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ABSTRACT

Positive-unlabeled (PU) learning is a weakly supervised binary classification
problem, in which the goal is to learn a binary classifier from only positive and
unlabeled data, without access to negative data. In recent years, many PU learning
algorithms have been developed to improve model performance. However, exper-
imental settings are highly inconsistent, making it difficult to identify which algo-
rithm performs better. In this paper, we propose the first PU learning benchmark
to systematically compare PU learning algorithms. During our implementation,
we identify subtle yet critical factors that affect the realistic and fair evaluation of
PU learning algorithms. On the one hand, many PU learning algorithms rely on
a validation set that includes negative data for model selection. This is unrealis-
tic in traditional PU learning settings, where no negative data are available. To
handle this problem, we systematically investigate model selection criteria for PU
learning. On the other hand, the problem settings and solutions of PU learning
have different families, i.e., the one-sample and two-sample settings. However,
existing evaluation protocols are heavily biased towards the one-sample setting
and neglect the significant difference between them. We identify the internal label
shift problem of unlabeled training data for the one-sample setting and propose
a simple yet effective calibration approach to ensure fair comparisons within and
across families. We hope our framework will provide an accessible, realistic, and
fair environment for evaluating PU learning algorithms in the future.

1 INTRODUCTION

In binary classification, both positive and negative data are usually necessary to train an effective
classifier. However, in many real-world applications, collecting negative data can be more challeng-
ing than collecting positive data (Hsieh et al., 2015; Zhou et al., 2021). In positive-unlabeled (PU)
learning, only positive and unlabeled data are needed. The objective is to train a binary classifier
that assigns positive or negative labels to unseen instances. Therefore, PU learning is a promising
weakly supervised binary classification approach for many real-world problems where negative data
are difficult to obtain, including recommender systems (Yi et al., 2017; Chen et al., 2023), anomaly
detection (Ju et al., 2020; Tian et al., 2024; Takahashi et al., 2025), knowledge graphs (Yin et al.,
2024), and link prediction (Wu et al., 2024; Mao et al., 2025).

In recent years, there has been significant progress in PU learning algorithms. PU learning can be
divided into three groups: cost-sensitive PU learning algorithms (du Plessis et al., 2014; Zhao et al.,
2022), sample-selection PU learning algorithms (Chen et al., 2020b; Wang et al., 2023a), and biased
PU learning algorithms (Teisseyre et al., 2025). Cost-sensitive algorithms assign different weights to
positive and unlabeled data to approximate the classification risk. Sample-selection algorithms select
high-confidence negative data from unlabeled data, which are then given to supervised learning
algorithms. Biased PU learning algorithms model the biased generation process of positive data and
exploit various correction approaches.

Although many PU learning algorithms have been developed to improve generalization perfor-
mance, there is a lack of a unified experimental setup in the literature for fairly comparing different
PU learning algorithms. The experimental settings of different papers are not consistent with each
other, making it difficult to tell which algorithm is better. It has been observed that subtle differ-
ences in experimental settings can greatly affect the model performance of PU learning algorithms.
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Additionally, subtle algorithm details, including data augmentation, algorithm tricks, and warm-up
strategies, can also greatly affect model performance (Zhu et al., 2023b; Wang et al., 2023a). There-
fore, a unified experimental protocol is necessary to further promote the development of PU learning
algorithms. In this paper, we propose the first PU learning benchmark to systematically and fairly
compare state-of-the-art PU learning algorithms with unified experimental settings. We propose
careful and unified implementations of the data generation, algorithm training, and evaluation pro-
cesses for PU learning algorithms. This makes it easier for users to validate the effectiveness of their
newly developed algorithms.

In our implementations, we observe that many PU learning algorithms rely on a validation set con-
taining both positive and negative data for meta-learning, model selection, or early stopping (Chen
et al., 2020b; Zhu et al., 2023b; Long et al., 2024). However, accessing negative data is unrealistic
and contradicts the original motivation of PU learning (Elkan & Noto, 2008), which goes against
the advantages of PU learning in not depending on negative data. Actually, if we can obtain some
negative data, we can directly apply supervised learning techniques, which can greatly boost model
performance (Sakai et al., 2017). Therefore, standardizing the composition and use of the validation
set is vital to fairly and practically evaluating PU learning algorithms. In this paper, we system-
atically revisit the model selection criteria for PU learning by using only positive and unlabeled
validation data, and validate their effectiveness with both theoretical and empirical analyses.
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Figure 1: An example of the comparison of the distribution
of unlabeled training data in different PU learning settings.

In addition, there are different fam-
ilies and corresponding solutions of
PU learning algorithms, but exist-
ing evaluations fail to consider the
differences between these families.
From the perspective of data gener-
ation processes, there are two types
of PU learning problems: the one-
sample (OS) and two-sample (TS)
settings. In the OS setting, the pos-
itive and unlabeled training sets are
generated sequentially. An unlabeled
dataset is first sampled from the marginal density. Then, if an instance in the unlabeled dataset is
positive, its positive label is observed with a constant probability. If an instance in the unlabeled
dataset is negative, its label is never observed, and the instance remains unlabeled. Finally, the ob-
served positive data constitute the positive training set, while the remaining unlabeled data constitute
the unlabeled training set. In the TS setting, the positive and unlabeled training sets are generated in-
dependently, meaning that the density of unlabeled training data is the same as the marginal density.
This indicates that the density of unlabeled training data is different in these two settings. Figure 1
shows an example of the distribution of unlabeled data under the OS and TS settings. We can find
that the class priors of the two settings are different. This causes an internal label shift (ILS) problem
for the unlabeled training data when adopting the OS setting as the evaluation setting. Unfortunately,
this problem has typically been overlooked. Existing evaluation protocols are heavily biased towards
the OS setting and compare OS and TS algorithms together without specific manipulations. This can
deteriorate the performance of TS PU learning algorithms and lead to unfair experimental compar-
isons. Therefore, we identify the ILS problem for the first time in the PU learning literature and
propose a simple yet effective calibration approach to overcome it with theoretical guarantees.

We draw the following key takeaways from our benchmark results:

• No single algorithm outperforms all others on every dataset or evaluation metric; some early,
simple methods already achieve strong classification performance. Therefore, we should choose
which PU learning algorithm to use on a case-by-case basis.

• The model-selection problem in PU learning must be addressed when designing new algorithms
or conducting empirical comparisons, and different selection criteria should be used for different
test metrics.

• The performance of TS PU learning algorithms degrades significantly when they are evaluated in
the OS setting without adaptation, so OS protocols in the existing PU learning literature do not
reflect the true performance of TS methods. Hence, differences between OS and TS settings must
be considered to ensure fair cross-family comparisons.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

In this section, we present the background of PU learning and existing state-of-the-art algorithms.

2.1 POSITIVE-UNLABELED LEARNING

Problem Setting. Let X Ď Rd denote the d-dimensional feature space and Y “ t`1,´1u denote
the binary label space. Let ppx, yq denote the joint probability density over the random variables
px, yq P X ˆ Y . In PU learning, we are given a positive training set DP “ tpxi,`1qu

nP

i“1 and an
unlabeled training set DU “ txiu

nP`nU

i“nP`1. Let π “ ppy “ `1q denote the class prior probability
of the positive class. Let ppx|y “ `1q and ppx|y “ ´1q denote the positive and negative class-
conditional densities, respectively. Let ppxq denote the marginal density. The goal of PU learning is
to learn a binary classifier f : X Ñ R from DP

Ť

DU that maximizes the expected accuracy

ACCpfq “ Eppx,yqI pyfpxq ě 0q , (1)

where E denotes the expectation and I denotes the indicator function. However, since the 0-1 loss
function is difficult to optimize, we usually use a surrogate loss function ℓ, such as the logistic loss.
Then, the classification risk to be minimized can be expressed as

Rpfq “ Eppx,yq rℓ pf pxq , yqs . (2)

Data Generation Assumption. There are mainly two data generation assumptions for PU learn-
ing, i.e., the TS setting (du Plessis et al., 2014; Niu et al., 2016; Chen et al., 2020a) and the OS set-
ting (Elkan & Noto, 2008; Coudray et al., 2023). In the TS setting, we assume that DP and DU are
generated independently, where DP is sampled from the positive conditional density ppx|y “ `1q

and DU is sampled from the marginal density ppxq. In the OS setting, DU and DP are generated
sequentially. First, DU is sampled from the marginal density ppxq. Second, for each example in
DU, if it is positive, its positive label is observed with a constant probability c ą 0. If an example is
negative, its negative label is never observed and the example remains unlabeled with probability 1.
Finally, the observed positive data constitute DP and all the unlabeled data left constitute DU.

2.2 POSITIVE-UNLABELED LEARNING ALGORITHMS

From a methodology taxonomy perspective, PU learning algorithms can be divided into three
groups: cost-sensitive algorithms, sample-selection algorithms, and biased PU learning algorithms.
Cost-sensitive algorithms assign different weights to positive and unlabeled data to approximate the
classification risk (du Plessis et al., 2015; Kiryo et al., 2017; Hsieh et al., 2019). Some algorithms are
equipped with other regularization techniques to further improve performance, such as entropy min-
imization (Zhao et al., 2022; Jiang et al., 2023) and mixup technique (Chen et al., 2020a; Li et al.,
2022). Sample-selection algorithms select reliable negative examples from the unlabeled dataset
for supervised learning (Chen et al., 2020b; Garg et al., 2021; Wang et al., 2023a; Li et al., 2024).
Biased PU learning algorithms consider the density of positive data to be biased and adopt different
strategies to model the bias (Bekker et al., 2019; Gong et al., 2022; Coudray et al., 2023; Wang et al.,
2023b; Teisseyre et al., 2025).

3 MODEL SELECTION FOR POSITIVE-UNLABELED LEARNING

In this section, we first explain our motivation for studying the model selection problem in PU
learning. Next, we review the criteria used for model selection in PU learning, including the proxy
accuracy, proxy area under the curve score, and oracle accuracy.

3.1 MOTIVATION

Although model selection is well established for supervised learning, it is non-trivial for PU learning
because negative data are inaccessible. This problem is particularly important for deep learning
algorithms because they have many hyperparameters, including universal hyperparameters (e.g.,
learning rates and weight decay) and algorithm-specific hyperparameters. Previous work has usually
conducted model selection by assuming a validation set with labels (i.e., both positive and negative

3
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labels) is available. However, this assumption is inconsistent with the definition of PU learning, in
which negative data are unavailable. Therefore, it is important to study the model selection problem
systematically for PU learning. According to the original definition of PU learning (Bekker & Davis,
2020), we assume that the validation set consists of a positive validation set D1

P “ tpx1
i,`1qu

n1
P

i“1

and an unlabeled validation set D1
U “ tx1

iu
n1
P`n1

U

i“n1
P`1.

3.2 PROXY ACCURACY

Although the validation accuracy cannot be directly calculated because of the absence of negative
data, it has been shown that the expected accuracy can be expressed using only positive and unla-
beled data (du Plessis et al., 2014). This motivates us to apply it for model selection.
Definition 1 (Proxy accuracy (PA)). The proxy accuracy of a binary classifier f on the PU validation
dataset is defined as

PApfq “

$

&

%

2π
n1
P

řn1
P

i“1 I pfpx1
iq ě 0q ` 1

n1
U

řn1
P`n1

U

i“n1
P`1 I pfpx1

iq ă 0q , if the setting is TS;
2π
n1
P

řn1
P

i“1 I pfpx1
iq ě 0q ` 1

n1
P`n1

U

řn1
P`n1

U
i“1 I pfpx1

iq ă 0q , if the setting is OS.
(3)

PA can be calculated using only PU validation data when the class prior π is known or estimated (Ra-
maswamy et al., 2016; Yao et al., 2022; Zhu et al., 2023a). The following proposition then holds.
Proposition 1. For two classifiers f1 and f2 that satisfy E rPApf1qs ă E rPApf2qs, we have
ACCpf1q ă ACCpf2q.

The proof can be found in Appendix A.1. According to Proposition 1, a classifier with a higher
expected value of the proxy accuracy can achieve a higher expected accuracy even when the true
labels are inaccessible. This means that when the number of validation data is large, the best model
chosen using the PA metric will achieve the highest accuracy in expectation. One limitation of PA is
that knowledge of the class prior is necessary. However, knowledge of π is an intrinsic and common
issue in PU learning. Addressing this issue is beyond the scope of our paper. In practice, we can
estimate it using off-the-shelf estimation methods (Ramaswamy et al., 2016; Garg et al., 2021; Yao
et al., 2022), and we can even obtain this knowledge in some real-world applications (Sugiyama
et al., 2022).

3.3 PROXY AUC SCORE

It has been shown that the area under the curve (AUC) score can be robust to corrupted labels for
binary classification (Charoenphakdee et al., 2019; Wei et al., 2022). Therefore, it is promising to
employ it for PU model selection. First, we introduce the expected AUC score as follows:

AUCpfq “ Eppx|y“`1qEppx1|y1“´1q

„

I
`

fpxq ą fpx1q
˘

`
1

2
I

`

fpxq “ fpx1q
˘

ȷ

. (4)

We then consider the unlabeled validation data to be corrupted negative data and calculate the AUC
score as follows, which is suitable for both OS and TS settings.
Definition 2 (Proxy AUC score (PAUC)). The proxy AUC of a binary classifier f on the PU vali-
dation dataset is defined as

PAUCpfq “
1

n1
Pn

1
U

ÿn1
P

i“1

ÿn1
P`n1

U

j“n1
P`1

ˆ

I
`

fpx1
iq ą fpx1

jq
˘

`
1

2
I

`

fpx1
iq “ fpx1

jq
˘

˙

. (5)

The following proposition then holds.
Proposition 2. Under both OS and TS settings, for two classifiers f1 and f2 that satisfy
E rPAUCpf1qs ă E rPAUCpf2qs, we have AUCpf1q ă AUCpf2q.

The proof can be found in Appendix A.2. Proposition 2 shows that a classifier with a higher expected
value of the proxy AUC score will achieve a higher expected AUC score, regardless of whether the
setting is OS or TS. Therefore, when the number of validation data is large, the model selected with
the highest PAUC can also achieve the highest expected value of the AUC score. An advantage is
that the class prior π is not necessary when calculating the PAUC.
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3.4 ORACLE ACCURACY

Finally, we introduce the oracle accuracy metric if the true labels of unlabeled data are available.

Definition 3 (Oracle accuracy (OA)). The oracle accuracy of a binary classifier f on the PU valida-
tion dataset is defined as

OApfq “

$

&

%

1
n1
U

řn1
P`n1

U

i“n1
P`1 I py1

ifpx1
iq ě 0q , if the setting is TS;

1
n1
P`n1

U

řn1
P`n1

U
i“1 I py1

ifpx1
iq ě 0q , if the setting is OS.

(6)

Here, y1
i is the true label of x1

i.

Notably, the implementations for the OS and TS settings differ slightly, as it is important to en-
sure that the validation data have the same distribution as the test data. OA is a natural metric for
supervised learning. However, due to the absence of negative data, it cannot be calculated in the
traditional PU learning setting. Unfortunately, this metric has actually been widely used in the PU
learning literature because of a lack of standardized benchmarking. Therefore, this paper only in-
cludes the results of OA for comparison. We recommend using PA and PAUC in future PU learning
experiments, especially in real-world applications where negative data cannot be obtained.

4 INTERNAL LABEL SHIFT IN POSITIVE-UNLABELED LEARNING

In this section, we first introduce the ILS problem in PU learning. Then, we provide a calibration
approach to solve it with both theoretical and empirical analysis.

4.1 PROBLEM STATEMENT

The difference between the OS and TS settings lies in the density of the unlabeled training data.
Specifically, the density of the unlabeled training data equals the marginal density in the TS setting
but differs from it in the OS setting. We formalize the ILS problem as follows.

Definition 4 (Internal label shift in OS PU learning). In the OS setting, the density of DU is sppxq “

sπppx|y “ `1q ` p1 ´ sπqppx|y “ ´1q, where sπ is the class prior under the OS setting. Here, the
positive and negative class-conditional densities are the same as those of the test data; however, the
class prior is sπ “ p1 ´ cqπ{p1 ´ cπq, which differs from π, the class prior of the test data. This
mismatch causes an internal label shift between the unlabeled training data and the test data.

Many cost-sensitive PU learning algorithms have been developed for the TS setting. In these algo-
rithms, positive and unlabeled data are assigned different weights to approximate the classification
risk (du Plessis et al., 2014; Chen et al., 2020a; Zhao et al., 2022). Because the weights are the-
oretically derived, small discrepancies in data assumptions can degrade performance. Conversely,
sample-selection PU learning algorithms select reliable negative data from DU and need not rely
strictly on the specific data generation process (Zhu et al., 2023b; Wang et al., 2023a; Li et al.,
2024). However, many papers adopt only the OS setting and ignore the distribution mismatch, caus-
ing experimental datasets to violate the assumptions of TS approaches.

To demonstrate how ILS affects model performance, we use uPU (du Plessis et al., 2015) as an
example in Section 4; it is a representative TS algorithm and underpins many subsequent cost-
sensitive methods.1 Under the TS assumption DU

i.i.d.
„ ppxq, du Plessis et al. (2015) proposed the

unbiased risk estimator (URE)

pRpfq “
π

nP

nP
ÿ

i“1

pℓ pfpxiq,`1q ´ ℓ pfpxiq,´1qq `
1

nU

nP`nU
ÿ

i“nP`1

ℓ pfpxiq,´1q , (7)

which enjoys risk consistency because Er pRpfqs “ Rpfq. Let pf “ argminfPF pRpfq and f˚ “

argminfPF Rpfq denote the classifiers that minimize the empirical risk in Eq. (7) and the risk in
Eq. (2), respectively, where F is the model class. It is known that pf Ñ f˚ as nP Ñ 8 and nU Ñ 8

1Our analysis and calibration approach can be extended to other TS algorithms as well.
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Figure 2: Classification accuracies of TS PU learning algorithms in OS and TS settings of a PU
version of CIFAR-10 with varying amounts of positive data. Figures (a) to (f) are for Case 1, and
Figures (g) to (l) are for Case 2.

under the TS setting (Niu et al., 2016). Under the OS setting, however, Er pRpfqs ‰ Rpfq, so pf Ñ f˚

no longer holds (see Appendix A.3). Consequently, minimizing losses designed for the TS setting
may not yield high-performing classifiers when datasets are generated under the OS setting, leading
to unfair comparisons when all methods are evaluated in the OS setting. The bias stems from the
ILS problem: under the OS setting, the class prior of DU differs from π, breaking the consistency of
many TS algorithms and degrading their performance.

4.2 THE PROPOSED CALIBRATION APPROACH

To address the bias, we incorporate the true densities of DU for TS algorithms. The following
theorem shows that the risk rewrite for the uPU approach differs under the OS setting.

Theorem 1. Under the OS setting, the classification risk in Eq. (2) can be equivalently expressed as

Rpfq “ πEppx|y“`1q rℓpfpxq,`1q ` pc ´ 1qℓpfpxq,´1qs ` p1 ´ cπqE
sppxq rℓpfpxq,´1qs .

The proof is given in Appendix A.4. Theorem 1 shows that the classification risk can be equivalently
expressed as expectations w.r.t. the densities of positive and unlabeled data under the OS setting. We
then obtain a calibrated risk estimator using the positive and unlabeled datasets:

sRpfq “
π

nP

nP
ÿ

i“1

pℓ pfpxiq,`1q ` pc ´ 1qℓ pfpxiq,´1qq `
1 ´ cπ

nU

nP`nU
ÿ

i“nP`1

ℓ pfpxiq,´1q . (8)

When the class prior π is known or estimated, we obtain an unbiased estimate of c as c “ nP{πpnP`

nUq. Let sf “ argminfPF sRpfq denote the optimal classifier that minimizes the calibrated risk
estimator in Eq. (8). Let RnP

pFq and R1
nU

pFq denote the Rademacher complexities defined in
Appendix A.5. Then, the following theorem holds.

Theorem 2. Assume that there exists a constant Cf such that supfPF }f}8 ď Cf and a constant
Cℓ such that @y, sup|z|ďCf

ℓpz, yq ď Cℓ. We also assume that @y, the binary loss function ℓpz, yq

is Lipschitz continuous in z with a Lipschitz constant Lℓ. For any δ ą 0, the following inequality

6
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Figure 3: Classification accuracies of TS PU learning algorithms in OS and TS settings of a PU
version of ImageNette with varying amounts of positive data. Figures (a) to (e) are for Case 1, and
Figures (f) to (j) are for Case 2.

holds with probability at least 1 ´ δ:

Rp sfq ´ Rpf˚q ďp8 ´ 4cqπLℓRnPpFq ` p4 ´ 4cπqLℓR
1
nU

pFq

`

ˆ

p4 ´ 2cqπCℓ
?
nP

`
p2 ´ 2cπqCℓ

?
nU

˙

c

ln 2{δ

2
. (9)

The proof is given in Appendix A.5. Theorem 2 shows that sf Ñ f˚ as nP Ñ 8 and nU Ñ 8,
because RnU,sppFq Ñ 0 and RnP,p`

pFq Ñ 0 for all parametric models with a bounded norm, such
as deep neural networks trained with weight decay (Golowich et al., 2018). Notably, Eq. (8) can be
equivalently transformed into Eq. (7) if we incorporate DP into DU when computing the last loss
term w.r.t. unlabeled data in Eq. (7) (see Appendix A.6). Thus, when DP is used in both loss terms,
the ILS bias is eliminated, because the union of positive and unlabeled data is unbiased w.r.t. the
marginal density. This motivates a simple yet effective calibration approach that adapts TS algo-
rithms to the OS setting, summarized in Algorithm 1. We augment DU with DP when computing the
loss on unlabeled data, so the replenished set is marginally unbiased and suitable for TS PU learners.

Algorithm 1 Calibrated Two-Sample PU Learning
Require: Two-sample PU learning algorithm A, positive training

set DP, unlabeled training set DU, maximum epochs Tmax,
maximum iterations Imax.

Ensure: Classifier f produced by A.
1: for t “ 1, 2, . . . , Tmax do
2: Shuffle DP and DU;
3: for k “ 1, . . . , Imax do
4: Fetch mini-batch DP

k from DP and DU
k from DU;

5: Call A.TRAIN_ONE_BATCHpDP
k ,DU

k

Ť

DP
k q

6: end for
7: end for

4.3 EMPIRICAL ANALYSIS

We validated the existence of the ILS
problem and the effectiveness of the
proposed calibration approach. We
used uPU (du Plessis et al., 2015),
nnPU (Kiryo et al., 2017), nnPU-
GA (Kiryo et al., 2017), PUSB (Kato
et al., 2019), VPU (Chen et al.,
2020a), and Dist-PU (Zhao et al.,
2022), six representative TS PU
learning algorithms. We used
CIFAR-10 (Krizhevsky & Hinton, 2009) and ImageNette (Deng et al., 2009) as the datasets. We
synthesized PU training datasets with different definitions of positive and negative labels, where the
details are presented in Appendix B. We did not include the results of Dist-PU on ImageNette since
Dist-PU did not work well on this dataset. We considered both the OS and TS cases using the same
experimental settings, and the only difference lay in how positive data were generated. Figures 2
and 3 show the experimental results on CIFAR-10 and ImageNette with varying amounts of positive
data, respectively. We can observe that using TS approaches directly in the OS setting yields infe-
rior performance. Their performance consistently drops when the number of positive data increases,
even though we have more knowledge of the true labels of positive data in the unlabeled dataset.
By using our proposed calibration approach, the performance can be improved greatly and can even
sometimes surpass the performance in the TS setting. This shows the effectiveness of our calibration
approach in improving TS approaches under the OS setting.
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Table 1: Test results (mean˘std) of accuracy, AUC, and F1 score for each algorithm on CIFAR-10
(Case 1) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Accuracy AUC F1

Val metric PA PAUC OA PA PAUC OA PA PAUC OA

PUbN 86.46˘0.46 86.24˘0.84 87.33˘0.28 93.96˘0.49 93.44˘0.74 94.33˘0.23 86.62˘0.52 86.07˘0.98 86.98˘0.24
PAN 76.64˘0.78 77.56˘0.41 78.91˘0.59 87.11˘0.86 87.28˘0.93 85.70˘0.68 79.08˘0.73 79.41˘0.61 78.74˘0.95
CVIR 85.45˘1.03 83.32˘0.44 86.47˘0.48 93.74˘0.73 93.67˘0.62 93.73˘0.31 86.19˘0.88 84.71˘0.33 86.51˘0.40
P3MIX-E 72.68˘6.26 50.00˘0.00 73.96˘5.63 88.80˘2.65 92.62˘0.67 89.56˘2.18 77.65˘3.65 66.67˘0.00 67.45˘12.03
P3MIX-C 86.36˘0.58 85.75˘0.76 86.65˘0.57 92.70˘0.71 93.09˘0.65 93.16˘0.43 86.44˘0.51 85.93˘0.70 86.72˘0.58
LBE 82.71˘0.73 73.60˘1.29 85.03˘0.38 92.09˘0.15 93.21˘0.04 92.26˘0.31 83.79˘0.49 78.72˘0.76 84.31˘0.31
Count Loss 80.89˘0.32 79.86˘0.88 82.39˘0.37 90.63˘0.69 90.40˘0.45 89.20˘1.27 82.60˘0.28 81.83˘0.39 83.11˘0.39
Robust-PU 85.57˘0.18 85.61˘0.55 85.91˘0.35 91.56˘0.49 92.89˘0.29 91.04˘1.60 85.88˘0.09 84.80˘0.96 85.47˘0.32
Holistic-PU 50.20˘0.10 50.00˘0.00 81.81˘0.49 64.56˘11.51 69.45˘5.04 90.60˘0.41 66.64˘0.03 66.67˘0.00 82.97˘0.37
PUe 77.85˘0.85 78.51˘0.33 80.45˘0.46 86.84˘0.61 86.60˘0.45 87.58˘0.44 79.45˘0.55 78.01˘0.48 78.99˘0.28
GLWS 84.46˘0.45 79.83˘2.30 85.66˘0.44 93.55˘0.07 93.54˘0.14 93.48˘0.16 85.65˘0.36 82.69˘1.46 86.26˘0.32

uPU 80.24˘1.25 76.07˘2.83 82.04˘0.49 88.72˘0.40 89.05˘0.17 87.36˘0.73 81.05˘0.90 77.01˘1.41 80.34˘0.56
uPU-c 85.89˘0.44 84.20˘0.49 86.48˘0.21 92.65˘0.38 93.03˘0.22 93.22˘0.15 85.96˘0.43 83.04˘0.92 86.12˘0.10
nnPU 82.03˘0.11 75.56˘0.29 82.40˘0.31 92.62˘0.15 92.32˘0.47 91.95˘0.44 83.51˘0.05 79.64˘0.25 83.49˘0.05
nnPU-c 85.52˘0.20 86.03˘0.68 86.35˘0.26 92.19˘0.33 93.07˘0.55 92.95˘0.38 85.90˘0.28 85.71˘0.70 86.29˘0.30
nnPU-GA 84.26˘0.80 84.18˘0.40 84.93˘0.70 92.79˘0.47 92.26˘0.36 92.25˘0.46 84.87˘0.62 84.63˘0.42 84.58˘0.53
nnPU-GA-c 85.80˘0.29 86.28˘0.31 86.13˘0.25 92.81˘0.42 92.96˘0.47 93.00˘0.42 85.90˘0.31 85.66˘0.27 85.57˘0.19
PUSB 81.53˘0.77 82.49˘1.02 82.91˘0.70 81.53˘0.77 82.49˘1.02 82.91˘0.70 83.29˘0.47 83.80˘0.77 84.12˘0.53
PUSB-c 86.15˘0.37 84.76˘0.17 86.49˘0.17 86.15˘0.37 84.76˘0.17 86.49˘0.17 86.09˘0.44 83.89˘0.19 86.23˘0.18
VPU 84.93˘0.52 65.71˘7.32 85.80˘0.40 91.89˘0.08 92.89˘0.54 92.86˘0.20 84.15˘0.59 42.73˘17.09 84.91˘0.49
VPU-c 86.41˘0.75 82.85˘1.68 87.65˘0.25 92.30˘0.31 93.51˘0.53 91.79˘1.62 86.73˘0.55 84.56˘1.15 87.41˘0.29
Dist-PU 81.64˘0.45 79.31˘0.51 83.56˘0.46 90.91˘0.54 91.90˘0.48 90.59˘0.49 83.34˘0.26 81.94˘0.23 83.26˘0.60
Dist-PU-c 87.06˘0.45 87.38˘0.23 88.47˘0.25 94.93˘0.31 94.55˘0.21 94.90˘0.32 87.63˘0.33 87.28˘0.29 88.18˘0.25

5 BENCHMARKING POSITIVE-UNLABELED LEARNING

In this section, we first introduce the benchmark settings, then we present the benchmark experi-
mental results. The code package is available at https://anonymous.4open.science/r/
ICLR26_PUbench-0C26/.

5.1 BENCHMARK SETTINGS

We included seventeen representative PU learning algorithms: uPU (du Plessis et al., 2015),
nnPU (Kiryo et al., 2017), nnPU-GA (Kiryo et al., 2017), PUSB (Kato et al., 2019), PUbN (Hsieh
et al., 2019), VPU (Chen et al., 2020a), PAN (Hu et al., 2021), CVIR (Garg et al., 2021), Dist-
PU (Zhao et al., 2022), P3MIX-E (Li et al., 2022), P3MIX-C (Li et al., 2022), LBE (Gong et al.,
2022), Count Loss (Shukla et al., 2023), Robust-PU (Zhu et al., 2023b), Holistic-PU (Wang et al.,
2023a), PUe (Wang et al., 2023b), and GLWS (Chen et al., 2024). We evaluated our methods on
two image datasets (CIFAR-10 (Krizhevsky & Hinton, 2009) and ImageNette (Deng et al., 2009))
and two UCI datasets (USPS and Letter) (Kelly et al., 2023). ImageNette is a curated subset of the
larger ImageNet corpus, containing ten easily distinguishable categories: tench, English springer,
cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, and parachute.
We synthesized PU versions of these datasets; detailed information can be found in Appendix B. We
used ResNet-34 (He et al., 2016) and for image datasets and a multilayer perceptron (MLP) with a
hidden layer width of 500 equipped with the ReLU (Nair & Hinton, 2010) activation function for
tabular datasets.

Following the widely used validation protocol (Raschka, 2018; Gulrajani & Lopez-Paz, 2021; Wang
et al., 2025), we divided some training data from the positive and unlabeled datasets into the positive
validation set D1

P and the unlabeled validation set D1
U, respectively. We used various test metrics,

including accuracy, AUC score, F1 score, precision, and recall. We first trained a model with training
sets DP and DU. Then, we evaluated its validation performance based on the metrics in Section 3
as well as its test performance on a test set with true labels. We randomly selected a set of hyper-
parameter configurations from a given pool. For each validation metric, we selected the checkpoint
with the best validation performance on D1

P

Ť

D1
U, and recorded the corresponding test metrics. We

recorded the mean test metrics and standard deviations obtained with different data splits.

5.2 BENCHMARK RESULTS

Tables 1, 2, and 5 to 18 in Appendix C report detailed experimental results in terms of different met-
rics on CIFAR-10, ImageNette, Letter, and USPS, and the hyperparameters are determined with PA,
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Table 2: Test results (mean˘std) of accuracy, AUC, and F1 score for each algorithm on CIFAR-10
(Case 2) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Test ACC AUC Test F1

Val metric PA PAUC OA PA PAUC OA PA PAUC OA

PUbN 78.26˘1.01 79.50˘0.38 79.94˘0.36 87.81˘0.65 88.00˘0.38 88.08˘0.45 80.47˘0.65 79.17˘0.88 79.91˘0.21
PAN 61.43˘2.74 60.61˘4.34 63.48˘2.71 68.71˘5.63 71.54˘4.68 69.63˘5.43 70.73˘1.40 70.87˘1.72 69.25˘3.04
CVIR 78.49˘1.49 79.50˘1.46 80.44˘0.68 88.10˘0.87 87.98˘1.33 88.68˘0.81 80.86˘0.97 80.69˘1.33 81.44˘0.58
P3MIX-E 59.04˘4.54 50.00˘0.00 59.13˘4.62 74.26˘4.26 84.52˘0.84 74.11˘4.16 70.45˘2.00 44.44˘18.14 70.45˘2.00
P3MIX-C 78.05˘0.95 77.42˘1.40 78.70˘0.50 85.87˘1.02 84.92˘1.40 86.13˘0.79 79.82˘0.56 79.06˘0.92 79.90˘0.49
LBE 72.47˘1.50 63.54˘2.86 75.96˘0.88 84.02˘0.40 84.26˘0.78 83.47˘0.97 77.13˘0.72 72.96˘1.42 76.04˘0.83
Count Loss 74.44˘0.68 74.75˘0.45 76.87˘0.75 82.88˘1.02 82.99˘1.03 84.44˘0.75 77.41˘0.54 76.70˘0.55 78.27˘0.99
Robust-PU 78.94˘0.79 78.43˘0.61 79.60˘0.81 85.23˘1.09 87.13˘0.76 86.33˘0.63 80.37˘0.72 77.16˘0.68 79.79˘0.89
Holistic-PU 55.60˘0.16 56.04˘4.93 71.18˘1.20 78.03˘2.53 67.96˘6.67 76.93˘3.13 69.02˘0.04 44.49˘18.12 73.64˘2.09
PUe 68.60˘0.41 67.40˘1.90 71.05˘0.52 78.06˘0.31 79.27˘0.51 78.69˘0.36 73.41˘0.44 73.05˘0.71 71.06˘1.35
GLWS 77.71˘0.71 76.22˘1.33 79.58˘0.61 87.86˘0.33 88.08˘0.43 87.44˘0.51 80.40˘0.37 79.75˘0.81 80.47˘0.47

uPU 66.21˘1.40 69.03˘1.04 70.46˘0.70 76.46˘1.65 78.80˘0.74 77.97˘0.90 71.52˘0.73 72.78˘0.47 70.89˘1.53
uPU-c 77.22˘0.26 79.29˘0.37 79.02˘0.99 85.19˘0.46 87.76˘0.38 87.11˘0.83 79.48˘0.22 78.19˘0.45 78.60˘1.22
nnPU 74.27˘1.26 62.67˘1.09 77.62˘0.68 86.16˘0.07 86.53˘0.16 86.42˘0.58 78.00˘0.55 72.57˘0.51 79.20˘0.52
nnPU-c 77.74˘0.53 78.49˘0.35 79.37˘0.30 84.84˘0.44 86.63˘0.31 86.16˘0.22 79.79˘0.18 77.25˘0.61 79.07˘0.39
nnPU-GA 76.59˘1.15 76.73˘0.88 78.38˘0.74 86.41˘1.24 86.09˘1.23 86.58˘0.84 79.14˘0.95 78.76˘1.11 78.22˘0.53
nnPU-GA-c 78.00˘0.52 78.32˘0.71 79.12˘0.91 83.75˘1.30 85.82˘1.04 85.63˘1.27 79.26˘0.81 77.78˘0.48 79.03˘0.92
PUSB 75.74˘0.61 78.80˘0.55 78.35˘0.41 75.74˘0.61 78.80˘0.55 78.35˘0.41 79.18˘0.43 79.83˘0.59 79.79˘0.61
PUSB-c 79.06˘0.45 77.98˘0.54 79.19˘0.32 79.06˘0.45 77.98˘0.54 79.19˘0.32 80.06˘0.36 77.43˘0.40 79.29˘0.40
VPU 76.99˘1.00 63.22˘5.30 77.31˘0.86 85.47˘0.98 87.08˘0.43 86.07˘0.67 75.15˘1.31 39.92˘15.74 75.43˘1.33
VPU-c 77.70˘0.41 78.20˘0.90 79.81˘0.66 86.90˘0.39 87.50˘0.46 86.32˘0.28 80.12˘0.27 80.52˘0.53 80.56˘0.71
Dist-PU 73.46˘0.59 74.83˘0.58 74.69˘0.60 80.70˘0.45 82.09˘0.40 81.48˘0.78 76.90˘0.31 76.88˘0.16 76.65˘0.15
Dist-PU-c 72.57˘3.47 74.41˘2.67 74.30˘2.73 80.34˘3.48 82.49˘2.68 81.94˘2.90 75.50˘2.34 75.27˘2.67 73.68˘3.25
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Figure 4: Overall performance w.r.t. accuracy and the F1 score across all datasets. Hyperparameters
were tuned using PA, PAUC and OA, respectively; bar colors indicate means.

PAUC, and OA, respectively. In addition, Figures 4 to 7 show the overall performance of different
algorithms. For ease of presentation in figures, we did not include the algorithms where the per-
formance is obviously inferior. We can draw the following conclusions based on the experimental
results: 1) The TS algorithms without calibration perform worse due to the ILS problem, indicating
the existence of an evaluation pitfall in the literature. The proposed calibration technique consis-
tently improves the classification performance for TS approaches, demonstrating the effectiveness
of the proposed calibration technique. 2) There is no algorithm that can win in every case of the
dataset and evaluation metric. Besides, some early algorithms can already achieve satisfactory clas-
sification performance. 3) Our proposed validation metrics are effective in hyperparameter selection.
However, the effectiveness may also depend on the test metric. For example, we can observe from
Table 1 that the model selected using PAUC can achieve better performance than using OA when
the test metric is the AUC score.
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6 CONCLUSION

In this paper, we conducted a comprehensive empirical study of PU learning algorithms. We pro-
posed the first PU learning benchmark to systematically compare different PU learning algorithms in
a unified framework. We investigated model selection criteria to facilitate realistic evaluation of PU
learning algorithms. We also identified the ILS problem for the one-sample setting of PU learning
and proposed a calibration approach to ensure fair comparisons of different families of PU learning
algorithms. We hope that our framework can facilitate accessible, realistic, and fair evaluation of PU
learning algorithms in the future. A limitation of our work is that we use relatively small benchmark
datasets following previous work. In the future, it is also promising to investigate the performance
of different algorithms on collected large-scale PU benchmark datasets.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We only used LLMs to correct the grammar and spelling errors in the writing.

A PROOFS

A.1 PROOF OF PROPOSITION 1

ACCpfq “πEppx|y“`1q rI pfpxq ě 0qs ` p1 ´ πqEppx|y“´1q rI pfpxq ă 0qs

“πEppx|y“`1q rI pfpxq ě 0qs ` Eppxq rI pfpxq ă 0qs ´ πEppx|y“`1q rI pfpxq ă 0qs

“πEppx|y“`1q rI pfpxq ě 0qs ` Eppxq rI pfpxq ă 0qs ´ πEppx|y“`1q r1 ´ I pfpxq ě 0qs

“2πEppx|y“`1q rI pfpxq ě 0qs ` Eppxq rI pfpxq ă 0qs ´ π

“E rPApfqs ´ π.

Here, the last equation is obtained since DU
i.i.d.
„ ppxq for the TS setting and DP

Ť

DU
i.i.d.
„ ppxq for

the OS setting. Therefore, for two classifiers f1 and f2 that satisfy E rPApf1qs ă E rPApf2qs, we
have ACCpf1q ă ACCpf2q. The proof is complete.

A.2 PROOF OF PROPOSITION 2

For the TS setting,

AUCpfq “Eppx|y“`1qEppx1|y1“´1q

„

I
`

fpxq ą fpx1q
˘

`
1

2
I

`

fpxq “ fpx1q
˘

ȷ

“
1

1 ´ π
Eppx|y“`1qEppx1q

„

I
`

fpxq ą fpx1q
˘

`
1

2
I

`

fpxq “ fpx1q
˘

ȷ

´
π

1 ´ π
Eppx|y“`1qEppx1|y1“`1q

„

I
`

fpxq ą fpx1q
˘

`
1

2
I

`

fpxq “ fpx1q
˘

ȷ

“
1

1 ´ π
Eppx|y“`1qEppx1q

„

I
`

fpxq ą fpx1q
˘

`
1

2
I

`

fpxq “ fpx1q
˘

ȷ

´
π

2 ´ 2π

“
1

1 ´ π
E rPAUCpfqs ´

π

2 ´ 2π
.

For the OS setting,

AUCpfq “Eppx|y“`1qEppx1|y1“´1q

„

I
`

fpxq ą fpx1q
˘

`
1

2
I

`

fpxq “ fpx1q
˘

ȷ

“
1

1 ´ sπ
Eppx|y“`1qEppx1q

„

I
`

fpxq ą fpx1q
˘

`
1

2
I

`

fpxq “ fpx1q
˘

ȷ

´
sπ

1 ´ sπ
Eppx|y“`1qEppx1|y1“`1q

„

I
`

fpxq ą fpx1q
˘

`
1

2
I

`

fpxq “ fpx1q
˘

ȷ

“
1

1 ´ sπ
Eppx|y“`1qEppx1q

„

I
`

fpxq ą fpx1q
˘

`
1

2
I

`

fpxq “ fpx1q
˘

ȷ

´
sπ

2 ´ 2sπ

“
1

1 ´ sπ
E rPAUCpfqs ´

sπ

2 ´ 2sπ
.

Therefore, under both OS and TS settings, for two classifiers f1 and f2 that satisfy E rPAUCpf1qs ă

E rPAUCpf2qs, we have AUCpf1q ă AUCpf2q.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 BIAS OF THE RISK ESTIMATOR

Under the OS setting, we have

E
”

pRpfq

ı

´ Rpfq “E
sppxq rℓpfpxq,´1qs ´ Eppxq rℓpfpxq,´1qs

“pπ̄ ´ πq
`

Eppx|y“`1q rℓpfpxq,´1qs ´ Eppx|y“´1q rℓpfpxq,´1qs
˘

,

which is not equal to 0. Therefore, it means that the bias of the risk estimator always exist. Then,
the minimizers of E

”

pRpfq

ı

and Rpfq are not the same.

A.4 PROOF OF THEOREM 1

First, we have

sppxq “sπppx|y “ `1q ` p1 ´ sπqppx|y “ ´1q

“
p1 ´ cqπ

1 ´ cπ
ppx|y “ `1q `

1 ´ π

1 ´ cπ
ppx|y “ ´1q.

Therefore, we have

ppx|y “ ´1q “
1 ´ cπ

1 ´ π
sppxq ´

p1 ´ cqπ

1 ´ π
ppx|y “ `1q.

Then,

Rpfq “πEppx|y“`1q rℓpfpxq,`1qs ` p1 ´ πqEppx|y“´1q rℓpfpxq,´1qs

“πEppx|y“`1q rℓpfpxq,`1qs ` p1 ´ cπqE
sppxq rℓpfpxq,´1qs ´ p1 ´ cqπEppx|y“`1q rℓpfpxq,´1qs

“πEppx|y“`1q rℓpfpxq,`1q ` pc ´ 1qℓpfpxq,´1qs ` p1 ´ cπqE
sppxq rℓpfpxq,´1qs ,

which conclude the proof.

A.5 PROOF OF THEOREM 2

Definition 5 (Rademacher complexity). Let XP
nP

“ tx1, ¨ ¨ ¨xnP
u denote nP i.i.d. random variables

drawn from density ppx|y “ `1q. Let XU
nU

“ txnP`1, ¨ ¨ ¨xnP`nU
u denote nU i.i.d. random

variables drawn from density sppxq. Let F “ tf : X ÞÑ Ru denote a class of measurable functions,
σP “ pσ1, σ2, ¨ ¨ ¨ , σnP

q, and σU “ pσnP`1, σnP`2, ¨ ¨ ¨ , σnP`nU
q denote Rademacher variables

taking values from t`1,´1u uniformly. Then, the (expected) Rademacher complexities of F are
defined as

RnPpFq “ EXP
nP

EσP

«

sup
fPF

1

nP

nP
ÿ

i“1

σifpxiq

ff

,

R1
nU

pFq “ EXU
nU

EσU

«

sup
fPF

1

nU

nP`nU
ÿ

i“nP`1

σifpxiq

ff

.

Lemma 1. For any δ ą 0, we have the following inequality with probability at least 1 ´ δ:

sup
fPF

ˇ

ˇ sRpfq ´ Rpfq
ˇ

ˇ ď2p2 ´ cqπLℓRnP
pFq ` 2p1 ´ cπqLℓR

1
nU

pFq

`

ˆ

πp2 ´ cqCℓ
?
nP

`
p1 ´ cπqCℓ

?
nU

˙

c

ln 2{δ

2
.

Proof. First, we give the upper bound for the one-side uniform deviation supfPF
`

sRpfq ´ Rpfq
˘

.
When an instance in XP

nP
is replaced by another instance, the value of supfPF

`

sRpfq ´ Rpfq
˘

changes at most πp2´ cqCℓ{nP; when an instance in XU
nU

is replaced by another instance, the value

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

of supfPF
`

sRpfq ´ Rpfq
˘

changes at most p1 ´ cπqCℓ{nU. Therefore, according to McDiarmid’s
inequality, we have the following inequality with probability at least 1 ´ δ{2:

sup
fPF

`

sRpfq ´ Rpfq
˘

ďE

«

sup
fPF

`

sRpfq ´ Rpfq
˘

ff

`

d

π2p2 ´ cq2C2
ℓ

nP
`

p1 ´ cπq2C2
ℓ

nU

c

ln 2{δ

2

ďE

«

sup
fPF

`

sRpfq ´ Rpfq
˘

ff

`

ˆ

πp2 ´ cqCℓ
?
nP

`
p1 ´ cπqCℓ

?
nU

˙

c

ln 2{δ

2
.

Then, by symmetrization (Vapnik, 1998), it is a routine work to have

E

«

sup
fPF

`

sRpfq ´ Rpfq
˘

ff

ď 2p2 ´ cqπRnP
pℓ ˝ Fq ` 2p1 ´ cπqR1

nU
pℓ ˝ Fq.

According to Talagrand’s contraction lemma (Shalev-Shwartz & Ben-David, 2014), we have
RnP

pℓ ˝ Fq ď LℓRnP
pFq, R1

nU
pℓ ˝ Fq ď LℓR

1
nU

pFq.

By combining the above inequalities, we have the following inequality with probability at least
1 ´ δ{2:

sup
fPF

`

sRpfq ´ Rpfq
˘

ď2p2 ´ cqπLℓRnP
pFq ` 2p1 ´ cπqLℓR

1
nU

pFq

`

ˆ

πp2 ´ cqCℓ
?
nP

`
p1 ´ cπqCℓ

?
nU

˙

c

ln 2{δ

2
.

In a similar way, we have the following inequality with probability at least 1 ´ δ{2:
sup
fPF

`

Rpfq ´ sRpfq
˘

ď2p2 ´ cqπLℓRnPpFq ` 2p1 ´ cπqLℓR
1
nU

pFq

`

ˆ

πp2 ´ cqCℓ
?
nP

`
p1 ´ cπqCℓ

?
nU

˙

c

ln 2{δ

2
.

Therefore, we have the following inequality with probability at least 1 ´ δ:
sup
fPF

ˇ

ˇ sRpfq ´ Rpfq
ˇ

ˇ ď2p2 ´ cqπLℓRnP
pFq ` 2p1 ´ cπqLℓR

1
nU

pFq

`

ˆ

πp2 ´ cqCℓ
?
nP

`
p1 ´ cπqCℓ

?
nU

˙

c

ln 2{δ

2
.

The proof is complete.

Then, we give the proof of Theorem 2.

Proof of Theorem 2.
Rp sfq ´ Rpf˚q “Rp sfq ´ sRpp sfq ` sRpp sfq ´ sRpf˚q ` sRpf˚q ´ Rpf˚q

ďRp sfq ´ sRpp sfq ` sRpp sfq ´ sRpf˚q ` sRpf˚q ´ Rpf˚q

ď2 sup
fPF

ˇ

ˇ sRpfq ´ Rpfq
ˇ

ˇ .

By Lemma 1, the proof is complete.

A.6 DERIVATION OF EQUIVALENCE OF RISK ESTIMATORS

sRpfq

“
π

nP

nP
ÿ

i“1

pℓ pfpxiq,`1q ` pc ´ 1qℓ pfpxiq,´1qq `
1 ´ cπ

nU

nP`nU
ÿ

i“nP`1

ℓ pfpxiq,´1q

“

nP
ÿ

i“1

ˆ

π

nP
ℓ pfpxiq,`1q `

ˆ

1

nP ` nU
´

π

nP

˙

ℓ pfpxiq,´1q

˙

`
1

nP ` nU

nP`nU
ÿ

i“nP`1

ℓ pfpxiq,´1q

“
π

nP

nP
ÿ

i“1

pℓ pfpxiq,`1q ´ ℓ pfpxiq,´1qq `
1

nU

nP`nU
ÿ

i“1

ℓ pfpxiq,´1q , (10)
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where the second equation uses the estimation c “ nP{πpnP ` nUq.

B MORE EXPERIMENTAL DETAILS

B.1 MORE DETAILS OF BENCHMARK DATASETS

Table 3 summarizes their key characteristics, including the number of examples, feature dimension-
ality, positive class configurations, and task domains. For all datasets, we vary the positive rate in
{10%, 20%, 30%, 40%, 50%}. For the benchmark experiments in Section 5, we used the positive
rate 30%.

Table 3: Summary of datasets used in this PU learning benchmark.
Dataset # Examples # Features Positive Classes (Case 1) Positive Classes (Case 2) Task Domain

CIFAR-10 20,000 3,072 {0,1,2,8,9} {2,3,5,7,9} Image classification
ImageNette 6,000 12,288 {0,1,2,8,9} {2,3,5,7,9} Image classification

USPS 4,000 256 {4,7,9,5,8} {1,6,4,9,8} Digit recognition
Letter 13,000 16 {B,V,L,R,I,O,W,S,J,K,C,H,Z} {D,T,A,Y,Q,G,B,L,I,W,J,C,Z} Character recognition

B.2 DESCRIPTIONS OF ALGORITHMS

• uPU (du Plessis et al., 2015): An unbiased risk estimator that is convex when the loss function
satisfies certain linear-odd conditions.

• nnPU (Kiryo et al., 2017): A non-negative risk estimator that alleviates the overfitting issue in PU
learning.

• nnPU-GA (Kiryo et al., 2017):
• PUSB (Kato et al., 2019): A method that accounts for selection bias in the labeling process.
• PUbN (Hsieh et al., 2019): A framework that incorporates biased negative data into empirical risk

minimization.
• VPU (Chen et al., 2020a): A variational approach that directly evaluates the modeling error of a

Bayesian classifier from data.
• PAN (Hu et al., 2021): A predictive adversarial network built upon the generative adversarial

network framework.
• CVIR (Garg et al., 2021): A mixture-proportion estimation method combining best bin estimation

and conditional Value Ignoring Risk.
• Dist-PU (Zhao et al., 2022): A method that enforces consistency between predicted and ground-

truth label distributions.
• P3MIX-E (Li et al., 2022): A mixup-based method that pairs marginal pseudo-negative instances

with boundary-near positive instances, with early-learning regularization.
• P3MIX-C (Li et al., 2022): A mixup-based method that pairs marginal pseudo-negative instances

with boundary-near positive instances, with pseudo-negative correction.
• LBE (Gong et al., 2022): An instance-dependent PU algorithm that jointly estimates labeling bias

and learns the classifier.
• Count Loss (Shukla et al., 2023): A unified approach introducing a count-based loss penalizing

deviations from arithmetic label-count constraints.
• Robust-PU (Zhu et al., 2023b): A reweighted learning framework that dynamically adjusts sample

weights based on training progress and sample hardness.
• Holistic-PU (Wang et al., 2023a): A holistic method interpreting prediction scores as a temporal

point process.
• PUe (Wang et al., 2023b): A causality-based method that reconstructs the loss via normalized

propensity scores and inverse probability weighting.
• GLWS (Chen et al., 2024): A general weak-supervision framework formulated as Expectation-

Maximization, accommodating PU data as one supervision source.

B.3 IMPLEMENTATION DETAILS

All algorithms were implemented in PyTorch (Paszke et al., 2019), and all experiments were con-
ducted on a single NVIDIA Tesla V100 GPU. We used the SGD optimizer and trained for 20,000
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iterations across all datasets. Model performance on the validation and test sets was recorded every
100 iterations. For each dataset, we generated three random data splits. For each split, 10 random
hyperparameter configurations were sampled from a predefined pool. Table 4 provides the details of
the hyperparameter configurations used for all algorithms.

Table 4: Hyperparameters, their default values, and distributions for random search.

Condition Parameter Default Value Random Distribution

ResNet
learning rate 0.001 10Uniformp´4.5,´2.5q

batch size 64 2Uniformp5,8q

momentum 0.9 0.9

MLP
learning rate 0.001 10Uniformp´4.5,´2.5q

batch size 128 2Uniformp4,7q

momentum 0.9 0.9

nnPU tolerance threshold 0.0 0.0

PUbN importance of unlabeled data 0.5 RandomChoice([0.5,0.7,0.9])

PAN balance factor of the KL-divergences 0.0001 0.0001

P3MIX-E

predictive score threshold 0.85 0.85
size of the candidate mixup pool 96 96
weight of the positive loss 1 1
weight of the unlabeled loss 1 1
weight of the entropy loss 0.5 0.5
weight of the early-learning regularization 5 5

P3MIX-C

predictive score threshold 0.8 0.8
size of the candidate mixup pool 96 96
mixup coefficient 1.0 1.0
weight of the positive loss 1 1
weight of the unlabeled loss 1 1
weight of the entropy loss 0.1 0.1

LBE warm up iteration 2000 2000

Robust-PU

warm up iteration 2000 2000
training scheduler linear linear
temperature in the logistic loss 1 RandomChoice([1,1.3])
initial threshold 0.1 RandomChoice([0.1,0.11])
final threshold 2 RandomChoice([1,2])
growing step 10 RandomChoice([5,10])

Holistic-PU warm up iteration 2000 2000

C DETAILS OF EXPERIMENTAL RESULTS

Tables 5 to 18 report detailed experimental results in terms of different metrics on CIFAR-10, Im-
ageNette, Letter, and USPS, and the hyperparameters are determined with PA, PAUC, and OA,
respectively.

D BENCHMARK RESULTS WITH VARYING RATIOS OF POSITIVE DATA

Tables 19 to 22 show the experimental results of varying ratios of positive data.

E EXPERIMENTAL RESULTS WITH INACCURATE CLASS PRIORS

Tables 23 to 26 show the experimental results when the class priors are inaccurate for validation.

18
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Figure 5: Overall performance w.r.t. the AUC score of different algorithms across all datasets. Hy-
perparameters were tuned using PA, PAUC and OA, respectively; bar colors indicate means.

Table 5: Test results (mean˘std) of precision and recall for each algorithm on CIFAR-10 (Case 1)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Precision Recall

Val metric PA PAUC OA PA PAUC OA

PUbN 85.58˘0.37 86.97˘0.18 89.46˘0.65 87.71˘1.00 85.25˘1.87 84.64˘0.24
PAN 71.61˘0.86 73.33˘0.14 79.51˘1.74 88.39˘1.65 86.65˘1.61 78.41˘3.09
CVIR 82.12˘1.38 78.27˘1.03 86.30˘0.93 90.72˘0.42 92.42˘1.35 86.74˘0.26
P3MIX-E 68.93˘6.62 50.00˘0.00 82.77˘5.96 90.99˘1.97 100.00˘0.00 67.19˘17.74
P3MIX-C 86.03˘0.91 84.91˘1.00 86.27˘0.66 86.86˘0.24 86.97˘0.45 87.19˘0.81
LBE 79.00˘1.37 66.06˘1.22 88.64˘0.96 89.31˘0.95 97.45˘0.33 80.41˘0.36
Count Loss 75.81˘0.30 74.78˘1.63 79.88˘0.66 90.73˘0.31 90.57˘1.51 86.65˘1.07
Robust-PU 84.19˘1.05 89.77˘1.85 88.23˘0.69 87.73˘1.21 80.72˘2.97 82.89˘0.26
Holistic-PU 50.10˘0.05 50.00˘0.00 78.03˘0.77 99.49˘0.22 100.00˘0.00 88.60˘0.41
PUe 74.23˘1.27 80.12˘1.97 85.70˘2.17 85.52˘0.48 76.39˘2.72 73.49˘1.77
GLWS 79.61˘0.65 73.12˘2.81 82.86˘0.85 92.70˘0.34 95.53˘1.03 89.99˘0.32

uPU 78.14˘1.90 78.06˘7.35 88.69˘0.56 84.29˘0.41 80.13˘7.43 73.44˘0.66
uPU-c 85.58˘0.88 89.53˘1.39 88.50˘0.93 86.39˘0.98 77.69˘2.63 83.91˘0.66
nnPU 77.17˘0.27 68.25˘0.27 78.73˘1.19 91.00˘0.32 95.62˘0.62 88.99˘1.44
nnPU-c 83.72˘0.48 87.75˘0.73 86.66˘0.46 88.22˘0.98 83.76˘0.68 85.95˘0.77
nnPU-GA 81.92˘1.66 82.29˘0.38 86.81˘1.62 88.18˘1.20 87.12˘0.72 82.54˘0.65
nnPU-GA-c 85.33˘0.90 89.78˘1.03 89.25˘0.78 86.55˘1.15 81.95˘0.76 82.19˘0.41
PUSB 76.20˘1.34 78.13˘1.39 78.64˘0.98 91.93˘0.81 90.41˘0.19 90.44˘0.20
PUSB-c 86.43˘0.03 89.07˘1.32 87.87˘0.17 85.76˘0.84 79.38˘1.23 84.66˘0.25
VPU 88.71˘0.41 97.16˘1.53 90.61˘0.82 80.05˘0.84 33.15˘15.89 79.93˘1.08
VPU-c 84.97˘1.65 77.43˘2.41 89.08˘0.15 88.67˘0.83 93.37˘0.83 85.82˘0.61
Dist-PU 76.34˘0.77 72.78˘0.89 84.75˘0.15 91.79˘0.56 93.81˘0.86 81.86˘1.26
Dist-PU-c 84.07˘1.13 88.22˘2.06 90.49˘0.84 91.58˘0.99 86.67˘2.28 86.02˘0.83
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Figure 6: Overall performance w.r.t. precision of different algorithms across all datasets. Hyperpa-
rameters were tuned using PA, PAUC and OA, respectively; bar colors indicate means.

Table 6: Test results (mean˘std) of precision and recall for each algorithm on CIFAR-10 (Case 2)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Precision Recall

Val metric PA PAUC OA PA PAUC OA

PUbN 73.21˘1.41 80.55˘1.72 80.14˘1.05 89.42˘0.70 78.25˘3.04 79.75˘0.94
PAN 57.23˘1.87 56.98˘2.87 59.50˘1.67 92.77˘0.38 94.70˘2.27 83.05˘5.42
CVIR 73.13˘1.91 76.32˘1.46 77.51˘0.90 90.57˘0.80 85.61˘1.27 85.81˘0.63
P3MIX-E 55.91˘3.28 33.33˘13.61 56.04˘3.39 96.32˘1.97 66.67˘27.22 96.07˘2.17
P3MIX-C 74.10˘1.68 74.09˘2.13 75.63˘0.62 86.67˘1.25 85.03˘1.78 84.71˘0.96
LBE 66.21˘1.66 58.31˘2.11 75.81˘1.05 92.61˘1.25 97.81˘0.77 76.30˘0.92
Count Loss 69.39˘0.70 71.20˘0.18 73.73˘0.09 87.54˘0.76 83.13˘1.10 83.48˘2.12
Robust-PU 75.32˘1.11 82.16˘1.82 79.06˘0.85 86.25˘1.51 72.97˘1.95 80.59˘1.55
Holistic-PU 53.00˘0.10 59.93˘4.67 67.62˘0.43 98.93˘0.21 54.64˘23.85 81.48˘5.21
PUe 63.65˘0.22 62.69˘2.20 71.16˘1.47 86.71˘0.82 88.03˘2.08 71.53˘3.84
GLWS 71.86˘1.10 69.66˘1.62 77.16˘0.93 91.35˘1.11 93.40˘0.68 84.11˘0.63

uPU 62.03˘1.56 65.14˘1.52 69.80˘0.66 84.79˘2.37 82.83˘2.57 72.40˘3.72
uPU-c 72.31˘0.26 82.55˘0.25 80.15˘0.99 88.23˘0.26 74.27˘0.66 77.23˘2.25
nnPU 68.39˘1.63 57.41˘0.78 74.03˘0.92 91.01˘1.51 98.65˘0.40 85.19˘0.73
nnPU-c 73.19˘1.09 81.98˘0.60 80.25˘0.74 87.81˘1.17 73.10˘1.44 77.99˘1.18
nnPU-GA 71.42˘1.13 72.38˘0.59 78.98˘1.66 88.75˘1.03 86.52˘2.59 77.65˘1.40
nnPU-GA-c 74.94˘0.69 80.00˘1.79 79.37˘0.90 84.28˘2.37 75.86˘1.44 78.70˘0.96
PUSB 69.38˘0.61 76.30˘1.64 74.79˘0.62 92.21˘0.15 84.05˘2.62 85.62˘1.96
PUSB-c 76.45˘0.77 79.54˘1.37 78.93˘0.69 84.07˘0.83 75.54˘1.16 79.71˘1.19
VPU 81.54˘0.63 92.66˘1.97 82.10˘0.62 69.74˘1.96 29.59˘11.86 69.91˘2.43
VPU-c 72.30˘0.58 72.93˘1.34 77.65˘0.43 89.87˘0.48 90.00˘0.94 83.71˘1.10
Dist-PU 68.12˘0.72 71.23˘1.19 71.27˘1.24 88.31˘0.40 83.64˘1.35 83.07˘1.45
Dist-PU-c 69.46˘4.49 72.97˘2.81 75.24˘2.54 83.36˘0.70 78.05˘3.74 72.82˘5.27
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Figure 7: Overall performance w.r.t. recall of different algorithms across all datasets. Hyperparam-
eters were tuned using PA, PAUC and OA, respectively; bar colors indicate means.

Table 7: Test results (mean˘std) of accuracy, AUC, and F1 score for each algorithm on ImageNette
(Case 1) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Test ACC AUC Test F1

Val metric PA PAUC OA PA PAUC OA PA PAUC OA

PUbN 75.69˘0.02 77.07˘0.47 78.99˘0.57 84.82˘0.28 86.25˘0.83 87.45˘0.37 77.63˘0.16 76.30˘1.26 79.25˘0.76
PAN 50.74˘1.17 51.52˘0.46 56.93˘1.83 53.71˘3.39 55.48˘1.03 55.73˘1.79 65.24˘0.19 32.31˘14.81 45.43˘2.65
CVIR 78.78˘0.86 78.26˘1.62 81.01˘0.67 87.98˘0.35 88.29˘0.65 89.28˘0.38 80.12˘0.36 79.52˘0.78 81.51˘0.45
P3MIX-E 74.81˘2.36 49.71˘0.48 75.19˘2.39 82.71˘2.74 85.84˘0.68 82.91˘2.92 76.23˘1.97 43.92˘17.93 76.41˘2.04
P3MIX-C 78.81˘1.61 78.91˘1.84 80.25˘0.82 85.85˘1.50 86.41˘1.31 87.33˘1.27 80.26˘1.24 80.35˘1.27 80.48˘0.37
LBE 78.52˘0.41 78.73˘0.65 79.20˘0.36 86.84˘0.37 86.31˘0.61 86.16˘0.78 78.90˘0.32 77.09˘1.48 78.14˘0.75
Count Loss 74.98˘0.85 75.95˘1.56 78.07˘0.73 85.50˘0.23 85.44˘0.52 85.75˘0.74 77.84˘0.40 77.95˘0.87 78.92˘0.91
Robust-PU 77.67˘0.27 75.53˘2.04 78.73˘0.43 83.93˘0.64 85.22˘0.11 84.46˘0.93 77.86˘0.47 71.78˘4.44 78.06˘0.59
Holistic-PU 51.16˘0.47 54.42˘3.66 53.62˘0.24 58.85˘1.01 56.45˘6.07 55.25˘0.43 65.18˘0.31 64.23˘1.18 51.58˘1.27
PUe 67.47˘1.88 71.46˘1.27 70.90˘1.28 75.35˘1.52 77.29˘1.49 77.47˘1.55 70.39˘0.48 70.97˘1.81 71.46˘1.56
GLWS 76.14˘0.86 74.96˘1.62 78.68˘0.70 87.00˘0.40 86.89˘0.71 86.96˘0.74 78.93˘0.45 78.52˘1.01 79.56˘0.67

uPU 71.07˘0.95 64.14˘6.15 73.69˘0.74 82.24˘0.61 81.60˘1.06 81.94˘0.41 74.88˘0.50 71.58˘2.45 74.95˘0.78
uPU-c 75.00˘0.97 72.54˘4.40 77.76˘0.66 84.13˘0.33 85.82˘0.55 84.65˘0.65 77.16˘0.27 63.33˘9.88 77.19˘0.67
nnPU 75.63˘1.34 66.81˘1.09 77.80˘0.74 86.56˘0.38 86.12˘0.71 86.72˘0.26 78.52˘0.77 73.97˘0.57 78.19˘0.46
nnPU-c 76.51˘0.61 76.95˘0.75 77.66˘0.63 83.87˘0.71 85.08˘0.67 83.93˘1.24 77.89˘0.33 74.59˘1.65 77.33˘0.99
nnPU-GA 75.70˘0.36 78.72˘0.64 79.40˘0.47 83.74˘0.65 86.06˘0.88 84.45˘1.58 78.33˘0.16 78.98˘1.22 79.13˘0.24
nnPU-GA-c 77.65˘0.58 72.91˘2.33 78.56˘0.06 81.45˘1.32 84.75˘0.53 82.69˘1.21 77.88˘0.51 65.42˘5.22 78.34˘0.42
PUSB 72.73˘0.54 77.03˘0.74 76.73˘0.35 73.10˘0.53 77.19˘0.68 76.91˘0.33 77.26˘0.33 78.65˘0.09 78.66˘0.16
PUSB-c 76.37˘0.16 77.36˘0.36 77.81˘0.60 76.48˘0.15 77.31˘0.33 77.86˘0.60 77.37˘0.17 76.42˘0.04 78.15˘0.80
VPU 56.36˘2.98 50.91˘0.03 61.72˘0.41 61.21˘2.22 82.35˘0.27 73.84˘4.69 53.86˘6.31 0.14˘0.11 45.88˘4.26
VPU-c 77.48˘0.83 78.00˘0.50 78.06˘0.91 83.35˘0.33 84.63˘0.49 84.28˘0.96 78.09˘0.69 78.60˘0.40 77.64˘0.69
Dist-PU 70.40˘2.37 71.86˘2.34 74.68˘0.79 83.97˘1.16 83.18˘1.51 83.92˘0.73 75.58˘1.50 75.76˘1.61 77.00˘0.75
Dist-PU-c 72.03˘0.99 65.88˘3.33 73.84˘1.06 79.51˘0.44 77.83˘0.61 80.91˘1.18 74.78˘0.58 52.05˘10.16 74.10˘0.81
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Table 8: Test results (mean˘std) of precision and recall for each algorithm on ImageNette (Case 1)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Precision Recall

Val metric PA PAUC OA PA PAUC OA

PUbN 70.84˘0.32 78.57˘4.30 77.10˘1.61 85.89˘0.85 76.09˘5.82 81.90˘2.84
PAN 50.00˘0.66 53.43˘1.40 60.22˘3.11 94.12˘2.52 38.73˘23.64 36.64˘2.60
CVIR 74.49˘1.81 75.11˘3.74 78.28˘1.36 86.93˘1.69 85.67˘3.79 85.13˘1.14
P3MIX-E 71.37˘2.70 32.75˘13.37 71.98˘2.64 81.92˘1.42 66.67˘27.22 81.48˘1.38
P3MIX-C 74.23˘1.92 74.56˘2.46 78.59˘2.18 87.47˘0.80 87.34˘0.62 82.78˘1.94
LBE 76.29˘0.82 81.74˘1.60 80.73˘0.77 81.76˘0.93 73.48˘3.85 75.86˘2.11
Count Loss 69.02˘1.15 71.41˘2.49 74.81˘1.18 89.37˘0.93 86.22˘1.82 83.77˘2.66
Robust-PU 75.89˘0.38 81.60˘2.37 79.16˘0.86 80.00˘1.31 66.11˘7.91 77.07˘1.53
Holistic-PU 50.17˘0.26 54.20˘3.82 52.95˘0.29 93.12˘1.81 84.66˘10.32 50.48˘2.51
PUe 64.33˘2.68 70.74˘0.59 68.85˘0.95 78.49˘2.87 71.33˘3.07 74.38˘2.68
GLWS 69.81˘1.18 68.10˘1.82 75.17˘0.67 90.92˘1.13 92.88˘0.54 84.51˘0.74

uPU 65.37˘1.04 60.87˘4.80 70.38˘0.55 87.71˘0.58 89.47˘4.66 80.15˘1.07
uPU-c 70.53˘2.49 85.36˘2.00 77.92˘1.59 86.05˘3.74 54.50˘12.20 76.69˘1.98
nnPU 69.49˘1.81 60.22˘0.88 76.11˘2.64 90.46˘1.00 95.92˘0.48 81.15˘3.55
nnPU-c 72.51˘1.01 81.53˘2.56 77.04˘0.57 84.20˘0.62 69.52˘4.15 77.77˘2.26
nnPU-GA 69.74˘0.60 76.68˘1.43 79.13˘2.26 89.37˘0.77 81.95˘3.81 79.63˘2.88
nnPU-GA-c 75.88˘1.16 86.08˘2.79 77.78˘0.87 80.10˘1.46 54.93˘8.53 79.05˘1.77
PUSB 65.46˘0.55 72.72˘2.12 71.63˘0.81 94.26˘0.58 86.17˘2.78 87.31˘1.24
PUSB-c 73.08˘0.57 78.35˘1.28 75.79˘1.41 82.24˘0.99 74.69˘1.16 80.96˘2.74
VPU 61.32˘5.55 33.33˘27.22 80.12˘7.64 59.47˘17.51 0.07˘0.06 34.73˘6.80
VPU-c 74.86˘1.16 75.32˘0.83 77.88˘1.56 81.67˘0.95 82.23˘0.80 77.46˘0.23
Dist-PU 63.85˘2.20 66.01˘2.40 69.52˘0.61 92.79˘0.44 89.14˘1.38 86.31˘1.05
Dist-PU-c 67.29˘1.38 81.49˘4.56 72.42˘1.95 84.35˘1.74 43.02˘11.82 76.21˘2.39

Table 9: Test results (mean˘std) of accuracy, AUC, and F1 score for each algorithm on ImageNette
(Case 2) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Test ACC AUC Test F1

Val metric PA PAUC OA PA PAUC OA PA PAUC OA

PUbN 75.30˘0.58 75.97˘0.61 77.39˘0.45 83.97˘0.64 84.03˘0.50 85.20˘0.66 76.89˘0.51 75.98˘1.24 76.44˘0.60
PAN 53.31˘0.36 64.73˘1.69 64.37˘2.18 65.28˘1.32 70.38˘1.92 69.19˘2.61 66.49˘0.27 58.68˘5.06 63.03˘2.55
CVIR 76.60˘0.74 77.87˘0.67 79.29˘0.47 85.84˘0.26 86.25˘0.32 87.22˘0.49 78.43˘0.48 78.67˘0.35 79.39˘0.09
P3MIX-E 60.42˘4.27 49.86˘0.23 60.82˘4.16 70.79˘2.16 81.61˘0.76 71.51˘2.47 67.11˘1.54 44.19˘18.04 67.38˘1.42
P3MIX-C 74.17˘0.90 75.40˘0.81 75.35˘0.81 83.92˘0.88 83.97˘1.13 83.68˘0.43 76.85˘0.73 77.21˘0.65 77.13˘0.44
LBE 74.51˘0.94 74.67˘0.54 76.31˘0.92 83.06˘1.01 82.33˘0.45 83.33˘0.99 76.85˘0.74 73.81˘1.63 74.99˘1.41
Count Loss 73.27˘0.28 73.62˘0.23 74.43˘0.66 82.20˘0.51 82.04˘0.66 82.05˘0.72 76.28˘0.22 76.11˘0.30 76.46˘0.45
Robust-PU 72.58˘1.19 72.78˘0.43 75.52˘0.68 80.19˘0.81 80.57˘0.71 81.69˘0.38 73.75˘0.62 69.94˘1.57 74.06˘1.05
Holistic-PU 56.12˘0.93 54.70˘2.16 59.19˘0.53 61.46˘0.21 59.83˘1.01 62.22˘0.69 64.75˘1.38 60.81˘1.16 58.83˘0.57
PUe 64.65˘0.59 65.89˘1.36 67.63˘0.53 72.74˘1.48 72.62˘1.26 74.27˘0.79 69.33˘1.07 68.66˘0.71 69.42˘0.90
GLWS 75.61˘0.65 75.38˘0.24 76.99˘0.21 85.81˘0.55 86.55˘0.37 85.77˘0.29 78.47˘0.34 78.40˘0.13 78.65˘0.19

uPU 60.42˘2.82 66.42˘1.08 66.29˘1.00 67.49˘3.09 73.24˘0.86 72.82˘0.52 67.95˘0.68 67.50˘1.57 66.46˘1.37
uPU-c 72.57˘1.56 73.20˘1.05 75.07˘0.54 79.19˘2.25 81.76˘0.92 82.22˘0.87 72.60˘1.24 69.52˘2.07 74.58˘0.79
nnPU 69.83˘0.52 55.99˘3.35 72.76˘0.55 82.83˘1.26 80.53˘0.83 82.65˘0.76 74.92˘0.35 69.09˘1.48 75.65˘0.45
nnPU-c 74.42˘0.75 73.55˘1.07 74.17˘1.07 82.13˘0.89 82.44˘0.97 81.77˘1.05 75.24˘1.25 71.49˘2.66 73.68˘1.79
nnPU-GA 72.19˘1.31 75.23˘1.08 75.87˘0.60 81.37˘0.66 82.62˘1.08 83.37˘0.99 75.44˘0.43 74.24˘2.14 74.85˘0.80
nnPU-GA-c 72.27˘1.25 73.85˘0.58 74.62˘0.11 79.16˘1.52 81.60˘0.47 79.72˘1.52 73.86˘0.71 71.02˘0.68 74.79˘0.81
PUSB 71.29˘1.80 72.57˘0.76 75.30˘0.56 71.44˘1.78 72.65˘0.76 75.35˘0.54 75.76˘0.85 74.73˘0.74 76.77˘0.29
PUSB-c 72.98˘1.11 73.69˘0.38 74.86˘0.52 73.00˘1.10 73.64˘0.38 74.86˘0.50 73.69˘0.94 71.85˘0.48 74.70˘0.37
VPU 70.42˘1.87 58.37˘6.43 73.28˘0.73 78.68˘1.11 78.52˘1.50 80.21˘0.47 73.29˘0.72 24.24˘19.50 70.20˘1.70
VPU-c 76.30˘0.79 77.75˘0.57 77.38˘1.00 84.37˘0.45 84.11˘0.49 83.80˘0.79 78.34˘0.83 78.32˘0.40 77.88˘0.75
Dist-PU 63.97˘1.03 67.74˘0.50 68.58˘1.04 72.64˘0.26 75.26˘0.57 74.62˘0.96 69.88˘0.13 71.92˘0.37 70.92˘0.75
Dist-PU-c 60.43˘4.37 68.02˘1.27 67.29˘1.74 67.51˘3.90 74.10˘1.29 71.97˘2.69 67.65˘0.89 69.06˘1.11 65.39˘3.35
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Table 10: Test results (mean˘std) of precision and recall for each algorithm on ImageNette (Case 2)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Precision Recall

Val metric PA PAUC OA PA PAUC OA

PUbN 71.79˘1.10 75.30˘1.17 79.28˘1.74 82.94˘1.86 77.08˘3.45 74.08˘2.39
PAN 51.63˘0.24 70.75˘3.83 64.81˘2.19 93.47˘1.86 53.01˘8.18 61.43˘3.03
CVIR 72.31˘1.00 75.51˘1.45 78.53˘1.48 85.71˘0.51 82.27˘1.44 80.42˘1.40
P3MIX-E 59.73˘5.02 33.05˘13.49 60.00˘5.03 82.05˘9.32 66.67˘27.22 82.13˘9.07
P3MIX-C 69.19˘0.86 71.42˘0.87 71.54˘1.30 86.45˘0.93 84.04˘0.35 83.78˘0.78
LBE 70.02˘1.26 75.72˘1.63 78.52˘0.55 85.34˘1.94 72.71˘4.32 71.91˘2.57
Count Loss 68.13˘0.40 69.07˘0.31 70.39˘0.88 86.66˘0.67 84.79˘0.94 83.73˘0.75
Robust-PU 70.52˘2.00 77.77˘2.80 78.01˘1.20 77.58˘1.81 64.58˘4.76 70.69˘2.37
Holistic-PU 54.06˘1.09 53.98˘1.86 58.96˘0.87 82.10˘6.17 71.70˘7.18 58.89˘1.87
PUe 60.79˘0.12 63.24˘1.65 65.25˘0.23 80.82˘2.80 75.25˘0.71 74.24˘2.00
GLWS 69.84˘0.87 69.39˘0.41 72.88˘0.68 89.59˘0.58 90.12˘0.64 85.49˘1.26

uPU 57.42˘2.33 65.47˘2.34 66.40˘2.65 84.31˘3.94 71.10˘5.64 68.14˘6.00
uPU-c 72.56˘2.89 79.46˘1.02 75.39˘0.26 73.42˘3.51 62.21˘3.91 73.83˘1.50
nnPU 63.81˘0.91 53.31˘2.09 68.00˘0.93 91.01˘2.53 98.56˘0.94 85.41˘1.95
nnPU-c 72.24˘0.48 76.75˘2.56 74.25˘0.69 78.73˘3.00 68.48˘6.78 73.47˘3.67
nnPU-GA 67.45˘1.90 76.34˘0.93 77.55˘1.48 85.99˘2.22 72.88˘4.68 72.56˘2.15
nnPU-GA-c 69.67˘2.08 78.80˘0.62 73.81˘1.46 78.90˘1.89 64.65˘0.71 76.22˘3.06
PUSB 65.52˘2.07 68.76˘0.60 72.14˘1.68 90.15˘1.50 81.84˘0.98 82.39˘2.42
PUSB-c 71.30˘1.31 76.51˘0.32 74.72˘1.46 76.28˘0.92 67.73˘0.61 74.87˘1.76
VPU 66.96˘2.61 55.05˘22.59 78.42˘1.24 81.55˘2.30 22.49˘18.22 63.98˘3.62
VPU-c 71.58˘0.54 75.82˘0.96 75.76˘1.51 86.54˘1.40 81.02˘0.43 80.18˘0.64
Dist-PU 59.86˘1.20 63.30˘0.69 65.65˘1.35 84.36˘2.94 83.38˘1.52 77.27˘1.64
Dist-PU-c 58.89˘4.09 66.51˘1.59 68.25˘0.62 83.16˘7.58 72.05˘2.14 63.51˘5.76

Table 11: Test results (mean˘std) of accuracy, AUC, and F1 score for each algorithm on Letter
(Case 1) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Test ACC AUC Test F1

Val metric PA PAUC OA PA PAUC OA PA PAUC OA

PUbN 88.92˘1.90 89.05˘2.11 89.70˘1.38 94.24˘1.48 94.48˘1.35 94.61˘1.20 89.59˘1.58 89.43˘1.70 89.57˘1.46
PAN 49.28˘0.27 48.20˘0.54 52.18˘1.24 47.05˘2.18 55.92˘0.51 46.69˘2.30 65.40˘0.26 65.04˘0.49 42.19˘17.25
CVIR 83.35˘0.56 82.60˘0.75 84.67˘0.58 86.40˘0.65 87.63˘0.99 87.78˘0.90 85.16˘0.50 84.33˘0.62 85.86˘0.35
P3MIX-E 51.80˘1.39 49.62˘0.87 61.42˘4.12 60.70˘5.00 81.42˘0.26 67.00˘7.82 67.12˘0.64 43.85˘17.57 42.69˘17.49
P3MIX-C 80.03˘1.13 77.58˘2.53 80.92˘1.14 85.08˘1.23 84.43˘1.62 84.50˘0.68 82.46˘0.83 80.56˘1.73 82.83˘0.96
LBE 85.63˘1.13 81.37˘2.19 87.55˘0.28 91.81˘1.52 93.96˘0.29 94.38˘0.23 87.17˘0.85 83.32˘1.15 87.44˘0.32
Count Loss 77.67˘0.86 73.15˘1.96 78.27˘1.01 86.31˘1.48 87.17˘1.55 84.67˘0.78 80.27˘0.67 77.19˘1.62 79.98˘0.84
Robust-PU 90.02˘0.67 89.17˘0.33 90.63˘0.31 95.30˘0.29 95.51˘0.32 95.91˘0.31 90.20˘0.61 89.09˘0.66 90.58˘0.32
Holistic-PU 85.80˘0.99 75.22˘9.45 87.32˘1.27 94.12˘1.36 95.72˘1.49 94.74˘1.64 87.14˘0.83 80.97˘5.61 88.17˘1.02
PUe 79.50˘0.24 81.83˘1.08 82.00˘0.78 89.77˘1.07 91.42˘0.98 90.88˘0.50 81.54˘0.21 82.32˘1.64 81.95˘1.08
GLWS 85.87˘0.95 80.93˘1.54 86.32˘0.58 92.91˘0.63 93.62˘0.45 92.65˘0.83 87.03˘0.75 83.53˘1.17 87.28˘0.54

uPU 74.98˘1.19 79.75˘0.63 77.72˘0.79 85.87˘0.59 88.34˘0.29 86.19˘0.71 78.05˘1.00 79.62˘0.40 77.65˘1.10
uPU-c 92.23˘0.26 85.97˘4.01 92.73˘0.15 96.84˘0.15 97.26˘0.05 96.40˘0.18 92.18˘0.14 83.09˘6.02 92.60˘0.14
nnPU 85.13˘0.46 79.53˘1.62 85.60˘0.31 94.16˘0.51 95.44˘0.44 94.49˘0.66 86.19˘0.37 82.46˘1.10 85.85˘0.40
nnPU-c 91.87˘0.34 89.25˘1.14 91.82˘0.14 96.15˘0.30 96.39˘0.69 96.36˘0.38 91.85˘0.25 88.24˘1.71 91.58˘0.21
nnPU-GA 85.12˘0.13 82.85˘0.68 84.27˘0.58 93.17˘0.44 93.56˘0.61 91.18˘0.41 85.74˘0.25 82.86˘1.69 84.46˘0.64
nnPU-GA-c 90.97˘0.30 88.60˘0.57 90.97˘0.30 94.72˘0.23 96.37˘1.16 94.72˘0.23 90.86˘0.25 87.75˘0.25 90.86˘0.25
PUSB 85.73˘0.70 87.43˘0.21 86.82˘0.54 86.09˘0.63 87.42˘0.25 86.81˘0.56 86.63˘0.67 87.66˘0.50 86.70˘0.78
PUSB-c 91.42˘0.86 90.68˘0.58 91.43˘0.92 91.45˘0.87 90.66˘0.57 91.46˘0.92 91.35˘1.02 90.30˘0.67 91.29˘1.04
VPU 89.85˘1.07 67.88˘8.64 90.13˘0.77 95.67˘0.40 96.03˘0.77 95.44˘0.57 89.69˘0.98 44.13˘20.00 89.86˘0.67
VPU-c 91.83˘0.54 90.28˘0.98 92.15˘0.52 96.32˘0.38 97.06˘0.26 96.96˘0.30 91.95˘0.42 89.38˘1.17 91.93˘0.48
Dist-PU 77.07˘0.77 77.45˘0.78 77.55˘0.78 81.95˘1.07 82.71˘1.23 82.07˘1.66 80.15˘0.45 79.68˘0.14 80.07˘0.40
Dist-PU-c 67.65˘2.41 69.33˘2.52 70.03˘2.28 72.96˘2.78 75.75˘2.56 74.72˘2.66 72.61˘1.10 68.78˘2.64 72.81˘2.05
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Table 12: Test results (mean˘std) of precision and recall for each algorithm on Letter (Case 1)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Precision Recall

Val metric PA PAUC OA PA PAUC OA

PUbN 84.12˘2.75 86.86˘4.01 88.33˘1.64 96.00˘0.44 92.79˘2.16 90.85˘1.27
PAN 49.11˘0.23 48.20˘0.54 34.01˘13.90 97.89˘1.15 100.00˘0.00 56.40˘23.56
CVIR 75.82˘0.92 74.75˘0.73 77.28˘0.52 97.17˘0.70 96.73˘0.42 96.58˘0.14
P3MIX-E 50.79˘0.93 65.70˘14.00 45.23˘18.89 99.04˘0.74 66.80˘27.10 42.64˘18.48
P3MIX-C 73.49˘1.22 71.37˘2.78 75.15˘0.90 94.00˘1.10 92.77˘0.92 92.26˘1.02
LBE 78.58˘1.20 75.84˘4.43 85.17˘1.79 97.89˘0.29 93.97˘3.87 90.14˘2.36
Count Loss 69.56˘1.08 64.88˘1.99 72.33˘0.83 94.95˘0.69 95.42˘1.62 89.44˘0.97
Robust-PU 87.94˘0.82 86.68˘1.06 90.32˘0.77 92.60˘0.67 91.84˘2.47 90.86˘0.32
Holistic-PU 79.36˘1.07 71.38˘8.69 82.39˘2.08 96.62˘0.46 96.74˘1.50 94.99˘1.21
PUe 73.33˘0.21 78.59˘0.74 80.47˘0.23 91.82˘0.32 86.90˘4.26 83.62˘2.52
GLWS 78.56˘1.32 72.32˘1.87 79.44˘0.61 97.60˘0.27 98.98˘0.30 96.84˘0.48

uPU 67.24˘1.28 77.65˘2.09 74.98˘0.74 93.05˘0.71 81.96˘1.61 80.56˘1.73
uPU-c 89.10˘0.60 93.95˘2.97 92.00˘0.92 95.49˘0.48 77.42˘10.67 93.26˘0.91
nnPU 79.27˘0.28 70.89˘1.82 81.97˘1.57 94.44˘0.61 98.70˘0.39 90.42˘2.48
nnPU-c 90.57˘0.67 93.06˘1.83 93.26˘1.26 93.18˘0.49 84.51˘4.36 90.08˘1.46
nnPU-GA 81.01˘0.13 81.22˘3.50 80.81˘1.19 91.07˘0.63 86.51˘6.63 88.48˘0.53
nnPU-GA-c 89.60˘0.51 92.37˘3.02 89.60˘0.51 92.17˘0.32 84.05˘2.57 92.17˘0.32
PUSB 79.01˘1.09 84.95˘0.84 84.96˘1.33 95.94˘0.96 90.70˘2.01 88.78˘2.76
PUSB-c 90.00˘1.00 90.13˘0.90 89.87˘0.76 92.79˘1.59 90.49˘0.97 92.77˘1.40
VPU 89.11˘1.55 65.54˘26.76 91.24˘1.24 90.42˘1.99 35.30˘17.59 88.61˘1.31
VPU-c 88.60˘0.48 95.21˘0.75 92.09˘0.68 95.57˘0.65 84.40˘2.68 91.84˘1.42
Dist-PU 70.13˘0.47 72.05˘1.16 71.50˘1.04 93.51˘0.55 89.28˘1.49 91.14˘1.75
Dist-PU-c 63.03˘3.53 68.85˘3.51 66.07˘3.28 87.01˘3.71 68.80˘1.90 81.54˘2.35

Table 13: Test results (mean˘std) of accuracy, AUC, and F1 score for each algorithm on Letter
(Case 2) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Test ACC AUC Test F1

Val metric PA PAUC OA PA PAUC OA PA PAUC OA

PUbN 87.47˘0.58 88.98˘1.45 89.63˘0.98 94.15˘1.14 93.88˘1.45 94.59˘1.09 88.40˘0.61 89.15˘1.44 89.74˘1.02
PAN 50.02˘0.48 49.88˘0.85 51.73˘1.43 45.39˘4.63 57.60˘2.16 51.85˘4.33 66.64˘0.40 44.18˘18.05 21.43˘17.50
CVIR 84.83˘0.73 84.22˘0.89 84.72˘0.76 88.63˘1.49 88.18˘0.65 88.67˘1.62 86.57˘0.61 85.38˘0.87 86.38˘0.63
P3MIX-E 55.70˘2.92 55.57˘2.96 65.08˘3.09 71.43˘4.39 81.48˘2.05 71.19˘3.66 68.60˘0.97 52.06˘13.86 64.22˘0.99
P3MIX-C 81.80˘2.04 80.70˘2.16 83.32˘2.22 89.68˘2.56 90.09˘2.58 88.23˘3.66 83.89˘1.46 83.35˘1.46 83.46˘2.56
LBE 87.32˘0.50 80.82˘3.97 88.18˘0.96 94.51˘0.18 94.43˘0.11 95.34˘0.57 88.44˘0.39 82.61˘2.51 88.65˘1.08
Count Loss 81.35˘0.64 82.20˘1.16 82.93˘0.85 90.22˘0.71 90.35˘0.73 90.08˘1.03 83.36˘0.36 83.19˘0.35 83.30˘0.37
Robust-PU 90.88˘0.52 90.18˘0.84 91.07˘0.39 96.31˘0.65 96.92˘0.53 96.63˘0.57 91.00˘0.44 89.64˘1.06 90.83˘0.42
Holistic-PU 87.88˘1.37 86.12˘1.82 88.65˘1.12 95.09˘0.62 95.36˘0.69 95.40˘0.83 88.79˘0.90 87.58˘1.22 89.49˘0.85
PUe 79.50˘0.70 78.03˘1.17 82.53˘0.04 88.18˘1.99 91.92˘0.19 90.65˘0.40 80.97˘0.48 80.73˘0.63 81.94˘0.20
GLWS 86.27˘0.43 79.88˘1.42 88.18˘0.67 93.00˘0.61 94.46˘0.33 93.75˘0.14 87.50˘0.43 82.97˘0.76 89.07˘0.51

uPU 75.22˘1.07 72.03˘2.17 77.52˘0.34 84.07˘1.04 85.49˘0.25 85.72˘0.35 77.80˘0.45 75.49˘0.59 77.93˘0.57
uPU-c 91.32˘0.57 89.72˘0.59 92.13˘0.18 96.48˘0.25 96.86˘0.22 96.30˘0.53 91.71˘0.35 89.05˘0.91 92.14˘0.27
nnPU 84.68˘0.34 75.22˘2.11 87.38˘0.39 94.02˘0.74 95.30˘0.51 95.34˘0.24 85.90˘0.44 79.94˘1.42 87.73˘0.39
nnPU-c 91.27˘0.43 90.50˘0.17 91.65˘0.19 96.21˘0.40 96.92˘0.12 97.09˘0.22 91.44˘0.44 90.42˘0.19 91.65˘0.22
nnPU-GA 85.63˘0.60 83.43˘1.40 86.15˘0.13 93.84˘0.34 93.79˘0.09 93.68˘0.02 86.37˘0.67 85.00˘1.00 86.42˘0.41
nnPU-GA-c 91.55˘0.33 89.28˘1.89 91.70˘0.39 96.79˘0.42 96.65˘0.43 96.61˘0.56 91.58˘0.37 88.44˘2.57 91.69˘0.41
PUSB 87.42˘0.31 87.83˘0.13 87.63˘0.24 87.39˘0.34 87.85˘0.13 87.61˘0.23 88.15˘0.18 88.30˘0.24 87.98˘0.44
PUSB-c 91.33˘0.77 91.48˘0.40 91.53˘0.71 91.34˘0.76 91.46˘0.41 91.47˘0.76 91.29˘0.84 91.23˘0.51 91.22˘0.95
VPU 90.85˘0.28 74.93˘6.54 91.18˘0.08 96.26˘0.24 95.91˘0.10 96.23˘0.26 90.60˘0.36 64.86˘10.97 90.98˘0.10
VPU-c 91.95˘0.38 89.55˘0.05 92.85˘0.29 96.63˘0.26 96.40˘0.48 96.89˘0.12 91.94˘0.33 89.13˘0.38 92.74˘0.27
Dist-PU 78.92˘0.89 77.52˘0.51 79.42˘0.71 84.82˘0.29 84.29˘0.73 85.17˘0.34 81.73˘0.94 79.36˘0.51 81.10˘0.82
Dist-PU-c 75.33˘1.22 77.58˘0.65 76.87˘0.77 82.69˘0.74 84.55˘0.23 83.73˘0.43 78.14˘1.03 77.51˘1.23 78.00˘1.36
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Table 14: Test results (mean˘std) of precision and recall for each algorithm on Letter (Case 2)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Precision Recall

Val metric PA PAUC OA PA PAUC OA

PUbN 81.40˘0.45 87.45˘1.99 87.75˘1.02 96.72˘0.84 90.94˘0.83 91.83˘1.24
PAN 50.04˘0.51 33.05˘13.52 18.13˘14.80 99.74˘0.21 66.67˘27.22 26.22˘21.41
CVIR 78.35˘0.93 79.00˘0.54 78.58˘1.09 96.73˘0.14 92.88˘1.34 95.95˘0.56
P3MIX-E 53.00˘1.72 69.22˘12.66 66.29˘4.29 97.68˘1.77 67.78˘23.64 63.34˘2.72
P3MIX-C 75.69˘1.88 73.75˘1.92 82.40˘1.72 94.13˘0.75 95.91˘1.19 85.25˘5.36
LBE 81.36˘0.74 79.16˘6.57 84.70˘1.08 96.89˘0.35 89.61˘6.60 93.03˘1.51
Count Loss 75.71˘1.09 80.17˘3.40 82.45˘2.34 92.84˘1.32 87.33˘3.35 84.47˘1.68
Robust-PU 89.96˘1.62 94.75˘0.38 93.22˘0.86 92.17˘0.98 85.16˘2.21 88.58˘0.79
Holistic-PU 84.34˘2.63 81.09˘3.15 85.42˘2.12 94.05˘1.39 95.65˘1.66 94.18˘1.43
PUe 74.35˘1.10 70.71˘1.81 82.69˘0.51 89.04˘1.83 94.32˘1.43 81.25˘0.86
GLWS 78.89˘0.68 71.48˘1.33 83.68˘0.94 98.23˘0.11 98.94˘0.40 95.21˘0.38

uPU 70.01˘1.43 67.60˘4.04 77.28˘0.22 87.70˘1.18 87.40˘4.78 78.61˘1.09
uPU-c 87.67˘0.95 94.08˘1.70 92.56˘0.46 96.19˘0.92 84.81˘2.70 91.72˘0.28
nnPU 79.59˘0.97 66.88˘1.98 85.51˘1.48 93.41˘1.66 99.49˘0.08 90.21˘1.41
nnPU-c 91.19˘1.12 91.85˘0.63 92.71˘0.80 91.80˘1.68 89.05˘0.60 90.66˘1.05
nnPU-GA 82.09˘1.25 78.07˘1.98 86.18˘1.35 91.33˘2.21 93.44˘0.65 86.84˘1.84
nnPU-GA-c 91.10˘0.34 93.73˘1.91 91.70˘0.36 92.09˘0.96 84.69˘5.82 91.69˘0.83
PUSB 83.69˘1.06 85.27˘0.95 86.21˘0.86 93.19˘1.01 91.66˘1.39 89.95˘1.78
PUSB-c 89.84˘0.67 92.04˘0.36 92.96˘0.25 92.80˘1.20 90.44˘0.72 89.58˘1.67
VPU 92.35˘0.79 98.33˘0.85 92.56˘0.96 89.00˘1.39 51.86˘13.08 89.52˘0.97
VPU-c 92.02˘0.61 93.71˘1.97 92.76˘0.53 91.85˘0.15 85.28˘2.42 92.75˘0.68
Dist-PU 72.28˘1.26 72.46˘1.03 75.23˘1.44 94.04˘0.38 87.89˘1.96 88.08˘1.38
Dist-PU-c 70.19˘2.12 77.82˘0.81 73.93˘0.49 88.32˘0.66 77.27˘1.93 82.61˘2.50

Table 15: Test results (mean˘std) of accuracy, AUC, and F1 score for each algorithm on USPS
(Case 1) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Test ACC AUC Test F1

Val metric PA PAUC OA PA PAUC OA PA PAUC OA

PUbN 93.76˘0.23 92.89˘0.24 93.95˘0.13 98.28˘0.03 98.01˘0.08 98.29˘0.04 92.60˘0.28 91.42˘0.36 92.77˘0.17
PAN 84.52˘0.50 84.52˘0.65 84.97˘0.48 89.98˘0.20 90.89˘0.48 90.06˘0.46 81.23˘0.46 80.56˘1.19 80.61˘0.58
CVIR 82.79˘1.48 82.01˘0.96 82.98˘1.39 94.88˘0.36 93.80˘0.16 93.42˘0.69 82.72˘1.31 81.95˘0.79 82.76˘1.26
P3MIX-E 88.99˘1.40 89.49˘1.29 89.84˘1.17 96.18˘0.44 96.33˘0.43 96.23˘0.47 87.54˘1.30 88.02˘1.23 87.90˘1.30
P3MIX-C 92.69˘0.66 93.47˘0.49 93.22˘0.31 97.98˘0.22 98.16˘0.14 98.09˘0.11 91.41˘0.78 92.38˘0.57 92.05˘0.36
LBE 91.45˘0.62 87.10˘1.25 92.29˘0.33 97.67˘0.12 97.04˘0.46 97.60˘0.18 90.52˘0.55 86.49˘1.17 91.16˘0.18
Count Loss 91.99˘0.34 90.08˘0.84 91.76˘0.81 97.44˘0.27 97.27˘0.09 97.60˘0.09 90.97˘0.31 88.91˘0.66 90.64˘0.69
Robust-PU 91.73˘0.27 88.19˘3.28 92.79˘0.12 97.51˘0.20 97.48˘0.22 97.73˘0.15 89.88˘0.20 83.74˘5.36 91.20˘0.14
Holistic-PU 91.94˘0.82 92.56˘0.11 93.46˘0.36 97.22˘0.34 97.47˘0.17 97.76˘0.16 90.88˘0.84 91.12˘0.02 92.27˘0.40
PUe 84.82˘1.01 84.22˘0.30 86.93˘0.27 95.41˘0.12 95.25˘0.13 94.40˘1.03 84.23˘0.76 83.60˘0.19 85.24˘0.59
GLWS 91.13˘0.37 86.78˘0.60 90.52˘0.47 98.21˘0.02 97.78˘0.17 98.18˘0.09 90.40˘0.36 86.38˘0.55 89.81˘0.45

uPU 83.14˘0.93 83.87˘0.11 83.86˘0.83 92.88˘0.15 93.10˘0.18 93.01˘0.05 81.51˘0.81 81.98˘0.19 82.04˘0.70
uPU-c 93.44˘0.26 91.30˘1.16 93.32˘0.10 97.95˘0.12 97.79˘0.11 97.85˘0.09 92.05˘0.34 88.94˘1.72 91.94˘0.16
nnPU 90.60˘0.28 87.49˘0.81 90.22˘0.42 97.94˘0.09 97.63˘0.06 97.70˘0.15 89.82˘0.27 87.02˘0.73 89.44˘0.42
nnPU-c 92.64˘0.08 90.82˘0.94 93.24˘0.18 97.60˘0.05 97.34˘0.17 97.99˘0.03 91.03˘0.12 88.41˘1.37 91.76˘0.23
nnPU-GA 91.28˘0.16 92.46˘0.11 92.51˘0.31 96.79˘0.10 97.41˘0.11 97.17˘0.27 89.80˘0.36 91.09˘0.07 91.30˘0.35
nnPU-GA-c 92.76˘0.38 90.60˘1.44 92.79˘0.22 97.58˘0.05 97.46˘0.16 97.66˘0.11 91.23˘0.55 88.05˘2.15 91.33˘0.32
PUSB 89.90˘0.73 91.73˘0.26 91.38˘0.83 90.98˘0.65 92.51˘0.26 92.17˘0.70 89.17˘0.71 90.91˘0.29 90.56˘0.80
PUSB-c 92.91˘0.30 92.84˘0.24 92.83˘0.18 92.30˘0.29 92.26˘0.27 92.25˘0.29 91.34˘0.35 91.28˘0.31 91.26˘0.28
VPU 88.14˘2.21 57.71˘0.04 89.89˘1.71 92.98˘3.98 97.31˘0.13 97.76˘0.19 84.36˘3.09 0.31˘0.17 86.58˘2.62
VPU-c 92.92˘0.07 80.17˘7.36 93.29˘0.32 97.55˘0.13 97.82˘0.24 97.79˘0.18 91.40˘0.08 63.80˘17.92 91.97˘0.38
Dist-PU 87.73˘0.55 82.15˘2.23 86.10˘0.14 92.52˘0.85 92.58˘0.43 91.03˘0.77 86.69˘0.55 81.64˘1.82 84.77˘0.17
Dist-PU-c 92.01˘0.19 90.47˘0.77 91.50˘0.34 97.92˘0.16 97.95˘0.21 97.74˘0.21 90.16˘0.22 87.84˘1.11 89.44˘0.44
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Table 16: Test results (mean˘std) of precision and recall for each algorithm on USPS (Case 1)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Precision Recall

Val metric PA PAUC OA PA PAUC OA

PUbN 92.93˘0.28 93.46˘0.72 93.93˘0.10 92.27˘0.31 89.53˘1.26 91.65˘0.35
PAN 84.90˘5.07 87.64˘5.36 90.59˘5.35 79.49˘4.77 76.59˘6.00 74.27˘5.22
CVIR 72.19˘1.80 71.37˘1.25 72.62˘1.66 96.90˘0.42 96.27˘0.23 96.27˘0.86
P3MIX-E 85.21˘3.71 86.04˘3.34 89.31˘3.14 90.47˘1.33 90.43˘1.08 87.02˘2.80
P3MIX-C 90.96˘0.73 91.40˘0.59 91.48˘0.43 91.88˘0.91 93.37˘0.55 92.63˘0.31
LBE 85.53˘1.52 78.00˘1.86 89.02˘2.12 96.24˘0.81 97.18˘1.13 93.69˘1.91
Count Loss 87.21˘1.11 85.10˘2.53 88.05˘2.45 95.14˘0.74 93.45˘1.97 93.65˘1.43
Robust-PU 93.49˘1.50 95.16˘0.47 94.46˘0.25 86.63˘0.95 75.96˘8.06 88.16˘0.16
Holistic-PU 87.61˘1.66 92.29˘1.53 92.36˘0.77 94.47˘0.28 90.12˘1.45 92.20˘0.26
PUe 75.50˘1.85 74.71˘0.58 81.82˘1.80 95.45˘1.08 94.90˘0.45 89.41˘3.20
GLWS 83.50˘0.64 76.68˘0.78 82.47˘0.75 98.55˘0.12 98.90˘0.19 98.59˘0.06

uPU 76.29˘1.56 77.81˘0.18 77.77˘1.65 87.57˘0.17 86.63˘0.61 86.90˘0.47
uPU-c 94.51˘0.21 95.48˘0.55 94.10˘0.32 89.73˘0.68 83.45˘3.19 89.88˘0.60
nnPU 83.01˘0.49 77.78˘1.21 82.43˘0.66 97.84˘0.22 98.78˘0.14 97.76˘0.36
nnPU-c 94.11˘0.36 94.52˘0.71 94.85˘0.20 88.16˘0.50 83.18˘2.52 88.86˘0.44
nnPU-GA 89.02˘1.35 91.22˘0.96 89.89˘0.46 90.78˘2.06 91.02˘0.92 92.75˘0.37
nnPU-GA-c 93.49˘0.40 94.18˘0.39 93.02˘0.36 89.14˘1.38 82.98˘3.91 89.73˘0.94
PUSB 81.80˘1.12 85.07˘0.28 84.72˘1.55 98.04˘0.28 97.61˘0.28 97.33˘0.42
PUSB-c 94.59˘0.58 94.29˘0.46 94.23˘0.58 88.31˘0.42 88.47˘0.62 88.51˘1.03
VPU 94.38˘2.09 66.67˘27.22 97.19˘0.39 76.55˘4.48 0.16˘0.08 78.43˘4.44
VPU-c 94.22˘0.79 96.82˘0.89 93.30˘0.50 88.78˘0.76 55.53˘18.31 90.67˘0.28
Dist-PU 80.19˘0.78 73.27˘3.53 79.18˘1.24 94.35˘0.22 92.71˘1.44 91.41˘1.93
Dist-PU-c 94.24˘0.58 95.22˘0.37 94.27˘0.38 86.43˘0.43 81.61˘2.06 85.10˘0.71

Table 17: Test results (mean˘std) of accuracy, AUC, and F1 score for each algorithm on USPS
(Case 2) under different model selection criteria. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Test ACC AUC Test F1

Val metric PA PAUC OA PA PAUC OA PA PAUC OA

PUbN 94.45˘0.26 95.45˘0.14 95.45˘0.20 98.62˘0.18 98.83˘0.08 98.85˘0.10 94.23˘0.29 95.31˘0.13 95.29˘0.20
PAN 80.70˘3.24 83.54˘1.27 84.22˘1.12 88.16˘3.61 92.49˘0.23 92.89˘0.18 78.89˘3.82 81.47˘2.11 82.45˘1.90
CVIR 90.93˘0.26 88.57˘0.29 90.55˘0.20 96.74˘0.23 96.34˘0.22 96.69˘0.21 91.37˘0.23 89.34˘0.24 91.05˘0.16
P3MIX-E 94.04˘0.43 93.90˘0.43 93.90˘0.39 98.26˘0.27 98.24˘0.26 98.14˘0.19 93.92˘0.39 93.79˘0.38 93.81˘0.36
P3MIX-C 94.27˘0.52 94.54˘0.51 94.72˘0.35 98.38˘0.24 98.56˘0.17 98.66˘0.13 94.20˘0.48 94.47˘0.48 94.62˘0.34
LBE 94.67˘0.20 90.82˘1.28 94.88˘0.05 98.51˘0.16 98.17˘0.08 98.60˘0.07 94.65˘0.16 91.18˘0.98 94.73˘0.10
Count Loss 92.73˘0.22 93.76˘0.45 93.17˘0.14 97.15˘0.27 97.72˘0.20 97.33˘0.26 92.87˘0.16 93.84˘0.40 93.18˘0.14
Robust-PU 93.72˘0.41 93.64˘0.31 94.93˘0.19 98.13˘0.11 98.34˘0.15 98.62˘0.23 93.44˘0.45 93.33˘0.31 94.69˘0.20
Holistic-PU 95.15˘0.28 94.83˘0.24 95.02˘0.53 98.76˘0.11 98.73˘0.17 98.49˘0.20 94.99˘0.29 94.65˘0.24 94.84˘0.57
PUe 85.27˘1.11 85.00˘0.63 86.05˘0.33 93.95˘0.48 95.26˘0.23 93.48˘0.92 86.55˘0.96 86.38˘0.50 87.08˘0.25
GLWS 92.48˘0.50 88.19˘0.44 92.18˘0.26 98.58˘0.05 98.09˘0.29 98.45˘0.06 92.76˘0.44 89.15˘0.35 92.49˘0.23

uPU 83.36˘0.48 82.68˘0.81 84.12˘0.06 92.33˘0.30 93.99˘0.25 92.79˘0.79 84.51˘0.42 84.34˘0.56 85.14˘0.27
uPU-c 94.67˘0.10 93.36˘0.76 94.57˘0.28 98.78˘0.10 98.50˘0.30 98.68˘0.11 94.36˘0.11 92.85˘0.88 94.26˘0.32
nnPU 93.64˘1.13 88.01˘1.30 94.10˘0.37 98.50˘0.15 98.37˘0.09 98.71˘0.08 93.79˘1.03 89.01˘1.07 94.20˘0.33
nnPU-c 94.32˘0.20 94.00˘0.24 94.80˘0.12 98.69˘0.02 98.48˘0.04 98.67˘0.04 94.03˘0.23 93.67˘0.27 94.56˘0.10
nnPU-GA 94.42˘0.26 94.95˘0.13 94.78˘0.07 98.61˘0.10 98.68˘0.10 98.44˘0.12 94.28˘0.24 94.76˘0.14 94.59˘0.08
nnPU-GA-c 94.12˘0.04 94.27˘0.17 94.07˘0.36 98.66˘0.06 98.79˘0.07 98.73˘0.07 93.77˘0.04 93.92˘0.17 93.69˘0.40
PUSB 92.41˘0.67 91.96˘1.50 93.56˘0.34 92.57˘0.65 92.10˘1.45 93.68˘0.33 92.69˘0.59 92.25˘1.30 93.70˘0.30
PUSB-c 94.09˘0.18 93.64˘0.21 94.57˘0.25 94.01˘0.18 93.55˘0.22 94.50˘0.25 93.76˘0.19 93.24˘0.24 94.27˘0.26
VPU 89.82˘2.61 76.63˘10.29 89.54˘1.88 97.91˘0.35 98.58˘0.10 97.99˘0.57 88.33˘3.43 58.65˘23.78 88.11˘2.41
VPU-c 94.93˘0.13 94.82˘0.12 95.05˘0.14 98.78˘0.06 98.86˘0.09 98.91˘0.11 94.72˘0.17 94.55˘0.16 94.81˘0.14
Dist-PU 94.82˘0.12 94.02˘0.18 94.72˘0.38 98.09˘0.17 97.94˘0.28 98.12˘0.19 94.63˘0.13 93.72˘0.25 94.55˘0.39
Dist-PU-c 94.10˘0.44 92.09˘0.50 94.14˘0.37 98.49˘0.16 98.53˘0.20 98.50˘0.03 93.73˘0.49 91.30˘0.59 93.77˘0.42
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Table 18: Test results (mean˘std) of precision and recall for each algorithm on USPS (Case 2)
under different model selection criteria. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Precision Recall

Val metric PA PAUC OA PA PAUC OA

PUbN 95.38˘0.94 95.68˘0.48 95.97˘0.59 93.18˘1.09 94.95˘0.27 94.64˘0.42
PAN 83.76˘3.59 89.42˘1.97 89.52˘2.59 75.13˘5.70 75.67˘5.30 77.35˘5.13
CVIR 85.15˘0.42 81.84˘0.41 84.48˘0.37 98.57˘0.05 98.36˘0.22 98.74˘0.18
P3MIX-E 93.52˘1.27 93.30˘1.32 92.82˘0.87 94.37˘0.51 94.34˘0.58 94.85˘0.29
P3MIX-C 93.07˘1.19 93.28˘0.94 93.88˘0.75 95.39˘0.26 95.70˘0.08 95.39˘0.10
LBE 92.57˘0.82 86.94˘3.54 95.05˘0.89 96.86˘0.56 96.45˘2.16 94.47˘1.09
Count Loss 88.88˘0.75 90.40˘0.96 90.75˘0.87 97.27˘0.57 97.58˘0.41 95.80˘1.05
Robust-PU 95.00˘0.46 95.31˘0.48 96.73˘0.26 91.95˘0.83 91.44˘0.17 92.73˘0.39
Holistic-PU 95.52˘0.49 95.53˘0.63 95.60˘0.47 94.47˘0.42 93.79˘0.31 94.10˘0.92
PUe 77.96˘1.20 77.46˘0.78 79.31˘0.72 97.30˘0.88 97.65˘0.21 96.59˘0.91
GLWS 87.39˘0.88 80.72˘0.66 86.83˘0.38 98.84˘0.12 99.56˘0.20 98.94˘0.06

uPU 77.29˘0.61 75.45˘1.20 78.20˘0.75 93.24˘0.79 95.67˘0.58 93.55˘1.69
uPU-c 97.19˘0.48 97.26˘0.65 96.97˘0.16 91.71˘0.50 88.88˘1.65 91.71˘0.70
nnPU 89.86˘1.86 80.69˘1.82 90.47˘0.71 98.16˘0.35 99.32˘0.07 98.26˘0.13
nnPU-c 96.32˘0.13 96.26˘0.18 96.46˘0.51 91.85˘0.53 91.23˘0.63 92.73˘0.29
nnPU-GA 94.11˘0.67 95.82˘0.28 95.61˘0.20 94.47˘0.26 93.72˘0.44 93.59˘0.28
nnPU-GA-c 96.77˘0.20 97.19˘0.29 97.11˘0.18 90.96˘0.16 90.86˘0.11 90.52˘0.59
PUSB 87.44˘1.11 87.68˘2.47 89.52˘0.75 98.64˘0.10 97.48˘0.32 98.29˘0.27
PUSB-c 96.44˘0.41 96.58˘0.49 96.84˘0.41 91.23˘0.44 90.14˘0.63 91.85˘0.27
VPU 96.67˘0.70 98.82˘0.56 97.26˘0.20 82.02˘5.96 52.95˘21.53 80.76˘3.82
VPU-c 96.09˘0.48 96.87˘0.51 96.80˘0.21 93.42˘0.78 92.36˘0.79 92.90˘0.07
Dist-PU 95.45˘0.21 95.77˘0.70 95.01˘0.40 93.82˘0.18 91.81˘1.11 94.10˘0.50
Dist-PU-c 97.04˘0.15 98.27˘0.26 96.98˘0.06 90.65˘0.83 85.26˘0.88 90.79˘0.80

F MORE EXPERIMENTAL RESULTS

Tables 27 and 28 show experimental results on a real-world dataset of fraud detection.2

2www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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Table 19: Test results (mean˘std) in terms of test accuracy, AUC score, and F1 score for each
algorithm on Letter (Case 1) with different ratios of positive data. The validation metric is OA.
The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the
proposed calibration technique in Algorithm 1.

Test Metric Test ACC AUC Test F1

Ratio 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

PUbN 61.77
˘10.44

76.47
˘10.72

89.70
˘1.38

62.75
˘11.24

78.57
˘11.57

66.34
˘11.01

78.93
˘12.63

94.61
˘1.20

67.20
˘11.58

80.49
˘13.13

72.81
˘5.78

81.93
˘6.16

89.57
˘1.46

73.82
˘6.60

84.05
˘7.02

PAN 48.30
˘0.91

48.30
˘0.91

52.18
˘1.24

48.30
˘0.91

48.30
˘0.91

52.07
˘1.47

52.01
˘1.48

46.69
˘2.30

51.89
˘1.48

51.79
˘1.48

65.12
˘0.82

65.12
˘0.82

42.19
˘17.25

65.12
˘0.82

65.12
˘0.82

CVIR 82.63
˘0.86

83.55
˘0.39

84.67
˘0.58

79.90
˘0.64

74.35
˘0.27

87.56
˘1.15

86.72
˘0.55

87.78
˘0.90

82.09
˘1.07

75.57
˘1.63

83.86
˘0.58

84.97
˘0.23

85.86
˘0.35

82.71
˘0.47

78.99
˘0.23

P3MIX-E 49.43
˘0.21

49.43
˘0.21

61.42
˘4.12

49.43
˘0.21

49.43
˘0.21

50.57
˘0.55

50.38
˘0.55

67.00
˘7.82

50.49
˘0.54

50.59
˘0.71

66.16
˘0.19

66.16
˘0.19

42.69
˘17.49

66.16
˘0.19

66.16
˘0.19

P3MIX-C 75.43
˘1.40

76.02
˘1.25

80.92
˘1.14

80.87
˘0.33

81.68
˘0.04

77.34
˘2.05

78.00
˘2.12

84.50
˘0.68

84.46
˘0.34

85.63
˘0.69

77.26
˘1.34

77.30
˘1.56

82.83
˘0.96

82.42
˘0.19

83.17
˘0.08

LBE 80.07
˘0.47

81.82
˘1.01

87.55
˘0.28

84.18
˘0.19

86.42
˘0.72

84.83
˘1.03

84.99
˘1.76

94.38
˘0.23

90.27
˘0.20

93.55
˘0.06

80.59
˘0.83

81.83
˘1.05

87.44
˘0.32

84.66
˘0.53

86.84
˘0.52

Count Loss 73.07
˘4.15

70.78
˘5.47

78.27
˘1.01

56.83
˘2.84

55.90
˘2.53

80.33
˘6.64

77.67
˘8.43

84.67
˘0.78

55.81
˘3.59

56.64
˘3.22

75.69
˘4.39

76.54
˘3.69

79.98
˘0.84

64.74
˘0.61

58.60
˘2.52

Robust-PU 84.50
˘0.66

89.08
˘1.14

90.63
˘0.31

92.77
˘0.15

93.98
˘0.42

90.89
˘0.64

93.89
˘0.93

95.91
˘0.31

96.69
˘0.32

98.39
˘0.13

84.74
˘0.55

88.73
˘1.31

90.58
˘0.32

92.65
˘0.18

94.00
˘0.42

Holistic-PU 80.80
˘0.43

82.90
˘0.66

87.32
˘1.27

85.37
˘0.41

86.88
˘0.30

85.53
˘1.23

88.69
˘0.65

94.74
˘1.64

93.11
˘0.78

95.12
˘0.38

81.97
˘0.20

84.37
˘0.43

88.17
˘1.02

86.58
˘0.21

87.77
˘0.19

PUe 82.13
˘0.59

81.18
˘1.02

82.00
˘0.78

76.98
˘0.44

74.72
˘0.46

90.46
˘0.25

89.45
˘0.77

90.88
˘0.50

85.17
˘0.68

83.71
˘0.30

82.35
˘0.32

81.32
˘1.22

81.95
˘1.08

77.84
˘0.41

76.65
˘0.11

GLWS 85.53
˘0.46

86.60
˘0.25

86.32
˘0.58

82.15
˘0.22

77.80
˘0.32

92.05
˘0.31

92.56
˘0.16

92.65
˘0.83

86.53
˘0.27

83.78
˘0.84

86.22
˘0.51

87.27
˘0.27

87.28
˘0.54

84.29
˘0.39

81.44
˘0.46

uPU 81.22
˘0.76

80.12
˘0.48

77.72
˘0.79

75.30
˘0.74

72.52
˘0.55

89.86
˘0.56

88.33
˘0.33

86.19
˘0.71

84.23
˘0.30

79.70
˘0.85

80.64
˘0.91

79.32
˘0.48

77.65
˘1.10

75.54
˘0.99

74.17
˘0.25

uPU-c 86.17
˘0.53

89.55
˘0.45

92.73
˘0.15

93.33
˘0.41

94.53
˘0.41

90.84
˘0.93

93.58
˘0.86

96.40
˘0.18

96.75
˘0.49

98.71
˘0.09

85.25
˘0.74

89.04
˘0.56

92.60
˘0.14

93.07
˘0.33

94.22
˘0.41

nnPU 86.57
˘0.28

88.55
˘0.09

85.60
˘0.31

80.40
˘0.43

76.93
˘0.57

93.80
˘0.39

95.48
˘0.17

94.49
˘0.66

92.10
˘0.31

85.87
˘0.46

86.37
˘0.40

88.63
˘0.11

85.85
˘0.40

82.49
˘0.42

79.01
˘0.78

nnPU-c 86.08
˘0.36

90.38
˘0.25

91.82
˘0.14

93.60
˘0.22

94.72
˘0.15

91.37
˘0.72

93.08
˘0.32

96.36
˘0.38

97.09
˘0.35

98.54
˘0.13

85.44
˘0.65

90.10
˘0.29

91.58
˘0.21

93.42
˘0.26

94.60
˘0.13

nnPU-GA 82.12
˘0.50

85.78
˘0.34

84.27
˘0.58

84.90
˘1.10

84.38
˘0.33

90.19
˘0.54

92.66
˘0.11

91.18
˘0.41

92.25
˘1.26

91.91
˘0.51

81.73
˘1.00

85.37
˘0.37

84.46
˘0.64

85.06
˘0.96

84.78
˘0.17

nnPU-GA-c 85.12
˘0.24

89.65
˘0.27

90.97
˘0.30

93.32
˘0.28

94.38
˘0.16

90.60
˘0.27

92.92
˘0.19

94.72
˘0.23

96.59
˘0.12

98.26
˘0.23

84.09
˘0.35

89.36
˘0.19

90.86
˘0.25

93.16
˘0.28

94.19
˘0.16

PUSB 85.40
˘0.72

87.68
˘0.22

86.82
˘0.54

80.00
˘0.95

74.08
˘0.62

85.44
˘0.67

87.67
˘0.29

86.81
˘0.56

80.13
˘0.78

74.19
˘0.79

84.90
˘0.74

88.05
˘0.15

86.70
˘0.78

82.22
˘1.11

78.33
˘0.42

PUSB-c 85.23
˘0.45

89.60
˘0.55

91.43
˘0.92

93.40
˘0.08

94.35
˘0.06

85.21
˘0.39

89.59
˘0.51

91.46
˘0.92

93.36
˘0.08

94.30
˘0.06

84.40
˘0.44

89.22
˘0.47

91.29
˘1.04

93.32
˘0.23

94.20
˘0.11

VPU 79.87
˘0.55

86.22
˘0.43

90.13
˘0.77

88.12
˘0.19

68.90
˘1.88

88.55
˘0.71

92.83
˘0.15

95.44
˘0.57

95.15
˘0.47

75.21
˘1.00

77.99
˘0.89

85.78
˘0.52

89.86
˘0.67

87.41
˘0.25

64.84
˘8.61

VPU-c 83.78
˘0.74

89.67
˘0.59

92.15
˘0.52

93.13
˘0.38

94.52
˘0.42

90.61
˘1.50

94.85
˘0.86

96.96
˘0.30

97.31
˘0.41

98.32
˘0.34

84.48
˘0.76

89.60
˘0.39

91.93
˘0.48

93.31
˘0.32

94.58
˘0.37

Dist-PU 47.97
˘0.63

47.97
˘0.63

77.55
˘0.78

47.97
˘0.63

47.97
˘0.63

50.84
˘1.92

51.18
˘2.29

82.07
˘1.66

51.32
˘1.95

50.97
˘1.79

64.83
˘0.58

64.83
˘0.58

80.07
˘0.40

64.83
˘0.58

64.83
˘0.58

Dist-PU-c 47.97
˘0.63

47.97
˘0.63

70.03
˘2.28

47.97
˘0.63

47.97
˘0.63

50.64
˘1.91

50.84
˘2.06

74.72
˘2.66

50.95
˘1.84

51.00
˘1.89

64.83
˘0.58

64.83
˘0.58

72.81
˘2.05

64.83
˘0.58

64.83
˘0.58
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Table 20: Test results (mean˘std) in terms of precision and recall for each algorithm on Letter
(Case 1) with different ratios of positive data. The validation metric is OA. The best performance
w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the proposed calibration
technique in Algorithm 1.

Test Metric Precision Recall

Ratio 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

PUbN 61.52
˘10.24

74.90
˘10.11

88.33
˘1.64

62.54
˘11.07

76.85
˘10.86

95.76
˘3.47

94.55
˘2.23

90.85
˘1.27

96.76
˘2.65

96.85
˘1.46

PAN 48.30
˘0.91

48.30
˘0.91

34.01
˘13.90

48.30
˘0.91

48.30
˘0.91

100.00
˘0.00

100.00
˘0.00

56.40
˘23.56

100.00
˘0.00

100.00
˘0.00

CVIR 77.12
˘1.66

76.92
˘1.10

77.28
˘0.52

71.46
˘0.83

65.91
˘0.11

92.04
˘0.92

95.03
˘1.34

96.58
˘0.14

98.20
˘0.30

98.54
˘0.53

P3MIX-E 49.43
˘0.21

49.43
˘0.21

45.23
˘18.89

49.43
˘0.21

49.43
˘0.21

100.00
˘0.00

100.00
˘0.00

42.64
˘18.48

100.00
˘0.00

100.00
˘0.00

P3MIX-C 70.90
˘0.62

72.22
˘1.33

75.15
˘0.90

75.25
˘0.77

75.90
˘0.67

84.94
˘2.44

83.38
˘3.04

92.26
˘1.02

91.14
˘0.68

92.04
˘0.80

LBE 77.73
˘0.99

80.92
˘1.54

85.17
˘1.79

81.30
˘0.68

83.67
˘2.03

83.94
˘2.85

82.80
˘0.96

90.14
˘2.36

88.44
˘1.96

90.48
˘1.47

Count Loss 67.48
˘2.31

64.38
˘4.54

72.33
˘0.83

55.22
˘3.11

54.58
˘2.62

86.60
˘7.44

94.96
˘1.16

89.44
˘0.97

80.46
˘5.85

63.29
˘2.40

Robust-PU 82.94
˘1.63

90.52
˘0.91

90.32
˘0.77

93.29
˘0.58

93.05
˘1.05

86.73
˘0.92

87.03
˘1.67

90.86
˘0.32

92.04
˘0.42

94.99
˘0.43

Holistic-PU 76.28
˘0.97

76.80
˘1.17

82.39
˘2.08

78.98
˘0.92

81.16
˘0.55

88.66
˘0.84

93.67
˘0.85

94.99
˘1.21

95.87
˘0.85

95.56
˘0.52

PUe 78.96
˘1.53

77.99
˘0.61

80.47
˘0.23

72.79
˘0.70

69.32
˘1.15

86.21
˘1.32

84.98
˘2.00

83.62
˘2.52

83.68
˘0.72

85.87
˘1.51

GLWS 80.97
˘1.20

81.79
˘0.89

79.44
˘0.61

74.16
˘0.51

69.04
˘0.58

92.24
˘0.41

93.57
˘0.54

96.84
˘0.48

97.65
˘0.48

99.28
˘0.17

uPU 79.60
˘0.32

79.09
˘0.95

74.98
˘0.74

72.33
˘2.67

67.49
˘0.62

81.81
˘2.06

79.67
˘1.64

80.56
˘1.73

80.09
˘4.42

82.33
˘0.52

uPU-c 87.03
˘0.58

89.54
˘1.67

92.00
˘0.92

92.92
˘1.11

95.57
˘0.23

83.65
˘1.99

88.82
˘2.44

93.26
˘0.91

93.28
˘0.94

92.92
˘0.69

nnPU 85.34
˘1.05

85.77
˘0.43

81.97
˘1.57

72.96
˘0.38

70.83
˘0.24

87.55
˘1.69

91.72
˘0.72

90.42
˘2.48

94.89
˘0.64

89.36
˘1.61

nnPU-c 86.99
˘1.26

90.28
˘0.62

93.26
˘1.26

93.47
˘0.47

94.11
˘0.28

84.19
˘2.52

89.96
˘0.90

90.08
˘1.46

93.40
˘0.99

95.10
˘0.02

nnPU-GA 81.19
˘1.10

85.54
˘0.20

80.81
˘1.19

82.21
˘1.46

80.70
˘0.74

82.61
˘3.03

85.22
˘0.94

88.48
˘0.53

88.17
˘0.90

89.35
˘0.89

nnPU-GA-c 87.68
˘0.62

89.55
˘0.86

89.60
˘0.51

92.91
˘0.53

94.90
˘0.42

80.83
˘1.12

89.21
˘0.64

92.17
˘0.32

93.42
˘0.70

93.51
˘0.69

PUSB 87.03
˘1.01

84.74
˘0.81

84.96
˘1.33

73.27
˘1.04

66.88
˘0.90

83.02
˘2.02

91.71
˘1.25

88.78
˘2.76

93.70
˘1.72

94.70
˘2.03

PUSB-c 88.53
˘0.96

91.72
˘0.20

89.87
˘0.76

93.38
˘0.50

95.72
˘0.66

80.74
˘1.57

86.88
˘1.00

92.77
˘1.40

93.29
˘0.96

92.76
˘0.82

VPU 85.81
˘1.26

88.42
˘1.29

91.24
˘1.24

92.84
˘1.67

76.66
˘8.67

71.67
˘2.26

83.41
˘1.49

88.61
˘1.31

82.75
˘1.61

68.00
˘16.35

VPU-c 80.94
˘1.35

90.39
˘1.92

92.09
˘0.68

90.96
˘0.66

93.61
˘0.98

88.55
˘2.33

88.96
˘1.05

91.84
˘1.42

95.79
˘0.17

95.59
˘0.50

Dist-PU 47.97
˘0.63

47.97
˘0.63

71.50
˘1.04

47.97
˘0.63

47.97
˘0.63

100.00
˘0.00

100.00
˘0.00

91.14
˘1.75

100.00
˘0.00

100.00
˘0.00

Dist-PU-c 47.97
˘0.63

47.97
˘0.63

66.07
˘3.28

47.97
˘0.63

47.97
˘0.63

100.00
˘0.00

100.00
˘0.00

81.54
˘2.35

100.00
˘0.00

100.00
˘0.00
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Table 21: Test results (mean˘std) in terms of test accuracy, AUC score, and F1 score for each
algorithm on USPS (Case 1) with different ratios of positive data. The validation metric is OA.
The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the
proposed calibration technique in Algorithm 1.

Test Metric Test ACC AUC Test F1

Ratio 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

PUbN 90.68
˘0.40

92.92
˘0.15

93.95
˘0.13

94.20
˘0.25

94.88
˘0.11

97.11
˘0.21

97.88
˘0.05

98.29
˘0.04

98.38
˘0.09

98.62
˘0.06

88.34
˘0.59

91.44
˘0.20

92.77
˘0.17

93.17
˘0.28

94.04
˘0.13

PAN 85.60
˘0.26

85.57
˘0.70

84.97
˘0.48

79.59
˘0.84

56.34
˘0.42

89.84
˘0.30

89.84
˘0.56

90.06
˘0.46

89.93
˘0.20

61.21
˘0.99

80.06
˘0.49

81.62
˘0.16

80.61
˘0.58

68.36
˘1.78

37.85
˘15.65

CVIR 92.31
˘0.28

84.60
˘3.01

82.98
˘1.39

79.36
˘0.17

73.64
˘0.09

97.66
˘0.17

95.01
˘1.24

93.42
˘0.69

93.37
˘0.68

85.06
˘0.15

90.93
˘0.31

83.90
˘2.93

82.76
˘1.26

80.03
˘0.13

75.97
˘0.08

P3MIX-E 88.36
˘0.41

88.77
˘0.14

89.84
˘1.17

89.54
˘0.05

90.43
˘0.08

95.37
˘0.32

95.56
˘0.09

96.23
˘0.47

95.77
˘0.07

95.99
˘0.10

85.21
˘0.74

86.02
˘0.45

87.90
˘1.30

87.12
˘0.25

88.30
˘0.20

P3MIX-C 91.20
˘0.08

91.03
˘0.02

93.22
˘0.31

91.46
˘0.23

92.01
˘0.10

97.10
˘0.18

97.23
˘0.12

98.09
˘0.11

97.36
˘0.10

97.49
˘0.10

89.55
˘0.10

89.44
˘0.03

92.05
˘0.36

90.00
˘0.26

90.62
˘0.11

LBE 89.97
˘0.54

91.03
˘0.11

92.29
˘0.33

92.92
˘0.14

94.30
˘0.15

96.18
˘0.05

96.50
˘0.32

97.60
˘0.18

97.72
˘0.15

98.46
˘0.01

88.09
˘1.02

89.59
˘0.20

91.16
˘0.18

91.74
˘0.05

93.33
˘0.20

Count Loss 91.18
˘0.00

92.36
˘0.26

91.76
˘0.81

90.23
˘0.22

86.21
˘0.76

96.01
˘0.00

97.38
˘0.09

97.60
˘0.09

97.42
˘0.02

95.13
˘0.86

89.63
˘0.00

90.94
˘0.34

90.64
˘0.69

89.25
˘0.24

85.72
˘0.69

Robust-PU 89.19
˘0.27

91.41
˘0.36

92.79
˘0.12

94.49
˘0.05

95.42
˘0.22

96.38
˘0.15

97.45
˘0.05

97.73
˘0.15

98.31
˘0.07

98.85
˘0.02

86.14
˘0.37

89.35
˘0.50

91.20
˘0.14

93.49
˘0.06

94.69
˘0.25

Holistic-PU 88.61
˘0.24

92.13
˘0.27

93.46
˘0.36

93.81
˘0.07

93.34
˘0.14

95.99
˘0.25

97.02
˘0.11

97.76
˘0.16

97.86
˘0.01

98.18
˘0.10

85.74
˘0.34

90.68
˘0.42

92.27
˘0.40

92.79
˘0.08

92.35
˘0.13

PUe 87.91
˘0.54

87.11
˘0.33

86.93
˘0.27

79.94
˘1.16

78.39
˘0.79

95.02
˘0.23

95.37
˘0.28

94.40
˘1.03

93.58
˘0.19

91.23
˘0.48

86.11
˘0.75

85.71
˘0.23

85.24
˘0.59

79.71
˘0.96

77.87
˘0.71

GLWS 91.65
˘0.44

91.60
˘0.50

90.52
˘0.47

83.04
˘0.84

81.02
˘0.08

97.15
˘0.21

98.06
˘0.03

98.18
˘0.09

96.33
˘0.31

94.72
˘0.07

90.37
˘0.46

90.71
˘0.47

89.81
˘0.45

83.26
˘0.68

81.64
˘0.07

uPU 87.10
˘0.67

86.55
˘1.07

83.86
˘0.83

80.25
˘0.92

77.01
˘0.50

94.41
˘0.57

94.40
˘0.44

93.01
˘0.05

91.11
˘0.16

89.79
˘0.10

85.41
˘0.66

84.80
˘1.14

82.04
˘0.70

78.90
˘0.73

76.65
˘0.36

uPU-c 89.01
˘0.32

90.95
˘0.33

93.32
˘0.10

94.15
˘0.13

95.13
˘0.09

96.89
˘0.21

97.47
˘0.14

97.85
˘0.09

98.21
˘0.14

98.84
˘0.07

85.73
˘0.43

88.56
˘0.51

91.94
˘0.16

92.99
˘0.16

94.32
˘0.11

nnPU 91.38
˘0.27

90.96
˘0.64

90.22
˘0.42

71.98
˘1.90

49.51
˘0.97

96.94
˘0.23

97.53
˘0.13

97.70
˘0.15

95.98
˘0.37

90.55
˘0.52

90.19
˘0.20

90.09
˘0.60

89.44
˘0.42

75.16
˘1.25

62.47
˘0.47

nnPU-c 89.24
˘0.20

91.50
˘0.21

93.24
˘0.18

94.17
˘0.19

95.20
˘0.11

96.19
˘0.36

97.72
˘0.07

97.99
˘0.03

98.12
˘0.05

98.83
˘0.03

86.25
˘0.26

89.25
˘0.34

91.76
˘0.23

93.03
˘0.24

94.41
˘0.13

nnPU-GA 89.94
˘0.31

91.43
˘0.38

92.51
˘0.31

92.87
˘0.24

93.59
˘0.25

95.81
˘0.33

96.57
˘0.34

97.17
˘0.27

97.60
˘0.15

97.82
˘0.09

88.18
˘0.42

89.95
˘0.40

91.30
˘0.35

91.49
˘0.28

92.49
˘0.28

nnPU-GA-c 88.89
˘0.36

90.25
˘0.25

92.79
˘0.22

93.90
˘0.18

95.35
˘0.03

95.78
˘0.24

96.54
˘0.13

97.66
˘0.11

98.04
˘0.06

98.85
˘0.02

85.78
˘0.54

87.85
˘0.31

91.33
˘0.32

92.72
˘0.23

94.59
˘0.03

PUSB 89.92
˘0.09

90.80
˘0.26

91.38
˘0.83

72.46
˘0.55

53.84
˘1.48

90.44
˘0.12

91.62
˘0.20

92.17
˘0.70

75.93
˘0.46

59.70
˘1.26

88.75
˘0.12

89.93
˘0.24

90.56
˘0.80

75.21
˘0.36

64.29
˘0.70

PUSB-c 88.76
˘0.47

92.11
˘0.32

92.83
˘0.18

93.89
˘0.24

94.92
˘0.18

87.58
˘0.65

91.37
˘0.36

92.25
˘0.29

93.60
˘0.28

94.94
˘0.18

85.72
˘0.80

90.28
˘0.42

91.26
˘0.28

92.70
˘0.30

94.06
˘0.21

VPU 82.46
˘1.27

82.36
˘0.40

89.89
˘1.71

82.00
˘1.77

87.06
˘1.14

93.67
˘0.64

95.57
˘0.13

97.76
˘0.19

95.78
˘0.90

67.01
˘5.95

74.40
˘2.51

74.38
˘0.65

86.58
˘2.62

73.08
˘3.38

82.56
˘2.00

VPU-c 85.24
˘1.38

91.10
˘0.90

93.29
˘0.32

94.47
˘0.14

95.20
˘0.15

94.27
˘0.68

97.71
˘0.14

97.79
˘0.18

98.19
˘0.04

98.48
˘0.03

80.09
˘2.19

88.63
˘1.33

91.97
˘0.38

93.39
˘0.17

94.28
˘0.17

Dist-PU 87.36
˘1.58

88.74
˘1.65

86.10
˘0.14

84.16
˘0.67

85.07
˘0.04

92.95
˘1.62

93.70
˘1.37

91.03
˘0.77

90.64
˘0.81

90.87
˘0.43

85.29
˘1.55

87.51
˘1.80

84.77
˘0.17

82.85
˘0.28

83.38
˘0.11

Dist-PU-c 89.14
˘0.15

90.27
˘0.37

91.50
˘0.34

93.44
˘0.17

94.04
˘0.20

97.23
˘0.04

97.68
˘0.05

97.74
˘0.21

98.38
˘0.04

98.06
˘0.10

85.96
˘0.24

87.55
˘0.58

89.44
˘0.44

92.05
˘0.23

93.02
˘0.23
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Table 22: Test results (mean˘std) in terms of precision and recall for each algorithm on USPS
(Case 1) with different ratios of positive data. The validation metric is OA. The best performance
w.r.t. each validation metric is shown in bold. Here, “-c” indicates using the proposed calibration
technique in Algorithm 1.

Test Metric Precision Recall

Ratio 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

PUbN 93.85
˘0.39

93.78
˘0.26

93.93
˘0.10

92.98
˘0.42

92.75
˘0.04

83.49
˘1.25

89.22
˘0.40

91.65
˘0.35

93.37
˘0.14

95.37
˘0.22

PAN 96.79
˘0.27

90.14
˘4.74

90.59
˘5.35

99.20
˘0.14

32.55
˘13.29

68.27
˘0.84

75.69
˘3.88

74.27
˘5.22

52.24
˘2.07

46.75
˘20.52

CVIR 90.89
˘0.69

76.25
˘4.04

72.62
˘1.66

67.78
˘0.18

61.88
˘0.07

90.98
˘0.53

93.49
˘1.28

96.27
˘0.86

97.69
˘0.12

98.35
˘0.10

P3MIX-E 92.12
˘0.78

91.00
˘1.52

89.31
˘3.14

91.05
˘1.46

91.57
˘0.62

79.37
˘1.89

81.76
˘2.09

87.02
˘2.80

83.69
˘1.72

85.29
˘0.92

P3MIX-C 90.08
˘0.12

89.20
˘0.20

91.48
˘0.43

89.34
˘0.35

90.15
˘0.23

89.02
˘0.17

89.69
˘0.22

92.63
˘0.31

90.67
˘0.27

91.10
˘0.22

LBE 88.33
˘1.70

88.45
˘2.58

89.02
˘2.12

90.86
˘1.25

92.50
˘0.25

88.31
˘3.54

91.29
˘3.05

93.69
˘1.91

92.75
˘1.24

94.20
˘0.54

Count Loss 89.26
˘0.00

91.34
˘0.06

88.05
˘2.45

83.58
˘0.39

76.44
˘1.05

90.00
˘0.00

90.55
˘0.70

93.65
˘1.43

95.76
˘0.48

97.61
˘0.23

Robust-PU 94.19
˘0.44

94.06
˘0.07

94.46
˘0.25

93.49
˘0.20

92.94
˘0.34

79.37
˘0.58

85.10
˘0.85

88.16
˘0.16

93.49
˘0.21

96.51
˘0.19

Holistic-PU 91.26
˘1.16

90.97
˘1.31

92.36
˘0.77

91.48
˘0.38

89.99
˘0.75

80.94
˘1.20

90.55
˘1.92

92.20
˘0.26

94.16
˘0.39

94.86
˘0.75

PUe 83.76
˘0.53

80.87
˘0.89

81.82
˘1.80

69.86
˘1.45

68.80
˘0.89

88.67
˘1.68

91.22
˘0.72

89.41
˘3.20

92.86
˘0.50

89.73
˘0.66

GLWS 88.37
˘0.86

85.42
˘1.12

82.47
˘0.75

71.62
˘1.02

69.13
˘0.10

92.47
˘0.28

96.75
˘0.47

98.59
˘0.06

99.45
˘0.03

99.69
˘0.08

uPU 82.06
˘1.15

81.42
˘1.57

77.77
˘1.65

72.22
˘1.47

67.29
˘0.64

89.06
˘0.31

88.51
˘0.84

86.90
˘0.47

87.02
˘0.42

89.06
˘0.15

uPU-c 95.17
˘0.38

95.19
˘0.30

94.10
˘0.32

94.49
˘0.21

93.22
˘0.25

78.00
˘0.49

82.82
˘1.11

89.88
˘0.60

91.53
˘0.11

95.45
˘0.32

nnPU 87.19
˘1.01

84.30
˘1.25

82.43
˘0.66

60.35
˘1.63

45.60
˘0.49

93.45
˘0.77

96.78
˘0.42

97.76
˘0.36

99.73
˘0.06

99.18
˘0.17

nnPU-c 93.99
˘0.30

95.97
˘0.48

94.85
˘0.20

94.25
˘0.16

93.17
˘0.13

79.69
˘0.23

83.45
˘0.96

88.86
˘0.44

91.84
˘0.47

95.69
˘0.13

nnPU-GA 87.75
˘1.05

89.38
˘0.74

89.89
˘0.46

92.62
˘0.50

91.85
˘0.46

88.71
˘1.50

90.55
˘0.14

92.75
˘0.37

90.39
˘0.37

93.14
˘0.25

nnPU-GA-c 93.56
˘0.07

93.04
˘0.48

93.02
˘0.36

93.75
˘0.29

93.19
˘0.12

79.22
˘0.92

83.22
˘0.34

89.73
˘0.94

91.73
˘0.57

96.04
˘0.16

PUSB 84.16
˘0.33

83.83
˘0.63

84.72
˘1.55

60.80
˘0.52

47.86
˘0.82

93.88
˘0.56

97.02
˘0.42

97.33
˘0.42

98.59
˘0.62

98.00
˘0.33

PUSB-c 92.61
˘1.03

94.43
˘0.76

94.23
˘0.58

93.75
˘0.36

93.10
˘0.43

79.92
˘1.94

86.51
˘0.89

88.51
˘1.03

91.69
˘0.61

95.06
˘0.39

VPU 96.67
˘0.55

96.61
˘0.41

97.19
˘0.39

98.30
˘0.19

95.36
˘1.39

60.75
˘3.45

60.47
˘0.69

78.43
˘4.44

58.51
˘4.27

73.25
˘4.12

VPU-c 92.80
˘0.72

96.05
˘0.24

93.30
˘0.50

94.57
˘0.25

95.17
˘0.30

70.55
˘2.93

82.39
˘2.42

90.67
˘0.28

92.24
˘0.11

93.41
˘0.06

Dist-PU 85.15
˘3.76

82.72
˘2.12

79.18
˘1.24

76.90
˘2.09

78.87
˘0.43

85.76
˘0.73

92.94
˘1.81

91.41
˘1.93

90.27
˘2.77

88.47
˘0.79

Dist-PU-c 94.97
˘0.19

95.45
˘0.47

94.27
˘0.38

94.51
˘0.09

92.28
˘0.25

78.51
˘0.45

80.90
˘1.28

85.10
˘0.71

89.73
˘0.51

93.76
˘0.22

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 23: Test results (mean˘std) of accuracy, AUC, and F1 score for each algorithm on Letter
(Case 1) with estimated inaccurate class priors. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Test ACC AUC Test F1

Val metric PA PAUC OA PA PAUC OA PA PAUC OA

PUbN 76.78˘10.83 77.23˘11.02 77.65˘11.19 80.11˘12.97 80.37˘13.07 80.09˘12.95 82.49˘6.37 82.34˘6.31 83.03˘6.60
PAN 48.30˘0.91 48.30˘0.91 48.30˘0.91 51.99˘1.47 51.97˘1.14 51.99˘1.47 65.12˘0.82 65.12˘0.82 65.12˘0.82
CVIR 81.82˘0.22 81.30˘0.43 82.23˘0.55 84.21˘0.65 84.46˘0.67 84.26˘0.73 83.89˘0.23 83.69˘0.33 84.19˘0.44
P3MIX-E 49.43˘0.21 49.43˘0.21 49.43˘0.21 50.48˘0.78 50.48˘0.78 50.48˘0.78 66.16˘0.19 66.16˘0.19 66.16˘0.19
P3MIX-C 76.80˘2.47 77.25˘2.39 78.05˘1.51 82.45˘0.78 82.76˘0.70 82.02˘1.14 79.99˘1.54 80.12˘1.54 80.11˘1.42
LBE 81.35˘0.44 76.83˘2.00 83.98˘0.25 88.38˘0.77 87.84˘1.54 88.91˘0.45 83.13˘0.56 77.57˘2.38 83.41˘0.38
Count Loss 63.07˘4.67 63.07˘4.67 62.50˘4.23 68.24˘8.72 68.24˘8.72 66.15˘7.13 69.57˘3.70 69.57˘3.70 68.43˘2.80
Robust-PU 91.17˘0.54 89.82˘0.04 90.97˘0.47 95.86˘0.31 96.03˘0.36 95.76˘0.25 91.33˘0.65 89.80˘0.23 90.93˘0.49
Holistic-PU 83.87˘0.82 78.68˘3.95 84.35˘0.46 91.22˘0.68 91.95˘0.77 90.27˘0.28 85.51˘0.53 82.14˘2.54 85.68˘0.37
PUe 74.93˘1.18 76.20˘1.72 78.45˘0.67 86.50˘0.65 87.71˘0.88 87.06˘0.83 78.33˘0.73 77.95˘0.96 78.35˘0.75
GLWS 85.05˘0.62 81.90˘0.92 85.50˘0.26 91.14˘0.21 91.65˘0.13 90.89˘0.19 86.41˘0.50 84.29˘0.43 86.66˘0.29

uPU 76.60˘0.99 76.82˘1.98 78.07˘0.64 85.60˘0.58 87.82˘0.21 87.28˘0.57 78.71˘0.72 78.17˘0.50 78.40˘0.52
uPU-c 91.98˘0.31 90.90˘0.57 91.78˘0.46 95.57˘0.43 96.39˘0.38 95.46˘0.44 91.78˘0.29 90.18˘0.75 91.53˘0.46
nnPU 86.12˘0.31 76.33˘3.01 87.28˘0.50 94.95˘0.15 95.76˘0.07 95.64˘0.17 86.97˘0.09 80.53˘2.01 87.71˘0.36
nnPU-c 91.97˘0.27 90.43˘0.85 92.05˘0.19 95.71˘0.10 95.78˘0.44 95.79˘0.14 91.90˘0.22 89.76˘1.30 91.89˘0.18
nnPU-GA 84.67˘0.92 83.87˘0.47 85.98˘0.48 93.08˘0.45 94.37˘0.38 93.34˘0.51 85.37˘0.64 85.02˘0.40 86.27˘0.46
nnPU-GA-c 90.98˘0.29 87.10˘0.93 90.98˘0.29 94.70˘0.24 96.08˘0.34 94.70˘0.24 90.89˘0.24 85.10˘1.36 90.89˘0.24
PUSB 86.08˘0.51 86.08˘0.51 85.73˘0.77 86.24˘0.40 86.24˘0.40 85.85˘0.70 87.00˘0.37 87.00˘0.37 86.49˘0.75
PUSB-c 91.73˘0.22 91.08˘0.60 92.17˘0.28 91.76˘0.20 91.12˘0.55 92.19˘0.28 91.74˘0.28 90.80˘0.58 92.17˘0.30
VPU 87.07˘0.60 66.03˘2.83 88.85˘0.52 94.39˘0.25 96.08˘0.20 94.69˘0.32 87.58˘0.15 47.88˘6.12 88.82˘0.45
VPU-c 91.38˘0.33 87.83˘2.25 91.93˘0.44 95.89˘0.17 96.81˘0.29 96.68˘0.30 91.64˘0.24 86.29˘3.05 91.92˘0.42
Dist-PU 47.97˘0.63 47.97˘0.63 47.97˘0.63 50.95˘1.86 50.95˘1.86 50.95˘1.86 64.83˘0.58 64.83˘0.58 64.83˘0.58
Dist-PU-c 47.97˘0.63 47.97˘0.63 47.97˘0.63 50.88˘1.92 50.88˘1.92 50.88˘1.92 64.83˘0.58 64.83˘0.58 64.83˘0.58

Table 24: Test results (mean˘std) of precision and recall score for each algorithm on Letter (Case 1)
with estimated inaccurate class priors. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Precision Recall

Val metric PA PAUC OA PA PAUC OA

PUbN 73.37˘9.45 78.69˘11.63 76.87˘10.88 97.61˘1.20 91.60˘3.43 94.69˘2.17
PAN 48.30˘0.91 48.30˘0.91 48.30˘0.91 100.00˘0.00 100.00˘0.00 100.00˘0.00
CVIR 74.04˘0.38 73.03˘0.65 74.60˘0.75 96.80˘0.56 98.03˘0.52 96.63˘0.38
P3MIX-E 49.43˘0.21 49.43˘0.21 49.43˘0.21 100.00˘0.00 100.00˘0.00 100.00˘0.00
P3MIX-C 70.06˘2.67 70.83˘2.62 72.24˘1.18 93.55˘0.90 92.50˘0.79 89.93˘2.01
LBE 75.17˘0.22 77.62˘7.31 85.55˘1.12 93.00˘1.20 83.47˘10.21 81.48˘1.39
Count Loss 58.66˘2.88 58.66˘2.88 58.99˘3.12 85.59˘5.38 85.59˘5.38 81.63˘2.17
Robust-PU 88.73˘0.25 89.35˘2.10 90.46˘0.85 94.12˘1.40 90.63˘2.56 91.43˘0.14
Holistic-PU 76.80˘1.40 71.33˘4.12 77.97˘0.63 96.58˘0.90 97.57˘0.91 95.09˘0.14
PUe 67.40˘1.35 71.85˘4.01 76.41˘2.14 93.61˘0.96 87.24˘5.67 80.91˘3.08
GLWS 78.10˘1.16 73.60˘0.86 78.98˘0.50 96.76˘0.60 98.66˘0.39 96.01˘0.32

uPU 69.87˘1.49 72.46˘3.46 74.21˘0.36 90.23˘0.61 86.10˘4.07 83.10˘0.74
uPU-c 90.20˘0.63 93.23˘1.73 90.42˘0.53 93.45˘0.94 87.66˘2.93 92.70˘1.10
nnPU 80.13˘0.90 67.84˘3.08 82.93˘1.25 95.16˘1.06 99.45˘0.32 93.16˘0.80
nnPU-c 90.33˘0.90 92.93˘1.88 91.26˘0.36 93.57˘0.73 87.32˘3.88 92.53˘0.11
nnPU-GA 80.05˘2.14 77.60˘0.78 82.47˘0.70 91.74˘1.59 94.05˘0.51 90.46˘0.54
nnPU-GA-c 89.52˘0.50 96.71˘0.78 89.52˘0.50 92.30˘0.22 76.14˘2.55 92.30˘0.22
PUSB 81.08˘1.87 81.08˘1.87 81.46˘1.64 94.11˘1.62 94.11˘1.62 92.29˘0.90
PUSB-c 90.72˘1.01 92.92˘1.25 91.22˘0.58 92.83˘0.75 88.93˘1.95 93.14˘0.27
VPU 84.64˘2.59 99.48˘0.42 89.00˘1.49 91.30˘2.96 32.17˘5.34 88.72˘0.57
VPU-c 88.92˘0.73 95.84˘0.96 91.94˘0.51 94.55˘0.31 79.18˘5.69 91.92˘0.75
Dist-PU 47.97˘0.63 47.97˘0.63 47.97˘0.63 100.00˘0.00 100.00˘0.00 100.00˘0.00
Dist-PU-c 47.97˘0.63 47.97˘0.63 47.97˘0.63 100.00˘0.00 100.00˘0.00 100.00˘0.00
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Table 25: Test results (mean˘std) of accuracy, AUC, and F1 score for each algorithm on USPS
(Case 1) with estimated inaccurate class priors. The best performance w.r.t. each validation metric
is shown in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Test ACC AUC Test F1

Val metric PA PAUC OA PA PAUC OA PA PAUC OA

PUbN 93.72˘0.25 93.66˘0.35 93.90˘0.18 98.18˘0.04 98.14˘0.04 98.22˘0.03 92.48˘0.33 92.34˘0.45 92.74˘0.23
PAN 85.70˘0.15 83.89˘0.28 85.68˘0.14 90.46˘0.13 90.92˘0.12 90.50˘0.12 80.20˘0.27 76.92˘0.46 80.16˘0.25
CVIR 81.12˘0.22 81.03˘0.24 81.17˘0.18 93.21˘0.72 93.25˘0.73 93.08˘0.80 81.25˘0.22 81.21˘0.19 81.28˘0.15
P3MIX-E 88.77˘0.28 89.27˘0.15 88.94˘0.16 95.48˘0.07 95.70˘0.05 95.57˘0.09 86.17˘0.26 86.79˘0.13 86.37˘0.24
P3MIX-C 91.26˘0.07 91.35˘0.12 91.41˘0.11 97.24˘0.09 97.22˘0.03 97.25˘0.04 89.73˘0.09 89.80˘0.14 89.88˘0.14
LBE 90.77˘0.20 91.93˘0.45 92.01˘0.46 97.47˘0.24 97.36˘0.21 98.05˘0.11 89.90˘0.17 90.41˘0.74 90.98˘0.30
Count Loss 91.76˘0.66 91.58˘0.40 92.14˘0.34 97.54˘0.22 97.44˘0.21 97.40˘0.10 90.55˘0.75 90.30˘0.54 90.86˘0.35
Robust-PU 92.99˘0.21 92.81˘0.29 93.07˘0.19 97.76˘0.15 97.70˘0.08 97.79˘0.17 91.51˘0.28 91.27˘0.40 91.62˘0.23
Holistic-PU 93.29˘0.24 93.16˘0.10 93.24˘0.23 97.40˘0.20 97.43˘0.16 97.40˘0.23 92.18˘0.30 91.99˘0.19 92.10˘0.27
PUe 84.55˘0.31 84.35˘0.71 84.84˘0.39 94.36˘0.32 94.56˘0.08 94.40˘0.15 83.52˘0.37 83.14˘0.57 83.55˘0.47
GLWS 88.82˘0.39 87.78˘0.44 88.39˘0.24 98.28˘0.05 98.31˘0.05 98.23˘0.05 88.26˘0.36 87.29˘0.40 87.84˘0.21

uPU 82.74˘0.60 83.99˘0.49 83.56˘0.84 92.97˘0.18 93.36˘0.13 92.06˘0.66 81.39˘0.60 82.14˘0.37 81.89˘0.77
uPU-c 92.64˘0.46 92.23˘0.04 93.16˘0.32 98.07˘0.03 97.80˘0.08 98.06˘0.01 90.91˘0.65 90.43˘0.04 91.64˘0.40
nnPU 85.50˘0.38 80.15˘0.58 84.80˘0.63 97.65˘0.07 97.73˘0.02 97.59˘0.04 85.24˘0.31 80.97˘0.45 84.65˘0.53
nnPU-c 92.73˘0.05 91.93˘0.14 93.14˘0.27 97.78˘0.12 97.63˘0.20 97.90˘0.10 91.09˘0.10 90.00˘0.17 91.62˘0.36
nnPU-GA 92.56˘0.61 91.50˘0.44 92.79˘0.12 97.34˘0.35 97.04˘0.20 97.41˘0.18 91.35˘0.58 90.26˘0.44 91.66˘0.11
nnPU-GA-c 92.18˘0.35 92.14˘0.63 92.63˘0.21 97.86˘0.11 97.81˘0.05 97.90˘0.04 90.32˘0.45 90.21˘0.91 90.96˘0.27
PUSB 84.97˘1.26 84.97˘1.26 85.19˘1.09 86.82˘1.06 86.82˘1.06 86.83˘1.05 84.83˘1.04 84.83˘1.04 84.82˘1.05
PUSB-c 92.79˘0.40 92.58˘0.18 92.87˘0.12 92.18˘0.47 91.86˘0.28 92.27˘0.15 91.19˘0.52 90.86˘0.29 91.30˘0.16
VPU 83.74˘1.41 60.62˘2.37 83.74˘1.41 95.79˘0.95 97.56˘0.06 95.79˘0.95 76.55˘2.48 11.80˘9.35 76.55˘2.48
VPU-c 93.56˘0.29 82.03˘8.04 93.36˘0.29 98.08˘0.05 97.79˘0.38 97.97˘0.10 92.09˘0.43 66.66˘19.02 91.89˘0.41
Dist-PU 86.31˘0.07 83.62˘0.93 86.26˘0.21 89.91˘0.36 91.63˘0.03 90.75˘0.27 85.56˘0.13 81.76˘0.93 85.50˘0.19
Dist-PU-c 92.01˘0.42 90.90˘0.54 91.94˘0.46 98.20˘0.14 98.28˘0.03 98.28˘0.10 90.00˘0.57 88.34˘0.81 89.88˘0.64

Table 26: Test results (mean˘std) of precision and recall score for each algorithm on USPS (Case 1)
with estimated inaccurate class priors. The best performance w.r.t. each validation metric is shown
in bold. Here, “-c” indicates using the proposed calibration technique in Algorithm 1.

Test metric Precision Recall

Val metric PA PAUC OA PA PAUC OA

PUbN 93.78˘0.63 94.39˘0.20 93.61˘0.24 91.25˘0.89 90.39˘0.70 91.88˘0.49
PAN 96.94˘0.10 97.76˘0.23 97.00˘0.14 68.39˘0.42 63.41˘0.55 68.31˘0.39
CVIR 70.10˘0.23 69.96˘0.30 70.18˘0.22 96.63˘0.35 96.78˘0.14 96.55˘0.22
P3MIX-E 90.37˘2.19 90.94˘2.03 90.53˘2.05 82.63˘2.08 83.25˘2.00 82.86˘2.16
P3MIX-C 89.38˘0.09 89.68˘0.17 89.75˘0.15 90.08˘0.19 89.92˘0.28 90.00˘0.25
LBE 83.77˘0.51 90.85˘1.93 87.72˘2.62 97.02˘0.40 90.39˘3.13 94.94˘2.40
Count Loss 88.10˘0.84 88.05˘0.55 89.66˘0.91 93.14˘0.70 92.75˘1.49 92.12˘0.49
Robust-PU 93.97˘0.10 93.87˘0.27 93.95˘0.42 89.18˘0.58 88.82˘0.88 89.41˘0.44
Holistic-PU 91.02˘0.12 91.19˘0.77 91.20˘0.38 93.37˘0.53 92.86˘1.14 93.02˘0.36
PUe 76.19˘0.55 76.66˘1.52 77.28˘0.54 92.47˘1.15 91.02˘1.72 90.98˘1.15
GLWS 79.53˘0.59 78.01˘0.65 78.94˘0.39 99.14˘0.03 99.10˘0.03 99.02˘0.08

uPU 74.92˘0.76 77.96˘1.11 76.85˘1.34 89.10˘0.50 86.86˘0.75 87.69˘0.28
uPU-c 95.14˘0.44 94.45˘0.30 94.91˘0.25 87.10˘1.39 86.75˘0.26 88.59˘0.58
nnPU 74.95˘0.56 68.20˘0.63 74.04˘0.88 98.82˘0.15 99.65˘0.00 98.82˘0.11
nnPU-c 94.68˘0.40 94.71˘0.23 94.87˘0.10 87.76˘0.53 85.73˘0.14 88.59˘0.58
nnPU-GA 90.45˘2.08 87.77˘1.24 89.88˘0.51 92.43˘1.14 92.98˘1.08 93.53˘0.42
nnPU-GA-c 94.90˘0.35 95.20˘0.45 94.62˘0.10 86.16˘0.57 85.80˘1.89 87.57˘0.45
PUSB 74.33˘1.73 74.33˘1.73 75.01˘1.24 98.90˘0.32 98.90˘0.32 97.61˘0.94
PUSB-c 94.46˘0.35 94.91˘0.66 94.51˘0.18 88.16˘0.95 87.18˘1.03 88.31˘0.40
VPU 97.52˘0.14 66.12˘27.00 97.52˘0.14 63.22˘3.43 7.14˘5.68 63.22˘3.43
VPU-c 95.76˘0.49 96.07˘1.55 95.03˘0.26 88.75˘1.24 60.90˘20.31 88.98˘0.98
Dist-PU 77.33˘0.16 77.99˘3.06 77.34˘0.49 95.76˘0.55 86.90˘4.14 95.61˘0.67
Dist-PU-c 95.67˘0.22 96.36˘0.23 95.95˘0.18 84.98˘0.88 81.61˘1.52 84.55˘1.14
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Table 27: Test results (mean˘std) of accuracy, AUC, and F1 score for each algorithm on the Credit
Fraud dataset. The best performance w.r.t. each validation metric is shown in bold. Here, “-c”
indicates using the proposed calibration technique in Algorithm 1.

Test metric Test ACC AUC Test F1

Val metric PA PAUC OA PA PAUC OA PA PAUC OA

PUbN 96.31˘2.01 90.02˘5.66 97.13˘0.89 95.22˘0.49 97.83˘1.28 94.76˘1.20 98.09˘1.06 94.45˘3.24 98.53˘0.46
PAN 94.54˘2.90 19.44˘7.80 94.09˘1.58 87.74˘3.86 95.15˘0.33 87.72˘1.99 97.12˘1.55 30.26˘10.65 96.93˘0.83
CVIR 98.69˘0.95 99.61˘0.20 99.88˘0.04 87.01˘1.57 90.36˘0.36 91.14˘0.86 99.33˘0.48 99.80˘0.10 99.94˘0.02
P3MIX-E 98.38˘0.45 96.38˘1.55 98.21˘1.09 95.61˘1.36 94.55˘1.77 98.08˘0.55 99.18˘0.23 98.14˘0.80 99.09˘0.56
P3MIX-C 99.07˘0.58 98.71˘0.48 97.26˘1.13 88.81˘1.27 94.64˘1.97 95.43˘0.66 99.53˘0.30 99.35˘0.25 98.60˘0.58
LBE 90.96˘3.02 83.66˘8.10 95.02˘1.73 96.41˘0.04 96.51˘1.02 96.02˘0.62 95.18˘1.63 90.41˘5.12 97.42˘0.92
Count Loss 90.46˘2.26 94.78˘2.16 94.82˘0.95 91.06˘2.28 93.08˘1.16 94.94˘0.73 94.94˘1.25 97.28˘1.13 97.33˘0.50
Robust-PU 92.51˘2.86 80.53˘7.39 94.88˘1.73 96.48˘0.46 96.41˘0.64 96.26˘1.82 96.03˘1.54 88.61˘4.73 97.35˘0.90
Holistic-PU 90.11˘0.30 85.14˘2.38 90.96˘1.49 96.31˘0.40 95.85˘0.94 93.75˘0.68 94.79˘0.16 91.90˘1.40 95.24˘0.82
PUe 97.21˘1.51 74.09˘20.61 98.49˘0.46 94.17˘1.36 94.22˘1.86 97.94˘0.58 98.57˘0.78 79.12˘16.78 99.24˘0.23
GLWS 99.20˘0.53 99.81˘0.05 99.23˘0.55 94.35˘1.77 95.28˘1.79 95.73˘1.89 99.60˘0.27 99.90˘0.03 99.61˘0.28

uPU 96.97˘1.72 98.12˘0.88 99.12˘0.20 94.03˘2.03 94.03˘1.23 95.28˘1.80 98.44˘0.90 99.04˘0.45 99.56˘0.10
uPU-c 95.46˘0.73 88.54˘4.56 93.80˘0.71 96.84˘1.25 97.12˘0.95 96.80˘1.10 97.67˘0.38 93.72˘2.65 96.79˘0.38
nnPU 98.98˘0.61 99.92˘0.01 99.89˘0.02 92.41˘3.14 95.99˘1.14 93.62˘1.97 99.48˘0.31 99.96˘0.00 99.95˘0.01
nnPU-c 92.96˘1.83 92.44˘3.60 94.99˘0.09 95.10˘1.35 97.31˘0.67 94.62˘0.88 96.32˘0.99 95.95˘1.99 97.43˘0.04
nnPU-GA 88.02˘6.19 78.64˘3.11 95.33˘2.10 96.80˘1.28 93.94˘0.82 96.60˘1.66 93.26˘3.66 87.92˘2.00 97.57˘1.11
nnPU-GA-c 90.35˘4.04 83.02˘6.83 92.74˘0.14 95.45˘0.34 94.87˘0.16 96.73˘0.79 94.78˘2.27 90.24˘4.15 96.23˘0.08
PUSB 99.00˘0.56 99.00˘0.56 99.03˘0.74 92.20˘0.56 92.20˘0.56 91.06˘0.73 99.50˘0.28 99.50˘0.28 99.51˘0.38
PUSB-c 94.41˘0.81 90.41˘2.41 96.02˘0.50 92.78˘2.08 93.26˘1.38 93.22˘0.41 97.11˘0.43 94.91˘1.35 97.96˘0.26
Dist-PU 99.94˘0.01 99.92˘0.00 99.93˘0.01 84.69˘1.25 88.55˘2.63 84.25˘2.41 99.97˘0.00 99.96˘0.00 99.96˘0.00
Dist-PU-c 99.59˘0.29 99.16˘0.62 99.58˘0.28 88.68˘1.83 91.36˘3.18 86.33˘3.47 99.79˘0.15 99.58˘0.31 99.79˘0.14

Table 28: Test results (mean˘std) of precision and recall for each algorithm on the Credit Fraud
dataset. The best performance w.r.t. each validation metric is shown in bold. Here, “-c” indicates
using the proposed calibration technique in Algorithm 1.

Test metric Precision Recall

Val metric PA PAUC OA PA PAUC OA

PUbN 99.98˘0.00 99.99˘0.00 99.98˘0.00 96.32˘2.01 90.01˘5.68 97.15˘0.90
PAN 99.97˘0.00 99.98˘0.01 99.95˘0.01 94.56˘2.91 19.30˘7.82 94.12˘1.58
CVIR 99.96˘0.00 99.97˘0.00 99.97˘0.00 98.72˘0.95 99.64˘0.20 99.91˘0.04
P3MIX-E 99.98˘0.00 99.98˘0.00 99.97˘0.01 98.40˘0.45 96.40˘1.55 98.23˘1.10
P3MIX-C 99.96˘0.01 99.96˘0.01 99.98˘0.00 99.11˘0.59 98.75˘0.49 97.28˘1.13
LBE 99.98˘0.00 99.99˘0.00 99.98˘0.00 90.96˘3.03 83.64˘8.12 95.03˘1.73
Count Loss 99.98˘0.00 99.96˘0.01 99.98˘0.00 90.47˘2.26 94.81˘2.18 94.83˘0.95
Robust-PU 99.98˘0.00 99.98˘0.00 99.99˘0.00 92.51˘2.87 80.51˘7.41 94.89˘1.74
Holistic-PU 99.98˘0.00 99.99˘0.00 99.98˘0.00 90.11˘0.30 85.12˘2.39 90.97˘1.50
PUe 99.98˘0.00 99.98˘0.01 99.98˘0.01 97.22˘1.51 74.07˘20.65 98.52˘0.47
GLWS 99.97˘0.01 99.96˘0.00 99.97˘0.00 99.22˘0.53 99.85˘0.05 99.26˘0.56

uPU 99.98˘0.00 99.97˘0.00 99.98˘0.00 96.99˘1.73 98.14˘0.88 99.14˘0.19
uPU-c 99.98˘0.00 99.99˘0.00 99.99˘0.00 95.47˘0.73 88.53˘4.57 93.80˘0.72
nnPU 99.96˘0.00 99.96˘0.00 99.97˘0.01 99.02˘0.62 99.96˘0.01 99.92˘0.02
nnPU-c 99.98˘0.00 99.99˘0.01 99.98˘0.00 92.96˘1.83 92.44˘3.62 95.00˘0.08
nnPU-GA 99.99˘0.01 99.98˘0.00 99.99˘0.00 88.01˘6.20 78.62˘3.11 95.34˘2.10
nnPU-GA-c 99.98˘0.00 99.98˘0.00 99.99˘0.00 90.35˘4.05 83.01˘6.85 92.74˘0.14
PUSB 99.97˘0.00 99.97˘0.00 99.97˘0.00 99.03˘0.56 99.03˘0.56 99.06˘0.74
PUSB-c 99.98˘0.01 99.99˘0.00 99.98˘0.00 94.41˘0.81 90.40˘2.42 96.03˘0.51
Dist-PU 99.96˘0.01 99.95˘0.00 99.96˘0.01 99.98˘0.00 99.97˘0.00 99.97˘0.00
Dist-PU-c 99.96˘0.00 99.96˘0.01 99.96˘0.01 99.63˘0.29 99.20˘0.62 99.62˘0.28
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