining unlabeled data constitute
 089 the unlabeled training set. In the TS setting, the positive and unlabeled training sets are generated in-
 090 dependently, meaning that the density of unlabeled training data is the same as the marginal density.
 091 This indicates that the density of unlabeled training data is different in these two settings. Figure 1
 092 shows an example of the distribution of unlabeled data under the OS and TS settings. We can find
 093 that the class priors of the two settings are different. This causes an internal label shift (ILS) problem
 094 for the unlabeled training data when adopting the OS setting as the evaluation setting. Unfortunately,
 095 this problem has typically been overlooked. Existing evaluation protocols are heavily biased towards
 096 the OS setting and compare OS and TS algorithms together without specific manipulations. This can
 097 deteriorate the performance of TS PU learning algorithms and lead to unfair experimental compar-
 098 isons. Therefore, we identify the ILS problem for the first time in the PU learning literature and
 099 propose a simple yet effective calibration approach to overcome it with theoretical guarantees.

100 We draw the following key takeaways from our benchmark results:

- 101 • No single algorithm outperforms all others on every dataset or evaluation metric; some early,
 102 simple methods already achieve strong classification performance. Therefore, we should choose
 103 which PU learning algorithm to use on a case-by-case basis.
- 104 • The model-selection problem in PU learning must be addressed when designing new algorithms
 105 or conducting empirical comparisons, and different selection criteria should be used for different
 106 test metrics.
- 107 • The performance of TS PU learning algorithms degrades significantly when they are evaluated in
 108 the OS setting without adaptation, so OS protocols in the existing PU learning literature do not
 109 reflect the true performance of TS methods. Hence, differences between OS and TS settings must
 110 be considered to ensure fair cross-family comparisons.

2 PRELIMINARIES

In this section, we present the background of PU learning and existing state-of-the-art algorithms.

2.1 POSITIVE-UNLABELED LEARNING

Problem Setting. Let $\mathcal{X} \subseteq \mathbb{R}^d$ denote the d -dimensional feature space and $\mathcal{Y} = \{+1, -1\}$ denote the binary label space. Let $p(\mathbf{x}, y)$ denote the joint probability density over the random variables $(\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$. In PU learning, we are given a positive training set $D_P = \{(\mathbf{x}_i, +1)\}_{i=1}^{n_P}$ and an unlabeled training set $D_U = \{\mathbf{x}_i\}_{i=n_P+1}^{n_P+n_U}$. Let $\pi = p(y = +1)$ denote the class prior probability of the positive class. Let $p(\mathbf{x}|y = +1)$ and $p(\mathbf{x}|y = -1)$ denote the positive and negative class-conditional densities, respectively. Let $p(\mathbf{x})$ denote the marginal density. The goal of PU learning is to learn a binary classifier $f : \mathcal{X} \rightarrow \mathbb{R}$ from $D_P \cup D_U$ that maximizes the *expected accuracy*

$$\text{ACC}(f) = \mathbb{E}_{p(\mathbf{x}, y)} \mathbb{I}(y f(\mathbf{x}) \geq 0), \quad (1)$$

where \mathbb{E} denotes the expectation and \mathbb{I} denotes the indicator function. However, since the 0-1 loss function is difficult to optimize, we usually use a surrogate loss function ℓ , such as the logistic loss. Then, the *classification risk* to be minimized can be expressed as

$$R(f) = \mathbb{E}_{p(\mathbf{x}, y)} [\ell(f(\mathbf{x}), y)]. \quad (2)$$

Data Generation Assumption. There are mainly two data generation assumptions for PU learning, i.e., the TS setting (du Plessis et al., 2014; Niu et al., 2016; Chen et al., 2020a) and the OS setting (Elkan & Noto, 2008; Coudray et al., 2023). In the TS setting, we assume that \mathcal{D}_P and \mathcal{D}_U are generated *independently*, where \mathcal{D}_P is sampled from the positive conditional density $p(\mathbf{x}|y = +1)$ and \mathcal{D}_U is sampled from the marginal density $p(\mathbf{x})$. In the OS setting, \mathcal{D}_U and \mathcal{D}_P are generated *sequentially*. First, \mathcal{D}_U is sampled from the marginal density $p(\mathbf{x})$. Second, for each example in \mathcal{D}_U , if it is positive, its positive label is observed with a *constant probability* $c > 0$. If an example is negative, its negative label is never observed and the example remains unlabeled with probability 1. Finally, the observed positive data constitute \mathcal{D}_P and all the unlabeled data left constitute $\mathcal{D}_{U\perp}$.

2.2 POSITIVE-UNLABELED LEARNING ALGORITHMS

From a methodology taxonomy perspective, PU learning algorithms can be divided into three groups: cost-sensitive algorithms, sample-selection algorithms, and biased PU learning algorithms. Cost-sensitive algorithms assign different weights to positive and unlabeled data to approximate the classification risk (du Plessis et al., 2015; Kiryo et al., 2017; Hsieh et al., 2019). Some algorithms are equipped with other regularization techniques to further improve performance, such as entropy minimization (Zhao et al., 2022; Jiang et al., 2023) and mixup technique (Chen et al., 2020a; Li et al., 2022). Sample-selection algorithms select reliable negative examples from the unlabeled dataset for supervised learning (Chen et al., 2020b; Garg et al., 2021; Wang et al., 2023a; Li et al., 2024). Biased PU learning algorithms consider the density of positive data to be biased and adopt different strategies to model the bias (Bekker et al., 2019; Gong et al., 2022; Coudray et al., 2023; Wang et al., 2023b; Teissevre et al., 2025).

3 MODEL SELECTION FOR POSITIVE-UNLABELED LEARNING

In this section, we first explain our motivation for studying the model selection problem in PU learning. Next, we review the criteria used for model selection in PU learning, including the proxy accuracy, proxy area under the curve score, and oracle accuracy.

3.1 MOTIVATION

Although model selection is well established for supervised learning, it is non-trivial for PU learning because negative data are inaccessible. This problem is particularly important for deep learning algorithms because they have many hyperparameters, including universal hyperparameters (e.g., learning rates and weight decay) and algorithm-specific hyperparameters. Previous work has usually conducted model selection by assuming a validation set with labels (i.e., both positive and negative

162 labels) is available. However, this assumption is inconsistent with the definition of PU learning, in
 163 which negative data are unavailable. Therefore, it is important to study the model selection problem
 164 systematically for PU learning. According to the original definition of PU learning (Bekker & Davis,
 165 2020), we assume that the validation set consists of a positive validation set $D'_P = \{(\mathbf{x}'_i, +1)\}_{i=1}^{n'_P}$
 166 and an unlabeled validation set $D'_U = \{\mathbf{x}'_i\}_{i=n'_P+1}^{n'_P+n'_U}$.
 167

168 3.2 PROXY ACCURACY

170 Although the validation accuracy cannot be directly calculated because of the absence of negative
 171 data, it has been shown that the expected accuracy can be expressed using only positive and unlabeled data (du Plessis et al., 2014). This motivates us to apply it for model selection.
 172

173 **Definition 1** (Proxy accuracy (PA)). The proxy accuracy of a binary classifier f on the PU validation
 174 dataset is defined as

$$175 \text{PA}(f) = \begin{cases} \frac{2\pi}{n'_P} \sum_{i=1}^{n'_P} \mathbb{I}(f(\mathbf{x}'_i) \geq 0) + \frac{1}{n'_U} \sum_{i=n'_P+1}^{n'_P+n'_U} \mathbb{I}(f(\mathbf{x}'_i) < 0), & \text{if the setting is TS;} \\ 176 \frac{2\pi}{n'_P} \sum_{i=1}^{n'_P} \mathbb{I}(f(\mathbf{x}'_i) \geq 0) + \frac{1}{n'_P+n'_U} \sum_{i=1}^{n'_P+n'_U} \mathbb{I}(f(\mathbf{x}'_i) < 0), & \text{if the setting is OS.} \end{cases} \quad (3)$$

177 PA can be calculated using only PU validation data when the class prior π is known or estimated (Ramaswamy et al., 2016; Yao et al., 2022; Zhu et al., 2023a). The following proposition then holds.
 178

179 **Proposition 1.** *For two classifiers f_1 and f_2 that satisfy $\mathbb{E}[\text{PA}(f_1)] < \mathbb{E}[\text{PA}(f_2)]$, we have
 180 $\text{ACC}(f_1) < \text{ACC}(f_2)$.*

181 The proof can be found in Appendix A.1. According to Proposition 1, a classifier with a higher
 182 expected value of the proxy accuracy can achieve a higher expected accuracy even when the true
 183 labels are inaccessible. This means that when the number of validation data is large, the best model
 184 chosen using the PA metric will achieve the highest accuracy in expectation. One limitation of PA is
 185 that knowledge of the class prior is necessary. However, knowledge of π is an intrinsic and common
 186 issue in PU learning. Addressing this issue is beyond the scope of our paper. In practice, we can
 187 estimate it using off-the-shelf estimation methods (Ramaswamy et al., 2016; Garg et al., 2021; Yao
 188 et al., 2022), and we can even obtain this knowledge in some real-world applications (Sugiyama
 189 et al., 2022).
 190

191 3.3 PROXY AUC SCORE

192 It has been shown that the area under the curve (AUC) score can be robust to corrupted labels for
 193 binary classification (Charoenphakdee et al., 2019; Wei et al., 2022). Therefore, it is promising to
 194 employ it for PU model selection. First, we introduce the expected AUC score as follows:
 195

$$196 \text{AUC}(f) = \mathbb{E}_{p(\mathbf{x}|y=+1)} \mathbb{E}_{p(\mathbf{x}'|y'=-1)} \left[\mathbb{I}(f(\mathbf{x}) > f(\mathbf{x}')) + \frac{1}{2} \mathbb{I}(f(\mathbf{x}) = f(\mathbf{x}')) \right]. \quad (4)$$

197 We then consider the unlabeled validation data to be corrupted negative data and calculate the AUC
 198 score as follows, which is suitable for both OS and TS settings.
 199

200 **Definition 2** (Proxy AUC score (PAUC)). The proxy AUC of a binary classifier f on the PU validation
 201 dataset is defined as

$$202 \text{PAUC}(f) = \frac{1}{n'_P n'_U} \sum_{i=1}^{n'_P} \sum_{j=n'_P+1}^{n'_P+n'_U} \left(\mathbb{I}(f(\mathbf{x}'_i) > f(\mathbf{x}'_j)) + \frac{1}{2} \mathbb{I}(f(\mathbf{x}'_i) = f(\mathbf{x}'_j)) \right). \quad (5)$$

203 The following proposition then holds.
 204

205 **Proposition 2.** *Under both OS and TS settings, for two classifiers f_1 and f_2 that satisfy
 206 $\mathbb{E}[\text{PAUC}(f_1)] < \mathbb{E}[\text{PAUC}(f_2)]$, we have $\text{AUC}(f_1) < \text{AUC}(f_2)$.*

207 The proof can be found in Appendix A.2. Proposition 2 shows that a classifier with a higher expected
 208 value of the proxy AUC score will achieve a higher expected AUC score, regardless of whether the
 209 setting is OS or TS. Therefore, when the number of validation data is large, the model selected with
 210 the highest PAUC can also achieve the highest expected value of the AUC score. An advantage is
 211 that the class prior π is not necessary when calculating the PAUC.
 212

216 3.4 ORACLE ACCURACY
217218 Finally, we introduce the oracle accuracy metric if the true labels of unlabeled data are available.
219220 **Definition 3** (Oracle accuracy (OA)). The oracle accuracy of a binary classifier f on the PU validation
221 dataset is defined as

222
$$\text{OA}(f) = \begin{cases} \frac{1}{n'_U} \sum_{i=n'_P+1}^{n'_P+n'_U} \mathbb{I}(y'_i f(\mathbf{x}'_i) \geq 0), & \text{if the setting is TS;} \\ \frac{1}{n'_P+n'_U} \sum_{i=1}^{n'_P+n'_U} \mathbb{I}(y'_i f(\mathbf{x}'_i) \geq 0), & \text{if the setting is OS.} \end{cases} \quad (6)$$

223

224 Here, y'_i is the true label of \mathbf{x}'_i .
225226 Notably, the implementations for the OS and TS settings differ slightly, as it is important to ensure
227 that the validation data have the same distribution as the test data. OA is a natural metric for
228 supervised learning. However, due to the absence of negative data, it cannot be calculated in the
229 traditional PU learning setting. Unfortunately, this metric has actually been widely used in the PU
230 learning literature because of a lack of standardized benchmarking. Therefore, this paper only in-
231 cludes the results of OA for comparison. We recommend using PA and PAUC in future PU learning
232 experiments, especially in real-world applications where negative data cannot be obtained.
233234 4 INTERNAL LABEL SHIFT IN POSITIVE-UNLABELED LEARNING
235236 In this section, we first introduce the ILS problem in PU learning. Then, we provide a calibration
237 approach to solve it with both theoretical and empirical analysis.
238239 4.1 PROBLEM STATEMENT
240241 The difference between the OS and TS settings lies in the density of the unlabeled training data.
242 Specifically, the density of the unlabeled training data equals the marginal density in the TS setting
243 but differs from it in the OS setting. We formalize the ILS problem as follows.
244245 **Definition 4** (Internal label shift in OS PU learning). In the OS setting, the density of \mathcal{D}_U is $\bar{p}(\mathbf{x}) =$
246 $\bar{\pi}p(\mathbf{x}|y=+1) + (1-\bar{\pi})p(\mathbf{x}|y=-1)$, where $\bar{\pi}$ is the class prior under the OS setting. Here, the
247 positive and negative class-conditional densities are the same as those of the test data; however, the
248 class prior is $\pi = (1-c)\pi/(1-c\pi)$, which differs from $\bar{\pi}$, the class prior of the test data. This
249 mismatch causes an internal label shift between the unlabeled training data and the test data.
250251 Many cost-sensitive PU learning algorithms have been developed for the TS setting. In these algo-
252 rithms, positive and unlabeled data are assigned different weights to approximate the classification
253 risk (du Plessis et al., 2014; Chen et al., 2020a; Zhao et al., 2022). Because the weights are the-
254oretically derived, small discrepancies in data assumptions can degrade performance. Conversely,
255 sample-selection PU learning algorithms select reliable negative data from \mathcal{D}_U and need not rely
256 strictly on the specific data generation process (Zhu et al., 2023b; Wang et al., 2023a; Li et al.,
257 2024). However, many papers adopt only the OS setting and ignore the distribution mismatch, caus-
258 ing experimental datasets to violate the assumptions of TS approaches.
259260 To demonstrate how ILS affects model performance, we use uPU (du Plessis et al., 2015) as an
261 example in Section 4; it is a representative TS algorithm and underpins many subsequent cost-
262 sensitive methods.¹ Under the TS assumption $\mathcal{D}_U \stackrel{\text{i.i.d.}}{\sim} p(\mathbf{x})$, du Plessis et al. (2015) proposed the
263 unbiased risk estimator (URE)

264
$$\hat{R}(f) = \frac{\pi}{n_P} \sum_{i=1}^{n_P} (\ell(f(\mathbf{x}_i), +1) - \ell(f(\mathbf{x}_i), -1)) + \frac{1}{n_U} \sum_{i=n_P+1}^{n_P+n_U} \ell(f(\mathbf{x}_i), -1), \quad (7)$$

265

266 which enjoys risk consistency because $\mathbb{E}[\hat{R}(f)] = R(f)$. Let $\hat{f} = \arg \min_{f \in \mathcal{F}} \hat{R}(f)$ and $f^* =$
267 $\arg \min_{f \in \mathcal{F}} R(f)$ denote the classifiers that minimize the empirical risk in Eq. (7) and the risk in
268 Eq. (2), respectively, where \mathcal{F} is the model class. It is known that $\hat{f} \rightarrow f^*$ as $n_P \rightarrow \infty$ and $n_U \rightarrow \infty$
269¹Our analysis and calibration approach can be extended to other TS algorithms as well.

Figure 2: Classification accuracies of TS PU learning algorithms in OS and TS settings of a PU version of CIFAR-10 with varying amounts of positive data. Figures (a) to (f) are for Case 1, and Figures (g) to (l) are for Case 2.

under the TS setting (Niu et al., 2016). Under the OS setting, however, $\mathbb{E}[\widehat{R}(f)] \neq R(f)$, so $\widehat{f} \rightarrow f^*$ no longer holds (see Appendix A.3). Consequently, minimizing losses designed for the TS setting may not yield high-performing classifiers when datasets are generated under the OS setting, leading to unfair comparisons when all methods are evaluated in the OS setting. The bias stems from the ILS problem: under the OS setting, the class prior of \mathcal{D}_U differs from π , breaking the consistency of many TS algorithms and degrading their performance.

4.2 THE PROPOSED CALIBRATION APPROACH

To address the bias, we incorporate the true densities of \mathcal{D}_U for TS algorithms. The following theorem shows that the risk rewrite for the uPU approach differs under the OS setting.

Theorem 1. *Under the OS setting, the classification risk in Eq. (2) can be equivalently expressed as*

$$R(f) = \pi \mathbb{E}_{p(\mathbf{x}|y=+1)} [\ell(f(\mathbf{x}), +1) + (c-1)\ell(f(\mathbf{x}), -1)] + (1-c\pi) \mathbb{E}_{\bar{p}(\mathbf{x})} [\ell(f(\mathbf{x}), -1)].$$

The proof is given in Appendix A.4. Theorem 1 shows that the classification risk can be equivalently expressed as expectations w.r.t. the densities of positive and unlabeled data under the OS setting. We then obtain a calibrated risk estimator using the positive and unlabeled datasets:

$$\bar{R}(f) = \frac{\pi}{n_P} \sum_{i=1}^{n_P} (\ell(f(\mathbf{x}_i), +1) + (c-1)\ell(f(\mathbf{x}_i), -1)) + \frac{1-c\pi}{n_U} \sum_{i=n_P+1}^{n_P+n_U} \ell(f(\mathbf{x}_i), -1). \quad (8)$$

When the class prior π is known or estimated, we obtain an unbiased estimate of c as $c = n_P/\pi(n_P + n_U)$. Let $\bar{f} = \arg \min_{f \in \mathcal{F}} \bar{R}(f)$ denote the optimal classifier that minimizes the calibrated risk estimator in Eq. (8). Let $\mathfrak{R}_{n_P}(\mathcal{F})$ and $\mathfrak{R}'_{n_U}(\mathcal{F})$ denote the Rademacher complexities defined in Appendix A.5. Then, the following theorem holds.

Theorem 2. *Assume that there exists a constant C_f such that $\sup_{f \in \mathcal{F}} \|f\|_\infty \leq C_f$ and a constant C_ℓ such that $\forall y, \sup_{|z| \leq C_f} \ell(z, y) \leq C_\ell$. We also assume that $\forall y$, the binary loss function $\ell(z, y)$ is Lipschitz continuous in z with a Lipschitz constant L_ℓ . For any $\delta > 0$, the following inequality*

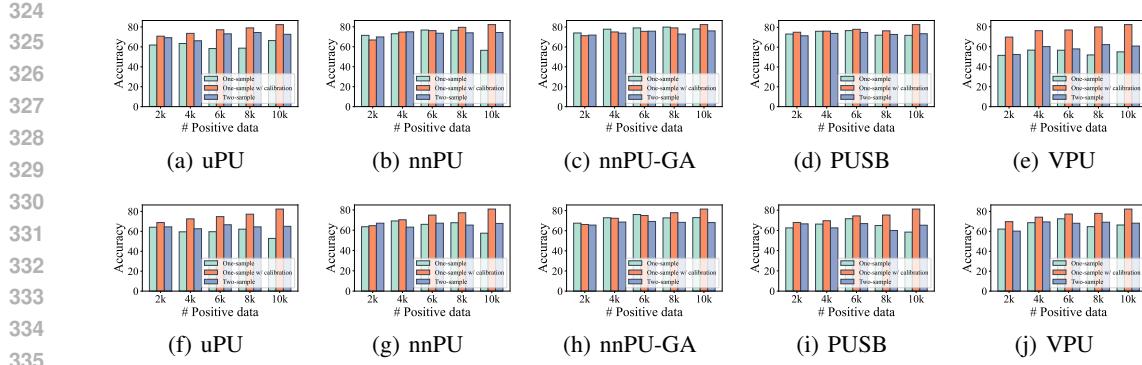


Figure 3: Classification accuracies of TS PU learning algorithms in OS and TS settings of a PU version of ImageNette with varying amounts of positive data. Figures (a) to (e) are for Case 1, and Figures (f) to (j) are for Case 2.

holds with probability at least $1 - \delta$:

$$\begin{aligned}
 R(\bar{f}) - R(f^*) \leq & (8 - 4c)\pi L_\ell \mathfrak{R}_{n_P}(\mathcal{F}) + (4 - 4c\pi)L_\ell \mathfrak{R}'_{n_U}(\mathcal{F}) \\
 & + \left(\frac{(4 - 2c)\pi C_\ell}{\sqrt{n_P}} + \frac{(2 - 2c\pi)C_\ell}{\sqrt{n_U}} \right) \sqrt{\frac{\ln 2/\delta}{2}}.
 \end{aligned} \tag{9}$$

The proof is given in Appendix A.5. Theorem 2 shows that $\bar{f} \rightarrow f^*$ as $n_P \rightarrow \infty$ and $n_U \rightarrow \infty$, because $\mathfrak{R}_{n_U, \bar{p}}(\mathcal{F}) \rightarrow 0$ and $\mathfrak{R}_{n_P, p_+}(\mathcal{F}) \rightarrow 0$ for all parametric models with a bounded norm, such as deep neural networks trained with weight decay (Golowich et al., 2018). Notably, Eq. (8) can be equivalently transformed into Eq. (7) if we incorporate \mathcal{D}_P into \mathcal{D}_U when computing the last loss term w.r.t. unlabeled data in Eq. (7) (see Appendix A.6). Thus, when \mathcal{D}_P is used in both loss terms, the ILS bias is eliminated, because the union of positive and unlabeled data is unbiased w.r.t. the marginal density. This motivates a simple yet effective calibration approach that adapts TS algorithms to the OS setting, summarized in Algorithm 1. We augment \mathcal{D}_U with \mathcal{D}_P when computing the loss on unlabeled data, so the replenished set is marginally unbiased and suitable for TS PU learners.

4.3 EMPIRICAL ANALYSIS

We validated the existence of the ILS problem and the effectiveness of the proposed calibration approach. We used uPU (du Plessis et al., 2015), nnPU (Kiryo et al., 2017), nnPU-GA (Kiryo et al., 2017), PUSB (Kato et al., 2019), VPU (Chen et al., 2020a), and Dist-PU (Zhao et al., 2022), six representative TS PU learning algorithms. We used

CIFAR-10 (Krizhevsky & Hinton, 2009) and ImageNette (Deng et al., 2009) as the datasets. We synthesized PU training datasets with different definitions of positive and negative labels, where the details are presented in Appendix B. We did not include the results of Dist-PU on ImageNette since Dist-PU did not work well on this dataset. We considered both the OS and TS cases using the same experimental settings, and the only difference lay in how positive data were generated. Figures 2 and 3 show the experimental results on CIFAR-10 and ImageNette with varying amounts of positive data, respectively. We can observe that using TS approaches directly in the OS setting yields inferior performance. Their performance consistently drops when the number of positive data increases, even though we have more knowledge of the true labels of positive data in the unlabeled dataset. By using our proposed calibration approach, the performance can be improved greatly and can even sometimes surpass the performance in the TS setting. This shows the effectiveness of our calibration approach in improving TS approaches under the OS setting.

Algorithm 1 Calibrated Two-Sample PU Learning

Require: Two-sample PU learning algorithm \mathcal{A} , positive training set \mathcal{D}_P , unlabeled training set \mathcal{D}_U , maximum epochs T_{\max} , maximum iterations I_{\max} .

Ensure: Classifier f produced by \mathcal{A} .

```

1: for  $t = 1, 2, \dots, T_{\max}$  do
2:   Shuffle  $\mathcal{D}_P$  and  $\mathcal{D}_U$ ;
3:   for  $k = 1, \dots, I_{\max}$  do
4:     Fetch mini-batch  $\mathcal{D}_k^P$  from  $\mathcal{D}_P$  and  $\mathcal{D}_k^U$  from  $\mathcal{D}_U$ ;
5:     Call  $\mathcal{A}.\text{TRAIN\_ONE\_BATCH}(\mathcal{D}_k^P, \mathcal{D}_k^U \cup \mathcal{D}_k^P)$ 
6:   end for
7: end for

```

378

379
380
381
Table 1: Test results (mean \pm std) of accuracy, AUC, and F1 score for each algorithm on CIFAR-10
(Case 1) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Accuracy			AUC			F1		
Val metric	PA	PAUC	OA	PA	PAUC	OA	PA	PAUC	OA
PUbN	86.46 \pm 0.46	86.24 \pm 0.84	87.33 \pm 0.28	93.96 \pm 0.49	93.44 \pm 0.74	94.33 \pm 0.23	86.62 \pm 0.52	86.07 \pm 0.98	86.98 \pm 0.24
PAN	76.64 \pm 0.78	77.56 \pm 0.41	78.91 \pm 0.59	87.11 \pm 0.86	87.28 \pm 0.93	85.70 \pm 0.68	79.08 \pm 0.73	79.41 \pm 0.61	78.74 \pm 0.95
CVIR	85.45 \pm 1.03	83.32 \pm 0.44	86.47 \pm 0.48	93.74 \pm 0.73	93.67 \pm 0.62	93.73 \pm 0.31	86.19 \pm 0.88	84.71 \pm 0.33	86.51 \pm 0.40
P ³ MIX-E	72.68 \pm 0.26	50.00 \pm 0.00	73.96 \pm 5.63	88.80 \pm 2.65	92.62 \pm 0.67	89.56 \pm 2.18	77.65 \pm 3.65	66.67 \pm 0.00	67.45 \pm 12.03
P ³ MIX-C	86.36 \pm 0.58	85.75 \pm 0.76	86.65 \pm 0.57	92.70 \pm 0.71	93.09 \pm 0.65	93.16 \pm 0.43	86.44 \pm 0.51	85.93 \pm 0.70	86.72 \pm 0.58
LBE	82.71 \pm 0.73	73.60 \pm 1.29	85.03 \pm 0.38	92.09 \pm 0.15	93.21 \pm 0.04	92.26 \pm 0.31	83.79 \pm 0.49	78.72 \pm 0.76	84.31 \pm 0.31
Count Loss	80.89 \pm 0.32	79.86 \pm 0.88	82.39 \pm 0.37	90.63 \pm 0.69	90.40 \pm 0.45	89.20 \pm 1.27	82.60 \pm 0.28	81.83 \pm 0.39	83.11 \pm 0.39
Robust-PU	85.57 \pm 0.18	85.61 \pm 0.55	85.91 \pm 0.35	91.56 \pm 0.49	92.89 \pm 0.29	91.04 \pm 1.60	85.88 \pm 0.09	84.80 \pm 0.96	85.47 \pm 0.32
Holistic-PU	50.20 \pm 0.10	50.00 \pm 0.00	81.81 \pm 0.49	64.56 \pm 11.51	69.45 \pm 5.04	90.60 \pm 0.41	66.64 \pm 0.03	66.67 \pm 0.00	82.97 \pm 0.37
PUE	77.85 \pm 0.85	78.51 \pm 0.33	80.45 \pm 0.46	86.84 \pm 0.61	86.60 \pm 0.45	87.58 \pm 0.44	79.45 \pm 0.55	78.01 \pm 0.48	78.99 \pm 0.28
GLWS	84.46 \pm 0.45	79.83 \pm 2.30	85.66 \pm 0.44	93.55 \pm 0.07	93.54 \pm 0.14	93.48 \pm 0.16	85.65 \pm 0.36	82.69 \pm 1.46	86.26 \pm 0.32
uPU	80.24 \pm 1.25	76.07 \pm 2.83	82.04 \pm 0.49	88.72 \pm 0.40	89.05 \pm 0.17	87.36 \pm 0.73	81.05 \pm 0.90	77.01 \pm 1.41	80.34 \pm 0.56
uPU-c	85.89 \pm 0.44	84.20 \pm 0.49	86.48 \pm 0.21	92.65 \pm 0.38	93.03 \pm 0.22	93.22 \pm 0.15	85.96 \pm 0.43	83.04 \pm 0.92	86.12 \pm 0.10
nnPU	82.03 \pm 0.11	75.56 \pm 0.29	82.40 \pm 0.31	92.62 \pm 0.15	92.32 \pm 0.47	91.95 \pm 0.44	83.51 \pm 0.05	79.64 \pm 0.25	83.49 \pm 0.05
nnPU-c	85.52 \pm 0.20	86.03 \pm 0.68	86.35 \pm 0.26	92.19 \pm 0.33	93.07 \pm 0.55	92.95 \pm 0.38	85.90 \pm 0.28	85.71 \pm 0.70	86.29 \pm 0.30
nnPU-GA	84.26 \pm 0.80	84.18 \pm 0.40	84.93 \pm 0.70	92.79 \pm 0.47	92.26 \pm 0.36	92.25 \pm 0.46	84.87 \pm 0.62	84.63 \pm 0.42	84.58 \pm 0.53
nnPU-GA-c	85.80 \pm 0.29	86.28 \pm 0.31	86.13 \pm 0.25	92.81 \pm 0.42	92.96 \pm 0.47	93.00 \pm 0.42	85.90 \pm 0.31	85.66 \pm 0.27	85.57 \pm 0.19
PUSB	81.53 \pm 0.77	82.49 \pm 1.02	82.91 \pm 0.70	81.53 \pm 0.77	82.49 \pm 1.02	82.91 \pm 0.70	83.29 \pm 0.47	83.80 \pm 0.77	84.12 \pm 0.53
PUSB-c	86.15 \pm 0.37	84.76 \pm 0.17	86.49 \pm 0.17	86.15 \pm 0.37	84.76 \pm 0.17	86.49 \pm 0.17	86.09 \pm 0.44	83.89 \pm 0.19	86.23 \pm 0.18
VPU	84.93 \pm 0.52	65.71 \pm 7.32	85.80 \pm 0.40	91.89 \pm 0.08	92.89 \pm 0.54	92.86 \pm 0.20	84.15 \pm 0.59	42.73 \pm 17.09	84.91 \pm 0.49
VPU-c	86.41 \pm 0.75	82.85 \pm 1.68	87.65 \pm 0.25	92.30 \pm 0.31	93.51 \pm 0.53	91.79 \pm 1.62	86.73 \pm 0.55	84.56 \pm 1.15	87.41 \pm 0.29
Dist-PU	81.64 \pm 0.45	79.31 \pm 0.51	83.56 \pm 0.46	90.91 \pm 0.54	91.90 \pm 0.48	90.59 \pm 0.49	83.34 \pm 0.26	81.94 \pm 0.23	83.26 \pm 0.60
Dist-PU-c	87.06\pm0.45	87.38\pm0.23	88.47\pm0.25	94.93\pm0.31	94.55\pm0.21	94.90\pm0.32	87.63\pm0.33	87.28\pm0.29	88.18\pm0.25

397

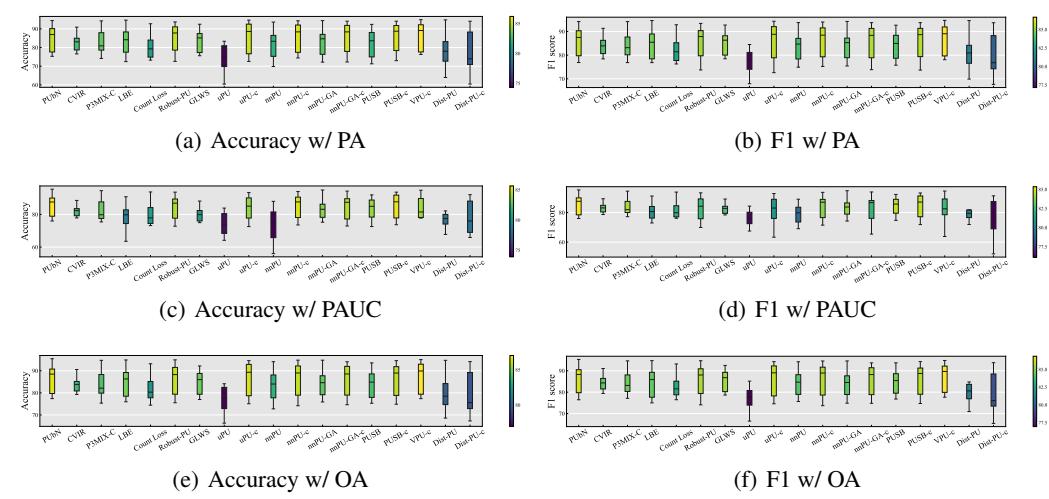
398
5 BENCHMARKING POSITIVE-UNLABELED LEARNING
399400
In this section, we first introduce the benchmark settings, then we present the benchmark experimental
401 results. The code package is available at [https://anonymous.4open.science/r/](https://anonymous.4open.science/r/ICLR26_PUbench-0C26/)
402 ICLR26_PUbench-0C26/.

403

404
5.1 BENCHMARK SETTINGS
405406
We included seventeen representative PU learning algorithms: uPU (du Plessis et al., 2015),
407 nnPU (Kiryo et al., 2017), nnPU-GA (Kiryo et al., 2017), PUSB (Kato et al., 2019), PUbN (Hsieh
408 et al., 2019), VPU (Chen et al., 2020a), PAN (Hu et al., 2021), CVIR (Garg et al., 2021), Dist-
409 PU (Zhao et al., 2022), P³MIX-E (Li et al., 2022), P³MIX-C (Li et al., 2022), LBE (Gong et al.,
410 2022), Count Loss (Shukla et al., 2023), Robust-PU (Zhu et al., 2023b), Holistic-PU (Wang et al.,
411 2023a), PUE (Wang et al., 2023b), and GLWS (Chen et al., 2024). We evaluated our methods on
412 two image datasets (CIFAR-10 (Krizhevsky & Hinton, 2009) and ImageNette (Deng et al., 2009))
413 and two UCI datasets (USPS and Letter) (Kelly et al., 2023). ImageNette is a curated subset of the
414 larger ImageNet corpus, containing ten easily distinguishable categories: *trench*, *English springer*,
415 *cassette player*, *chain saw*, *church*, *French horn*, *garbage truck*, *gas pump*, *golf ball*, and *parachute*.
416 We synthesized PU versions of these datasets; detailed information can be found in Appendix B. **We**
417 **used ResNet-34 (He et al., 2016) and for image datasets and a multilayer perceptron (MLP) with a**
418 **hidden layer width of 500 equipped with the ReLU (Nair & Hinton, 2010) activation function for**
419 **tabular datasets.**

420

421
Following the widely used validation protocol (Raschka, 2018; Gulrajani & Lopez-Paz, 2021; Wang
422 et al., 2025), we divided some training data from the positive and unlabeled datasets into the positive
423 validation set D'_P and the unlabeled validation set D'_U , respectively. We used various test metrics,
424 including accuracy, AUC score, F1 score, precision, and recall. We first trained a model with training
425 sets D_P and D_U . Then, we evaluated its validation performance based on the metrics in Section 3
426 as well as its test performance on a test set with true labels. We randomly selected a set of hyper-
427 parameter configurations from a given pool. For each validation metric, we selected the checkpoint
428 with the best validation performance on $D'_P \cup D'_U$, and recorded the corresponding test metrics. We
429 recorded the mean test metrics and standard deviations obtained with different data splits.


430

431
5.2 BENCHMARK RESULTS432
Tables 1, 2, and 5 to 18 in Appendix C report detailed experimental results in terms of different met-
433 rics on CIFAR-10, ImageNette, Letter, and USPS, and the hyperparameters are determined with PA,

432

433
434
435
Table 2: Test results (mean \pm std) of accuracy, AUC, and F1 score for each algorithm on CIFAR-10
(Case 2) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Test ACC			AUC			Test F1		
Val metric	PA	PAUC	OA	PA	PAUC	OA	PA	PAUC	OA
PUBN	78.26 \pm 1.01	79.50\pm0.38	79.94 \pm 0.36	87.81 \pm 0.65	88.00 \pm 0.38	88.08 \pm 0.45	80.47 \pm 0.65	79.17 \pm 0.88	79.91 \pm 0.21
PAN	61.43 \pm 2.74	60.61 \pm 4.34	63.48 \pm 2.71	68.71 \pm 5.63	71.54 \pm 4.68	69.63 \pm 5.43	70.73 \pm 1.40	70.87 \pm 1.72	69.25 \pm 3.04
CVIR	78.49 \pm 1.49	79.50\pm1.46	80.44\pm0.68	88.10\pm0.87	87.98 \pm 1.33	88.68\pm0.81	80.86\pm0.97	80.69\pm1.33	81.44\pm0.58
P3MIX-E	59.04 \pm 4.54	50.00 \pm 0.00	59.13 \pm 4.62	74.26 \pm 4.26	84.52 \pm 0.84	74.11 \pm 4.16	70.45 \pm 2.00	44.44 \pm 18.14	70.45 \pm 2.00
P3MIX-C	78.05 \pm 0.95	77.42 \pm 1.40	78.70 \pm 0.50	85.87 \pm 1.02	84.92 \pm 1.40	86.13 \pm 0.79	79.82 \pm 0.56	79.06 \pm 0.92	79.90 \pm 0.49
LBE	72.47 \pm 1.50	63.54 \pm 2.86	75.96 \pm 0.88	84.02 \pm 0.40	84.26 \pm 0.78	83.47 \pm 0.97	77.13 \pm 0.72	72.96 \pm 1.42	76.04 \pm 0.83
Count Loss	74.44 \pm 0.68	74.75 \pm 0.45	76.87 \pm 0.75	82.88 \pm 1.02	82.99 \pm 1.03	84.44 \pm 0.75	77.41 \pm 0.54	76.70 \pm 0.55	78.27 \pm 0.99
Robust-PU	78.94 \pm 0.79	78.43 \pm 0.61	79.60 \pm 0.81	85.23 \pm 1.09	87.13 \pm 0.76	86.33 \pm 0.63	80.37 \pm 0.72	77.16 \pm 0.68	79.79 \pm 0.89
Holistic-PU	55.60 \pm 0.16	56.04 \pm 4.93	71.18 \pm 1.20	78.03 \pm 2.53	67.96 \pm 6.67	76.93 \pm 3.13	69.02 \pm 0.04	44.49 \pm 18.12	73.64 \pm 2.09
PUe	68.60 \pm 0.41	67.40 \pm 1.90	71.05 \pm 0.52	78.06 \pm 0.31	79.27 \pm 0.51	78.69 \pm 0.36	73.41 \pm 0.44	73.05 \pm 0.71	71.06 \pm 1.35
GLWS	77.71 \pm 0.71	76.22 \pm 1.33	79.58 \pm 0.61	87.86 \pm 0.33	88.08\pm0.43	87.44 \pm 0.51	80.40 \pm 0.37	79.75 \pm 0.81	80.47 \pm 0.47
uPU	66.21 \pm 1.40	69.03 \pm 1.04	70.46 \pm 0.70	76.46 \pm 1.65	78.80 \pm 0.74	77.97 \pm 0.90	71.52 \pm 0.73	72.78 \pm 0.47	70.89 \pm 1.53
uPU-c	77.22 \pm 0.26	79.29 \pm 0.37	79.02 \pm 0.99	85.19 \pm 0.46	87.76 \pm 0.38	87.11 \pm 0.83	79.48 \pm 0.22	78.19 \pm 0.45	78.60 \pm 1.22
nnPU	74.27 \pm 1.26	62.67 \pm 1.09	77.62 \pm 0.68	86.16 \pm 0.07	86.53 \pm 0.16	86.42 \pm 0.58	78.00 \pm 0.55	72.57 \pm 0.51	79.20 \pm 0.52
nnPU-c	77.74 \pm 0.53	78.49 \pm 0.35	79.37 \pm 0.30	84.84 \pm 0.44	86.63 \pm 0.31	86.16 \pm 0.22	79.79 \pm 0.18	77.25 \pm 0.61	79.07 \pm 0.39
nnPU-GA	76.59 \pm 1.15	76.73 \pm 0.88	78.38 \pm 0.74	86.41 \pm 1.24	86.09 \pm 0.23	85.58 \pm 0.84	79.14 \pm 0.95	78.76 \pm 1.11	78.22 \pm 0.53
nnPU-GA-c	78.00 \pm 0.52	78.32 \pm 0.71	79.12 \pm 0.91	83.75 \pm 1.30	85.82 \pm 1.04	85.63 \pm 1.27	79.26 \pm 0.81	77.78 \pm 0.48	79.03 \pm 0.92
PUSB	75.74 \pm 0.61	78.80 \pm 0.55	78.35 \pm 0.41	75.74 \pm 0.61	78.80 \pm 0.55	78.35 \pm 0.41	79.18 \pm 0.43	79.83 \pm 0.59	79.79 \pm 0.61
PUSB-c	79.06\pm0.45	77.98 \pm 0.54	79.19 \pm 0.32	79.06 \pm 0.45	77.98 \pm 0.54	79.19 \pm 0.32	80.06 \pm 0.36	77.43 \pm 0.40	79.29 \pm 0.40
VPU	76.99 \pm 1.00	63.22 \pm 5.30	77.31 \pm 0.86	85.47 \pm 0.98	87.08 \pm 0.43	86.07 \pm 0.67	75.15 \pm 1.31	39.92 \pm 15.74	75.43 \pm 1.33
VPU-c	77.70 \pm 0.41	78.20 \pm 0.90	79.81 \pm 0.66	86.90 \pm 0.39	87.50 \pm 0.46	86.32 \pm 0.28	80.12 \pm 0.27	80.52 \pm 0.53	80.56 \pm 0.71
Dist-PU	73.46 \pm 0.59	74.83 \pm 0.58	74.69 \pm 0.60	80.70 \pm 0.45	82.09 \pm 0.40	81.48 \pm 0.78	76.90 \pm 0.31	76.88 \pm 0.16	76.65 \pm 0.15
Dist-PU-c	72.57 \pm 3.47	74.41 \pm 2.67	74.30 \pm 2.73	80.34 \pm 3.48	82.49 \pm 2.68	81.94 \pm 2.90	75.50 \pm 2.34	75.27 \pm 2.67	73.68 \pm 3.25

471
472
473
474
475
Figure 4: Overall performance w.r.t. accuracy and the F1 score across all datasets. Hyperparameters
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
10

486

6 CONCLUSION

488 In this paper, we conducted a comprehensive empirical study of PU learning algorithms. We pro-
 489 posed the first PU learning benchmark to systematically compare different PU learning algorithms in
 490 a unified framework. We investigated model selection criteria to facilitate realistic evaluation of PU
 491 learning algorithms. We also identified the ILS problem for the one-sample setting of PU learning
 492 and proposed a calibration approach to ensure fair comparisons of different families of PU learning
 493 algorithms. We hope that our framework can facilitate accessible, realistic, and fair evaluation of PU
 494 learning algorithms in the future. A limitation of our work is that we use relatively small benchmark
 495 datasets following previous work. In the future, it is also promising to investigate the performance
 496 of different algorithms on collected large-scale PU benchmark datasets.

497

498 ETHICS STATEMENT

500 This paper is not associated with any ethical issues.

502

503 REPRODUCIBILITY STATEMENT

504 The details of experimental settings can be found in Appendix B. The code package is available at
 505 https://anonymous.4open.science/r/ICLR26_PUbench-0C26/.

507

508 REFERENCES

510 Jessa Bekker and Jesse Davis. Learning from positive and unlabeled data: A survey. *Machine Learning*, 109:719–760, 2020.

512 Jessa Bekker, Pieter Robberechts, and Jesse Davis. Beyond the selected completely at random as-
 513 sumption for learning from positive and unlabeled data. In *Machine Learning and Knowledge
 514 Discovery in Databases - European Conference, ECML PKDD 2019, Proceedings, Part II*, vol-
 515 ume 11907 of *Lecture Notes in Computer Science*, pp. 71–85, 2019.

517 Nontawat Charoenphakdee, Jongyeong Lee, and Masashi Sugiyama. On symmetric losses for learn-
 518 ing from corrupted labels. In *Proceedings of the 36th International Conference on Machine
 519 Learning*, pp. 961–970, 2019.

520 Hao Chen, Jindong Wang, Lei Feng, Xiang Li, Yidong Wang, Xing Xie, Masashi Sugiyama, Rita
 521 Singh, and Bhiksha Raj. A general framework for learning from weak supervision. In *Proceedings
 522 of the 41st International Conference on Machine Learning*, pp. 7462–7485, 2024.

524 Hui Chen, Fangqing Liu, Yin Wang, Liyue Zhao, and Hao Wu. A variational approach for learning
 525 from positive and unlabeled data. In *Advances in Neural Information Processing Systems 33*, pp.
 526 14844–14854, 2020a.

527 Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. Bias and debias
 528 in recommender system: A survey and future directions. *ACM Transactions on Information
 529 Systems*, 41(3):1–39, 2023.

531 Xuxi Chen, Wuyang Chen, Tianlong Chen, Ye Yuan, Chen Gong, Kewei Chen, and Zhangyang
 532 Wang. Self-PU: Self boosted and calibrated positive-unlabeled training. In *Proceedings of the
 533 37th International Conference on Machine Learning*, pp. 1510–1519, 2020b.

534 Olivier Coudray, Christine Kerbin, Pascal Massart, and Patrick Pamphile. Risk bounds for positive-
 535 unlabeled learning under the selected at random assumption. *Journal of Machine Learning Re-
 536 search*, 24(107):1–31, 2023.

538 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hier-
 539 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
 pp. 248–255, 2009.

540 Marthinus du Plessis, Gang Niu, and Masashi Sugiyama. Convex formulation for learning from
 541 positive and unlabeled data. In *Proceedings of the 32nd International Conference on Machine*
 542 *Learning*, pp. 1386–1394, 2015.

543 Marthinus C. du Plessis, Gang Niu, and Masashi Sugiyama. Analysis of learning from positive and
 544 unlabeled data. In *Advances in Neural Information Processing Systems 27*, pp. 703–711, 2014.

545 Charles Elkan and Keith Noto. Learning classifiers from only positive and unlabeled data. In
 546 *Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and*
 547 *Data Mining*, pp. 213–220, 2008.

548 Saurabh Garg, Yifan Wu, Alexander J. Smola, Sivaraman Balakrishnan, and Zachary C. Lipton.
 549 Mixture proportion estimation and PU learning: A modern approach. In *Advances in Neural*
 550 *Information Processing Systems 34*, pp. 8532–8544, 2021.

551 Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
 552 neural networks. In *Proceedings of the 31st Conference On Learning Theory*, pp. 297–299, 2018.

553 Chen Gong, Qizhou Wang, Tongliang Liu, Bo Han, Jane You, Jian Yang, and Dacheng Tao.
 554 Instance-dependent positive and unlabeled learning with labeling bias estimation. *IEEE Transac-*
 555 *tions on Pattern Analysis and Machine Intelligence*, 44(8):4163–4177, 2022.

556 Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In *Proceedings of*
 557 *the 9th International Conference on Learning Representations*, 2021.

558 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 559 nition. In *Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition*,
 560 pp. 770–778, 2016.

561 Cho-Jui Hsieh, Nagarajan Natarajan, and Inderjit Dhillon. PU learning for matrix completion. In
 562 *Proceedings of the 32nd International Conference on Machine Learning*, pp. 2445–2453, 2015.

563 Yu-Guan Hsieh, Gang Niu, and Masashi Sugiyama. Classification from positive, unlabeled and
 564 biased negative data. In *Proceedings of the 36th International Conference on Machine Learning*,
 565 pp. 2820–2829, 2019.

566 Wenpeng Hu, Ran Le, Bing Liu, Feng Ji, Jinwen Ma, Dongyan Zhao, and Rui Yan. Predictive ad-
 567 versarial learning from positive and unlabeled data. In *Proceedings of the 35th AAAI Conference*
 568 *on Artificial Intelligence*, pp. 7806–7814, 2021.

569 Yangbangyan Jiang, Qianqian Xu, Yunrui Zhao, Zhiyong Yang, Peisong Wen, Xiaochun Cao, and
 570 Qingming Huang. Positive-unlabeled learning with label distribution alignment. *IEEE Transac-*
 571 *tions on Pattern Analysis and Machine Intelligence*, 45(12):15345–15363, 2023.

572 Hyunjung Ju, Dongha Lee, Junyoung Hwang, Junghyun Namkung, and Hwanjo Yu. Pumad: Pu
 573 metric learning for anomaly detection. *Information Sciences*, 523:167–183, 2020.

574 Masahiro Kato, Takeshi Teshima, and Junya Honda. Learning from positive and unlabeled data with
 575 a selection bias. In *Proceedings of the 7th International conference on learning representations*,
 576 2019.

577 Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI machine learning repository,
 578 2023.

579 Ryuichi Kiryo, Gang Niu, Marthinus C. du Plessis, and Masashi Sugiyama. Positive-unlabeled
 580 learning with non-negative risk estimator. In *Advances in Neural Information Processing Systems*
 581 30, pp. 1674–1684, 2017.

582 Alex Krizhevsky and Geoffrey E. Hinton. Learning multiple layers of features from tiny images.
 583 Technical report, University of Toronto, 2009.

584 Changchun Li, Ximing Li, Lei Feng, and Jihong Ouyang. Who is your right mixup partner in
 585 positive and unlabeled learning. In *Proceedings of the 10th International Conference on Learning*
 586 *Representations*, 2022.

594 Changchun Li, Yuanchao Dai, Lei Feng, Ximing Li, Bing Wang, and Jihong Ouyang. Positive
 595 and unlabeled learning with controlled probability boundary fence. In *Proceedings of the 41st*
 596 *International Conference on Machine Learning*, pp. 27641–27652, 2024.

597

598 Lin Long, Haobo Wang, Zhijie Jiang, Lei Feng, Chang Yao, Gang Chen, and Junbo Zhao. Positive-
 599 unlabeled learning by latent group-aware meta disambiguation. In *Proceedings of the 2024*
 600 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23138–23147, 2024.

601 Yuren Mao, Yu Hao, Xin Cao, Yunjun Gao, Chang Yao, and Xuemin Lin. Boosting GNN-based link
 602 prediction via PU-AUC optimization. *IEEE Transactions on Knowledge and Data Engineering*,
 603 37(4):1635–1649, 2025.

604

605 Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
 606 In *Proceedings of the 27th International Conference on Machine Learning*, pp. 807–814, 2010.

607

608 Gang Niu, Marthinus C. du Plessis, Tomoya Sakai, Yao Ma, and Masashi Sugiyama. Theoretical
 609 comparisons of positive-unlabeled learning against positive-negative learning. In *Advances in*
 610 *Neural Information Processing Systems 29*, pp. 1199–1207, 2016.

611 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 612 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 613 high-performance deep learning library. In *Advances in neural information processing systems*,
 614 volume 32, 2019.

615

616 Harish G. Ramaswamy, Clayton Scott, and Ambuj Tewari. Mixture proportion estimation via kernel
 617 embeddings of distributions. In *Proceedings of the 33rd International Conference on Machine*
 618 *Learning*, pp. 2052–2060, 2016.

619

620 Sebastian Raschka. Model evaluation, model selection, and algorithm selection in machine learning.
 arXiv preprint arXiv:1811.12808, 2018.

621

622 Tomoya Sakai, Marthinus Christoffel du Plessis, Gang Niu, and Masashi Sugiyama. Semi-
 623 supervised classification based on classification from positive and unlabeled data. In *Proceedings*
 624 *of the 34th International Conference on Machine Learning*, pp. 2998–3006, 2017.

625

626 Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algo-*
 627 *rithms*. Cambridge University Press, Cambridge, UK, 2014.

628

629 Vinay Shukla, Zhe Zeng, Kareem Ahmed, and Guy Van den Broeck. A unified approach to count-
 based weakly supervised learning. In *NeurIPS*, 2023.

630

631 Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai, and Gang Niu. *Machine*
 632 *learning from weak supervision: An empirical risk minimization approach*. MIT Press, 2022.

633

634 Hiroshi Takahashi, Tomoharu Iwata, Atsutoshi Kumagai, Yuuki Yamanaka, and Tomoya Yamashita.
 635 Positive-unlabeled diffusion models for preventing sensitive data generation. In *Proceedings of*
 636 *the 13th International Conference on Learning Representations*, 2025.

637

638 Paweł Teisseyre, Timo Martens, Jessa Bekker, and Jesse Davis. Learning from biased positive-
 639 unlabeled data via threshold calibration. In Yingzhen Li, Stephan Mandt, Shipra Agrawal, and
 Emtiyaz Khan (eds.), *Proceedings of the 28th International Conference on Artificial Intelligence*
 640 and *Statistics*, pp. 2314–2322, 2025.

641

642 Yuchuan Tian, Hanting Chen, Xutao Wang, Zheyuan Bai, Qinghua ZHANG, Ruifeng Li, Chao Xu,
 643 and Yunhe Wang. Multiscale positive-unlabeled detection of AI-generated texts. In *Proceedings*
 644 *of the 12th International Conference on Learning Representations*, 2024.

645

646 Vladimir Vapnik. Statistical learning theory. *John Wiley & Sons*, 2, 1998.

647

Wei Wang, Dong-Dong Wu, Jindong Wang, Gang Niu, Min-Ling Zhang, and Masashi Sugiyama.
 Realistic evaluation of deep partial-label learning algorithms. In *Proceedings of the 13th Interna-*
 648 *tional Conference on Learning Representations*, 2025.

648 Xinrui Wang, Wenhui Wan, Chuanxing Geng, Shao-Yuan Li, and Songcan Chen. Beyond myopia:
 649 Learning from positive and unlabeled data through holistic predictive trends. In *Advances in*
 650 *Neural Information Processing Systems 36*, 2023a.

651 Xutao Wang, Hanting Chen, Tianyu Guo, and Yunhe Wang. PUE: Biased positive-unlabeled learning
 652 enhancement by causal inference. In *Advances in Neural Information Processing Systems 36*, pp.
 653 19783–19798, 2023b.

654 Tong Wei, Hai Wang, Weiwei Tu, and Yufeng Li. Robust model selection for positive and unlabeled
 655 learning with constraints. *Science China Information Sciences*, 65(11):212101, 2022.

656 Yuhao Wu, Jiangchao Yao, Bo Han, Lina Yao, and Tongliang Liu. Unraveling the impact of het-
 657 erophilic structures on graph positive-unlabeled learning. In *Proceedings of the 41st International*
 658 *Conference on Machine Learning*, pp. 53928–53943, 2024.

659 Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Gang Niu, Masashi Sugiyama, and Dacheng
 660 Tao. Rethinking class-prior estimation for positive-unlabeled learning. In *Proceedings of the 10th*
 661 *International Conference on Learning Representations*, 2022.

662 Jinfeng Yi, Cho-Jui Hsieh, Kush R. Varshney, Lijun Zhang, and Yao Li. Scalable demand-aware
 663 recommendation. In *Advances in Neural Information Processing Systems 30*, pp. 2412–2421,
 664 2017.

665 Hang Yin, Liyao Xiang, Dong Ding, Yuheng He, Yihan Wu, Pengzhi Chu, Xinbing Wang, and
 666 Chenghu Zhou. Lambda: Learning matchable prior for entity alignment with unlabeled dangling
 667 cases. In *Advances in Neural Information Processing Systems*, volume 37, pp. 78964–78995,
 668 2024.

669 Yunrui Zhao, Qianqian Xu, Yangbangyan Jiang, Peisong Wen, and Qingming Huang. Dist-PU:
 670 Positive-unlabeled learning from a label distribution perspective. In *Proceedings of the 2022*
 671 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14441–14450, 2022.

672 Yao Zhou, Jianpeng Xu, Jun Wu, Zeinab Taghavi, Evren Korpeoglu, Kannan Achan, and Jingrui He.
 673 Pure: Positive-unlabeled recommendation with generative adversarial network. In *Proceedings*
 674 *of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pp. 2409–2419,
 675 2021.

676 Yilun Zhu, Aaron Fjeldsted, Darren Holland, George Landon, Azaree Lintereur, and Clayton Scott.
 677 Mixture proportion estimation beyond irreducibility. In *Proceedings of the 40th International*
 678 *Conference on Machine Learning*, pp. 42962–42982, 2023a.

679 Zhangchi Zhu, Lu Wang, Pu Zhao, Chao Du, Wei Zhang, Hang Dong, Bo Qiao, Qingwei Lin,
 680 Saravan Rajmohan, and Dongmei Zhang. Robust positive-unlabeled learning via noise negative
 681 sample self-correction. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge*
 682 *Discovery and Data Mining*, pp. 3663–3673, 2023b.

683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 THE USE OF LARGE LANGUAGE MODELS (LLMs)
703704 We only used LLMs to correct the grammar and spelling errors in the writing.
705706
707 A PROOFS
708709 A.1 PROOF OF PROPOSITION 1
710

711
712
713
$$\text{ACC}(f) = \pi \mathbb{E}_{p(\mathbf{x}|y=+1)} [\mathbb{I}(f(\mathbf{x}) \geq 0)] + (1 - \pi) \mathbb{E}_{p(\mathbf{x}|y=-1)} [\mathbb{I}(f(\mathbf{x}) < 0)]$$

714
$$= \pi \mathbb{E}_{p(\mathbf{x}|y=+1)} [\mathbb{I}(f(\mathbf{x}) \geq 0)] + \mathbb{E}_{p(\mathbf{x})} [\mathbb{I}(f(\mathbf{x}) < 0)] - \pi \mathbb{E}_{p(\mathbf{x}|y=+1)} [\mathbb{I}(f(\mathbf{x}) < 0)]$$

715
$$= \pi \mathbb{E}_{p(\mathbf{x}|y=+1)} [\mathbb{I}(f(\mathbf{x}) \geq 0)] + \mathbb{E}_{p(\mathbf{x})} [\mathbb{I}(f(\mathbf{x}) < 0)] - \pi \mathbb{E}_{p(\mathbf{x}|y=+1)} [1 - \mathbb{I}(f(\mathbf{x}) \geq 0)]$$

716
$$= 2\pi \mathbb{E}_{p(\mathbf{x}|y=+1)} [\mathbb{I}(f(\mathbf{x}) \geq 0)] + \mathbb{E}_{p(\mathbf{x})} [\mathbb{I}(f(\mathbf{x}) < 0)] - \pi$$

717
$$= \mathbb{E}[\text{PA}(f)] - \pi.$$

718
719

720 Here, the last equation is obtained since $\mathcal{D}_U \stackrel{\text{i.i.d.}}{\sim} p(\mathbf{x})$ for the TS setting and $\mathcal{D}_P \cup \mathcal{D}_U \stackrel{\text{i.i.d.}}{\sim} p(\mathbf{x})$ for
721 the OS setting. Therefore, for two classifiers f_1 and f_2 that satisfy $\mathbb{E}[\text{PA}(f_1)] < \mathbb{E}[\text{PA}(f_2)]$, we
722 have $\text{ACC}(f_1) < \text{ACC}(f_2)$. The proof is complete. \square
723724
725 A.2 PROOF OF PROPOSITION 2
726727 For the TS setting,
728

729
$$\text{AUC}(f) = \mathbb{E}_{p(\mathbf{x}|y=+1)} \mathbb{E}_{p(\mathbf{x}'|y'=-1)} \left[\mathbb{I}(f(\mathbf{x}) > f(\mathbf{x}')) + \frac{1}{2} \mathbb{I}(f(\mathbf{x}) = f(\mathbf{x}')) \right]$$

730
$$= \frac{1}{1 - \pi} \mathbb{E}_{p(\mathbf{x}|y=+1)} \mathbb{E}_{p(\mathbf{x}')} \left[\mathbb{I}(f(\mathbf{x}) > f(\mathbf{x}')) + \frac{1}{2} \mathbb{I}(f(\mathbf{x}) = f(\mathbf{x}')) \right]$$

731
$$- \frac{\pi}{1 - \pi} \mathbb{E}_{p(\mathbf{x}|y=+1)} \mathbb{E}_{p(\mathbf{x}'|y'=+1)} \left[\mathbb{I}(f(\mathbf{x}) > f(\mathbf{x}')) + \frac{1}{2} \mathbb{I}(f(\mathbf{x}) = f(\mathbf{x}')) \right]$$

732
$$= \frac{1}{1 - \pi} \mathbb{E}_{p(\mathbf{x}|y=+1)} \mathbb{E}_{p(\mathbf{x}')} \left[\mathbb{I}(f(\mathbf{x}) > f(\mathbf{x}')) + \frac{1}{2} \mathbb{I}(f(\mathbf{x}) = f(\mathbf{x}')) \right] - \frac{\pi}{2 - 2\pi}$$

733
$$= \frac{1}{1 - \pi} \mathbb{E}[\text{PAUC}(f)] - \frac{\pi}{2 - 2\pi}.$$

734
735
736
737
738
739
740

741 For the OS setting,
742

743
$$\text{AUC}(f) = \mathbb{E}_{p(\mathbf{x}|y=+1)} \mathbb{E}_{p(\mathbf{x}'|y'=-1)} \left[\mathbb{I}(f(\mathbf{x}) > f(\mathbf{x}')) + \frac{1}{2} \mathbb{I}(f(\mathbf{x}) = f(\mathbf{x}')) \right]$$

744
$$= \frac{1}{1 - \bar{\pi}} \mathbb{E}_{p(\mathbf{x}|y=+1)} \mathbb{E}_{p(\mathbf{x}')} \left[\mathbb{I}(f(\mathbf{x}) > f(\mathbf{x}')) + \frac{1}{2} \mathbb{I}(f(\mathbf{x}) = f(\mathbf{x}')) \right]$$

745
$$- \frac{\bar{\pi}}{1 - \bar{\pi}} \mathbb{E}_{p(\mathbf{x}|y=+1)} \mathbb{E}_{p(\mathbf{x}'|y'=+1)} \left[\mathbb{I}(f(\mathbf{x}) > f(\mathbf{x}')) + \frac{1}{2} \mathbb{I}(f(\mathbf{x}) = f(\mathbf{x}')) \right]$$

746
$$= \frac{1}{1 - \bar{\pi}} \mathbb{E}_{p(\mathbf{x}|y=+1)} \mathbb{E}_{p(\mathbf{x}')} \left[\mathbb{I}(f(\mathbf{x}) > f(\mathbf{x}')) + \frac{1}{2} \mathbb{I}(f(\mathbf{x}) = f(\mathbf{x}')) \right] - \frac{\bar{\pi}}{2 - 2\bar{\pi}}$$

747
748
749
750
751
752
753
754

755 Therefore, under both OS and TS settings, for two classifiers f_1 and f_2 that satisfy $\mathbb{E}[\text{PAUC}(f_1)] < \mathbb{E}[\text{PAUC}(f_2)]$, we have $\text{AUC}(f_1) < \text{AUC}(f_2)$. \square

756 A.3 BIAS OF THE RISK ESTIMATOR
757758 Under the OS setting, we have
759

760
$$\mathbb{E}[\hat{R}(f)] - R(f) = \mathbb{E}_{\bar{p}(\mathbf{x})}[\ell(f(\mathbf{x}), -1)] - \mathbb{E}_{p(\mathbf{x})}[\ell(f(\mathbf{x}), -1)]$$

761
$$= (\bar{\pi} - \pi) (\mathbb{E}_{p(\mathbf{x}|y=+1)}[\ell(f(\mathbf{x}), -1)] - \mathbb{E}_{p(\mathbf{x}|y=-1)}[\ell(f(\mathbf{x}), -1)]),$$

762

763 which is not equal to 0. Therefore, it means that the bias of the risk estimator always exist. Then,
764 the minimizers of $\mathbb{E}[\hat{R}(f)]$ and $R(f)$ are not the same.
765766 A.4 PROOF OF THEOREM 1
767768 First, we have
769

770
$$\bar{p}(\mathbf{x}) = \bar{\pi}p(\mathbf{x}|y=+1) + (1 - \bar{\pi})p(\mathbf{x}|y=-1)$$

771
$$= \frac{(1-c)\pi}{1-c\pi}p(\mathbf{x}|y=+1) + \frac{1-\pi}{1-c\pi}p(\mathbf{x}|y=-1).$$

772

773 Therefore, we have
774

775
$$p(\mathbf{x}|y=-1) = \frac{1-c\pi}{1-\pi}\bar{p}(\mathbf{x}) - \frac{(1-c)\pi}{1-\pi}p(\mathbf{x}|y=+1).$$

776

777 Then,
778

779
$$R(f) = \pi\mathbb{E}_{p(\mathbf{x}|y=+1)}[\ell(f(\mathbf{x}), +1)] + (1 - \pi)\mathbb{E}_{p(\mathbf{x}|y=-1)}[\ell(f(\mathbf{x}), -1)]$$

780
$$= \pi\mathbb{E}_{p(\mathbf{x}|y=+1)}[\ell(f(\mathbf{x}), +1)] + (1 - c\pi)\mathbb{E}_{\bar{p}(\mathbf{x})}[\ell(f(\mathbf{x}), -1)] - (1 - c)\pi\mathbb{E}_{p(\mathbf{x}|y=+1)}[\ell(f(\mathbf{x}), -1)]$$

781
$$= \pi\mathbb{E}_{p(\mathbf{x}|y=+1)}[\ell(f(\mathbf{x}), +1) + (c-1)\ell(f(\mathbf{x}), -1)] + (1 - c\pi)\mathbb{E}_{\bar{p}(\mathbf{x})}[\ell(f(\mathbf{x}), -1)],$$

782

783 which conclude the proof. \square
784785 A.5 PROOF OF THEOREM 2
786787 **Definition 5** (Rademacher complexity). Let $\mathcal{X}_{n_P}^P = \{\mathbf{x}_1, \dots, \mathbf{x}_{n_P}\}$ denote n_P i.i.d. random variables
788 drawn from density $p(\mathbf{x}|y=+1)$. Let $\mathcal{X}_{n_U}^U = \{\mathbf{x}_{n_P+1}, \dots, \mathbf{x}_{n_P+n_U}\}$ denote n_U i.i.d. random
789 variables drawn from density $\bar{p}(\mathbf{x})$. Let $\mathcal{F} = \{f : \mathcal{X} \mapsto \mathbb{R}\}$ denote a class of measurable functions,
790 $\sigma_P = (\sigma_1, \sigma_2, \dots, \sigma_{n_P})$, and $\sigma_U = (\sigma_{n_P+1}, \sigma_{n_P+2}, \dots, \sigma_{n_P+n_U})$ denote Rademacher variables
791 taking values from $\{+1, -1\}$ uniformly. Then, the (expected) Rademacher complexities of \mathcal{F} are
792 defined as
793

794
$$\mathfrak{R}_{n_P}(\mathcal{F}) = \mathbb{E}_{\mathcal{X}_{n_P}^P} \mathbb{E}_{\sigma_P} \left[\sup_{f \in \mathcal{F}} \frac{1}{n_P} \sum_{i=1}^{n_P} \sigma_i f(\mathbf{x}_i) \right],$$

795
$$\mathfrak{R}'_{n_U}(\mathcal{F}) = \mathbb{E}_{\mathcal{X}_{n_U}^U} \mathbb{E}_{\sigma_U} \left[\sup_{f \in \mathcal{F}} \frac{1}{n_U} \sum_{i=n_P+1}^{n_P+n_U} \sigma_i f(\mathbf{x}_i) \right].$$

796

797 **Lemma 1.** For any $\delta > 0$, we have the following inequality with probability at least $1 - \delta$:
798

800
$$\sup_{f \in \mathcal{F}} |\bar{R}(f) - R(f)| \leq 2(2-c)\pi L_\ell \mathfrak{R}_{n_P}(\mathcal{F}) + 2(1-c\pi)L_\ell \mathfrak{R}'_{n_U}(\mathcal{F})$$

801
$$+ \left(\frac{\pi(2-c)C_\ell}{\sqrt{n_P}} + \frac{(1-c\pi)C_\ell}{\sqrt{n_U}} \right) \sqrt{\frac{\ln 2/\delta}{2}}.$$

802

803 *Proof.* First, we give the upper bound for the one-side uniform deviation $\sup_{f \in \mathcal{F}} (\bar{R}(f) - R(f))$.
804 When an instance in $\mathcal{X}_{n_P}^P$ is replaced by another instance, the value of $\sup_{f \in \mathcal{F}} (\bar{R}(f) - R(f))$
805 changes at most $\pi(2-c)C_\ell/n_P$; when an instance in $\mathcal{X}_{n_U}^U$ is replaced by another instance, the value
806

of $\sup_{f \in \mathcal{F}} (\bar{R}(f) - R(f))$ changes at most $(1 - c\pi)C_\ell/n_U$. Therefore, according to McDiarmid's inequality, we have the following inequality with probability at least $1 - \delta/2$:

$$\begin{aligned} \sup_{f \in \mathcal{F}} (\bar{R}(f) - R(f)) &\leq \mathbb{E} \left[\sup_{f \in \mathcal{F}} (\bar{R}(f) - R(f)) \right] + \sqrt{\frac{\pi^2(2-c)^2C_\ell^2}{n_P} + \frac{(1-c\pi)^2C_\ell^2}{n_U}} \sqrt{\frac{\ln 2/\delta}{2}} \\ &\leq \mathbb{E} \left[\sup_{f \in \mathcal{F}} (\bar{R}(f) - R(f)) \right] + \left(\frac{\pi(2-c)C_\ell}{\sqrt{n_P}} + \frac{(1-c\pi)C_\ell}{\sqrt{n_U}} \right) \sqrt{\frac{\ln 2/\delta}{2}}. \end{aligned}$$

Then, by symmetrization (Vapnik, 1998), it is a routine work to have

$$\mathbb{E} \left[\sup_{f \in \mathcal{F}} (\bar{R}(f) - R(f)) \right] \leq 2(2-c)\pi\mathfrak{R}_{n_P}(\ell \circ \mathcal{F}) + 2(1-c\pi)\mathfrak{R}'_{n_U}(\ell \circ \mathcal{F}).$$

According to Talagrand's contraction lemma (Shalev-Shwartz & Ben-David, 2014), we have

$$\mathfrak{R}_{n_P}(\ell \circ \mathcal{F}) \leq L_\ell \mathfrak{R}_{n_P}(\mathcal{F}), \quad \mathfrak{R}'_{n_U}(\ell \circ \mathcal{F}) \leq L_\ell \mathfrak{R}'_{n_U}(\mathcal{F}).$$

By combining the above inequalities, we have the following inequality with probability at least $1 - \delta/2$:

$$\begin{aligned} \sup_{f \in \mathcal{F}} (\bar{R}(f) - R(f)) &\leq 2(2-c)\pi L_\ell \mathfrak{R}_{n_P}(\mathcal{F}) + 2(1-c\pi)L_\ell \mathfrak{R}'_{n_U}(\mathcal{F}) \\ &\quad + \left(\frac{\pi(2-c)C_\ell}{\sqrt{n_P}} + \frac{(1-c\pi)C_\ell}{\sqrt{n_U}} \right) \sqrt{\frac{\ln 2/\delta}{2}}. \end{aligned}$$

In a similar way, we have the following inequality with probability at least $1 - \delta/2$:

$$\begin{aligned} \sup_{f \in \mathcal{F}} (R(f) - \bar{R}(f)) &\leq 2(2-c)\pi L_\ell \mathfrak{R}_{n_P}(\mathcal{F}) + 2(1-c\pi)L_\ell \mathfrak{R}'_{n_U}(\mathcal{F}) \\ &\quad + \left(\frac{\pi(2-c)C_\ell}{\sqrt{n_P}} + \frac{(1-c\pi)C_\ell}{\sqrt{n_U}} \right) \sqrt{\frac{\ln 2/\delta}{2}}. \end{aligned}$$

Therefore, we have the following inequality with probability at least $1 - \delta$:

$$\begin{aligned} \sup_{f \in \mathcal{F}} |\bar{R}(f) - R(f)| &\leq 2(2-c)\pi L_\ell \mathfrak{R}_{n_P}(\mathcal{F}) + 2(1-c\pi)L_\ell \mathfrak{R}'_{n_U}(\mathcal{F}) \\ &\quad + \left(\frac{\pi(2-c)C_\ell}{\sqrt{n_P}} + \frac{(1-c\pi)C_\ell}{\sqrt{n_U}} \right) \sqrt{\frac{\ln 2/\delta}{2}}. \end{aligned}$$

The proof is complete. \square

Then, we give the proof of Theorem 2.

Proof of Theorem 2.

$$\begin{aligned} R(\bar{f}) - R(f^*) &= R(\bar{f}) - \bar{R}(\bar{f}) + \bar{R}(\bar{f}) - \bar{R}(f^*) + \bar{R}(f^*) - R(f^*) \\ &\leq R(\bar{f}) - \bar{R}(\bar{f}) + \bar{R}(\bar{f}) - \bar{R}(f^*) + \bar{R}(f^*) - R(f^*) \\ &\leq 2 \sup_{f \in \mathcal{F}} |\bar{R}(f) - R(f)|. \end{aligned}$$

By Lemma 1, the proof is complete. \square

A.6 DERIVATION OF EQUIVALENCE OF RISK ESTIMATORS

$$\begin{aligned} &\bar{R}(f) \\ &= \frac{\pi}{n_P} \sum_{i=1}^{n_P} (\ell(f(\mathbf{x}_i), +1) + (c-1)\ell(f(\mathbf{x}_i), -1)) + \frac{1-c\pi}{n_U} \sum_{i=n_P+1}^{n_P+n_U} \ell(f(\mathbf{x}_i), -1) \\ &= \sum_{i=1}^{n_P} \left(\frac{\pi}{n_P} \ell(f(\mathbf{x}_i), +1) + \left(\frac{1}{n_P+n_U} - \frac{\pi}{n_P} \right) \ell(f(\mathbf{x}_i), -1) \right) + \frac{1}{n_P+n_U} \sum_{i=n_P+1}^{n_P+n_U} \ell(f(\mathbf{x}_i), -1) \\ &= \frac{\pi}{n_P} \sum_{i=1}^{n_P} (\ell(f(\mathbf{x}_i), +1) - \ell(f(\mathbf{x}_i), -1)) + \frac{1}{n_U} \sum_{i=1}^{n_P+n_U} \ell(f(\mathbf{x}_i), -1), \end{aligned} \tag{10}$$

864 where the second equation uses the estimation $c = n_P/\pi(n_P + n_U)$.
 865

866 B MORE EXPERIMENTAL DETAILS

868 B.1 MORE DETAILS OF BENCHMARK DATASETS

870 Table 3 summarizes their key characteristics, including the number of examples, feature dimension-
 871 ality, positive class configurations, and task domains. For all datasets, we vary the positive rate in
 872 $\{10\%, 20\%, 30\%, 40\%, 50\%\}$. For the benchmark experiments in Section 5, we used the positive
 873 rate 30%.

875 Table 3: Summary of datasets used in this PU learning benchmark.

877 Dataset	# Examples	# Features	Positive Classes (Case 1)	Positive Classes (Case 2)	Task Domain
878 CIFAR-10	20,000	3,072	{0,1,2,8,9}	{2,3,5,7,9}	Image classification
879 ImageNette	6,000	12,288	{0,1,2,8,9}	{2,3,5,7,9}	Image classification
880 USPS	4,000	256	{4,7,9,5,8}	{1,6,4,9,8}	Digit recognition
881 Letter	13,000	16	{B,V,L,R,I,O,W,S,J,K,C,H,Z}	{D,T,A,Y,Q,G,B,L,I,W,J,C,Z}	Character recognition

883 B.2 DESCRIPTIONS OF ALGORITHMS

- 884 • uPU (du Plessis et al., 2015): An unbiased risk estimator that is convex when the loss function
 885 satisfies certain linear-odd conditions.
- 886 • nnPU (Kiryo et al., 2017): A non-negative risk estimator that alleviates the overfitting issue in PU
 887 learning.
- 888 • nnPU-GA (Kiryo et al., 2017):
- 889 • PUSB (Kato et al., 2019): A method that accounts for selection bias in the labeling process.
- 890 • PUBN (Hsieh et al., 2019): A framework that incorporates biased negative data into empirical risk
 891 minimization.
- 892 • VPU (Chen et al., 2020a): A variational approach that directly evaluates the modeling error of a
 893 Bayesian classifier from data.
- 894 • PAN (Hu et al., 2021): A predictive adversarial network built upon the generative adversarial
 895 network framework.
- 896 • CVIR (Garg et al., 2021): A mixture-proportion estimation method combining best bin estimation
 897 and conditional Value Ignoring Risk.
- 898 • Dist-PU (Zhao et al., 2022): A method that enforces consistency between predicted and ground-
 899 truth label distributions.
- 900 • P³MIX-E (Li et al., 2022): A mixup-based method that pairs marginal pseudo-negative instances
 901 with boundary-near positive instances, with early-learning regularization.
- 902 • P³MIX-C (Li et al., 2022): A mixup-based method that pairs marginal pseudo-negative instances
 903 with boundary-near positive instances, with pseudo-negative correction.
- 904 • LBE (Gong et al., 2022): An instance-dependent PU algorithm that jointly estimates labeling bias
 905 and learns the classifier.
- 906 • Count Loss (Shukla et al., 2023): A unified approach introducing a count-based loss penalizing
 907 deviations from arithmetic label-count constraints.
- 908 • Robust-PU (Zhu et al., 2023b): A reweighted learning framework that dynamically adjusts sample
 909 weights based on training progress and sample hardness.
- 910 • Holistic-PU (Wang et al., 2023a): A holistic method interpreting prediction scores as a temporal
 911 point process.
- 912 • PUe (Wang et al., 2023b): A causality-based method that reconstructs the loss via normalized
 913 propensity scores and inverse probability weighting.
- 914 • GLWS (Chen et al., 2024): A general weak-supervision framework formulated as Expectation-
 915 Maximization, accommodating PU data as one supervision source.

916 B.3 IMPLEMENTATION DETAILS

917 All algorithms were implemented in PyTorch (Paszke et al., 2019), and all experiments were con-
 918 ducted on a single NVIDIA Tesla V100 GPU. We used the SGD optimizer and trained for 20,000

iterations across all datasets. Model performance on the validation and test sets was recorded every 100 iterations. For each dataset, we generated three random data splits. For each split, 10 random hyperparameter configurations were sampled from a predefined pool. Table 4 provides the details of the hyperparameter configurations used for all algorithms.

Table 4: Hyperparameters, their default values, and distributions for random search.

Condition	Parameter	Default Value	Random Distribution
ResNet	learning rate	0.001	$10^{Uniform(-4.5, -2.5)}$
	batch size	64	$2^{Uniform(5,8)}$
	momentum	0.9	0.9
MLP	learning rate	0.001	$10^{Uniform(-4.5, -2.5)}$
	batch size	128	$2^{Uniform(4,7)}$
	momentum	0.9	0.9
nnPU	tolerance threshold	0.0	0.0
PUBN	importance of unlabeled data	0.5	RandomChoice([0.5,0.7,0.9])
PAN	balance factor of the KL-divergences	0.0001	0.0001
P^3MIX-E	predictive score threshold	0.85	0.85
	size of the candidate mixup pool	96	96
	weight of the positive loss	1	1
	weight of the unlabeled loss	1	1
	weight of the entropy loss	0.5	0.5
P^3MIX-C	predictive score threshold	0.8	0.8
	size of the candidate mixup pool	96	96
	mixup coefficient	1.0	1.0
	weight of the positive loss	1	1
	weight of the unlabeled loss	1	1
LBE	weight of the entropy loss	0.1	0.1
	warm up iteration	2000	2000
Robust-PU	warm up iteration	2000	2000
	training scheduler	linear	linear
	temperature in the logistic loss	1	RandomChoice([1,1.3])
	initial threshold	0.1	RandomChoice([0.1,0.11])
	final threshold	2	RandomChoice([1,2])
Holistic-PU	growing step	10	RandomChoice([5,10])
	warm up iteration	2000	2000

C DETAILS OF EXPERIMENTAL RESULTS

Tables 5 to 18 report detailed experimental results in terms of different metrics on CIFAR-10, ImageNette, Letter, and USPS, and the hyperparameters are determined with PA, PAUC, and OA, respectively.

D BENCHMARK RESULTS WITH VARYING RATIOS OF POSITIVE DATA

Tables 19 to 22 show the experimental results of varying ratios of positive data.

E EXPERIMENTAL RESULTS WITH INACCURATE CLASS PRIORS

Tables 23 to 26 show the experimental results when the class priors are inaccurate for validation.

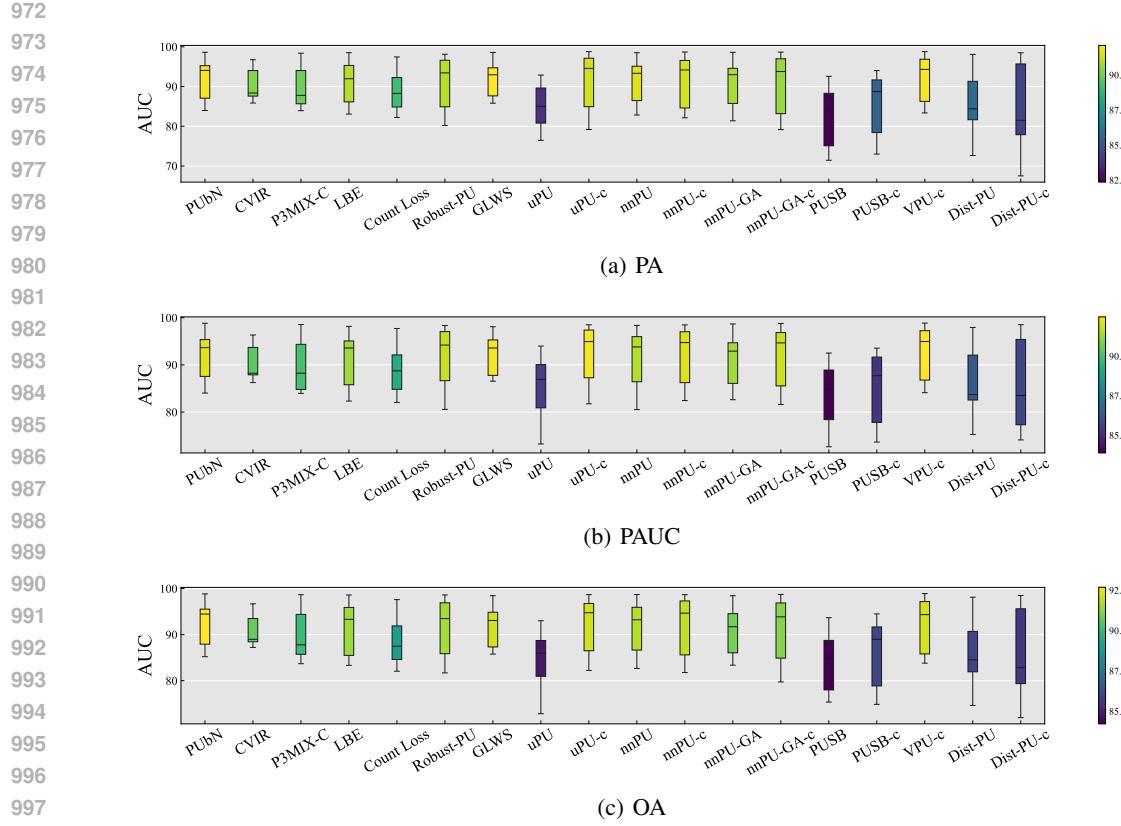


Figure 5: Overall performance w.r.t. the AUC score of different algorithms across all datasets. Hyperparameters were tuned using PA, PAUC and OA, respectively; bar colors indicate means.

Table 5: Test results (mean \pm std) of precision and recall for each algorithm on CIFAR-10 (Case 1) under different model selection criteria. The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Precision			Recall		
	Val metric	PA	PAUC	OA	PA	PAUC
PUBN	85.58 \pm 0.37	86.97 \pm 0.18	89.46 \pm 0.65	87.71 \pm 1.00	85.25 \pm 1.87	84.64 \pm 0.24
PAN	71.61 \pm 0.86	73.33 \pm 0.14	79.51 \pm 1.74	88.39 \pm 1.65	86.65 \pm 1.61	78.41 \pm 3.09
CVIR	82.12 \pm 1.38	78.27 \pm 1.03	86.30 \pm 0.93	90.72 \pm 0.42	92.42 \pm 1.35	86.74 \pm 0.26
P3MIX-E	68.93 \pm 6.62	50.00 \pm 0.00	82.77 \pm 5.96	90.99 \pm 1.97	100.00\pm0.00	67.19 \pm 17.74
P3MIX-C	86.03 \pm 0.91	84.91 \pm 1.00	86.27 \pm 0.66	86.86 \pm 0.24	86.97 \pm 0.45	87.19 \pm 0.81
LBE	79.00 \pm 1.37	66.06 \pm 1.22	88.64 \pm 0.96	89.31 \pm 0.95	97.45 \pm 0.33	80.41 \pm 0.36
Count Loss	75.81 \pm 0.30	74.78 \pm 1.63	79.88 \pm 0.66	90.73 \pm 0.31	90.57 \pm 1.51	86.65 \pm 1.07
Robust-PU	84.19 \pm 1.05	89.77 \pm 1.85	88.23 \pm 0.69	87.73 \pm 1.21	80.72 \pm 2.97	82.89 \pm 0.26
Holistic-PU	50.10 \pm 0.05	50.00 \pm 0.00	78.03 \pm 0.77	99.49\pm0.22	100.00\pm0.00	88.60 \pm 0.41
PUE	74.23 \pm 1.27	80.12 \pm 1.97	85.70 \pm 2.17	85.52 \pm 0.48	76.39 \pm 2.72	73.49 \pm 1.77
GLWS	79.61 \pm 0.65	73.12 \pm 2.81	82.86 \pm 0.85	92.70 \pm 0.34	95.53 \pm 1.03	89.99 \pm 0.32
uPU	78.14 \pm 1.90	78.06 \pm 7.35	88.69 \pm 0.56	84.29 \pm 0.41	80.13 \pm 7.43	73.44 \pm 0.66
uPU-c	85.58 \pm 0.88	89.53 \pm 1.39	88.50 \pm 0.93	86.39 \pm 0.98	77.69 \pm 2.63	83.91 \pm 0.66
nnPU	77.17 \pm 0.27	68.25 \pm 0.27	78.73 \pm 1.19	91.00 \pm 0.32	95.62 \pm 0.62	88.99 \pm 1.44
nnPU-c	83.72 \pm 0.48	87.75 \pm 0.73	86.66 \pm 0.46	88.22 \pm 0.98	83.76 \pm 0.68	85.95 \pm 0.77
nnPU-GA	81.92 \pm 1.66	82.29 \pm 0.38	86.81 \pm 1.62	88.18 \pm 1.20	87.12 \pm 0.72	82.54 \pm 0.65
nnPU-GA-c	85.33 \pm 0.90	89.78 \pm 1.03	89.25 \pm 0.78	86.55 \pm 1.15	81.95 \pm 0.76	82.19 \pm 0.41
PUSB	76.20 \pm 1.34	78.13 \pm 1.39	78.64 \pm 0.98	91.93 \pm 0.81	90.41 \pm 0.19	90.44\pm0.20
PUSB-c	86.43 \pm 0.03	89.07 \pm 1.32	87.87 \pm 0.17	85.76 \pm 0.84	79.38 \pm 1.23	84.66 \pm 0.25
VPU	88.71\pm0.41	97.16\pm1.53	90.61\pm0.82	80.05 \pm 0.84	33.15 \pm 15.89	79.93 \pm 1.08
VPU-c	84.97 \pm 1.65	77.43 \pm 2.41	89.08 \pm 0.15	88.67 \pm 0.83	93.37 \pm 0.83	85.82 \pm 0.61
Dist-PU	76.34 \pm 0.77	72.78 \pm 0.89	84.75 \pm 0.15	91.79 \pm 0.56	93.81 \pm 0.86	81.86 \pm 1.26
Dist-PU-c	84.07 \pm 1.13	88.22 \pm 2.06	90.49 \pm 0.84	91.58 \pm 0.99	86.67 \pm 2.28	86.02 \pm 0.83

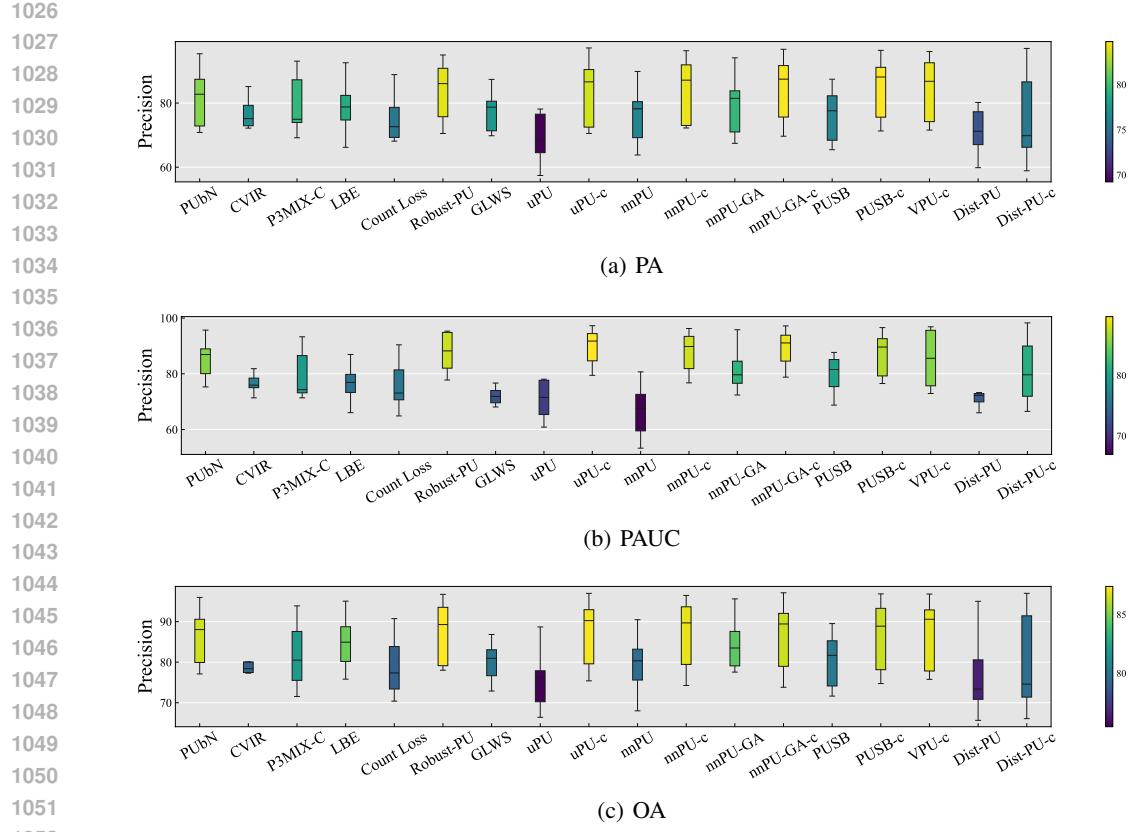


Figure 6: Overall performance w.r.t. precision of different algorithms across all datasets. Hyperparameters were tuned using PA, PAUC and OA, respectively; bar colors indicate means.

Table 6: Test results (mean \pm std) of precision and recall for each algorithm on CIFAR-10 (Case 2) under different model selection criteria. The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Precision			Recall		
	Val metric	PA	PAUC	OA	PA	PAUC
PUBN	73.21 \pm 1.41	80.55 \pm 1.72	80.14 \pm 1.05	89.42 \pm 0.70	78.25 \pm 3.04	79.75 \pm 0.94
PAN	57.23 \pm 1.87	56.98 \pm 2.87	59.50 \pm 1.67	92.77 \pm 0.38	94.70 \pm 2.27	83.05 \pm 5.42
CVIR	73.13 \pm 1.91	76.32 \pm 1.46	77.51 \pm 0.90	90.57 \pm 0.80	85.61 \pm 1.27	85.81 \pm 0.63
P3MIX-E	55.91 \pm 3.28	33.33 \pm 13.61	56.04 \pm 3.39	96.32 \pm 1.97	66.67 \pm 27.22	96.07\pm2.17
P3MIX-C	74.10 \pm 1.68	74.09 \pm 2.13	75.63 \pm 0.62	86.67 \pm 1.25	85.03 \pm 1.78	84.71 \pm 0.96
LBE	66.21 \pm 1.66	58.31 \pm 2.11	75.81 \pm 1.05	92.61 \pm 1.25	97.81 \pm 0.77	76.30 \pm 0.92
Count Loss	69.39 \pm 0.70	71.20 \pm 0.18	73.73 \pm 0.09	87.54 \pm 0.76	83.13 \pm 1.10	83.48 \pm 2.12
Robust-PU	75.32 \pm 1.11	82.16 \pm 1.82	79.06 \pm 0.85	86.25 \pm 1.51	72.97 \pm 1.95	80.59 \pm 1.55
Holistic-PU	53.00 \pm 0.10	59.93 \pm 4.67	67.62 \pm 0.43	98.93\pm0.21	54.64 \pm 23.85	81.48 \pm 5.21
PUe	63.65 \pm 0.22	62.69 \pm 2.20	71.16 \pm 1.47	86.71 \pm 0.82	88.03 \pm 2.08	71.53 \pm 3.84
GLWS	71.86 \pm 1.10	69.66 \pm 1.62	77.16 \pm 0.93	91.35 \pm 1.11	93.40 \pm 0.68	84.11 \pm 0.63
uPU	62.03 \pm 1.56	65.14 \pm 1.52	69.80 \pm 0.66	84.79 \pm 2.37	82.83 \pm 2.57	72.40 \pm 3.72
uPU-c	72.31 \pm 0.26	82.55 \pm 0.25	80.15 \pm 0.99	88.23 \pm 0.26	74.27 \pm 0.66	77.23\pm2.25
nnPU	68.39 \pm 1.63	57.41 \pm 0.78	74.03 \pm 0.92	91.01 \pm 1.51	98.65\pm0.40	85.19 \pm 0.73
nnPU-c	73.19 \pm 1.09	81.98 \pm 0.60	80.25 \pm 0.74	87.81 \pm 1.17	73.10 \pm 1.44	77.99 \pm 1.18
nnPU-GA	71.42 \pm 1.13	72.38 \pm 0.59	78.98 \pm 1.66	88.75 \pm 1.03	86.52 \pm 2.59	77.65 \pm 1.40
nnPU-GA-c	74.94 \pm 0.69	80.00 \pm 1.79	79.37 \pm 0.90	84.28 \pm 2.37	75.86 \pm 1.44	78.70 \pm 0.96
PUSB	69.38 \pm 0.61	76.30 \pm 1.64	74.79 \pm 0.62	92.21 \pm 0.15	84.05 \pm 2.62	85.62 \pm 1.96
PUSB-c	76.45 \pm 0.77	79.54 \pm 1.37	78.93 \pm 0.69	84.07 \pm 0.83	75.54 \pm 1.16	79.71 \pm 1.19
VPU	81.54\pm0.63	92.66\pm1.97	82.10\pm0.62	69.74 \pm 1.96	29.59 \pm 11.86	69.91 \pm 2.43
VPU-c	72.30 \pm 0.58	72.93 \pm 1.34	77.65 \pm 0.43	89.87 \pm 0.48	90.00 \pm 0.94	83.71 \pm 1.10
Dist-PU	68.12 \pm 0.72	71.23 \pm 1.19	71.27 \pm 1.24	88.31 \pm 0.40	83.64 \pm 1.35	83.07 \pm 1.45
Dist-PU-c	69.46 \pm 4.49	72.97 \pm 2.81	75.24 \pm 2.54	83.36 \pm 0.70	78.05 \pm 3.74	72.82 \pm 5.27

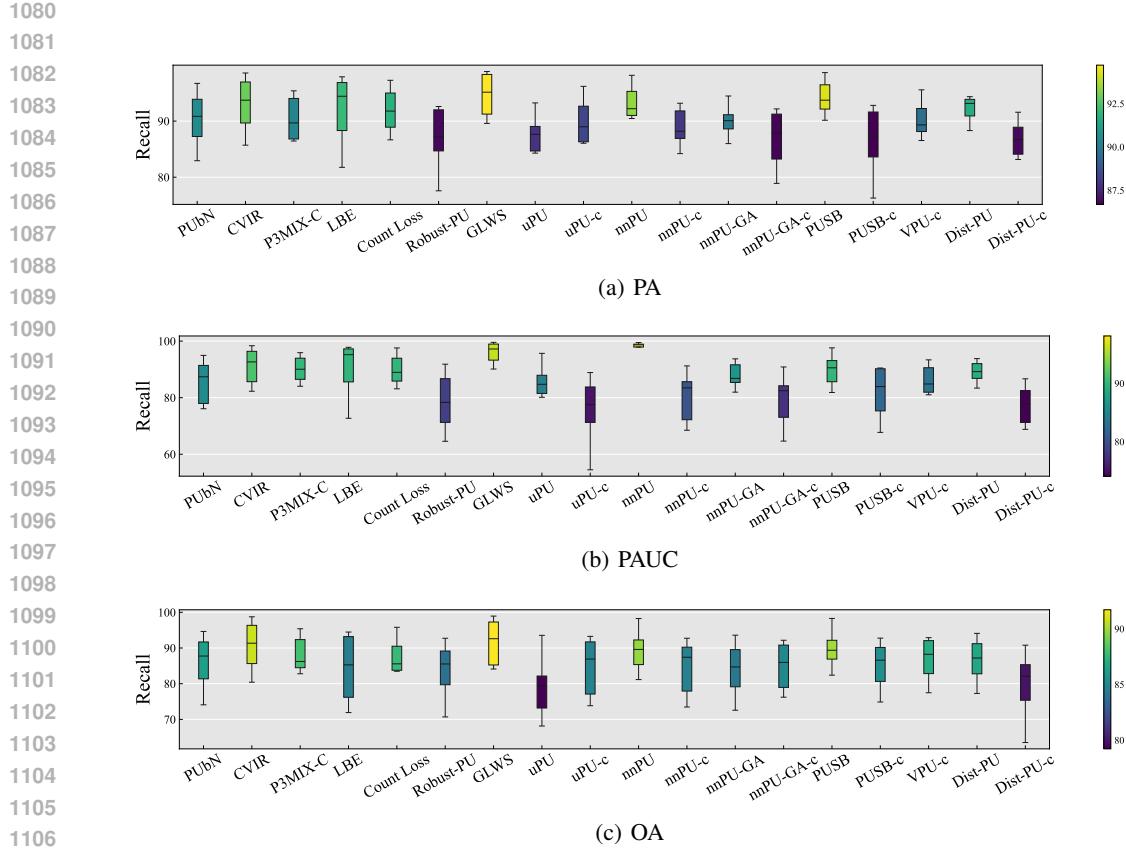


Figure 7: Overall performance w.r.t. recall of different algorithms across all datasets. Hyperparameters were tuned using PA, PAUC and OA, respectively; bar colors indicate means.

Table 7: Test results (mean \pm std) of accuracy, AUC, and F1 score for each algorithm on ImageNette (Case 1) under different model selection criteria. The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Test ACC			AUC			Test F1		
Val metric	PA	PAUC	OA	PA	PAUC	OA	PA	PAUC	OA
PUBN	75.69 \pm 0.02	77.07 \pm 0.47	78.99 \pm 0.57	84.82 \pm 0.28	86.25 \pm 0.83	87.45 \pm 0.37	77.63 \pm 0.16	76.30 \pm 1.26	79.25 \pm 0.76
PAN	50.74 \pm 1.17	51.52 \pm 0.46	56.93 \pm 1.83	53.71 \pm 3.39	55.48 \pm 1.03	55.73 \pm 1.79	65.24 \pm 0.19	32.31 \pm 14.81	45.43 \pm 2.65
CVIR	78.78 \pm 0.86	78.26 \pm 1.62	81.01\pm0.67	87.98\pm0.35	88.29\pm0.65	89.28\pm0.38	80.12 \pm 0.36	79.52 \pm 0.78	81.51\pm0.45
P3MIX-E	74.81 \pm 2.36	49.71 \pm 0.48	75.19 \pm 2.39	82.71 \pm 2.74	85.84 \pm 0.68	82.91 \pm 2.92	76.23 \pm 1.97	43.92 \pm 17.93	76.41 \pm 2.04
P3MIX-C	78.81\pm1.61	78.91\pm1.84	80.25 \pm 0.82	85.85 \pm 1.50	86.41 \pm 1.31	87.33 \pm 1.27	80.26\pm1.24	80.35\pm1.27	80.48 \pm 0.37
LBE	78.52 \pm 0.41	78.73 \pm 0.65	79.20 \pm 0.36	86.84 \pm 0.37	86.31 \pm 0.61	86.16 \pm 0.78	78.90 \pm 0.32	77.09 \pm 1.48	78.14 \pm 0.75
Count Loss	74.98 \pm 0.85	75.95 \pm 1.56	78.07 \pm 0.73	85.50 \pm 0.23	85.44 \pm 0.52	85.75 \pm 0.74	77.84 \pm 0.40	77.95 \pm 0.87	78.92 \pm 0.91
Robust-PU	77.67 \pm 0.27	75.53 \pm 2.04	78.73 \pm 0.43	83.93 \pm 0.64	85.22 \pm 0.11	84.46 \pm 0.93	77.86 \pm 0.47	71.78 \pm 4.44	78.06 \pm 0.59
Holistic-PU	51.16 \pm 0.47	54.42 \pm 3.66	53.62 \pm 0.24	58.85 \pm 1.01	56.45 \pm 0.07	55.25 \pm 0.43	65.18 \pm 0.31	64.23 \pm 1.18	51.58 \pm 1.27
PUe	67.47 \pm 1.88	71.46 \pm 1.27	70.90 \pm 1.28	75.35 \pm 1.52	77.29 \pm 1.49	77.47 \pm 1.55	70.39 \pm 0.48	70.97 \pm 1.81	71.46 \pm 1.56
GLWS	76.14 \pm 0.86	74.96 \pm 1.62	78.68 \pm 0.70	87.00 \pm 0.40	86.89 \pm 0.71	86.96 \pm 0.74	78.93 \pm 0.45	78.52 \pm 1.01	79.56 \pm 0.67
uPU	71.07 \pm 0.95	64.14 \pm 6.15	73.69 \pm 0.74	82.24 \pm 0.61	81.60 \pm 1.06	81.94 \pm 0.41	74.88 \pm 0.50	71.58 \pm 2.45	74.95 \pm 0.78
uPU-c	75.00 \pm 0.97	72.54 \pm 4.40	77.76 \pm 0.66	84.13 \pm 0.33	85.82 \pm 0.55	84.65 \pm 0.65	77.16 \pm 0.27	63.33 \pm 9.88	77.19 \pm 0.67
nnPU	75.63 \pm 1.34	66.81 \pm 1.09	77.80 \pm 0.74	86.56 \pm 0.38	86.12 \pm 0.71	86.72 \pm 0.26	78.52 \pm 0.77	73.97 \pm 0.57	78.19 \pm 0.46
nnPU-c	76.51 \pm 0.61	76.95 \pm 0.75	77.66 \pm 0.63	83.87 \pm 0.71	85.08 \pm 0.67	83.93 \pm 1.24	77.89 \pm 0.33	74.59 \pm 1.65	77.33 \pm 0.99
nnPU-GA	75.70 \pm 0.36	78.72 \pm 0.64	79.40 \pm 0.47	83.74 \pm 0.65	86.06 \pm 0.88	84.45 \pm 1.58	78.33 \pm 0.16	78.98 \pm 1.22	79.13 \pm 0.24
nnPU-GA-c	77.65 \pm 0.58	72.91 \pm 2.33	78.56 \pm 0.05	81.45 \pm 1.32	84.75 \pm 0.53	82.69 \pm 1.21	77.88 \pm 0.51	65.42 \pm 5.22	78.34 \pm 0.42
PUSB	72.73 \pm 0.54	77.03 \pm 0.74	76.73 \pm 0.35	73.10 \pm 0.53	77.19 \pm 0.68	76.91 \pm 0.33	77.26 \pm 0.33	78.65 \pm 0.09	78.66 \pm 0.16
PUSB-c	76.37 \pm 0.16	77.36 \pm 0.36	77.81 \pm 0.60	76.48 \pm 0.15	77.31 \pm 0.33	77.86 \pm 0.60	77.37 \pm 0.17	76.42 \pm 0.04	78.15 \pm 0.80
VPU	56.36 \pm 2.98	50.91 \pm 0.03	61.72 \pm 0.41	61.21 \pm 2.22	82.35 \pm 0.27	73.84 \pm 4.69	53.86 \pm 6.31	0.14 \pm 0.11	45.88 \pm 4.26
VPU-c	77.48 \pm 0.83	78.00 \pm 0.50	78.06 \pm 0.91	83.35 \pm 0.33	84.63 \pm 0.49	84.28 \pm 0.96	78.09 \pm 0.69	78.60 \pm 0.40	77.64 \pm 0.69
Dist-PU	70.40 \pm 2.37	71.86 \pm 2.34	74.68 \pm 0.79	83.97 \pm 1.16	83.18 \pm 1.51	83.92 \pm 0.73	75.58 \pm 1.50	75.76 \pm 1.61	77.00 \pm 0.75
Dist-PU-c	72.03 \pm 0.99	65.88 \pm 3.33	73.84 \pm 1.06	79.51 \pm 0.44	77.83 \pm 0.61	80.91 \pm 1.18	74.78 \pm 0.58	52.05 \pm 10.16	74.10 \pm 0.81

1134
1135
1136
11371138 Table 8: Test results (mean \pm std) of precision and recall for each algorithm on ImageNette (Case 1)
1139 under different model selection criteria. The best performance w.r.t. each validation metric is shown
1140 in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Precision			Recall		
	Val metric	PA	PAUC	OA	PA	PAUC
PUbN	70.84 \pm 0.32	78.57 \pm 4.30	77.10 \pm 1.61	85.89 \pm 0.85	76.09 \pm 5.82	81.90 \pm 2.84
PAN	50.00 \pm 0.66	53.43 \pm 1.40	60.22 \pm 3.11	94.12 \pm 2.52	38.73 \pm 23.64	36.64 \pm 2.60
CVIR	74.49 \pm 1.81	75.11 \pm 3.74	78.28 \pm 1.36	86.93 \pm 1.69	85.67 \pm 3.79	85.13 \pm 1.14
P3MIX-E	71.37 \pm 2.70	32.75 \pm 13.37	71.98 \pm 2.64	81.92 \pm 1.42	66.67 \pm 27.22	81.48 \pm 1.38
P3MIX-C	74.23 \pm 1.92	74.56 \pm 2.46	78.59 \pm 2.18	87.47 \pm 0.80	87.34 \pm 0.62	82.78 \pm 1.94
LBE	76.29\pm0.82	81.74 \pm 1.60	80.73\pm0.77	81.76 \pm 0.93	73.48 \pm 3.85	75.86 \pm 2.11
Count Loss	69.02 \pm 1.15	71.41 \pm 2.49	74.81 \pm 1.18	89.37 \pm 0.93	86.22 \pm 1.82	83.77 \pm 2.66
Robust-PU	75.89 \pm 0.38	81.60 \pm 2.37	79.16 \pm 0.86	80.00 \pm 1.31	66.11 \pm 7.91	77.07 \pm 1.53
Holistic-PU	50.17 \pm 0.26	54.20 \pm 3.82	52.95 \pm 0.29	93.12 \pm 1.81	84.66 \pm 10.32	50.48 \pm 2.51
PUe	64.33 \pm 2.68	70.74 \pm 0.59	68.85 \pm 0.95	78.49 \pm 2.87	71.33 \pm 3.07	74.38 \pm 2.68
GLWS	69.81 \pm 1.18	68.10 \pm 1.82	75.17 \pm 0.67	90.92 \pm 1.13	92.88 \pm 0.54	84.51 \pm 0.74
uPU	65.37 \pm 1.04	60.87 \pm 4.80	70.38 \pm 0.55	87.71 \pm 0.58	89.47 \pm 4.66	80.15 \pm 1.07
uPU-c	70.53 \pm 2.49	85.36 \pm 2.00	77.92 \pm 1.59	86.05 \pm 3.74	54.50 \pm 12.20	76.69 \pm 1.98
nnPU	69.49 \pm 1.81	60.22 \pm 0.88	76.11 \pm 2.64	90.46 \pm 1.00	95.92\pm0.48	81.15 \pm 3.55
nnPU-c	72.51 \pm 1.01	81.53 \pm 2.56	77.04 \pm 0.57	84.20 \pm 0.62	69.52 \pm 4.15	77.77 \pm 2.26
nnPU-GA	69.74 \pm 0.60	76.68 \pm 1.43	79.13 \pm 2.26	89.37 \pm 0.77	81.95 \pm 3.81	79.63 \pm 2.88
nnPU-GA-c	75.88 \pm 1.16	86.08\pm2.79	77.78 \pm 0.87	80.10 \pm 1.46	54.93 \pm 8.53	79.05 \pm 1.77
PUSB	65.46 \pm 0.55	72.72 \pm 2.12	71.63 \pm 0.81	94.26\pm0.58	86.17 \pm 2.78	87.31\pm1.24
PUSB-c	73.08 \pm 0.57	78.35 \pm 1.28	75.79 \pm 1.41	82.24 \pm 0.99	74.69 \pm 1.16	80.96 \pm 2.74
VPU	61.32 \pm 5.55	33.33 \pm 27.22	80.12 \pm 7.64	59.47 \pm 17.51	0.07 \pm 0.06	34.73 \pm 6.80
VPU-c	74.86 \pm 1.16	75.32 \pm 0.83	77.88 \pm 1.56	81.67 \pm 0.95	82.23 \pm 0.80	77.46 \pm 0.23
Dist-PU	63.85 \pm 2.20	66.01 \pm 2.40	69.52 \pm 0.61	92.79 \pm 0.44	89.14 \pm 1.38	86.31 \pm 1.05
Dist-PU-c	67.29 \pm 1.38	81.49 \pm 4.56	72.42 \pm 1.95	84.35 \pm 1.74	43.02 \pm 11.82	76.21 \pm 2.39

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
11661167 Table 9: Test results (mean \pm std) of accuracy, AUC, and F1 score for each algorithm on ImageNette
1168 (Case 2) under different model selection criteria. The best performance w.r.t. each validation metric
1169 is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Test ACC			AUC			Test F1		
	Val metric	PA	PAUC	OA	PA	PAUC	OA	PA	PAUC
PUbN	75.30 \pm 0.58	75.97 \pm 0.61	77.39 \pm 0.45	83.97 \pm 0.64	84.03 \pm 0.50	85.20 \pm 0.66	76.89 \pm 0.51	75.98 \pm 1.24	76.44 \pm 0.60
PAN	53.31 \pm 0.36	64.73 \pm 1.69	64.37 \pm 2.18	65.28 \pm 1.32	70.38 \pm 1.92	69.19 \pm 2.61	66.49 \pm 0.27	58.68 \pm 5.06	63.03 \pm 2.55
CVIR	76.60\pm0.74	77.87\pm0.67	79.29\pm0.47	85.84\pm0.26	86.25 \pm 0.32	87.22\pm0.49	78.43 \pm 0.48	78.67\pm0.35	79.39\pm0.09
P3MIX-E	60.42 \pm 4.27	49.86 \pm 0.23	60.82 \pm 4.16	70.79 \pm 2.16	81.61 \pm 0.76	71.51 \pm 2.47	67.11 \pm 1.54	44.19 \pm 18.04	67.38 \pm 1.42
P3MIX-C	74.17 \pm 0.90	75.40 \pm 0.81	75.35 \pm 0.81	83.92 \pm 0.88	83.97 \pm 1.13	83.68 \pm 0.43	76.85 \pm 0.73	77.21 \pm 0.65	77.13 \pm 0.44
LBE	74.51 \pm 0.94	74.67 \pm 0.54	76.31 \pm 0.92	83.06 \pm 1.01	82.33 \pm 0.45	83.33 \pm 0.99	76.85 \pm 0.74	73.81 \pm 1.63	74.99 \pm 1.41
Count Loss	73.27 \pm 0.28	73.62 \pm 0.23	74.43 \pm 0.66	82.20 \pm 0.51	82.04 \pm 0.66	82.05 \pm 0.72	76.28 \pm 0.22	76.11 \pm 0.30	76.46 \pm 0.45
Robust-PU	72.58 \pm 1.19	72.78 \pm 0.43	75.52 \pm 0.68	80.19 \pm 0.81	80.57 \pm 0.71	81.69 \pm 0.38	73.75 \pm 0.62	69.94 \pm 1.57	74.06 \pm 1.05
Holistic-PU	56.12 \pm 0.93	54.70 \pm 2.16	59.19 \pm 0.53	61.46 \pm 0.21	59.83 \pm 1.01	62.22 \pm 0.69	64.75 \pm 1.38	60.81 \pm 1.16	58.83 \pm 0.57
PUe	64.65 \pm 0.59	65.89 \pm 1.36	67.63 \pm 0.53	72.74 \pm 1.48	72.62 \pm 1.26	74.27 \pm 0.79	69.33 \pm 1.07	68.66 \pm 0.71	69.42 \pm 0.90
GLWS	75.61 \pm 0.65	75.38 \pm 0.24	76.99 \pm 0.21	85.81 \pm 0.55	86.55\pm0.37	85.77 \pm 0.29	78.47\pm0.34	78.40 \pm 0.13	78.65 \pm 0.19
uPU	60.42 \pm 2.82	66.42 \pm 1.08	66.29 \pm 1.00	67.49 \pm 3.09	73.24 \pm 0.86	72.82 \pm 0.52	67.95 \pm 0.68	67.50 \pm 1.57	66.46 \pm 1.37
uPU-c	72.57 \pm 1.56	73.20 \pm 1.05	75.07 \pm 0.54	79.19 \pm 2.25	81.76 \pm 0.92	82.22 \pm 0.87	72.60 \pm 1.24	69.52 \pm 2.07	74.58 \pm 0.79
nnPU	69.83 \pm 0.52	55.99 \pm 3.35	72.76 \pm 0.55	82.83 \pm 1.26	80.53 \pm 0.83	82.65 \pm 0.76	74.92 \pm 0.35	69.09 \pm 1.48	75.65 \pm 0.45
nnPU-c	74.42 \pm 0.75	73.55 \pm 1.07	74.17 \pm 1.07	82.13 \pm 0.89	82.44 \pm 0.97	81.77 \pm 1.05	75.24 \pm 1.25	71.49 \pm 2.66	73.68 \pm 1.79
nnPU-GA	72.19 \pm 1.31	75.23 \pm 1.08	75.87 \pm 0.60	81.37 \pm 0.66	82.62 \pm 1.08	83.37 \pm 0.99	75.44 \pm 0.43	74.24 \pm 2.14	74.85 \pm 0.80
nnPU-GA-c	72.27 \pm 1.25	73.85 \pm 0.58	74.62 \pm 0.11	79.16 \pm 1.73	81.60 \pm 0.47	79.72 \pm 1.52	73.86 \pm 0.71	71.02 \pm 0.68	74.79 \pm 0.81
PUSB	71.29 \pm 1.80	72.57 \pm 0.76	75.30 \pm 0.56	71.44 \pm 1.78	72.65 \pm 0.76	75.35 \pm 0.54	75.76 \pm 0.85	74.73 \pm 0.74	76.77 \pm 0.29
PUSB-c	72.98 \pm 1.11	73.69 \pm 0.38	74.86 \pm 0.52	73.00 \pm 1.10	73.64 \pm 0.38	74.86 \pm 0.50	73.69 \pm 0.94	71.85 \pm 0.48	74.70 \pm 0.37
VPU	70.42 \pm 1.87	58.37 \pm 6.43	73.28 \pm 0.73	78.68 \pm 1.11	78.52 \pm 1.50	80.21 \pm 0.47	73.29 \pm 0.72	24.24 \pm 19.50	70.20 \pm 1.70
VPU-c	76.30 \pm 0.79	77.75 \pm 0.57	77.38 \pm 1.00	84.37 \pm 0.45	84.11 \pm 0.49	83.80 \pm 0.79	78.34 \pm 0.83	78.32 \pm 0.40	77.88 \pm 0.75
Dist-PU	63.97 \pm 1.03	67.74 \pm 0.50	68.58 \pm 1.04	72.64 \pm 0.26	75.26 \pm 0.57	74.62 \pm 0.96	69.88 \pm 0.13	71.92 \pm 0.37	70.92 \pm 0.75
Dist-PU-c	60.43 \pm 4.37	68.02 \pm 1.27	67.29 \pm 1.74	67.51 \pm 3.90	74.10 \pm 1.29	71.97 \pm 2.69	67.65 \pm 0.89	69.06 \pm 1.11	65.39 \pm 3.35

1185
1186
1187

1188

1189

1190

1191

1192 Table 10: Test results (mean \pm std) of precision and recall for each algorithm on ImageNette (Case 2)
1193 under different model selection criteria. The best performance w.r.t. each validation metric is shown
1194 in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Precision			Recall		
	Val metric	PA	PAUC	OA	PA	PAUC
PUBN	71.79 \pm 1.10	75.30 \pm 1.17	79.28\pm1.74	82.94 \pm 1.86	77.08 \pm 3.45	74.08 \pm 2.39
PAN	51.63 \pm 0.24	70.75 \pm 3.83	64.81 \pm 2.19	93.47\pm1.86	53.01 \pm 8.18	61.43 \pm 3.03
CVIR	72.31 \pm 1.00	75.51 \pm 1.45	78.53 \pm 1.48	85.71 \pm 0.51	82.27 \pm 1.44	80.42 \pm 1.40
P3MIX-E	59.73 \pm 5.02	33.05 \pm 13.49	60.00 \pm 5.03	82.05 \pm 9.32	66.67 \pm 27.22	82.13 \pm 9.07
P3MIX-C	69.19 \pm 0.86	71.42 \pm 0.87	71.54 \pm 1.30	86.45 \pm 0.93	84.04 \pm 0.35	83.78 \pm 0.78
LBE	70.02 \pm 1.26	75.72 \pm 1.63	78.52 \pm 0.55	85.34 \pm 1.94	72.71 \pm 4.32	71.91 \pm 2.57
Count Loss	68.13 \pm 0.40	69.07 \pm 0.31	70.39 \pm 0.88	86.66 \pm 0.67	84.79 \pm 0.94	83.73 \pm 0.75
Robust-PU	70.52 \pm 2.00	77.77 \pm 2.80	78.01 \pm 1.20	77.58 \pm 1.81	64.58 \pm 4.76	70.69 \pm 2.37
Holistic-PU	54.06 \pm 1.09	53.98 \pm 1.86	58.96 \pm 0.87	82.10 \pm 6.17	71.70 \pm 7.18	58.89 \pm 1.87
PUE	60.79 \pm 0.12	63.24 \pm 1.65	65.25 \pm 0.23	80.82 \pm 2.80	75.25 \pm 0.71	74.24 \pm 2.00
GLWS	69.84 \pm 0.87	69.39 \pm 0.41	72.88 \pm 0.68	89.59 \pm 0.58	90.12 \pm 0.64	85.49\pm1.26
uPU	57.42 \pm 2.33	65.47 \pm 2.34	66.40 \pm 2.65	84.31 \pm 3.94	71.10 \pm 5.64	68.14 \pm 6.00
uPU-c	72.56\pm2.89	79.46\pm1.02	75.39 \pm 0.26	73.42 \pm 3.51	62.21 \pm 3.91	73.83 \pm 1.50
nnPU	63.81 \pm 0.91	53.31 \pm 2.09	68.00 \pm 0.93	91.01 \pm 2.53	98.56\pm0.94	85.41 \pm 1.95
nnPU-c	72.24 \pm 0.48	76.75 \pm 2.56	74.25 \pm 0.69	78.73 \pm 3.00	68.48 \pm 6.78	73.47 \pm 3.67
nnPU-GA	67.45 \pm 1.90	76.34 \pm 0.93	77.55 \pm 1.48	85.99 \pm 2.22	72.88 \pm 4.68	72.56 \pm 2.15
nnPU-GA-c	69.67 \pm 2.08	78.80 \pm 0.62	73.81 \pm 1.46	78.90 \pm 1.89	64.65 \pm 0.71	76.22 \pm 3.06
PUSB	65.52 \pm 2.07	68.76 \pm 0.60	72.14 \pm 1.68	90.15 \pm 1.50	81.84 \pm 0.98	82.39 \pm 2.42
PUSB-c	71.30 \pm 1.31	76.51 \pm 0.32	74.72 \pm 1.46	76.28 \pm 0.92	67.73 \pm 0.61	74.87 \pm 1.76
VPU	66.96 \pm 2.61	55.05 \pm 22.59	78.42 \pm 1.24	81.55 \pm 2.30	22.49 \pm 18.22	63.98 \pm 3.62
VPU-c	71.58 \pm 0.54	75.82 \pm 0.96	75.76 \pm 1.51	86.54 \pm 1.40	81.02 \pm 0.43	80.18 \pm 0.64
Dist-PU	59.86 \pm 1.20	63.30 \pm 0.69	65.65 \pm 1.35	84.36 \pm 2.94	83.38 \pm 1.52	77.27 \pm 1.64
Dist-PU-c	58.89 \pm 4.09	66.51 \pm 1.59	68.25 \pm 0.62	83.16 \pm 7.58	72.05 \pm 2.14	63.51 \pm 5.76

1213

1214

1215

1216

1217

1218

1219

1220

1221 Table 11: Test results (mean \pm std) of accuracy, AUC, and F1 score for each algorithm on Letter
1222 (Case 1) under different model selection criteria. The best performance w.r.t. each validation metric
1223 is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Test ACC			AUC			Test F1		
	Val metric	PA	PAUC	OA	PA	PAUC	OA	PA	PAUC
PUBN	88.92 \pm 1.90	89.05 \pm 2.11	89.70 \pm 1.38	94.24 \pm 1.48	94.48 \pm 1.35	94.61 \pm 1.20	89.59 \pm 1.58	89.43 \pm 1.70	89.57 \pm 1.46
PAN	49.28 \pm 0.27	48.20 \pm 0.54	52.18 \pm 1.24	47.05 \pm 2.18	55.92 \pm 0.51	46.69 \pm 2.30	65.40 \pm 0.26	65.04 \pm 0.49	42.19 \pm 17.25
CVIR	83.35 \pm 0.56	82.60 \pm 0.75	84.67 \pm 0.58	86.40 \pm 0.65	87.63 \pm 0.99	87.78 \pm 0.90	85.16 \pm 0.50	84.33 \pm 0.62	85.86 \pm 0.35
P3MIX-E	51.80 \pm 1.39	49.62 \pm 0.87	61.42 \pm 4.12	60.70 \pm 5.00	81.42 \pm 0.26	67.00 \pm 7.82	67.12 \pm 0.64	43.85 \pm 17.57	42.69 \pm 17.49
P3MIX-C	80.03 \pm 1.13	77.58 \pm 2.53	80.92 \pm 1.14	85.08 \pm 1.23	84.43 \pm 1.62	84.50 \pm 0.68	82.46 \pm 0.83	80.56 \pm 1.73	82.83 \pm 0.96
LBE	85.63 \pm 1.13	81.37 \pm 2.19	87.55 \pm 0.28	91.81 \pm 1.52	93.96 \pm 0.29	94.38 \pm 0.23	87.17 \pm 0.85	83.32 \pm 1.15	87.44 \pm 0.32
Count Loss	77.67 \pm 0.86	73.15 \pm 1.96	78.27 \pm 1.01	86.31 \pm 1.48	87.17 \pm 1.55	84.67 \pm 0.78	80.27 \pm 0.67	77.19 \pm 1.62	79.98 \pm 0.84
Robust-PU	90.02 \pm 0.67	89.17 \pm 0.33	90.63 \pm 0.31	95.30 \pm 0.29	95.51 \pm 0.32	95.91 \pm 0.31	90.20 \pm 0.61	89.09 \pm 0.66	90.58 \pm 0.32
Holistic-PU	85.80 \pm 0.99	75.22 \pm 9.45	87.32 \pm 1.27	94.12 \pm 1.36	95.72 \pm 1.49	94.74 \pm 1.64	87.14 \pm 0.83	80.97 \pm 5.61	88.17 \pm 1.02
PUE	79.50 \pm 0.24	81.83 \pm 1.08	82.00 \pm 0.78	89.77 \pm 1.07	91.42 \pm 0.98	90.88 \pm 0.50	81.54 \pm 0.21	82.32 \pm 1.64	81.95 \pm 1.08
GLWS	85.87 \pm 0.95	80.93 \pm 1.54	86.32 \pm 0.58	92.91 \pm 0.63	93.62 \pm 0.45	92.65 \pm 0.83	87.03 \pm 0.75	83.53 \pm 1.17	87.28 \pm 0.54
uPU	74.98 \pm 1.19	79.75 \pm 0.63	77.72 \pm 0.79	85.87 \pm 0.59	88.34 \pm 0.29	86.19 \pm 0.71	78.05 \pm 1.00	79.62 \pm 0.40	77.65 \pm 1.10
uPU-c	92.23\pm0.26	85.97 \pm 4.01	92.73\pm0.15	96.84\pm0.15	97.26\pm0.05	96.40 \pm 0.18	92.18\pm0.14	83.09 \pm 6.02	92.60\pm0.14
nnPU	85.13 \pm 0.46	79.53 \pm 1.62	85.60 \pm 0.31	94.16 \pm 0.51	94.44 \pm 0.44	94.49 \pm 0.66	86.19 \pm 0.37	82.46 \pm 1.10	85.85 \pm 0.40
nnPU-c	91.87 \pm 0.34	89.25 \pm 1.14	91.82 \pm 0.14	96.15 \pm 0.30	96.39 \pm 0.69	96.36 \pm 0.38	91.85 \pm 0.25	88.24 \pm 1.71	91.58 \pm 0.21
nnPU-GA	85.12 \pm 0.13	82.85 \pm 0.68	84.27 \pm 0.58	93.17 \pm 0.44	93.56 \pm 0.61	91.18 \pm 0.41	85.74 \pm 0.25	82.86 \pm 1.69	84.46 \pm 0.64
nnPU-GA-c	90.97 \pm 0.30	88.60 \pm 0.57	90.97 \pm 0.30	94.72 \pm 0.23	96.37 \pm 1.16	94.72 \pm 0.23	90.86 \pm 0.25	87.75 \pm 0.25	90.86 \pm 0.25
PUSB	85.73 \pm 0.70	87.43 \pm 0.21	86.82 \pm 0.54	86.09 \pm 0.63	87.42 \pm 0.25	86.81 \pm 0.56	86.63 \pm 0.67	87.66 \pm 0.50	86.70 \pm 0.78
PUSB-c	91.42 \pm 0.86	90.68\pm0.58	91.43 \pm 0.92	91.45 \pm 0.87	90.66 \pm 0.57	91.46 \pm 0.92	91.35 \pm 1.02	90.30\pm0.67	91.29 \pm 1.04
VPU	89.85 \pm 1.07	67.88 \pm 8.64	90.13 \pm 0.77	95.67 \pm 0.40	96.03 \pm 0.77	95.44 \pm 0.57	89.69 \pm 0.98	44.13 \pm 20.00	89.86 \pm 0.67
VPU-c	91.83 \pm 0.54	90.28 \pm 0.98	92.15 \pm 0.52	96.32 \pm 0.38	97.06 \pm 0.26	96.96\pm0.30	91.95 \pm 0.42	89.38 \pm 1.17	91.93 \pm 0.48
Dist-PU	77.07 \pm 0.77	77.45 \pm 0.78	77.55 \pm 0.78	81.95 \pm 1.07	82.71 \pm 1.23	82.07 \pm 1.66	80.15 \pm 0.45	79.68 \pm 0.14	80.07 \pm 0.40
Dist-PU-c	67.65 \pm 2.41	69.33 \pm 2.52	70.03 \pm 2.28	72.96 \pm 2.78	75.75 \pm 2.56	74.72 \pm 2.66	72.61 \pm 1.10	68.78 \pm 2.64	72.81 \pm 2.05

1239

1240

1241

1242

1243

1244

1245

1246 Table 12: Test results (mean \pm std) of precision and recall for each algorithm on Letter (Case 1)
1247 under different model selection criteria. The best performance w.r.t. each validation metric is shown
1248 in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

Test metric	Precision			Recall		
	Val metric	PA	PAUC	OA	PA	PAUC
PUBN	84.12 \pm 2.75	86.86 \pm 4.01	88.33 \pm 1.64	96.00 \pm 0.44	92.79 \pm 2.16	90.85 \pm 1.27
PAN	49.11 \pm 0.23	48.20 \pm 0.54	34.01 \pm 13.90	97.89 \pm 1.15	100.00\pm0.00	56.40 \pm 23.56
CVIR	75.82 \pm 0.92	74.75 \pm 0.73	77.28 \pm 0.52	97.17 \pm 0.70	96.73 \pm 0.42	96.58 \pm 0.14
P3MIX-E	50.79 \pm 0.93	65.70 \pm 14.00	45.23 \pm 18.89	99.04\pm0.74	66.80 \pm 27.10	42.64 \pm 18.48
P3MIX-C	73.49 \pm 1.22	71.37 \pm 2.78	75.15 \pm 0.90	94.00 \pm 1.10	92.77 \pm 0.92	92.26 \pm 1.02
LBE	78.58 \pm 1.20	75.84 \pm 4.43	85.17 \pm 1.79	97.89 \pm 0.29	93.97 \pm 3.87	90.14 \pm 2.36
Count Loss	69.56 \pm 1.08	64.88 \pm 1.99	72.33 \pm 0.83	94.95 \pm 0.69	95.42 \pm 1.62	89.44 \pm 0.97
Robust-PU	87.94 \pm 0.82	86.68 \pm 1.06	90.32 \pm 0.77	92.60 \pm 0.67	91.84 \pm 2.47	90.86 \pm 0.32
Holistic-PU	79.36 \pm 1.07	71.38 \pm 8.69	82.39 \pm 2.08	96.62 \pm 0.46	96.74 \pm 1.50	94.99 \pm 1.21
PUe	73.33 \pm 0.21	78.59 \pm 0.74	80.47 \pm 0.23	91.82 \pm 0.32	86.90 \pm 4.26	83.62 \pm 2.52
GLWS	78.56 \pm 1.32	72.32 \pm 1.87	79.44 \pm 0.61	97.60 \pm 0.27	98.98 \pm 0.30	96.84\pm0.48
uPU	67.24 \pm 1.28	77.65 \pm 2.09	74.98 \pm 0.74	93.05 \pm 0.71	81.96 \pm 1.61	80.56 \pm 1.73
uPU-c	89.10 \pm 0.60	93.95 \pm 2.97	92.00 \pm 0.92	95.49 \pm 0.48	77.42 \pm 10.67	93.26 \pm 0.91
nnPU	79.27 \pm 0.28	70.89 \pm 1.82	81.97 \pm 1.57	94.44 \pm 0.61	98.70 \pm 0.39	90.42 \pm 2.48
nnPU-c	90.57\pm0.67	93.06 \pm 1.83	93.26\pm1.26	93.18 \pm 0.49	84.51 \pm 4.36	90.08 \pm 1.46
nnPU-GA	81.01 \pm 0.13	81.22 \pm 3.50	80.81 \pm 1.19	91.07 \pm 0.63	86.51 \pm 6.63	88.48 \pm 0.53
nnPU-GA-c	89.60 \pm 0.51	92.37 \pm 3.02	89.60 \pm 0.51	92.17 \pm 0.32	84.05 \pm 2.57	92.17 \pm 0.32
PUSB	79.01 \pm 1.09	84.95 \pm 0.84	84.96 \pm 1.33	95.94 \pm 0.96	90.70 \pm 2.01	88.78 \pm 2.76
PUSB-c	90.00 \pm 1.00	90.13 \pm 0.90	89.87 \pm 0.76	92.79 \pm 1.59	90.49 \pm 0.97	92.77 \pm 1.40
VPU	89.11 \pm 1.55	65.54 \pm 26.76	91.24 \pm 1.24	90.42 \pm 1.99	35.30 \pm 17.59	88.61 \pm 1.31
VPU-c	88.60 \pm 0.48	95.21\pm0.75	92.09 \pm 0.68	95.57 \pm 0.65	84.40 \pm 2.68	91.84 \pm 1.42
Dist-PU	70.13 \pm 0.47	72.05 \pm 1.16	71.50 \pm 1.04	93.51 \pm 0.55	89.28 \pm 1.49	91.14 \pm 1.75
Dist-PU-c	63.03 \pm 3.53	68.85 \pm 3.51	66.07 \pm 3.28	87.01 \pm 3.71	68.80 \pm 1.90	81.54 \pm 2.35

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1275 Table 13: Test results (mean \pm std) of accuracy, AUC, and F1 score for each algorithm on Letter
1276 (Case 2) under different model selection criteria. The best performance w.r.t. each validation metric
1277 is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Test metric	Test ACC			AUC			Test F1		
	Val metric	PA	PAUC	OA	PA	PAUC	OA	PA	PAUC
PUBN	87.47 \pm 0.58	88.98 \pm 1.45	89.63 \pm 0.98	94.15 \pm 1.14	93.88 \pm 1.45	94.59 \pm 1.09	88.40 \pm 0.61	89.15 \pm 1.44	89.74 \pm 1.02
PAN	50.02 \pm 0.48	49.88 \pm 0.85	51.73 \pm 1.43	45.39 \pm 4.63	57.60 \pm 2.16	51.85 \pm 4.33	66.64 \pm 0.40	44.18 \pm 18.05	21.43 \pm 17.50
CVIR	84.83 \pm 0.73	84.22 \pm 0.89	84.72 \pm 0.76	88.63 \pm 1.49	88.18 \pm 0.65	88.67 \pm 1.62	86.57 \pm 0.61	85.38 \pm 0.87	86.38 \pm 0.63
P3MIX-E	55.70 \pm 2.92	55.57 \pm 2.96	65.08 \pm 3.09	71.43 \pm 4.39	81.48 \pm 2.05	71.19 \pm 3.66	68.60 \pm 0.97	52.06 \pm 13.86	64.22 \pm 0.99
P3MIX-C	81.80 \pm 2.04	80.70 \pm 2.16	83.32 \pm 2.22	89.68 \pm 2.56	90.09 \pm 2.58	88.23 \pm 3.66	83.89 \pm 1.46	83.35 \pm 1.46	83.46 \pm 2.56
LBE	87.32 \pm 0.50	80.82 \pm 3.97	88.18 \pm 0.96	94.51 \pm 0.18	94.43 \pm 0.11	95.34 \pm 0.57	88.44 \pm 0.39	82.61 \pm 2.51	88.65 \pm 1.08
Count Loss	81.35 \pm 0.64	82.20 \pm 1.16	82.93 \pm 0.85	90.22 \pm 0.71	90.35 \pm 0.73	90.08 \pm 1.03	83.36 \pm 0.36	83.19 \pm 0.35	83.30 \pm 0.37
Robust-PU	90.88 \pm 0.52	90.18 \pm 0.84	91.07 \pm 0.39	96.31 \pm 0.65	96.92\pm0.53	96.63 \pm 0.57	91.00 \pm 0.44	89.64 \pm 1.06	90.83 \pm 0.42
Holistic-PU	87.88 \pm 1.37	86.12 \pm 1.82	88.65 \pm 1.12	95.09 \pm 0.62	95.36 \pm 0.69	95.40 \pm 0.83	88.79 \pm 0.90	87.58 \pm 1.22	89.49 \pm 0.85
PUe	79.50 \pm 0.70	78.03 \pm 1.17	82.53 \pm 0.04	88.18 \pm 1.99	91.92 \pm 0.19	90.65 \pm 0.40	80.97 \pm 0.48	80.73 \pm 0.63	81.94 \pm 0.20
GLWS	86.27 \pm 0.43	79.88 \pm 1.42	88.18 \pm 0.67	93.00 \pm 0.61	94.46 \pm 0.33	93.75 \pm 0.14	87.50 \pm 0.43	82.97 \pm 0.76	89.07 \pm 0.51
uPU	75.22 \pm 1.07	72.03 \pm 2.17	77.52 \pm 0.34	84.07 \pm 1.04	85.49 \pm 0.25	85.72 \pm 0.35	77.80 \pm 0.45	75.49 \pm 0.59	77.93 \pm 0.57
uPU-c	91.32 \pm 0.57	89.72 \pm 0.59	92.13 \pm 0.18	96.48 \pm 0.25	96.86 \pm 0.22	96.30 \pm 0.53	91.71 \pm 0.35	89.05 \pm 0.91	92.14 \pm 0.27
nnPU	84.68 \pm 0.34	75.22 \pm 2.11	87.38 \pm 0.39	94.02 \pm 0.74	95.30 \pm 0.51	95.34 \pm 0.24	85.90 \pm 0.44	79.94 \pm 1.42	87.73 \pm 0.39
nnPU-c	91.27 \pm 0.43	90.50 \pm 0.17	91.65 \pm 0.19	96.21 \pm 0.40	96.92\pm0.12	97.09\pm0.22	91.44 \pm 0.44	90.42 \pm 0.19	91.65 \pm 0.22
nnPU-GA	85.63 \pm 0.60	83.43 \pm 1.40	86.15 \pm 0.13	93.84 \pm 0.34	93.79 \pm 0.09	93.68 \pm 0.02	86.37 \pm 0.67	85.00 \pm 1.00	86.42 \pm 0.41
nnPU-GA-c	91.55 \pm 0.33	89.28 \pm 1.89	91.70 \pm 0.39	96.79\pm0.42	96.65 \pm 0.43	96.61 \pm 0.56	91.58 \pm 0.37	88.44 \pm 2.57	91.69 \pm 0.41
PUSB	87.42 \pm 0.31	87.83 \pm 0.13	87.63 \pm 0.24	87.39 \pm 0.34	87.85 \pm 0.13	87.61 \pm 0.23	88.15 \pm 0.18	88.30 \pm 0.24	87.98 \pm 0.44
PUSB-c	91.33 \pm 0.77	91.48\pm0.40	91.53 \pm 0.71	91.34 \pm 0.76	91.46 \pm 0.41	91.47 \pm 0.76	91.29 \pm 0.84	91.23\pm0.51	91.22 \pm 0.95
VPU	90.85 \pm 0.28	74.93 \pm 6.54	91.18 \pm 0.08	96.26 \pm 0.24	95.91 \pm 0.10	96.23 \pm 0.26	90.60 \pm 0.36	64.86 \pm 10.97	90.98 \pm 0.10
VPU-c	91.95\pm0.38	89.55 \pm 0.05	92.85\pm0.29	96.63 \pm 0.26	96.40 \pm 0.48	96.89 \pm 0.12	91.94\pm0.33	89.13 \pm 0.38	92.74\pm0.27
Dist-PU	78.92 \pm 0.89	77.52 \pm 0.51	79.42 \pm 0.71	84.82 \pm 0.29	84.29 \pm 0.73	85.17 \pm 0.34	81.73 \pm 0.94	79.36 \pm 0.51	81.10 \pm 0.82
Dist-PU-c	75.33 \pm 1.22	77.58 \pm 0.65	76.87 \pm 0.77	82.69 \pm 0.74	84.55 \pm 0.23	83.73 \pm 0.43	78.14 \pm 1.03	77.51 \pm 1.23	78.00 \pm 1.36

1296
1297
1298
12991300 Table 14: Test results (mean \pm std) of precision and recall for each algorithm on Letter (Case 2)
1301 under different model selection criteria. The best performance w.r.t. each validation metric is shown
1302 in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Precision			Recall		
	Val metric	PA	PAUC	OA	PA	PAUC
PUbN	81.40 \pm 0.45	87.45 \pm 1.99	87.75 \pm 1.02	96.72 \pm 0.84	90.94 \pm 0.83	91.83 \pm 1.24
PAN	50.04 \pm 0.51	33.05 \pm 13.52	18.13 \pm 14.80	99.74\pm0.21	66.67 \pm 27.22	26.22 \pm 21.41
CVIR	78.35 \pm 0.93	79.00 \pm 0.54	78.58 \pm 1.09	96.73 \pm 0.14	92.88 \pm 1.34	95.95\pm0.56
P3MIX-E	53.00 \pm 1.72	69.22 \pm 12.66	66.29 \pm 4.29	97.68 \pm 1.77	67.78 \pm 23.64	63.34 \pm 2.72
P3MIX-C	75.69 \pm 1.88	73.75 \pm 1.92	82.40 \pm 1.72	94.13 \pm 0.75	95.91 \pm 1.19	85.25 \pm 5.36
LBE	81.36 \pm 0.74	79.16 \pm 6.57	84.70 \pm 1.08	96.89 \pm 0.35	89.61 \pm 6.60	93.03 \pm 1.51
Count Loss	75.71 \pm 1.09	80.17 \pm 3.40	82.45 \pm 2.34	92.84 \pm 1.32	87.33 \pm 3.35	84.47 \pm 1.68
Robust-PU	89.96 \pm 1.62	94.75 \pm 0.38	93.22\pm0.86	92.17 \pm 0.98	85.16 \pm 2.21	88.58 \pm 0.79
Holistic-PU	84.34 \pm 2.63	81.09 \pm 3.15	85.42 \pm 2.12	94.05 \pm 1.39	95.65 \pm 1.66	94.18 \pm 1.43
PUe	74.35 \pm 1.10	70.71 \pm 1.81	82.69 \pm 0.51	89.04 \pm 1.83	94.32 \pm 1.43	81.25 \pm 0.86
GLWS	78.89 \pm 0.68	71.48 \pm 1.33	83.68 \pm 0.94	98.23 \pm 0.11	98.94 \pm 0.40	95.21 \pm 0.38
uPU	70.01 \pm 1.43	67.60 \pm 4.04	77.28 \pm 0.22	87.70 \pm 1.18	87.40 \pm 4.78	78.61 \pm 1.09
uPU-c	87.67\pm0.95	94.08 \pm 1.70	92.56 \pm 0.46	96.19 \pm 0.92	84.81 \pm 2.70	91.72 \pm 0.28
nnPU	79.59 \pm 0.97	66.88 \pm 1.98	85.51 \pm 1.48	93.41 \pm 1.66	99.49\pm0.08	90.21 \pm 1.41
nnPU-c	91.19 \pm 1.12	91.85 \pm 0.63	92.71 \pm 0.80	91.80 \pm 1.68	89.05 \pm 0.60	90.66 \pm 1.05
nnPU-GA	82.09 \pm 1.25	78.07 \pm 1.98	86.18 \pm 1.35	91.33 \pm 2.21	93.44 \pm 0.65	86.84 \pm 1.84
nnPU-GA-c	91.10 \pm 0.34	93.73 \pm 1.91	91.70 \pm 0.36	92.09 \pm 0.96	84.69 \pm 5.82	91.69 \pm 0.83
PUSB	83.69 \pm 1.06	85.27 \pm 0.95	86.21 \pm 0.86	93.19 \pm 1.01	91.66 \pm 1.39	89.95 \pm 1.78
PUSB-c	89.84 \pm 0.67	92.04 \pm 0.36	92.96 \pm 0.25	92.80 \pm 1.20	90.44 \pm 0.72	89.58 \pm 1.67
VPU	92.35\pm0.79	98.33\pm0.85	92.56 \pm 0.96	89.00 \pm 1.39	51.86 \pm 13.08	89.52 \pm 0.97
VPU-c	92.02 \pm 0.61	93.71 \pm 1.97	92.76 \pm 0.53	91.85 \pm 0.15	85.28 \pm 2.42	92.75 \pm 0.68
Dist-PU	72.28 \pm 1.26	72.46 \pm 1.03	75.23 \pm 1.44	94.04 \pm 0.38	87.89 \pm 1.96	88.08 \pm 1.38
Dist-PU-c	70.19 \pm 2.12	77.82 \pm 0.81	73.93 \pm 0.49	88.32 \pm 0.66	77.27 \pm 1.93	82.61 \pm 2.50

1321
1322
1323
1324
1325
1326
1327
1328
1329 Table 15: Test results (mean \pm std) of accuracy, AUC, and F1 score for each algorithm on USPS
1330 (Case 1) under different model selection criteria. The best performance w.r.t. each validation metric
1331 is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Test ACC			AUC			Test F1		
	Val metric	PA	PAUC	OA	PA	PAUC	OA	PA	PAUC
PUbN	93.76\pm0.23	92.89 \pm 0.24	93.95\pm0.13	98.28\pm0.03	98.01 \pm 0.08	98.29\pm0.04	92.60\pm0.28	91.42 \pm 0.36	92.77\pm0.17
PAN	84.52 \pm 0.50	84.52 \pm 0.65	84.97 \pm 0.48	89.98 \pm 0.20	90.89 \pm 0.48	90.06 \pm 0.46	81.23 \pm 0.46	80.56 \pm 1.19	80.61 \pm 0.58
CVIR	82.79 \pm 1.48	82.01 \pm 0.96	82.98 \pm 1.39	94.88 \pm 0.36	93.80 \pm 0.16	93.42 \pm 0.69	82.72 \pm 1.31	81.95 \pm 0.79	82.76 \pm 1.26
P3MIX-E	88.99 \pm 1.40	89.49 \pm 1.29	89.84 \pm 1.17	96.18 \pm 0.44	96.33 \pm 0.43	96.23 \pm 0.47	87.54 \pm 1.30	88.02 \pm 1.23	87.90 \pm 1.30
P3MIX-C	92.69 \pm 0.66	93.47\pm0.49	93.22 \pm 0.31	97.98\pm0.22	98.16\pm0.14	98.09 \pm 0.11	91.41 \pm 0.78	92.38\pm0.57	92.05 \pm 0.36
LBE	91.45 \pm 0.62	87.10 \pm 1.25	92.29 \pm 0.33	97.67 \pm 0.12	97.04 \pm 0.46	97.60 \pm 0.18	90.52 \pm 0.55	86.49 \pm 1.17	91.16 \pm 0.18
Count Loss	91.99 \pm 0.34	90.08 \pm 0.84	91.76 \pm 0.81	97.44 \pm 0.27	97.27 \pm 0.09	97.60 \pm 0.09	90.97 \pm 0.31	88.91 \pm 0.66	90.64 \pm 0.69
Robust-PU	91.73 \pm 0.27	88.19 \pm 3.28	92.79 \pm 0.12	97.51 \pm 0.20	97.48 \pm 0.22	97.73 \pm 0.15	89.88 \pm 0.20	83.74 \pm 5.36	91.20 \pm 0.14
Holistic-PU	91.94 \pm 0.82	92.56 \pm 0.11	93.46 \pm 0.36	97.22 \pm 0.34	97.47 \pm 0.17	97.76 \pm 0.16	90.88 \pm 0.84	91.12 \pm 0.02	92.27 \pm 0.40
PUe	84.82 \pm 1.01	84.22 \pm 0.30	86.93 \pm 0.27	95.41 \pm 0.12	95.25 \pm 0.13	94.40 \pm 1.03	84.23 \pm 0.76	83.60 \pm 0.19	85.24 \pm 0.59
GLWS	91.13 \pm 0.37	86.78 \pm 0.60	90.52 \pm 0.47	98.21 \pm 0.02	97.78 \pm 0.17	98.18 \pm 0.09	90.40 \pm 0.36	86.38 \pm 0.55	89.81 \pm 0.45
uPU	83.14 \pm 0.93	83.87 \pm 0.11	83.86 \pm 0.83	92.88 \pm 0.15	93.10 \pm 0.18	93.01 \pm 0.05	81.51 \pm 0.81	81.98 \pm 0.19	82.04 \pm 0.70
uPU-c	93.44 \pm 0.26	91.30 \pm 1.16	93.32 \pm 0.10	97.95 \pm 0.12	97.79 \pm 0.11	97.85 \pm 0.09	92.05 \pm 0.34	88.94 \pm 1.72	91.94 \pm 0.16
nnPU	90.60 \pm 0.28	87.49 \pm 0.81	90.22 \pm 0.42	97.94 \pm 0.09	97.63 \pm 0.06	97.70 \pm 0.15	89.82 \pm 0.27	87.02 \pm 0.73	89.44 \pm 0.42
nnPU-c	92.64 \pm 0.08	90.82 \pm 0.94	93.24 \pm 0.18	97.60 \pm 0.05	97.34 \pm 0.17	97.99 \pm 0.03	91.03 \pm 0.12	88.41 \pm 1.37	91.76 \pm 0.23
nnPU-GA	91.28 \pm 0.16	92.46 \pm 0.11	92.51 \pm 0.31	96.79 \pm 0.10	97.41 \pm 0.11	97.17 \pm 0.27	89.80 \pm 0.36	91.09 \pm 0.07	91.30 \pm 0.35
nnPU-GA-c	92.76 \pm 0.38	90.60 \pm 1.44	92.79 \pm 0.22	97.58 \pm 0.05	97.46 \pm 0.16	97.66 \pm 0.11	91.23 \pm 0.55	88.05 \pm 2.15	91.33 \pm 0.32
PUSB	89.90 \pm 0.73	91.73 \pm 0.26	91.38 \pm 0.83	90.98 \pm 0.65	92.51 \pm 0.26	92.17 \pm 0.70	89.17 \pm 0.71	90.91 \pm 0.29	90.56 \pm 0.80
PUSB-c	92.91 \pm 0.30	92.84 \pm 0.24	92.83 \pm 0.18	92.30 \pm 0.29	92.26 \pm 0.27	92.25 \pm 0.29	91.34 \pm 0.35	91.28 \pm 0.31	91.26 \pm 0.28
VPU	88.14 \pm 2.21	57.71 \pm 0.04	89.89 \pm 1.71	92.98 \pm 3.98	97.31 \pm 0.13	97.76 \pm 0.19	84.36 \pm 3.09	0.31 \pm 0.17	86.58 \pm 2.62
VPU-c	92.92 \pm 0.07	80.17 \pm 7.36	93.29 \pm 0.32	97.55 \pm 0.13	97.82 \pm 0.24	97.79 \pm 0.18	91.40 \pm 0.08	63.80 \pm 17.92	91.97 \pm 0.38
Dist-PU	87.73 \pm 0.55	82.15 \pm 2.23	86.10 \pm 0.14	92.52 \pm 0.85	92.58 \pm 0.43	91.03 \pm 0.77	86.69 \pm 0.55	81.64 \pm 1.82	84.77 \pm 0.17
Dist-PU-c	92.01 \pm 0.19	90.47 \pm 0.77	91.50 \pm 0.34	97.92 \pm 0.16	97.95 \pm 0.21	97.74 \pm 0.21	90.16 \pm 0.22	87.84 \pm 1.11	89.44 \pm 0.44

1347
1348
1349

Table 16: Test results (mean \pm std) of precision and recall for each algorithm on USPS (Case 1) under different model selection criteria. The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Precision			Recall		
	Val metric	PA	PAUC	OA	PA	PAUC
PUBN	92.93 \pm 0.28	93.46 \pm 0.72	93.93 \pm 0.10	92.27 \pm 0.31	89.53 \pm 1.26	91.65 \pm 0.35
PAN	84.90 \pm 5.07	87.64 \pm 5.36	90.59 \pm 5.35	79.49 \pm 4.77	76.59 \pm 6.00	74.27 \pm 5.22
CVIR	72.19 \pm 1.80	71.37 \pm 1.25	72.62 \pm 1.66	96.90 \pm 0.42	96.27 \pm 0.23	96.27 \pm 0.86
P3MIX-E	85.21 \pm 3.71	86.04 \pm 3.34	89.31 \pm 3.14	90.47 \pm 1.33	90.43 \pm 1.08	87.02 \pm 2.80
P3MIX-C	90.96 \pm 0.73	91.40 \pm 0.59	91.48 \pm 0.43	91.88 \pm 0.91	93.37 \pm 0.55	92.63 \pm 0.31
LBE	85.53 \pm 1.52	78.00 \pm 1.86	89.02 \pm 2.12	96.24 \pm 0.81	97.18 \pm 1.13	93.69 \pm 1.91
Count Loss	87.21 \pm 1.11	85.10 \pm 2.53	88.05 \pm 2.45	95.14 \pm 0.74	93.45 \pm 1.97	93.65 \pm 1.43
Robust-PU	93.49 \pm 1.50	95.16 \pm 0.47	94.46 \pm 0.25	86.63 \pm 0.95	75.96 \pm 8.06	88.16 \pm 0.16
Holistic-PU	87.61 \pm 1.66	92.29 \pm 1.53	92.36 \pm 0.77	94.47 \pm 0.28	90.12 \pm 1.45	92.20 \pm 0.26
PUE	75.50 \pm 1.85	74.71 \pm 0.58	81.82 \pm 1.80	95.45 \pm 1.08	94.90 \pm 0.45	89.41 \pm 3.20
GLWS	83.50 \pm 0.64	76.68 \pm 0.78	82.47 \pm 0.75	98.55\pm0.12	98.90\pm0.19	98.59\pm0.06
uPU	76.29 \pm 1.56	77.81 \pm 0.18	77.77 \pm 1.65	87.57 \pm 0.17	86.63 \pm 0.61	86.90 \pm 0.47
uPU-c	94.51 \pm 0.21	95.48 \pm 0.55	94.10 \pm 0.32	89.73 \pm 0.68	83.45 \pm 3.19	89.88 \pm 0.60
nnPU	83.01 \pm 0.49	77.78 \pm 1.21	82.43 \pm 0.66	97.84 \pm 0.22	98.78 \pm 0.14	97.76 \pm 0.36
nnPU-c	94.11 \pm 0.36	94.52 \pm 0.71	94.85 \pm 0.20	88.16 \pm 0.50	83.18 \pm 2.52	88.86 \pm 0.44
nnPU-GA	89.02 \pm 1.35	91.22 \pm 0.96	89.89 \pm 0.46	90.78 \pm 2.06	91.02 \pm 0.92	92.75 \pm 0.37
nnPU-GA-c	93.49 \pm 0.40	94.18 \pm 0.39	93.02 \pm 0.36	89.14 \pm 1.38	82.98 \pm 3.91	89.73 \pm 0.94
PUSB	81.80 \pm 1.12	85.07 \pm 0.28	84.72 \pm 1.55	98.04 \pm 0.28	97.61 \pm 0.28	97.33 \pm 0.42
PUSB-c	94.59\pm0.58	94.29 \pm 0.46	94.23 \pm 0.58	88.31 \pm 0.42	88.47 \pm 0.62	88.51 \pm 1.03
VPU	94.38 \pm 2.09	66.67 \pm 27.22	97.19\pm0.39	76.55 \pm 4.48	0.16 \pm 0.08	78.43 \pm 4.44
VPU-c	94.22 \pm 0.79	96.82\pm0.89	93.30 \pm 0.50	88.78 \pm 0.76	55.53 \pm 18.31	90.67 \pm 0.28
Dist-PU	80.19 \pm 0.78	73.27 \pm 3.53	79.18 \pm 1.24	94.35 \pm 0.22	92.71 \pm 1.44	91.41 \pm 1.93
Dist-PU-c	94.24 \pm 0.58	95.22 \pm 0.37	94.27 \pm 0.38	86.43 \pm 0.43	81.61 \pm 2.06	85.10 \pm 0.71

Table 17: Test results (mean \pm std) of accuracy, AUC, and F1 score for each algorithm on USPS (Case 2) under different model selection criteria. The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Test ACC			AUC			Test F1		
	Val metric	PA	PAUC	OA	PA	PAUC	OA	PA	PAUC
PUBN	94.45 \pm 0.26	95.45\pm0.14	95.45\pm0.20	98.62 \pm 0.18	98.83 \pm 0.08	98.85 \pm 0.10	94.23 \pm 0.29	95.31\pm0.13	95.29\pm0.20
PAN	80.70 \pm 3.24	83.54 \pm 1.27	84.22 \pm 1.12	88.16 \pm 3.61	92.49 \pm 0.23	78.89 \pm 3.82	81.47 \pm 2.11	82.45 \pm 1.90	
CVIR	90.93 \pm 0.26	88.57 \pm 0.29	90.55 \pm 0.20	96.74 \pm 0.23	96.34 \pm 0.22	96.69 \pm 0.21	91.37 \pm 0.23	89.34 \pm 0.24	91.05 \pm 0.16
P3MIX-E	94.04 \pm 0.43	93.90 \pm 0.43	93.90 \pm 0.39	98.26 \pm 0.27	98.24 \pm 0.26	98.14 \pm 0.19	93.92 \pm 0.39	93.79 \pm 0.38	93.81 \pm 0.36
P3MIX-C	94.27 \pm 0.52	94.54 \pm 0.51	94.72 \pm 0.35	98.38 \pm 0.24	98.56 \pm 0.17	98.66 \pm 0.13	94.20 \pm 0.48	94.47 \pm 0.48	94.62 \pm 0.34
LBE	94.67 \pm 0.20	90.82 \pm 1.28	94.88 \pm 0.05	98.51 \pm 0.16	98.17 \pm 0.08	98.60 \pm 0.07	94.65 \pm 0.16	91.18 \pm 0.98	94.73 \pm 0.10
Count Loss	92.73 \pm 0.22	93.76 \pm 0.45	93.17 \pm 0.14	97.15 \pm 0.27	97.72 \pm 0.20	97.33 \pm 0.26	92.87 \pm 0.16	93.84 \pm 0.40	93.18 \pm 0.14
Robust-PU	93.72 \pm 0.41	93.64 \pm 0.31	94.93 \pm 0.19	98.13 \pm 0.11	98.34 \pm 0.15	98.62 \pm 0.23	93.44 \pm 0.45	93.33 \pm 0.31	94.69 \pm 0.20
Holistic-PU	95.15\pm0.28	94.83 \pm 0.24	95.02 \pm 0.53	98.76 \pm 0.11	98.73 \pm 0.17	98.49 \pm 0.20	94.99\pm0.29	94.65 \pm 0.24	94.84 \pm 0.57
PUE	85.27 \pm 1.11	85.00 \pm 0.63	86.05 \pm 0.33	93.95 \pm 0.48	95.26 \pm 0.23	93.48 \pm 0.92	86.55 \pm 0.96	86.38 \pm 0.50	87.08 \pm 0.25
GLWS	92.48 \pm 0.50	88.19 \pm 0.44	92.18 \pm 0.26	98.58 \pm 0.05	98.09 \pm 0.29	98.45 \pm 0.06	92.76 \pm 0.44	89.15 \pm 0.35	92.49 \pm 0.23
uPU	83.36 \pm 0.48	82.68 \pm 0.81	84.12 \pm 0.06	92.33 \pm 0.30	93.99 \pm 0.25	92.79 \pm 0.79	84.51 \pm 0.42	84.34 \pm 0.56	85.14 \pm 0.27
uPU-c	94.67 \pm 0.10	93.36 \pm 0.76	94.57 \pm 0.28	98.78\pm0.10	98.50 \pm 0.30	98.68 \pm 0.11	94.36 \pm 0.11	92.85 \pm 0.88	94.26 \pm 0.32
nnPU	93.64 \pm 1.13	88.01 \pm 1.30	94.10 \pm 0.37	98.50 \pm 0.15	98.37 \pm 0.09	98.71 \pm 0.08	93.79 \pm 1.03	89.01 \pm 1.07	94.20 \pm 0.33
nnPU-c	94.32 \pm 0.20	94.00 \pm 0.24	94.80 \pm 0.12	98.69 \pm 0.02	98.48 \pm 0.04	98.67 \pm 0.04	94.03 \pm 0.23	93.67 \pm 0.27	94.56 \pm 0.10
nnPU-GA	94.42 \pm 0.26	94.95 \pm 0.13	94.78 \pm 0.07	98.61 \pm 0.10	98.68 \pm 0.10	98.44 \pm 0.12	94.28 \pm 0.24	94.76 \pm 0.14	94.59 \pm 0.08
nnPU-GA-c	94.12 \pm 0.04	94.27 \pm 0.17	94.07 \pm 0.36	98.66 \pm 0.06	98.79 \pm 0.07	98.73 \pm 0.07	93.77 \pm 0.04	93.92 \pm 0.17	93.69 \pm 0.40
PUSB	92.41 \pm 0.67	91.96 \pm 1.50	93.56 \pm 0.34	92.57 \pm 0.65	92.10 \pm 1.45	93.68 \pm 0.33	92.69 \pm 0.59	92.25 \pm 1.30	93.70 \pm 0.30
PUSB-c	94.09 \pm 0.18	93.64 \pm 0.21	94.57 \pm 0.25	94.01 \pm 0.18	93.55 \pm 0.22	94.50 \pm 0.25	93.76 \pm 0.19	93.24 \pm 0.24	94.27 \pm 0.26
VPU	89.82 \pm 2.61	76.63 \pm 10.29	89.54 \pm 1.88	97.91 \pm 0.35	98.58 \pm 0.10	97.99 \pm 0.57	88.33 \pm 3.43	58.65 \pm 23.78	88.11 \pm 2.41
VPU-c	94.93 \pm 0.13	94.82 \pm 0.12	95.05 \pm 0.14	98.78\pm0.06	98.86\pm0.09	98.91\pm0.11	94.72 \pm 0.17	94.55 \pm 0.16	94.81 \pm 0.14
Dist-PU	94.82 \pm 0.12	94.02 \pm 0.18	94.72 \pm 0.38	98.09 \pm 0.17	97.94 \pm 0.28	98.12 \pm 0.19	94.63 \pm 0.13	93.72 \pm 0.25	94.55 \pm 0.39
Dist-PU-c	94.10 \pm 0.44	92.09 \pm 0.50	94.14 \pm 0.37	98.49 \pm 0.16	98.53 \pm 0.20	98.50 \pm 0.03	93.73 \pm 0.49	91.30 \pm 0.59	93.77 \pm 0.42

1404
 1405 Table 18: Test results (mean \pm std) of precision and recall for each algorithm on USPS (Case 2)
 1406 under different model selection criteria. The best performance w.r.t. each validation metric is shown
 1407 in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Precision			Recall		
	Val metric	PA	PAUC	OA	PA	PAUC
PUBN	95.38 \pm 0.94	95.68 \pm 0.48	95.97 \pm 0.59	93.18 \pm 1.09	94.95 \pm 0.27	94.64 \pm 0.42
PAN	83.76 \pm 3.59	89.42 \pm 1.97	89.52 \pm 2.59	75.13 \pm 5.70	75.67 \pm 5.30	77.35 \pm 5.13
CVIR	85.15 \pm 0.42	81.84 \pm 0.41	84.48 \pm 0.37	98.57 \pm 0.05	98.36 \pm 0.22	98.74 \pm 0.18
P3MIX-E	93.52 \pm 1.27	93.30 \pm 1.32	92.82 \pm 0.87	94.37 \pm 0.51	94.34 \pm 0.58	94.85 \pm 0.29
P3MIX-C	93.07 \pm 1.19	93.28 \pm 0.94	93.88 \pm 0.75	95.39 \pm 0.26	95.70 \pm 0.08	95.39 \pm 0.10
LBE	92.57 \pm 0.82	86.94 \pm 3.54	95.05 \pm 0.89	96.86 \pm 0.56	96.45 \pm 2.16	94.47 \pm 1.09
Count Loss	88.88 \pm 0.75	90.40 \pm 0.96	90.75 \pm 0.87	97.27 \pm 0.57	97.58 \pm 0.41	95.80 \pm 1.05
Robust-PU	95.00 \pm 0.46	95.31 \pm 0.48	96.73 \pm 0.26	91.95 \pm 0.83	91.44 \pm 0.17	92.73 \pm 0.39
Holistic-PU	95.52 \pm 0.49	95.53 \pm 0.63	95.60 \pm 0.47	94.47 \pm 0.42	93.79 \pm 0.31	94.10 \pm 0.92
PUe	77.96 \pm 1.20	77.46 \pm 0.78	79.31 \pm 0.72	97.30 \pm 0.88	97.65 \pm 0.21	96.59 \pm 0.91
GLWS	87.39 \pm 0.88	80.72 \pm 0.66	86.83 \pm 0.38	98.84\pm0.12	99.56\pm0.20	98.94\pm0.06
uPU	77.29 \pm 0.61	75.45 \pm 1.20	78.20 \pm 0.75	93.24 \pm 0.79	95.67 \pm 0.58	93.55 \pm 1.69
uPU-c	97.19\pm0.48	97.26 \pm 0.65	96.97 \pm 0.16	91.71 \pm 0.50	88.88 \pm 1.65	91.71 \pm 0.70
nnPU	89.86 \pm 1.86	80.69 \pm 1.82	90.47 \pm 0.71	98.16 \pm 0.35	99.32 \pm 0.07	98.26 \pm 0.13
nnPU-c	96.32 \pm 0.13	96.26 \pm 0.18	96.46 \pm 0.51	91.85 \pm 0.53	91.23 \pm 0.63	92.73 \pm 0.29
nnPU-GA	94.11 \pm 0.67	95.82 \pm 0.28	95.61 \pm 0.20	94.47 \pm 0.26	93.72 \pm 0.44	93.59 \pm 0.28
nnPU-GA-c	96.77 \pm 0.20	97.19 \pm 0.29	97.11 \pm 0.18	90.96 \pm 0.16	90.86 \pm 0.11	90.52 \pm 0.59
PUSB	87.44 \pm 1.11	87.68 \pm 2.47	89.52 \pm 0.75	98.64 \pm 0.10	97.48 \pm 0.32	98.29 \pm 0.27
PUSB-c	96.44 \pm 0.41	96.58 \pm 0.49	96.84 \pm 0.41	91.23 \pm 0.44	90.14 \pm 0.63	91.85 \pm 0.27
VPU	96.67 \pm 0.70	98.82\pm0.56	97.26\pm0.20	82.02 \pm 5.96	52.95 \pm 21.53	80.76 \pm 3.82
VPU-c	96.09 \pm 0.48	96.87 \pm 0.51	96.80 \pm 0.21	93.42 \pm 0.78	92.36 \pm 0.79	92.90 \pm 0.07
Dist-PU	95.45 \pm 0.21	95.77 \pm 0.70	95.01 \pm 0.40	93.82 \pm 0.18	91.81 \pm 1.11	94.10 \pm 0.50
Dist-PU-c	97.04 \pm 0.15	98.27 \pm 0.26	96.98 \pm 0.06	90.65 \pm 0.83	85.26 \pm 0.88	90.79 \pm 0.80

F MORE EXPERIMENTAL RESULTS

1432 Tables 27 and 28 show experimental results on a real-world dataset of fraud detection.²

1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

²www.kaggle.com/datasets/mlg-ulb/creditcardfraud

1458
1459
1460
1461
1462
14631464
1465
1466
1467
Table 19: Test results (mean \pm std) in terms of test accuracy, AUC score, and F1 score for each
algorithm on Letter (Case 1) with different ratios of positive data. The validation metric is OA.
The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the
proposed calibration technique in Algorithm 1.

Test Metric	Test ACC					AUC					Test F1				
	10%	20%	30%	40%	50%	10%	20%	30%	40%	50%	10%	20%	30%	40%	50%
Ratio	61.77 ± 10.44	76.47 ± 10.72	89.70 ± 1.38	62.75 ± 11.24	78.57 ± 11.57	66.34 ± 11.01	78.93 ± 12.63	94.61 ± 1.20	67.20 ± 11.58	80.49 ± 13.13	72.81 ± 5.78	81.93 ± 6.16	89.57 ± 1.46	73.82 ± 6.60	84.05 ± 7.02
PUBN	48.30 ± 0.91	48.30 ± 0.91	52.18 ± 1.24	48.30 ± 0.91	48.30 ± 0.91	52.07 ± 1.47	52.01 ± 1.48	46.69 ± 2.30	51.89 ± 1.48	51.79 ± 1.48	65.12 ± 0.82	65.12 ± 0.82	42.19 ± 17.25	65.12 ± 0.82	65.12 ± 0.82
PAN	82.63 ± 0.86	83.55 ± 0.39	84.67 ± 0.58	79.90 ± 0.64	74.35 ± 0.27	87.56 ± 1.15	86.72 ± 0.55	87.78 ± 0.90	82.09 ± 1.07	75.57 ± 1.63	83.86 ± 0.58	84.97 ± 0.23	85.86 ± 0.35	82.71 ± 0.47	78.99 ± 0.23
CVIR	49.43 ± 0.21	49.43 ± 0.21	61.42 ± 1.12	49.43 ± 0.21	49.43 ± 0.21	50.57 ± 0.55	50.38 ± 0.55	67.00 ± 7.82	50.49 ± 0.54	50.59 ± 0.71	66.16 ± 0.19	66.16 ± 0.19	42.69 ± 17.49	66.16 ± 0.19	66.16 ± 0.19
P3MIX-E	75.43 ± 1.40	76.02 ± 1.25	80.92 ± 1.14	80.87 ± 0.33	81.68 ± 0.04	77.34 ± 2.05	78.00 ± 2.12	84.50 ± 0.68	84.46 ± 0.34	85.63 ± 0.69	77.26 ± 1.34	77.30 ± 1.56	82.83 ± 0.96	82.42 ± 0.19	83.17 ± 0.08
P3MIX-C	80.07 ± 0.47	81.82 ± 1.01	87.55 ± 0.28	84.18 ± 0.19	86.42 ± 0.72	84.83 ± 1.03	84.99 ± 1.76	94.38 ± 0.23	90.27 ± 0.20	93.55 ± 0.06	80.59 ± 0.83	81.83 ± 1.05	87.44 ± 0.32	84.66 ± 0.53	86.84 ± 0.52
LBE	73.07 ± 4.15	70.78 ± 5.47	78.27 ± 1.01	56.83 ± 2.84	55.90 ± 2.53	80.33 ± 6.64	77.67 ± 8.43	84.67 ± 0.78	55.81 ± 3.59	56.64 ± 3.22	75.69 ± 4.39	76.54 ± 3.69	79.98 ± 0.84	64.74 ± 0.61	58.60 ± 2.52
Count Loss	84.50 ± 0.66	89.08 ± 1.14	90.63 ± 0.31	92.77 ± 0.15	93.98 ± 0.42	90.89 ± 0.64	93.89 ± 0.93	95.91 ± 0.31	96.69 ± 0.32	98.39 ± 0.13	84.74 ± 0.55	88.73 ± 1.31	90.58 ± 0.32	92.65 ± 0.18	94.00 ± 0.42
Robust-PU	80.80 ± 0.43	82.90 ± 0.66	87.32 ± 1.27	85.37 ± 0.41	86.88 ± 0.30	85.53 ± 1.23	88.69 ± 0.65	94.74 ± 1.64	93.11 ± 0.78	95.12 ± 0.38	81.97 ± 0.20	84.37 ± 0.43	88.17 ± 1.02	86.58 ± 0.21	87.77 ± 0.19
Holistic-PU	82.13 ± 0.59	81.18 ± 1.02	82.00 ± 0.78	76.98 ± 0.44	74.72 ± 0.46	90.46 ± 0.25	89.45 ± 0.77	90.88 ± 0.50	85.17 ± 0.68	83.71 ± 0.30	82.35 ± 0.32	81.32 ± 1.22	81.95 ± 1.08	77.84 ± 0.41	76.65 ± 0.11
PUE	85.53 ± 0.46	86.60 ± 0.25	86.32 ± 0.58	82.15 ± 0.22	77.80 ± 0.32	92.05 ± 0.31	92.56 ± 0.16	92.65 ± 0.83	86.53 ± 0.27	83.78 ± 0.84	86.22 ± 0.51	87.27 ± 0.27	87.28 ± 0.54	84.29 ± 0.39	81.44 ± 0.46
GLWS	81.22 ± 0.76	80.12 ± 0.48	77.72 ± 0.79	75.30 ± 0.74	72.52 ± 0.55	89.86 ± 0.56	88.33 ± 0.33	86.19 ± 0.71	84.23 ± 0.30	79.70 ± 0.85	80.64 ± 0.91	79.32 ± 0.48	77.65 ± 1.10	75.54 ± 0.99	74.17 ± 0.25
uPU	86.17 ± 0.53	89.55 ± 0.45	92.73 ± 0.15	93.33 ± 0.41	94.53 ± 0.41	90.84 ± 0.93	93.58 ± 0.86	96.40 ± 0.18	96.75 ± 0.49	98.71 ± 0.49	85.25 ± 0.74	89.04 ± 0.56	92.60 ± 0.14	93.07 ± 0.33	94.22 ± 0.41
uPU-c	86.57 ± 0.28	88.55 ± 0.09	85.60 ± 0.31	80.40 ± 0.43	76.93 ± 0.57	93.80 ± 0.39	95.48 ± 0.17	94.49 ± 0.66	92.10 ± 0.31	85.87 ± 0.46	86.37 ± 0.40	88.63 ± 0.11	85.85 ± 0.40	82.49 ± 0.42	79.01 ± 0.78
nnPU	86.08 ± 0.36	90.38 ± 0.25	91.82 ± 0.14	93.60 ± 0.22	94.72 ± 0.15	91.37 ± 0.72	93.08 ± 0.32	96.36 ± 0.38	97.09 ± 0.35	98.54 ± 0.13	85.44 ± 0.65	90.10 ± 0.29	91.58 ± 0.21	93.42 ± 0.26	94.60 ± 0.13
nnPU-c	82.12 ± 0.50	85.78 ± 0.34	84.27 ± 0.58	84.90 ± 1.10	84.38 ± 0.33	90.19 ± 0.54	92.66 ± 0.11	91.18 ± 0.41	92.25 ± 1.26	91.91 ± 0.51	81.73 ± 1.00	85.37 ± 0.37	84.46 ± 0.64	85.06 ± 0.96	84.78 ± 0.17
nnPU-GA	85.12 ± 0.24	89.65 ± 0.27	90.97 ± 0.30	93.32 ± 0.28	94.38 ± 0.16	90.60 ± 0.27	92.92 ± 0.19	94.72 ± 0.23	96.59 ± 0.12	98.26 ± 0.23	84.09 ± 0.35	89.36 ± 0.19	90.86 ± 0.25	93.16 ± 0.28	94.19 ± 0.16
nnPU-GA-c	85.40 ± 0.72	87.68 ± 0.22	86.82 ± 0.54	80.00 ± 0.95	74.08 ± 0.62	85.44 ± 0.67	87.67 ± 0.29	86.81 ± 0.56	80.13 ± 0.78	74.19 ± 0.79	84.90 ± 0.74	88.05 ± 0.15	86.70 ± 0.78	82.22 ± 1.11	78.33 ± 0.42
PUSB	85.23 ± 0.45	89.60 ± 0.55	91.43 ± 0.92	93.40 ± 0.92	94.35 ± 0.08	85.21 ± 0.06	89.59 ± 0.39	91.46 ± 0.92	93.36 ± 0.92	94.30 ± 0.08	84.40 ± 0.44	89.22 ± 0.47	91.29 ± 1.04	93.32 ± 0.23	94.20 ± 0.11
PUSB-c	79.87 ± 0.55	86.22 ± 0.43	90.13 ± 0.77	88.12 ± 0.19	68.90 ± 1.88	88.55 ± 0.71	92.83 ± 0.15	95.44 ± 0.57	95.15 ± 0.47	75.21 ± 1.00	77.99 ± 0.89	85.78 ± 0.52	89.86 ± 0.67	87.41 ± 0.25	64.84 ± 8.61
VPU	83.78 ± 0.74	89.67 ± 0.59	92.15 ± 0.52	93.13 ± 0.38	94.52 ± 0.42	90.61 ± 1.50	94.85 ± 0.86	96.96 ± 0.41	97.31 ± 0.34	98.32 ± 0.76	84.48 ± 0.76	89.60 ± 0.39	91.93 ± 0.48	93.31 ± 0.32	94.58 ± 0.37
VPU-c	47.97 ± 0.63	47.97 ± 0.63	77.55 ± 0.78	47.97 ± 0.63	47.97 ± 0.63	50.84 ± 1.92	51.18 ± 2.29	82.07 ± 1.66	51.32 ± 1.95	50.97 ± 1.79	64.83 ± 0.58	64.83 ± 0.58	80.07 ± 0.40	64.83 ± 0.58	64.83 ± 0.58
Dist-PU	47.97 ± 0.63	47.97 ± 0.63	70.03 ± 2.28	47.97 ± 0.63	47.97 ± 0.63	50.64 ± 1.91	50.84 ± 2.06	74.72 ± 2.66	50.95 ± 1.84	51.00 ± 1.89	64.83 ± 0.58	64.83 ± 0.58	72.81 ± 2.05	64.83 ± 0.58	64.83 ± 0.58
Dist-PU-c	47.97 ± 0.63	47.97 ± 0.63	70.03 ± 2.28	47.97 ± 0.63	47.97 ± 0.63	50.64 ± 1.91	50.84 ± 2.06	74.72 ± 2.66	50.95 ± 1.84	51.00 ± 1.89	64.83 ± 0.58	64.83 ± 0.58	72.81 ± 2.05	64.83 ± 0.58	64.83 ± 0.58

1507
1508
1509
1510
1511

1512
1513
1514
1515
1516
15171518 **Table 20:** Test results (mean \pm std) in terms of precision and recall for each algorithm on Letter
1519 (Case 1) with different ratios of positive data. The validation metric is OA. The best performance
1520 w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the proposed calibration
1521 technique in Algorithm 1.

Test Metric	Precision					Recall					
	Ratio	10%	20%	30%	40%	50%	10%	20%	30%	40%	50%
PubN		61.52 ± 10.24	74.90 ± 10.11	88.33 ± 1.64	62.54 ± 11.07	76.85 ± 10.86	95.76 ± 3.47	94.55 ± 2.23	90.85 ± 1.27	96.76 ± 2.65	96.85 ± 1.46
PAN		48.30 ± 0.91	48.30 ± 0.91	34.01 ± 13.90	48.30 ± 0.91	48.30 ± 0.91	100.00 100.00	100.00 0.00	56.40 ± 23.56	100.00 ± 0.00	100.00 ± 0.00
CVIR		77.12 ± 1.66	76.92 ± 1.10	77.28 ± 0.52	71.46 ± 0.83	65.91 ± 0.11	92.04 ± 0.92	95.03 ± 1.34	96.58 ± 0.14	98.20 ± 0.30	98.54 ± 0.53
P3MIX-E		49.43 ± 0.21	49.43 ± 0.21	45.23 ± 18.89	49.43 ± 0.21	49.43 ± 0.21	100.00 100.00	100.00 0.00	42.64 ± 18.48	100.00 ± 0.00	100.00 ± 0.00
P3MIX-C		70.90 ± 0.62	72.22 ± 1.33	75.15 ± 0.90	75.25 ± 0.77	75.90 ± 0.67	84.94 ± 2.44	83.38 ± 3.04	92.26 ± 1.02	91.14 ± 0.68	92.04 ± 0.80
LBE		77.73 ± 0.99	80.92 ± 1.54	85.17 ± 1.79	81.30 ± 0.68	83.67 ± 2.03	83.94 ± 2.85	82.80 ± 0.96	90.14 ± 2.36	88.44 ± 1.96	90.48 ± 1.47
Count Loss		67.48 ± 2.31	64.38 ± 4.54	72.33 ± 0.83	55.22 ± 3.11	54.58 ± 2.62	86.60 ± 7.44	94.96 ± 1.16	89.44 ± 0.97	80.46 ± 5.85	63.29 ± 2.40
Robust-PU		82.94 ± 1.63	90.52 ± 0.91	90.32 ± 0.77	93.29 ± 0.58	93.05 ± 1.05	86.73 ± 0.92	87.03 ± 1.67	90.86 ± 0.32	92.04 ± 0.42	94.99 ± 0.43
Holistic-PU		76.28 ± 0.97	76.80 ± 1.17	82.39 ± 2.08	78.98 ± 0.92	81.16 ± 0.55	88.66 ± 0.84	93.67 ± 0.85	94.99 ± 1.21	95.87 ± 0.85	95.56 ± 0.52
PUE		78.96 ± 1.53	77.99 ± 0.61	80.47 ± 0.23	72.79 ± 0.70	69.32 ± 1.15	86.21 ± 1.32	84.98 ± 2.00	83.62 ± 2.52	83.68 ± 0.72	85.87 ± 1.51
GLWS		80.97 ± 1.20	81.79 ± 0.89	79.44 ± 0.61	74.16 ± 0.51	69.04 ± 0.58	92.24 ± 0.41	93.57 ± 0.54	96.84 0.48	97.65 ± 0.48	99.28 ± 0.17
uPU		79.60 ± 0.32	79.09 ± 0.95	74.98 ± 0.74	72.33 ± 2.67	67.49 ± 0.62	81.81 ± 2.06	79.67 ± 1.64	80.56 ± 1.73	80.09 ± 4.42	82.33 ± 0.52
uPU-c		87.03 ± 0.58	89.54 ± 1.67	92.00 ± 0.92	92.92 ± 1.11	95.57 ± 0.23	83.65 ± 1.99	88.82 ± 2.44	93.26 ± 0.91	93.28 ± 0.94	92.92 ± 0.69
nnPU		85.34 ± 1.05	85.77 ± 0.43	81.97 ± 1.57	72.96 ± 0.38	70.83 ± 0.24	87.55 ± 1.69	91.72 ± 0.72	90.42 ± 2.48	94.89 ± 0.64	89.36 ± 1.61
nnPU-c		86.99 ± 1.26	90.28 ± 0.62	93.26 1.26	93.47 0.47	94.11 ± 0.28	84.19 ± 2.52	89.96 ± 0.90	90.08 ± 1.46	93.40 ± 0.99	95.10 ± 0.02
nnPU-GA		81.19 ± 1.10	85.54 ± 0.20	80.81 ± 1.19	82.21 ± 1.46	80.70 ± 0.74	82.61 ± 3.03	85.22 ± 0.94	88.48 ± 0.53	88.17 ± 0.90	89.35 ± 0.89
nnPU-GA-c		87.68 ± 0.62	89.55 ± 0.86	89.60 ± 0.51	92.91 ± 0.53	94.90 ± 0.42	80.83 ± 1.12	89.21 ± 0.64	92.17 ± 0.32	93.42 ± 0.70	93.51 ± 0.69
PUSB		87.03 ± 1.01	84.74 ± 0.81	84.96 ± 1.33	73.27 ± 1.04	66.88 ± 0.90	83.02 ± 2.02	91.71 ± 1.25	88.78 ± 2.76	93.70 ± 1.72	94.70 ± 2.03
PUSB-c		88.53 0.96	91.72 0.20	89.87 ± 0.76	93.38 ± 0.50	95.72 0.66	80.74 ± 1.57	86.88 ± 1.00	92.77 ± 1.40	93.29 ± 1.40	92.76 ± 0.82
VPU		85.81 ± 1.26	88.42 ± 1.29	91.24 ± 1.24	92.84 ± 1.67	76.66 ± 8.67	71.67 ± 2.26	83.41 ± 1.49	88.61 ± 1.31	82.75 ± 1.61	68.00 ± 16.35
VPU-c		80.94 ± 1.35	90.39 ± 1.92	92.09 ± 0.68	90.96 ± 0.66	93.61 ± 0.98	88.55 ± 2.33	88.96 ± 1.05	91.84 ± 1.42	95.79 ± 0.17	95.59 ± 0.50
Dist-PU		47.97 ± 0.63	47.97 ± 0.63	71.50 ± 1.04	47.97 ± 0.63	47.97 ± 0.63	100.00 0.00	100.00 0.00	91.14 ± 1.75	100.00 0.00	92.76 ± 0.00
Dist-PU-c		47.97 ± 0.63	47.97 ± 0.63	66.07 ± 3.28	47.97 ± 0.63	47.97 ± 0.63	100.00 0.00	100.00 0.00	81.54 ± 2.35	100.00 0.00	100.00 ± 0.00

1561
1562
1563
1564
1565

1566
1567
1568
1569
1570
1571

1572 **Table 21:** Test results (mean \pm std) in terms of test accuracy, AUC score, and F1 score for each
1573 algorithm on USPS (Case 1) with different ratios of positive data. The validation metric is OA.
1574 The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the
1575 proposed calibration technique in Algorithm 1.

Test Metric	Test ACC					AUC					Test F1				
	10%	20%	30%	40%	50%	10%	20%	30%	40%	50%	10%	20%	30%	40%	50%
Ratio															
PUbN	90.68 ± 0.40	92.92 ± 0.15	93.95 ± 0.13	94.20 ± 0.25	94.88 ± 0.11	97.11 ± 0.21	97.88 ± 0.05	98.29 ± 0.04	98.38 ± 0.09	98.62 ± 0.06	88.34 ± 0.59	91.44 ± 0.20	92.77 ± 0.17	93.17 ± 0.28	94.04 ± 0.13
PAN	85.60 ± 0.26	85.57 ± 0.70	84.97 ± 0.48	79.59 ± 0.84	56.34 ± 0.42	89.84 ± 0.30	89.84 ± 0.56	90.06 ± 0.46	89.93 ± 0.20	61.21 ± 0.99	80.06 ± 0.49	81.62 ± 0.16	80.61 ± 0.58	68.36 ± 1.78	37.85 ± 15.65
CVIR	92.31 ± 0.28	84.60 ± 3.01	82.98 ± 1.39	79.36 ± 0.17	73.64 ± 0.09	97.66 ± 0.17	95.01 ± 1.24	93.42 ± 0.69	93.37 ± 0.68	85.06 ± 0.15	90.93 ± 0.31	83.90 ± 2.93	82.76 ± 1.26	80.03 ± 0.13	75.97 ± 0.08
P3MIX-E	88.36 ± 0.41	88.77 ± 0.14	89.84 ± 0.17	89.54 ± 0.05	90.43 ± 0.08	95.37 ± 0.32	95.56 ± 0.09	96.23 ± 0.47	95.77 ± 0.10	95.99 ± 0.10	85.21 ± 0.74	86.02 ± 0.45	87.90 ± 1.30	87.12 ± 0.25	88.30 ± 0.20
P3MIX-C	91.20 ± 0.08	91.03 ± 0.02	93.22 ± 0.31	91.46 ± 0.23	92.01 ± 0.10	97.10 ± 0.18	97.23 ± 0.12	98.09 ± 0.11	97.36 ± 0.10	97.49 ± 0.10	89.55 ± 0.10	89.44 ± 0.03	92.05 ± 0.36	90.00 ± 0.26	90.62 ± 0.11
LBE	89.97 ± 0.54	91.03 ± 0.11	92.29 ± 0.33	92.92 ± 0.14	94.30 ± 0.15	96.18 ± 0.05	96.50 ± 0.32	97.60 ± 0.18	97.72 ± 0.15	98.46 ± 0.01	88.09 ± 1.02	89.59 ± 0.20	91.16 ± 0.18	91.74 ± 0.05	93.33 ± 0.20
Count Loss	91.18 ± 0.00	92.36 ± 0.26	91.76 ± 0.81	90.23 ± 0.22	86.21 ± 0.76	96.01 ± 0.00	97.38 ± 0.09	97.60 ± 0.09	97.42 ± 0.02	95.13 ± 0.86	89.63 ± 0.00	90.94 ± 0.34	90.64 ± 0.69	89.25 ± 0.24	85.72 ± 0.69
Robust-PU	89.19 ± 0.27	91.41 ± 0.36	92.79 ± 0.12	94.49 ± 0.05	95.42 ± 0.22	96.38 ± 0.15	97.45 ± 0.05	97.73 ± 0.15	98.31 ± 0.05	98.85 ± 0.02	86.14 ± 0.37	89.35 ± 0.50	91.20 ± 0.14	93.49 ± 0.06	94.69 ± 0.25
Holistic-PU	88.61 ± 0.24	92.13 ± 0.27	93.46 ± 0.36	93.81 ± 0.07	93.34 ± 0.14	95.99 ± 0.25	97.02 ± 0.11	97.76 ± 0.16	97.86 ± 0.01	98.18 ± 0.10	85.74 ± 0.34	90.68 ± 0.42	92.27 ± 0.40	92.79 ± 0.08	92.35 ± 0.13
PUe	87.91 ± 0.54	87.11 ± 0.33	86.93 ± 0.27	79.94 ± 1.16	78.39 ± 0.79	95.02 ± 0.23	95.37 ± 0.28	94.40 ± 1.03	93.58 ± 0.19	91.23 ± 0.48	86.11 ± 0.75	85.71 ± 0.23	85.24 ± 0.59	79.71 ± 0.96	77.87 ± 0.71
GLWS	91.65 ± 0.44	91.60 ± 0.50	90.52 ± 0.47	83.04 ± 0.84	81.02 ± 0.08	97.15 ± 0.21	98.06 ± 0.03	98.18 ± 0.09	96.33 ± 0.31	94.72 ± 0.07	90.37 ± 0.46	90.71 ± 0.47	89.81 ± 0.45	83.26 ± 0.68	81.64 ± 0.07
uPU	87.10 ± 0.67	86.55 ± 1.07	83.86 ± 0.83	80.25 ± 0.92	77.01 ± 0.50	94.41 ± 0.57	94.40 ± 0.44	93.01 ± 0.05	91.11 ± 0.16	89.79 ± 0.10	85.41 ± 0.66	84.80 ± 1.14	82.04 ± 0.70	78.90 ± 0.73	76.65 ± 0.36
uPU-c	89.01 ± 0.32	90.95 ± 0.33	93.32 ± 0.10	94.15 ± 0.13	95.13 ± 0.09	96.89 ± 0.21	97.47 ± 0.14	97.85 ± 0.09	98.21 ± 0.14	98.84 ± 0.07	85.73 ± 0.43	88.56 ± 0.51	91.94 ± 0.16	92.99 ± 0.16	94.32 ± 0.11
nnPU	91.38 ± 0.27	90.96 ± 0.64	90.22 ± 0.42	71.98 ± 1.90	49.51 ± 0.97	96.94 ± 0.23	97.53 ± 0.13	97.70 ± 0.15	95.98 ± 0.37	90.55 ± 0.52	90.19 ± 0.20	90.09 ± 0.60	89.44 ± 0.42	75.16 ± 1.25	62.47 ± 0.47
nnPU-c	89.24 ± 0.20	91.50 ± 0.21	93.24 ± 0.18	94.17 ± 0.19	95.13 ± 0.11	96.19 ± 0.36	97.72 ± 0.07	97.99 ± 0.03	98.12 ± 0.05	98.83 ± 0.03	86.25 ± 0.26	89.25 ± 0.34	91.76 ± 0.23	93.03 ± 0.24	94.41 ± 0.13
nnPU-GA	89.94 ± 0.31	91.43 ± 0.38	92.51 ± 0.31	92.87 ± 0.24	93.59 ± 0.25	95.81 ± 0.33	96.57 ± 0.34	97.17 ± 0.27	97.60 ± 0.15	97.82 ± 0.09	88.18 ± 0.42	89.95 ± 0.40	91.30 ± 0.35	91.49 ± 0.28	92.49 ± 0.28
nnPU-GA-c	88.89 ± 0.36	90.25 ± 0.25	92.79 ± 0.22	93.90 ± 0.18	95.35 ± 0.03	95.78 ± 0.24	96.54 ± 0.13	97.66 ± 0.11	98.04 ± 0.06	98.85 ± 0.02	85.78 ± 0.54	87.85 ± 0.31	91.33 ± 0.32	92.72 ± 0.23	94.59 ± 0.03
PUSB	89.92 ± 0.09	90.80 ± 0.26	91.38 ± 0.83	72.46 ± 0.55	53.84 ± 1.48	90.44 ± 0.12	91.62 ± 0.20	92.17 ± 0.70	75.93 ± 0.46	59.70 ± 1.26	88.75 ± 0.12	89.93 ± 0.24	90.56 ± 0.80	75.21 ± 0.36	64.29 ± 0.70
PUSB-c	88.76 ± 0.47	92.11 ± 0.32	92.83 ± 0.18	93.89 ± 0.24	94.92 ± 0.18	87.58 ± 0.65	91.37 ± 0.36	92.25 ± 0.36	93.60 ± 0.29	94.94 ± 0.18	85.72 ± 0.80	90.28 ± 0.42	91.26 ± 0.28	92.70 ± 0.30	94.06 ± 0.21
VPU	82.46 ± 1.27	82.36 ± 0.40	89.89 ± 1.71	82.00 ± 1.77	87.06 ± 1.14	93.67 ± 0.64	95.57 ± 0.13	97.76 ± 0.19	95.78 ± 0.90	97.01 ± 5.95	74.40 ± 2.51	74.38 ± 0.65	86.58 ± 2.62	73.08 ± 3.38	82.56 ± 2.00
VPU-c	85.24 ± 1.38	91.10 ± 0.90	93.29 ± 0.32	94.47 ± 0.14	95.20 ± 0.15	94.27 ± 0.68	97.71 ± 0.14	97.79 ± 0.18	98.19 ± 0.04	98.48 ± 0.03	80.09 ± 2.19	88.63 ± 1.33	91.97 ± 0.38	93.39 ± 0.17	94.28 ± 0.17
Dist-PU	87.36 ± 1.58	88.74 ± 1.65	86.10 ± 0.14	84.16 ± 0.67	85.07 ± 0.04	92.95 ± 1.62	93.70 ± 1.37	91.03 ± 0.77	90.64 ± 0.81	90.87 ± 0.43	85.29 ± 1.55	87.51 ± 1.80	84.77 ± 0.17	82.85 ± 0.28	83.38 ± 0.11
Dist-PU-c	89.14 ± 0.15	90.27 ± 0.37	91.50 ± 0.34	93.44 ± 0.17	94.04 ± 0.20	97.23 ± 0.04	97.68 ± 0.05	97.74 ± 0.21	98.38 ± 0.04	98.06 ± 0.10	85.96 ± 0.24	87.55 ± 0.58	89.44 ± 0.44	92.05 ± 0.23	93.02 ± 0.23

1615
1616
1617
1618
1619

1620
1621
1622
1623
1624
16251626 **Table 22:** Test results (mean \pm std) in terms of precision and recall for each algorithm on USPS
1627 (Case 1) with different ratios of positive data. The validation metric is OA. The best performance
1628 w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the proposed calibration
1629 technique in Algorithm 1.

Test Metric	Precision					Recall				
	10%	20%	30%	40%	50%	10%	20%	30%	40%	50%
Ratio										
PUBN	93.85 ± 0.39	93.78 ± 0.26	93.93 ± 0.10	92.98 ± 0.42	92.75 ± 0.04	83.49 ± 1.25	89.22 ± 0.40	91.65 ± 0.35	93.37 ± 0.14	95.37 ± 0.22
PAN	96.79 ± 0.27	90.14 ± 4.74	90.59 ± 5.35	99.20 ± 0.14	32.55 ± 13.29	68.27 ± 0.84	75.69 ± 3.88	74.27 ± 5.22	52.24 ± 2.07	46.75 ± 20.52
CVIR	90.89 ± 0.69	76.25 ± 4.04	72.62 ± 1.66	67.78 ± 0.18	61.88 ± 0.07	90.98 ± 0.53	93.49 ± 1.28	96.27 ± 0.86	97.69 ± 0.12	98.35 ± 0.10
P3MIX-E	92.12 ± 0.78	91.00 ± 1.52	89.31 ± 3.14	91.05 ± 1.46	91.57 ± 0.62	79.37 ± 1.89	81.76 ± 2.09	87.02 ± 2.80	83.69 ± 1.72	85.29 ± 0.92
P3MIX-C	90.08 ± 0.12	89.20 ± 0.20	91.48 ± 0.43	89.34 ± 0.35	90.15 ± 0.23	89.02 ± 0.17	89.69 ± 0.22	92.63 ± 0.31	90.67 ± 0.27	91.10 ± 0.22
LBE	88.33 ± 1.70	88.45 ± 2.58	89.02 ± 2.12	90.86 ± 1.25	92.50 ± 0.25	88.31 ± 3.54	91.29 ± 3.05	93.69 ± 1.91	92.75 ± 1.24	94.20 ± 0.54
Count Loss	89.26 ± 0.00	91.34 ± 0.06	88.05 ± 2.45	83.58 ± 0.39	76.44 ± 1.05	90.00 ± 0.00	90.55 ± 0.70	93.65 ± 1.43	95.76 ± 0.48	97.61 ± 0.23
Robust-PU	94.19 ± 0.44	94.06 ± 0.07	94.46 ± 0.25	93.49 ± 0.20	92.94 ± 0.34	79.37 ± 0.58	85.10 ± 0.85	88.16 ± 0.16	93.49 ± 0.21	96.51 ± 0.19
Holistic-PU	91.26 ± 1.16	90.97 ± 1.31	92.36 ± 0.77	91.48 ± 0.38	89.99 ± 0.75	80.94 ± 1.20	90.55 ± 1.92	92.20 ± 0.26	94.16 ± 0.39	94.86 ± 0.75
PUE	83.76 ± 0.53	80.87 ± 0.89	81.82 ± 1.80	69.86 ± 1.45	68.80 ± 0.89	88.67 ± 1.68	91.22 ± 0.72	89.41 ± 3.20	92.86 ± 0.50	89.73 ± 0.66
GLWS	88.37 ± 0.86	85.42 ± 1.12	82.47 ± 0.75	71.62 ± 1.02	69.13 ± 0.10	92.47 ± 0.28	96.75 ± 0.47	98.59 ± 0.06	99.45 ± 0.03	99.69 ± 0.08
uPU	82.06 ± 1.15	81.42 ± 1.57	77.77 ± 1.65	72.22 ± 1.47	67.29 ± 0.64	89.06 ± 0.31	88.51 ± 0.84	86.90 ± 0.47	87.02 ± 0.42	89.06 ± 0.15
uPU-c	95.17 ± 0.38	95.19 ± 0.30	94.10 ± 0.32	94.49 ± 0.21	93.22 ± 0.25	78.00 ± 0.49	82.82 ± 1.11	89.88 ± 0.60	91.53 ± 0.60	95.45 ± 0.32
nnPU	87.19 ± 1.01	84.30 ± 1.25	82.43 ± 0.66	60.35 ± 1.63	45.60 ± 0.49	93.45 ± 0.77	96.78 ± 0.42	97.76 ± 0.36	99.73 ± 0.06	99.18 ± 0.17
nnPU-c	93.99 ± 0.30	95.97 ± 0.48	94.85 ± 0.20	94.25 ± 0.16	93.17 ± 0.13	79.69 ± 0.23	83.45 ± 0.96	88.86 ± 0.44	91.84 ± 0.47	95.69 ± 0.13
nnPU-GA	87.75 ± 1.05	89.38 ± 0.74	89.89 ± 0.46	92.62 ± 0.50	91.85 ± 0.46	88.71 ± 1.50	90.55 ± 0.14	92.75 ± 0.37	90.39 ± 0.37	93.14 ± 0.25
nnPU-GA-c	93.56 ± 0.07	93.04 ± 0.48	93.02 ± 0.36	93.75 ± 0.29	93.19 ± 0.12	79.22 ± 0.92	83.22 ± 0.34	89.73 ± 0.94	91.73 ± 0.57	96.04 ± 0.16
PUSB	84.16 ± 0.33	83.83 ± 0.63	84.72 ± 1.55	60.80 ± 0.52	47.86 ± 0.82	93.88 ± 0.56	97.02 ± 0.42	97.33 ± 0.42	98.59 ± 0.62	98.00 ± 0.33
PUSB-c	92.61 ± 1.03	94.43 ± 0.76	94.23 ± 0.58	93.75 ± 0.36	93.10 ± 0.43	79.92 ± 1.94	86.51 ± 0.89	88.51 ± 1.03	91.69 ± 0.61	95.06 ± 0.39
VPU	96.67 ± 0.55	96.61 ± 0.41	97.19 ± 0.39	98.30 ± 0.19	95.36 ± 1.39	60.75 ± 3.45	60.47 ± 0.69	78.43 ± 4.44	58.51 ± 4.27	73.25 ± 4.12
VPU-c	92.80 ± 0.72	96.05 ± 0.24	93.30 ± 0.50	94.57 ± 0.25	95.17 ± 0.30	70.55 ± 2.93	82.39 ± 2.42	90.67 ± 0.28	92.24 ± 0.11	93.41 ± 0.06
Dist-PU	85.15 ± 3.76	82.72 ± 2.12	79.18 ± 1.24	76.90 ± 2.09	78.87 ± 0.43	85.76 ± 0.73	92.94 ± 1.81	91.41 ± 1.93	90.27 ± 2.77	88.47 ± 0.79
Dist-PU-c	94.97 ± 0.19	95.45 ± 0.47	94.27 ± 0.38	94.51 ± 0.09	92.28 ± 0.25	78.51 ± 0.45	80.90 ± 1.28	85.10 ± 0.71	89.73 ± 0.51	93.76 ± 0.22

1669
1670
1671
1672
1673

1674
1675
1676
1677
1678
1679
1680
Table 23: Test results (mean \pm std) of accuracy, AUC, and F1 score for each algorithm on Letter
(Case 1) with estimated inaccurate class priors. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Test ACC			AUC			Test F1		
Val metric	PA	PAUC	OA	PA	PAUC	OA	PA	PAUC	OA
PUBN	76.78 \pm 10.83	77.23 \pm 11.02	77.65 \pm 11.19	80.11 \pm 12.97	80.37 \pm 13.07	80.09 \pm 12.95	82.49 \pm 6.37	82.34 \pm 6.31	83.03 \pm 6.60
PAN	48.30 \pm 0.91	48.30 \pm 0.91	48.30 \pm 0.91	51.99 \pm 1.47	51.97 \pm 1.14	51.99 \pm 1.47	65.12 \pm 0.82	65.12 \pm 0.82	65.12 \pm 0.82
CVIR	81.82 \pm 0.22	81.30 \pm 0.43	82.23 \pm 0.55	84.21 \pm 0.65	84.46 \pm 0.67	84.26 \pm 0.73	83.89 \pm 0.23	83.69 \pm 0.33	84.19 \pm 0.44
P3MIX-E	49.43 \pm 0.21	49.43 \pm 0.21	49.43 \pm 0.21	50.48 \pm 0.78	50.48 \pm 0.78	50.48 \pm 0.78	66.16 \pm 0.19	66.16 \pm 0.19	66.16 \pm 0.19
P3MIX-C	76.80 \pm 2.47	77.25 \pm 2.39	78.05 \pm 1.51	82.45 \pm 0.78	82.76 \pm 0.70	82.02 \pm 1.14	79.99 \pm 1.54	80.12 \pm 1.54	80.11 \pm 1.42
LBE	81.35 \pm 0.44	76.83 \pm 2.00	83.98 \pm 0.25	88.38 \pm 0.77	87.84 \pm 1.54	88.91 \pm 0.45	83.13 \pm 0.56	77.57 \pm 2.38	83.41 \pm 0.38
Count Loss	63.07 \pm 4.67	63.07 \pm 4.67	62.50 \pm 4.23	68.24 \pm 8.72	68.24 \pm 8.72	66.15 \pm 7.13	69.57 \pm 3.70	69.57 \pm 3.70	68.43 \pm 2.80
Robust-PU	91.17 \pm 0.54	89.82 \pm 0.04	90.97 \pm 0.47	95.86 \pm 0.31	96.03 \pm 0.36	95.76 \pm 0.25	91.33 \pm 0.65	89.80 \pm 0.23	90.93 \pm 0.49
Holistic-PU	83.87 \pm 0.82	78.68 \pm 3.95	84.35 \pm 0.46	91.22 \pm 0.68	91.95 \pm 0.77	90.27 \pm 0.28	85.51 \pm 0.53	82.14 \pm 2.54	85.68 \pm 0.37
PUe	74.93 \pm 1.18	76.20 \pm 1.72	78.45 \pm 0.67	86.50 \pm 0.65	87.71 \pm 0.88	87.06 \pm 0.83	78.33 \pm 0.73	77.95 \pm 0.96	78.35 \pm 0.75
GLWS	85.05 \pm 0.62	81.90 \pm 0.92	85.50 \pm 0.26	91.14 \pm 0.21	91.65 \pm 0.13	90.89 \pm 0.19	86.41 \pm 0.50	84.29 \pm 0.43	86.66 \pm 0.29
uPU	76.60 \pm 0.99	76.82 \pm 1.98	78.07 \pm 0.64	85.60 \pm 0.58	87.82 \pm 0.21	87.28 \pm 0.57	78.71 \pm 0.72	78.17 \pm 0.50	78.40 \pm 0.52
uPU-c	91.98\pm0.31	90.90 \pm 0.57	91.78 \pm 0.46	95.57 \pm 0.43	96.39 \pm 0.38	95.46 \pm 0.44	91.78 \pm 0.29	90.18 \pm 0.75	91.53 \pm 0.46
nnPU	86.12 \pm 0.31	76.33 \pm 3.01	87.28 \pm 0.50	94.95 \pm 0.15	95.76 \pm 0.07	95.64 \pm 0.17	86.97 \pm 0.09	80.53 \pm 2.01	87.71 \pm 0.36
nnPU-c	91.97 \pm 0.27	90.43 \pm 0.85	92.05 \pm 0.19	95.71 \pm 0.10	95.78 \pm 0.44	95.79 \pm 0.14	91.90\pm0.22	89.76 \pm 1.30	91.89 \pm 0.18
nnPU-GA	84.67 \pm 0.92	83.87 \pm 0.47	85.98 \pm 0.48	93.08 \pm 0.45	94.37 \pm 0.38	93.34 \pm 0.51	85.37 \pm 0.64	85.02 \pm 0.40	86.27 \pm 0.46
nnPU-GA-c	90.98 \pm 0.29	87.10 \pm 0.93	90.98 \pm 0.29	94.70 \pm 0.24	96.08 \pm 0.34	94.70 \pm 0.24	90.89 \pm 0.24	85.10 \pm 1.36	90.89 \pm 0.24
PUSB	86.08 \pm 0.51	86.08 \pm 0.51	85.73 \pm 0.77	86.24 \pm 0.40	86.24 \pm 0.40	85.85 \pm 0.70	87.00 \pm 0.37	87.00 \pm 0.37	86.49 \pm 0.75
PUSB-c	91.73 \pm 0.22	91.08\pm0.60	92.17\pm0.28	91.76 \pm 0.20	91.12 \pm 0.55	92.19 \pm 0.28	91.74 \pm 0.28	90.80\pm0.58	92.17\pm0.30
VPU	87.07 \pm 0.60	66.03 \pm 2.83	88.85 \pm 0.52	94.39 \pm 0.25	96.08 \pm 0.20	94.69 \pm 0.32	87.58 \pm 0.15	47.88 \pm 6.12	88.82 \pm 0.45
VPU-c	91.38 \pm 0.33	87.83 \pm 2.25	91.93 \pm 0.44	95.89\pm0.17	96.81\pm0.29	96.68\pm0.30	91.64 \pm 0.24	86.29 \pm 3.05	91.92 \pm 0.42
Dist-PU	47.97 \pm 0.63	47.97 \pm 0.63	47.97 \pm 0.63	50.95 \pm 1.86	50.95 \pm 1.86	50.95 \pm 1.86	64.83 \pm 0.58	64.83 \pm 0.58	64.83 \pm 0.58
Dist-PU-c	47.97 \pm 0.63	47.97 \pm 0.63	47.97 \pm 0.63	50.88 \pm 1.92	50.88 \pm 1.92	50.88 \pm 1.92	64.83 \pm 0.58	64.83 \pm 0.58	64.83 \pm 0.58

1696
1697
1698
1699
1700
1701
1702
1703
Table 24: Test results (mean \pm std) of precision and recall score for each algorithm on Letter (Case 1)
with estimated inaccurate class priors. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Precision			Recall		
Val metric	PA	PAUC	OA	PA	PAUC	OA
PUBN	73.37 \pm 9.45	78.69 \pm 11.63	76.87 \pm 10.88	97.61 \pm 1.20	91.60 \pm 3.43	94.69 \pm 2.17
PAN	48.30 \pm 0.91	48.30 \pm 0.91	48.30 \pm 0.91	100.00\pm0.00	100.00\pm0.00	100.00\pm0.00
CVIR	74.04 \pm 0.38	73.03 \pm 0.65	74.60 \pm 0.75	96.80 \pm 0.56	98.03 \pm 0.52	96.63 \pm 0.38
P3MIX-E	49.43 \pm 0.21	49.43 \pm 0.21	49.43 \pm 0.21	100.00\pm0.00	100.00\pm0.00	100.00\pm0.00
P3MIX-C	70.06 \pm 2.67	70.83 \pm 2.62	72.24 \pm 1.18	93.55 \pm 0.90	92.50 \pm 0.79	89.93 \pm 2.01
LBE	75.17 \pm 0.22	77.62 \pm 7.31	85.55 \pm 1.12	93.00 \pm 1.20	83.47 \pm 10.21	81.48 \pm 1.39
Count Loss	58.66 \pm 2.88	58.66 \pm 2.88	58.99 \pm 3.12	85.59 \pm 5.38	85.59 \pm 5.38	81.63 \pm 2.17
Robust-PU	88.73 \pm 0.25	89.35 \pm 2.10	90.46 \pm 0.85	94.12 \pm 1.40	90.63 \pm 2.56	91.43 \pm 0.14
Holistic-PU	76.80 \pm 1.40	71.33 \pm 4.12	77.97 \pm 0.63	96.58 \pm 0.90	97.57 \pm 0.91	95.09 \pm 0.14
PUe	67.40 \pm 1.35	71.85 \pm 4.01	76.41 \pm 2.14	93.61 \pm 0.96	87.24 \pm 5.67	80.91 \pm 3.08
GLWS	78.10 \pm 1.16	73.60 \pm 0.86	78.98 \pm 0.50	96.76 \pm 0.60	98.66 \pm 0.39	96.01 \pm 0.32
uPU	69.87 \pm 1.49	72.46 \pm 3.46	74.21 \pm 0.36	90.23 \pm 0.61	86.10 \pm 4.07	83.10 \pm 0.74
uPU-c	90.20 \pm 0.63	93.23 \pm 1.73	90.42 \pm 0.53	93.45 \pm 0.94	87.66 \pm 2.93	92.70 \pm 1.10
nnPU	80.13 \pm 0.90	67.84 \pm 3.08	82.93 \pm 1.25	95.16 \pm 1.06	99.45 \pm 0.32	93.16 \pm 0.80
nnPU-c	90.33 \pm 0.90	92.93 \pm 1.88	91.26 \pm 0.36	93.57 \pm 0.73	87.32 \pm 3.88	92.53 \pm 0.11
nnPU-GA	80.05 \pm 2.14	77.60 \pm 0.78	82.47 \pm 0.70	91.74 \pm 1.59	94.05 \pm 0.51	90.46 \pm 0.54
nnPU-GA-c	89.52 \pm 0.50	96.71 \pm 0.78	89.52 \pm 0.50	92.30 \pm 0.22	76.14 \pm 2.55	92.30 \pm 0.22
PUSB	81.08 \pm 1.87	81.08 \pm 1.87	81.46 \pm 1.64	94.11 \pm 1.62	94.11 \pm 1.62	92.29 \pm 0.90
PUSB-c	90.72\pm1.01	92.92 \pm 1.25	91.22 \pm 0.58	92.83 \pm 0.75	88.93 \pm 1.95	93.14 \pm 0.27
VPU	84.64 \pm 2.59	99.48\pm0.42	89.00 \pm 1.49	91.30 \pm 2.96	32.17 \pm 5.34	88.72 \pm 0.57
VPU-c	88.92 \pm 0.73	95.84 \pm 0.96	91.94\pm0.51	94.55 \pm 0.31	79.18 \pm 5.69	91.92 \pm 0.75
Dist-PU	47.97 \pm 0.63	47.97 \pm 0.63	47.97 \pm 0.63	100.00\pm0.00	100.00\pm0.00	100.00\pm0.00
Dist-PU-c	47.97 \pm 0.63	47.97 \pm 0.63	47.97 \pm 0.63	100.00\pm0.00	100.00\pm0.00	100.00\pm0.00

1728
1729
1730
1731
1732 **Table 25:** Test results (mean \pm std) of accuracy, AUC, and F1 score for each algorithm on USPS
1733 (Case 1) with estimated inaccurate class priors. The best performance w.r.t. each validation metric
1734 is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Test ACC			AUC			Test F1		
Val metric	PA	PAUC	OA	PA	PAUC	OA	PA	PAUC	OA
PUBN	93.72\pm0.25	93.66\pm0.35	93.90\pm0.18	98.18 \pm 0.04	98.14 \pm 0.04	98.22 \pm 0.03	92.48\pm0.33	92.34\pm0.45	92.74\pm0.23
PAN	85.70 \pm 0.15	83.89 \pm 0.28	85.68 \pm 0.14	90.46 \pm 0.13	90.92 \pm 0.12	90.50 \pm 0.12	80.20 \pm 0.27	76.92 \pm 0.46	80.16 \pm 0.25
CVIR	81.12 \pm 0.22	81.03 \pm 0.24	81.17 \pm 0.18	93.21 \pm 0.72	93.25 \pm 0.73	93.08 \pm 0.80	81.25 \pm 0.22	81.21 \pm 0.19	81.28 \pm 0.15
P3MIX-E	88.77 \pm 0.28	89.27 \pm 0.15	88.94 \pm 0.16	95.48 \pm 0.07	95.70 \pm 0.05	95.57 \pm 0.09	86.17 \pm 0.26	86.79 \pm 0.13	86.37 \pm 0.24
P3MIX-C	91.26 \pm 0.07	91.35 \pm 0.12	91.41 \pm 0.11	97.24 \pm 0.09	97.22 \pm 0.03	97.25 \pm 0.04	89.73 \pm 0.09	89.80 \pm 0.14	89.88 \pm 0.14
LBE	90.77 \pm 0.20	91.93 \pm 0.45	92.01 \pm 0.46	97.47 \pm 0.24	97.36 \pm 0.21	98.05 \pm 0.11	89.90 \pm 0.17	90.41 \pm 0.74	90.98 \pm 0.30
Count Loss	91.76 \pm 0.66	91.58 \pm 0.40	92.14 \pm 0.34	97.54 \pm 0.22	97.44 \pm 0.21	97.40 \pm 0.10	90.55 \pm 0.75	90.30 \pm 0.54	90.86 \pm 0.35
Robust-PU	92.99 \pm 0.21	92.81 \pm 0.29	93.07 \pm 0.19	97.76 \pm 0.15	97.70 \pm 0.08	97.79 \pm 0.17	91.51 \pm 0.28	91.27 \pm 0.40	91.62 \pm 0.23
Holistic-PU	93.29 \pm 0.24	93.16 \pm 0.10	93.24 \pm 0.23	97.40 \pm 0.20	97.43 \pm 0.16	97.40 \pm 0.23	92.18 \pm 0.30	91.99 \pm 0.19	92.10 \pm 0.27
PUe	84.55 \pm 0.31	84.35 \pm 0.71	84.84 \pm 0.39	94.36 \pm 0.32	94.56 \pm 0.08	94.40 \pm 0.15	83.52 \pm 0.37	83.14 \pm 0.57	83.55 \pm 0.47
GLWS	88.82 \pm 0.39	87.78 \pm 0.44	88.39 \pm 0.24	98.28\pm0.05	98.31\pm0.05	98.23 \pm 0.05	88.26 \pm 0.36	87.29 \pm 0.40	87.84 \pm 0.21
uPU	82.74 \pm 0.60	83.99 \pm 0.49	83.56 \pm 0.84	92.97 \pm 0.18	93.36 \pm 0.13	92.06 \pm 0.66	81.39 \pm 0.60	82.14 \pm 0.37	81.89 \pm 0.77
uPU-c	92.64 \pm 0.46	92.23 \pm 0.04	93.16 \pm 0.32	98.07 \pm 0.03	97.80 \pm 0.08	98.06 \pm 0.01	90.91 \pm 0.65	90.43 \pm 0.04	91.64 \pm 0.40
nnPU	85.50 \pm 0.38	80.15 \pm 0.58	84.80 \pm 0.63	97.65 \pm 0.07	97.73 \pm 0.02	97.59 \pm 0.04	85.24 \pm 0.31	80.97 \pm 0.45	84.65 \pm 0.53
nnPU-c	92.73 \pm 0.05	91.93 \pm 0.14	93.14 \pm 0.27	97.78 \pm 0.12	97.63 \pm 0.20	97.90 \pm 0.10	91.09 \pm 0.10	90.00 \pm 0.17	91.62 \pm 0.36
nnPU-GA	92.56 \pm 0.61	91.50 \pm 0.44	92.79 \pm 0.12	97.34 \pm 0.35	97.04 \pm 0.20	97.41 \pm 0.18	91.35 \pm 0.58	90.26 \pm 0.44	91.66 \pm 0.11
nnPU-GA-c	92.18 \pm 0.35	92.14 \pm 0.63	92.63 \pm 0.21	97.86 \pm 0.11	97.81 \pm 0.05	97.90 \pm 0.04	90.32 \pm 0.45	90.21 \pm 0.91	90.96 \pm 0.27
PUSB	84.97 \pm 1.26	84.97 \pm 1.26	85.19 \pm 1.09	86.82 \pm 1.06	86.82 \pm 1.06	86.83 \pm 1.05	84.83 \pm 1.04	84.83 \pm 1.04	84.82 \pm 1.05
PUSB-c	92.79 \pm 0.40	92.58 \pm 0.18	92.87 \pm 0.12	92.18 \pm 0.47	91.86 \pm 0.28	92.27 \pm 0.15	91.19 \pm 0.52	90.86 \pm 0.29	91.30 \pm 0.16
VPU	83.74 \pm 1.41	60.62 \pm 2.37	83.74 \pm 1.41	95.79 \pm 0.95	97.56 \pm 0.06	95.79 \pm 0.95	76.55 \pm 2.48	11.80 \pm 9.35	76.55 \pm 2.48
VPU-c	93.56 \pm 0.29	82.03 \pm 8.04	93.36 \pm 0.29	98.08 \pm 0.05	97.79 \pm 0.38	97.97 \pm 0.10	92.09 \pm 0.43	66.66 \pm 19.02	91.89 \pm 0.41
Dist-PU	86.31 \pm 0.07	83.62 \pm 0.93	86.26 \pm 0.21	89.91 \pm 0.36	91.63 \pm 0.03	90.75 \pm 0.27	85.56 \pm 0.13	81.76 \pm 0.93	85.50 \pm 0.19
Dist-PU-c	92.01 \pm 0.42	90.90 \pm 0.54	91.94 \pm 0.46	98.20 \pm 0.14	98.28\pm0.10	90.00 \pm 0.57	88.34 \pm 0.81	89.88 \pm 0.64	

1751
1752 **Table 26:** Test results (mean \pm std) of precision and recall score for each algorithm on USPS (Case 1)
1753 with estimated inaccurate class priors. The best performance w.r.t. each validation metric is shown
1754 in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric	Precision			Recall		
Val metric	PA	PAUC	OA	PA	PAUC	OA
PUBN	93.78 \pm 0.63	94.39 \pm 0.20	93.61 \pm 0.24	91.25 \pm 0.89	90.39 \pm 0.70	91.88 \pm 0.49
PAN	96.94\pm0.10	97.76\pm0.23	97.00 \pm 0.14	68.39 \pm 0.42	63.41 \pm 0.55	68.31 \pm 0.39
CVIR	70.10 \pm 0.23	69.96 \pm 0.30	70.18 \pm 0.22	96.63 \pm 0.35	96.78 \pm 0.14	96.55 \pm 0.22
P3MIX-E	90.37 \pm 2.19	90.94 \pm 2.03	90.53 \pm 2.05	82.63 \pm 2.08	83.25 \pm 2.00	82.86 \pm 2.16
P3MIX-C	89.38 \pm 0.09	89.68 \pm 0.17	89.75 \pm 0.15	90.08 \pm 0.19	89.92 \pm 0.28	90.00 \pm 0.25
LBE	83.77 \pm 0.51	90.85 \pm 1.93	87.72 \pm 2.62	97.02 \pm 0.40	90.39 \pm 3.13	94.94 \pm 2.40
Count Loss	88.10 \pm 0.84	88.05 \pm 0.55	89.66 \pm 0.91	93.14 \pm 0.70	92.75 \pm 1.49	92.12 \pm 0.49
Robust-PU	93.97 \pm 0.10	93.87 \pm 0.27	93.95 \pm 0.42	89.18 \pm 0.58	88.82 \pm 0.88	89.41 \pm 0.44
Holistic-PU	91.02 \pm 0.12	91.19 \pm 0.77	91.20 \pm 0.38	93.37 \pm 0.53	92.86 \pm 1.14	93.02 \pm 0.36
PUe	76.19 \pm 0.55	76.66 \pm 1.52	77.28 \pm 0.54	92.47 \pm 1.15	91.02 \pm 1.72	90.98 \pm 1.15
GLWS	79.53 \pm 0.59	78.01 \pm 0.65	78.94 \pm 0.39	99.14\pm0.03	99.10 \pm 0.03	99.02\pm0.08
uPU	74.92 \pm 0.76	77.96 \pm 1.11	76.85 \pm 1.34	89.10 \pm 0.50	86.86 \pm 0.75	87.69 \pm 0.28
uPU-c	95.14 \pm 0.44	94.45 \pm 0.30	94.91 \pm 0.25	87.10 \pm 1.39	86.75 \pm 0.26	88.59 \pm 0.58
nnPU	74.95 \pm 0.56	68.20 \pm 0.63	74.04 \pm 0.88	98.82 \pm 0.15	99.65\pm0.00	98.82 \pm 0.11
nnPU-c	94.68 \pm 0.40	94.71 \pm 0.23	94.87 \pm 0.10	87.76 \pm 0.53	85.73 \pm 0.14	88.59 \pm 0.58
nnPU-GA	90.45 \pm 2.08	87.77 \pm 1.24	89.88 \pm 0.51	92.43 \pm 1.14	92.98 \pm 1.08	93.53 \pm 0.42
nnPU-GA-c	94.90 \pm 0.35	95.20 \pm 0.45	94.62 \pm 0.10	86.16 \pm 0.57	85.80 \pm 1.89	87.57 \pm 0.45
PUSB	74.33 \pm 1.73	74.33 \pm 1.73	75.01 \pm 1.24	98.90 \pm 0.32	98.90 \pm 0.32	97.61 \pm 0.94
PUSB-c	94.46 \pm 0.35	94.91 \pm 0.66	94.51 \pm 0.18	88.16 \pm 0.95	87.18 \pm 1.03	88.31 \pm 0.40
VPU	97.52\pm0.14	66.12 \pm 27.00	97.52\pm0.14	63.22 \pm 3.43	7.14 \pm 5.68	63.22 \pm 3.43
VPU-c	95.76 \pm 0.49	96.07 \pm 1.55	95.03 \pm 0.26	88.75 \pm 1.24	60.90 \pm 20.31	88.98 \pm 0.98
Dist-PU	77.33 \pm 0.16	77.99 \pm 3.06	77.34 \pm 0.49	95.76 \pm 0.55	86.90 \pm 4.14	95.61 \pm 0.67
Dist-PU-c	95.67 \pm 0.22	96.36 \pm 0.23	95.95 \pm 0.18	84.98 \pm 0.88	81.61 \pm 1.52	84.55 \pm 1.14

1782
1783
1784
1785
1786
1787 **Table 27: Test results (mean \pm std) of accuracy, AUC, and F1 score for each algorithm on the Credit**
1788 **Fraud dataset. The best performance w.r.t. each validation metric is shown in bold. Here, “-c”**
1789 **indicates using the proposed calibration technique in Algorithm 1.**

Test metric	Test ACC			AUC			Test F1		
Val metric	PA	PAUC	OA	PA	PAUC	OA	PA	PAUC	OA
PUBN	96.31 \pm 2.01	90.02 \pm 5.66	97.13 \pm 0.89	95.22 \pm 0.49	97.83\pm1.28	94.76 \pm 1.20	98.09 \pm 1.06	94.45 \pm 3.24	98.53 \pm 0.46
PAN	94.54 \pm 2.90	19.44 \pm 7.80	94.09 \pm 1.58	87.74 \pm 3.86	95.15 \pm 0.33	87.72 \pm 1.99	97.12 \pm 1.55	30.26 \pm 10.65	96.93 \pm 0.83
CVIR	98.69 \pm 0.95	99.61 \pm 0.20	99.88 \pm 0.04	87.01 \pm 1.57	90.36 \pm 0.36	91.14 \pm 0.86	99.33 \pm 0.48	99.80 \pm 0.10	99.94 \pm 0.02
P3MIX-E	98.38 \pm 0.45	96.38 \pm 1.55	98.21 \pm 1.09	95.61 \pm 1.36	94.55 \pm 1.77	98.08\pm0.55	99.18 \pm 0.23	98.14 \pm 0.80	99.09 \pm 0.56
P3MIX-C	99.07 \pm 0.58	98.71 \pm 0.48	97.26 \pm 1.13	88.81 \pm 1.27	94.64 \pm 1.97	95.43 \pm 0.66	99.53 \pm 0.30	99.35 \pm 0.25	98.60 \pm 0.58
LBE	90.96 \pm 3.02	83.66 \pm 8.10	95.02 \pm 1.73	96.41 \pm 0.04	96.51 \pm 1.02	96.02 \pm 0.62	95.18 \pm 1.63	90.41 \pm 5.12	97.42 \pm 0.92
Count Loss	90.46 \pm 2.26	94.78 \pm 2.16	94.82 \pm 0.95	91.06 \pm 2.28	93.08 \pm 1.16	94.94 \pm 0.73	94.94 \pm 1.25	97.28 \pm 1.13	97.33 \pm 0.50
Robust-PU	92.51 \pm 2.86	80.53 \pm 7.39	94.88 \pm 1.73	96.48 \pm 0.46	96.41 \pm 0.64	96.26 \pm 1.82	96.03 \pm 1.54	88.61 \pm 4.73	97.35 \pm 0.90
Holistic-PU	90.11 \pm 0.30	85.14 \pm 2.38	90.96 \pm 1.49	96.31 \pm 0.40	95.85 \pm 0.94	93.75 \pm 0.68	94.79 \pm 0.16	91.90 \pm 1.40	95.24 \pm 0.82
PUE	97.21 \pm 1.51	74.09 \pm 20.61	98.49 \pm 0.46	94.17 \pm 1.36	94.22 \pm 1.86	97.94 \pm 0.58	98.57 \pm 0.78	79.12 \pm 16.78	99.24 \pm 0.23
GLWS	99.20 \pm 0.53	99.81 \pm 0.05	99.23 \pm 0.55	94.35 \pm 1.77	95.28 \pm 1.79	95.73 \pm 1.89	99.60 \pm 0.27	99.90 \pm 0.03	99.61 \pm 0.28
uPU	96.97 \pm 1.72	98.12 \pm 0.88	99.12 \pm 0.20	94.03 \pm 2.03	94.03 \pm 1.23	95.28 \pm 1.80	98.44 \pm 0.90	99.04 \pm 0.45	99.56 \pm 0.10
uPU-c	95.46 \pm 0.73	88.54 \pm 4.56	93.80 \pm 0.71	96.84\pm1.25	97.12 \pm 0.95	96.80 \pm 1.10	97.67 \pm 0.38	93.72 \pm 2.65	96.79 \pm 0.38
nnPU	98.98 \pm 0.61	99.92\pm0.01	99.89 \pm 0.02	92.41 \pm 3.14	95.99 \pm 1.14	93.62 \pm 1.97	99.48 \pm 0.31	99.96\pm0.00	99.95 \pm 0.01
nnPU-c	92.96 \pm 1.83	92.44 \pm 3.60	94.99 \pm 0.09	95.10 \pm 1.35	97.31 \pm 0.67	94.62 \pm 0.88	96.32 \pm 0.99	95.95 \pm 1.99	97.43 \pm 0.04
nnPU-GA	88.02 \pm 6.19	78.64 \pm 3.11	95.33 \pm 2.10	96.80 \pm 1.28	93.94 \pm 0.82	96.60 \pm 1.66	93.26 \pm 3.66	87.92 \pm 2.00	97.57 \pm 1.11
nnPU-GA-c	90.35 \pm 4.04	83.02 \pm 6.83	92.74 \pm 0.14	95.45 \pm 0.34	94.87 \pm 0.16	96.73 \pm 0.79	94.78 \pm 2.27	90.24 \pm 4.15	96.23 \pm 0.08
PUSB	99.00 \pm 0.56	99.00 \pm 0.56	99.03 \pm 0.74	92.20 \pm 0.56	92.20 \pm 0.56	91.06 \pm 0.73	99.50 \pm 0.28	99.50 \pm 0.28	99.51 \pm 0.38
PUSB-c	94.41 \pm 0.81	90.41 \pm 2.41	96.02 \pm 0.50	92.78 \pm 2.08	93.26 \pm 1.38	93.22 \pm 0.41	97.11 \pm 0.43	94.91 \pm 1.35	97.96 \pm 0.26
Dist-PU	99.94\pm0.01	99.92\pm0.00	99.93\pm0.01	84.69 \pm 1.25	88.55 \pm 2.63	84.25 \pm 2.41	99.97\pm0.00	99.96\pm0.00	99.96\pm0.00
Dist-PU-c	99.59 \pm 0.29	99.16 \pm 0.62	99.58 \pm 0.28	88.68 \pm 1.83	91.36 \pm 3.18	86.33 \pm 3.47	99.79 \pm 0.15	99.58 \pm 0.31	99.79 \pm 0.14

1804
1805
1806
1807
1808
1809
1810
1811
1812 **Table 28: Test results (mean \pm std) of precision and recall for each algorithm on the Credit Fraud**
1813 **dataset. The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates**
1814 **using the proposed calibration technique in Algorithm 1.**

Test metric	Precision			Recall		
Val metric	PA	PAUC	OA	PA	PAUC	OA
PUBN	99.98 \pm 0.00	99.99 \pm 0.00	99.98 \pm 0.00	96.32 \pm 2.01	90.01 \pm 5.68	97.15 \pm 0.90
PAN	99.97 \pm 0.00	99.98 \pm 0.01	99.95 \pm 0.01	94.56 \pm 2.91	19.30 \pm 7.82	94.12 \pm 1.58
CVIR	99.96 \pm 0.00	99.97 \pm 0.00	99.97 \pm 0.00	98.72 \pm 0.95	99.64 \pm 0.20	99.91 \pm 0.04
P3MIX-E	99.98 \pm 0.00	99.98 \pm 0.00	99.97 \pm 0.01	98.40 \pm 0.45	96.40 \pm 1.55	98.23 \pm 1.10
P3MIX-C	99.96 \pm 0.01	99.96 \pm 0.01	99.98 \pm 0.00	99.11 \pm 0.59	98.75 \pm 0.49	97.28 \pm 1.13
LBE	99.98 \pm 0.00	99.99 \pm 0.00	99.98 \pm 0.00	90.96 \pm 3.03	83.64 \pm 8.12	95.03 \pm 1.73
Count Loss	99.98 \pm 0.00	99.96 \pm 0.01	99.98 \pm 0.00	90.47 \pm 2.26	94.81 \pm 2.18	94.83 \pm 0.95
Robust-PU	99.98 \pm 0.00	99.98 \pm 0.00	99.99\pm0.00	92.51 \pm 2.87	80.51 \pm 7.41	94.89 \pm 1.74
Holistic-PU	99.98 \pm 0.00	99.99 \pm 0.00	99.98 \pm 0.00	90.11 \pm 0.30	85.12 \pm 2.39	90.97 \pm 1.50
PUE	99.98 \pm 0.00	99.98 \pm 0.01	99.98 \pm 0.01	97.22 \pm 1.51	74.07 \pm 20.65	98.52 \pm 0.47
GLWS	99.97 \pm 0.01	99.96 \pm 0.00	99.97 \pm 0.00	99.22 \pm 0.53	99.85 \pm 0.05	99.26 \pm 0.56
uPU	99.98 \pm 0.00	99.97 \pm 0.00	99.98 \pm 0.00	96.99 \pm 1.73	98.14 \pm 0.88	99.14 \pm 0.19
uPU-c	99.98 \pm 0.00	99.99 \pm 0.00	99.99\pm0.00	95.47 \pm 0.73	88.53 \pm 4.57	93.80 \pm 0.72
nnPU	99.96 \pm 0.00	99.96 \pm 0.00	99.97 \pm 0.01	99.02 \pm 0.62	99.96 \pm 0.01	99.92 \pm 0.02
nnPU-c	99.98 \pm 0.00	99.99 \pm 0.01	99.98 \pm 0.00	92.96 \pm 1.83	92.44 \pm 3.62	95.00 \pm 0.08
nnPU-GA	99.99 \pm 0.01	99.98 \pm 0.00	99.99\pm0.00	88.01 \pm 6.20	78.62 \pm 3.11	95.34 \pm 2.10
nnPU-GA-c	99.98 \pm 0.00	99.98 \pm 0.00	99.99\pm0.00	90.35 \pm 4.05	83.01 \pm 6.85	92.74 \pm 0.14
PUSB	99.97 \pm 0.00	99.97 \pm 0.00	99.97 \pm 0.00	99.03 \pm 0.56	99.03 \pm 0.56	99.06 \pm 0.74
PUSB-c	99.98 \pm 0.01	99.99 \pm 0.00	99.98 \pm 0.00	94.41 \pm 0.81	90.40 \pm 2.42	96.03 \pm 0.51
Dist-PU	99.96 \pm 0.01	99.95 \pm 0.00	99.96 \pm 0.01	99.98\pm0.00	99.97\pm0.00	99.97\pm0.00
Dist-PU-c	99.96 \pm 0.00	99.96 \pm 0.01	99.96 \pm 0.01	99.63 \pm 0.29	99.20 \pm 0.62	99.62 \pm 0.28