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Abstract

While graph neural networks (GNNs) are widely used for node and graph represen-1

tation learning tasks, the reliability of GNN uncertainty estimates under distribution2

shifts remains relatively under-explored. Indeed, while post-hoc calibration strate-3

gies can be used to improve in-distribution calibration, they need not also improve4

calibration under distribution shift. However, techniques which produce GNNs5

with better intrinsic uncertainty estimates are particularly valuable, as they can6

always be combined with post-hoc strategies later. Therefore, in this work, we7

propose G-∆UQ, a novel training framework designed to improve intrinsic GNN8

uncertainty estimates. Our framework adapts the principle of stochastic data center-9

ing to graph data through novel graph anchoring strategies, and is able to support10

partially stochastic GNNs. While, the prevalent wisdom is that fully stochastic11

networks are necessary to obtain reliable estimates, we find that the functional12

diversity induced by our anchoring strategies when sampling hypotheses renders13

this unnecessary and allows us to support G-∆UQ on pretrained models. Indeed,14

through extensive evaluation under covariate, concept and graph size shifts, we15

show that G-∆UQ leads to better calibrated GNNs for node and graph classifi-16

cation. Further, it also improves performance on the uncertainty-based tasks of17

out-of-distribution detection and generalization gap estimation. Overall, our work18

provides insights into uncertainty estimation for GNNs, and demonstrates the utility19

of G-∆UQ in obtaining reliable estimates.20

1 Introduction21

As graph neural networks (GNNs) are increasingly deployed in critical applications with test-time22

distribution shifts (Zhang & Chen, 2018; Gaudelet et al., 2020; Yang et al., 2018; Yan et al., 2019;23

Zhu et al., 2022), it becomes necessary to expand model evaluation to include safety-centric metrics,24

such as calibration errors (Guo et al., 2017), out-of-distribution (OOD) rejection rates (Hendrycks25

& Gimpel, 2017), and generalization error predictions (GEP) (Jiang et al., 2019), to holistically26

understand model performance in such shifted regimes (Hendrycks et al., 2022b; Trivedi et al.,27

2023b). Notably, improving on these additional metrics often requires reliable uncertainty estimates,28

such as maximum softmax or predictive entropy, which can be derived from prediction probabilities.29

Although there is a clear understanding in the computer vision literature that the quality of uncertainty30

estimates can noticeably deteriorate under distribution shifts (Wiles et al., 2022; Ovadia et al., 2019),31

the impact of such shifts on graph neural networks (GNNs) remains relatively under-explored.32

Post-hoc calibration methods (Guo et al., 2017; Gupta et al., 2021; Kull et al., 2019; Zhang et al.,33

2020), which use validation datasets to rescale logits to be obtain better calibrated models, are34

an effective, accuracy-preserving strategy for improving uncertainty estimates and model trust-35

worthiness. Indeed, several post-hoc calibration strategies (Hsu et al., 2022; Wang et al., 2021)36

have been recently proposed to explicitly account for the non-IID nature of node-classification37
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datasets. However, while these methods are effective at improving uncertainty estimate reliability38

on in-distribution (ID) data, they have not been evaluated on OOD data, where they may become39

unreliable. To this end, training strategies which produce models with better intrinsic uncertainty40

estimates are valuable as they will provide better out-of-the-box ID and OOD estimates, which can41

then be further combined with post-hoc calibration strategies if desired.42

The ∆-UQ training framework (Thiagarajan et al., 2022) was recently proposed as a scalable, single43

model alternative for vision models ensembles and has achieved state-of-the-art performance on44

calibration and OOD detection tasks. Central to ∆-UQ’s success is the concept of anchored training,45

where models are trained on stochastic, relative representations of input samples in order to simulate46

sampling from different functional modes at test time (Sec. 2.) While, on the surface, ∆-UQ also47

appears as a potentially attractive framework for obtaining reliable, intrinsic uncertainty estimates on48

graph-based tasks, there are several challenges that arise from the structured, discrete, and variable-49

sized nature of graph data that must be resolved first. Namely, the anchoring procedure used by50

∆-UQ is not applicable for graph datasets, and it is unclear how to design alternative anchoring51

strategies such that sufficiently diverse functional modes are sampled at inference to provide reliable52

epistemic uncertainty estimates.53

Proposed Work. Thus, our work proposes G-∆UQ, a novel training paradigm which provides better54

intrinsic uncertainty estimates for both graph and node classification tasks through the use of newly55

introduced graph-specific, anchoring strategies. Notably, our anchoring strategies support partially56

stochastic GNNs (instead of only fully stochastic ∆-UQ models). We demonstrate that not only is57

partially stochasticity is empirically valuable in calibrated GNNs across different distribution shifts58

and architectures, it also supports a light-weight uncertainty aware fine-tuning strategy for pretrained59

models and reduced the computational burden of training a fully stochastic model. Our contributions60

can be summarized as follows:61

• (Partially) Stochastic Anchoring for GNNs. We propose G-∆UQ, a novel training paradigm that62

improves the reliability of uncertainty estimates on GNN-based tasks. Our novel graph-anchoring63

strategies support partial stochasticity GNNs as well as training with pretrained models. (Sec. 3).64

• Evaluating Uncertainty-Modulated CIs under Distribution Shifts. Across covariate, concept65

and graph-size shifts, we demonstrate that G-∆UQ leads to better calibration. Moreover, G-∆UQ’s66

performance is further improved when combined with post-hoc calibration strategies on several node67

and graph-level tasks, including new safety-critical tasks (Sec. 5).68

• Fine-Grained Analysis of G-∆UQ. We study the calibration of architectures of varying expressivity69

and G-∆UQ ’s ability to improve them under varying distribution shift. We further demonstrate its70

utility as a lightweight strategy for improving the calibration of pretrained GNNs (Sec. 6).71

2 Related Work72

While uncertainty estimates are useful for a variety of safety-critical tasks (Hendrycks & Gimpel,73

2017; Jiang et al., 2019; Guo et al., 2017), DNNs are well-known to provide poor uncertainty estimates74

directly out of the box (Guo et al., 2017). To this end, there has been considerable interest in building75

calibrated models, where the confidence of a prediction matches the probability of the prediction76

being correct. Notably, since GEP and OOD detection methods often rely upon transformations of a77

model’s logits, improving calibration can in turn improve performance on these tasks as well. Due to78

their accuracy-preserving properties, post-hoc calibration strategies, which rescale confidences after79

training using a validation dataset, are particularly popular. Indeed, several methods (Guo et al., 2017;80

Gupta et al., 2021; Kull et al., 2019; Zhang et al., 2020) have been proposed for DNNs in general and,81

more recently, dedicated node-classifier calibration methods (Hsu et al., 2022; Wang et al., 2021)82

have also been proposed to accommodate the non-IID nature of graph data. (See App. A.7 for more83

details.) Notably, however, such post-hoc methods do not lead to reliable estimates under distribution84

shifts, as enforcing calibration on ID validation data does not directly lead to reliable estimates on85

OOD data (Ovadia et al., 2019; Wiles et al., 2022; Hendrycks et al., 2019).86

Alternatively, Bayesian methods have been proposed for DNNs (Hernández-Lobato & Adams, 2015;87

Blundell et al., 2015), and more recently GNNs (Zhang et al., 2019; Hasanzadeh et al., 2020),88

as inherently “uncertainty-aware” strategies. However, not only do such methods often lead to89

performance loss, require complicated architectures and additional training time, they often struggle90

to outperform the simple Deep Ensembles (DEns) baseline (Lakshminarayanan et al., 2017). By91

training a collection of independent models, DEns is able to sample different functional modes of the92
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hypothesis space, and thus, capture epistemic variability to perform uncertainty quantification (Wilson93

& Izmailov, 2020). Given that DEns requires training and storing multiple models, the SoTA ∆-94

UQ framework (Thiagarajan et al., 2022) was recently proposed to sample different functional modes95

using only a single model, based on the principle of anchoring. Conceptually, anchoring is the96

process of creating a relative representation for an input sample in terms of a random “anchor."97

By randomizing anchors throughout training (e.g., stochastically centering samples with respect to98

different anchors), ∆-UQ emulates the process of sampling different solutions from the hypothesis99

space. Given ∆-UQ’s success in improving calibration and generalization (Netanyahu et al., 2023)100

under distribution shifts on computer vision tasks and the limitations of existing post-hoc strategies,101

stochastic centering appears as a potentially attractive framework for obtaining reliable uncertainty102

estimates when performing GNN-based graph and node classification tasks under distribution shifts.103

However, as we will discuss in Sec. 3, there are several challenges that arise from the structured,104

discrete, and variable-sized nature of graph data, which necessitate novel anchoring strategies to105

ensure that the underlying functional hypothesis space is effectively sampled.106

Preliminaries. Here, we formally introduce stochastic centering. Let C := Xtrain be the anchor107

distribution, x ∈ Xtest be a test sample, and anchor c ∈ C be a single anchor. Since, previous108

research on stochastic centering has focused on vision models (CNNs, ResNets, ViT), straightforward109

input space transformations were used to construct anchored representations. Namely, anchored110

image samples were created by subtracting and channel-wise concatenating two images: [X−C,C]).111

Then, the corresponding stochastically centered model can be defined as fθ : [X−C,C] → Ŷ. Like112

ensembles, predictions and uncertainties are aggregated over different hypotheses. Given K random113

anchors, the mean target class prediction, µ(y|x), and the corresponding variance, σ(y|x) are com-114

puted as: µ(y|x) = 1
K

∑K
k=1 fθ([x− ck, ck]) and σ(y|x) =

√
1

K−1

∑K
k=1(fθ([x− ck, ck])− µ)2.115

Since the variance over K anchors captures epistemic uncertainty by sampling different hypotheses,116

these estimates can be used to modulate the predictions: µcalib. = µ(1 − σ). The rescaled logits117

and uncertainty estimates have led to state-of-the-art performance on image outlier rejection and118

extrapolation (Anirudh & Thiagarajan, 2022).119

3 Graph-∆UQ: Uncertainty-Aware Predictions120

As discussed in Sec. 2, the stochastic centering paradigm has demonstrated significant promise in121

computer vision; but there are several challenges that must be addressed prior to applying it to GNNs122

(and graph data). Foremost, it is unclear how to define graph-specific anchoring strategies such that123

stochastic centering is able to sample appropriately diverse, yet effective, GNN functional hypotheses.124

Indeed, trivial input transformations (e.g., subtraction/channel concatenation) are not possible when125

working with structured, discrete, variable-sized and potentially non-IID graphs. Moreover, we126

hypothesize and empirically demonstrate (Sec. 5) that fully stochastic GNNs, as induced by input127

space anchoring, are, in fact, not necessary for obtaining reliable uncertainty estimates. To this128

end, we propose MPNN and READOUT anchoring as alternative, scalable anchoring strategies for129

improving graph classifier calibration. Next, we first introuce the key notations that we use in the130

remainder of the paper, and then we conceptually describe the different anchoring strategies.131

Notations. Let G = (X,E,A, Y ) be a graph with node features X ∈ RN×dℓ , (optional) edge features132

E ∈ Rm×dℓ , adjacency matrix A ∈ RN×N , and graph-level label Y ∈ {0, 1}c, where N,m, dℓ, c133

denote the number of nodes, number of edges, feature dimension and number of classes, respectively.134

We use i to index a particular sample in the dataset, e.g. Gi,Xi. We can then define a GNN consisting135

of ℓ message passing layers (MPNN), a graph-level readout function (READOUT), and classifier136

head (MLP), respectively, as : Xℓ+1
M , Eℓ+1 = MPNNℓ

e

(
Xℓ,Eℓ,A

)
, G = READOUT

(
Xℓ+1

M

)
, and137

Ŷ = MLP (G), where Xℓ+1
M ,Eℓ+1 are intermediate node and edge representations, and G is the138

graph representation. When performing node classification, we do not include the READOUT layer,139

and instead output node-level predictions: Ŷ |Nxc| = MLP
(
Xℓ+1

M

)
.140

3.1 Node Feature Anchoring141

Due to the discrete nature and potential size variability in graphs, performing a structural residual142

operation, [A − Ac,Ac] with respect to a graph sample, G = (X,E,A, Y ), and another anchor143

graph, Gc = (Xc,Ec,Ac, Yc), would be ineffective at inducing a stochastically centered GNN.144

Indeed, such a transform would introduce artificial edge weights and connectivity artifacts, harming145

convergence. Likewise, when performing graph classification, we cannot directly anchor over node146

features, [X−Xc,Xc], since graphs are different sizes. Taking arbitrary subsets of node features147

is also inadvisable as node features cannot be considered IID, and due to iterative message passing,148
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the network may not be able to converge after aggregating k hops of stochastic node representations.149

(This is in contrast to images, where only a single anchor is used to induce to stochasticity).150

To address these challenges, we instead fit a Gaussian distribution, (N (µ, σ)), over the training151

dataset node features to help manage the combinatorial stochasticity induced by message passing152

and issues relating to differing graph sizes. We emphasize that this distribution is only used for153

anchoring and does not assume that the dataset’s node features are normally distributed. During154

training, we randomly sample an anchor from that distribution for each node. Mathematically, given155

an anchor CN×d ∼ N (µ, σ), we create the anchor/query node feature pair [Xi − C||Xi], where156

|| denotes concatenation, and i is the node index. During inference, we sample a fixed set of K157

anchors and compute residuals for all nodes with respect to the same anchor, e.g., c1×d
k ∼ N (µ, σ)158

([Xi−ck||Xi]), with appropriate broadcasting. For datasets with categorical node features, anchoring159

can be performed after embedding the node features into a continuous space. If node features are not160

available, anchoring can still be performed via positional encodings (Wang et al., 2022b), which are161

known to improve the expressivity and performance of GNNs (Dwivedi et al., 2022a).162

Performing anchoring with respect to node features is the most analogous extension of ∆-UQ163

to graphs as it results in fully stochastic GNNs. This is particularly true on node classification164

tasks where each node (with its corresponding feature and label) can be viewed as an individual165

sample, similar to an image in the original ∆-UQ formulation. Indeed, in Sec. 4, we show that166

our above formulation can be straightforwardly used to improve the behavior of node-classifiers167

under distribution shifts, and can be combined with various post-hoc calibration strategies to further168

improve the calibration.169

3.2 Hidden Layer Anchoring for Graph Classification170

Figure 1: Overview of G-∆UQ. We propose three
different stochastic centering variants that induce
varying levels of stochasticity in the underlying
GNN. Notably, READOUT stochastic centering al-
lows for using pretrained models with G-∆UQ.

While node feature anchoring can leveraged171

even for graph classification tasks, there are sev-172

eral nuances that may limit its effectiveness. No-173

tably, since each sample (and label) is at a graph-174

level, NFA not only effectively induces multiple175

anchors per sample, it also ignores structural in-176

formation that may be useful in sampling more177

functionally diverse hypotheses, e.g., hypothe-178

ses which capture functional modes that rely179

upon different high-level semantic, non-linear180

features. To improve the quality of hypothesis181

sampling, we introduce hidden layer anchoring182

below, which incorporates structural informa-183

tion into anchors at the expense of full stochas-184

ticity in the network (See Fig. 1.)185

Hidden Layer and Readout Anchoring: Given186

a GNN containing ℓ MPNN layers, let r ≤ ℓ be187

the layer at which we perform anchoring. The anchor/sample pair is obtained from the intermediate188

node representations from the first r MPNN layers. We then randomly shuffle the node features189

over the entire batch, (C = SHUFFLE(Xr+1
i )), concatenate the residuals, and proceed with the190

READOUT and MLP layers as usual. Note the gradients of the query sample are not considered when191

updating parameters, and the MPNNr+1 layer is modified to accept inputs of dimension dr × 2 (to192

take in anchored representations as inputs). For improved convergence, we fix the set of anchors and193

subtract a single anchor from all node representations in an iteration (instead of sampling uniquely),194

e.g., c1×d = Xr+1
c [n, :] and [Xr+1

i,n − c||c]. This process induces the following GNN (requires195

appropriate broadcasting): Xr+1 = MPNN1...r, Xr+1 = MPNNr+1...ℓ
(
[Xr+1 −C,Xr+1],A

)
, and196

Ŷ = MLP(READOUT
(
Xℓ+1

)
) .197

Not only do hidden layer anchors aggregate structural information over r hops, they induce a GNN198

that is now partially stochastic, as layers 1 . . . r are deterministic. Interestingly, it was recently199

demonstrated that relaxing the assumption of full stochasticity to partial stochasticity in Bayesian200

neural networks (BNNs) not only leads to strong computational benefits, but may also improve201

calibration (Sharma et al., 2023). Indeed, by reducing network stochasticity, it is naturally expected202

that hidden layer anchoring will reduce the diversity of the hypotheses, but by sampling more203
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functionally diverse hypotheses through deeper, semantically expressive anchors, it is possible that204

naively maximizing diversity is in fact not required for reliable uncertainty estimation. To validate205

this hypothesis, we thus propose the final variant, READOUT anchoring for graph classification206

tasks. While conceptually similar to hidden layer anchoring, here, we simultaneously minimize207

GNN stochasticity (only the classifier is stochastic) and maximize anchor expressivity (anchors are208

graph representations pooled after ℓ rounds of message passing). Notably, READOUT anchoring is209

also compatible with pretrained GNN backbones, as the final MLP layer of a pretrained model is210

discarded (if necessary), and reinitialized to accommodate query/anchor pairs. Given the frozen211

MPNN backbone, only the anchored classifier head is trained.212

In Sec. 5, we empirically verify the effectiveness of our proposed G-∆UQ variants and demonstrate213

that fully stochastic GNNs are, in fact, unnecessary to obtain highly generalizable solutions, mean-214

ingful uncertainties and improved calibration on graph classification tasks. Moreover, in addition215

to strong calibration, we demonstrate in Sec. 6 that G-∆UQ provides estimates that are useful for216

safety-critical OOD detection and generalization gap prediction tasks.217

4 Node Classification Experiments: G-∆UQ Improves Calibration218

In this section, we demonstrate that G-∆UQ improves uncertainty estimation in GNNs, particularly219

when evaluating node classifiers under distribution shifts. To the best of our knowledge, GNN220

calibration has not been extensively evaluated under this challenging setting, where uncertainty221

estimates are known to be unreliable (Ovadia et al., 2019). We demonstrate that G-∆UQ not only222

directly provides better estimates, but also that combining G-∆UQ with existing post-hoc calibration223

methods further improves performance.224

Experimental Setup. We use the concept and covariate shifts for WebKB, Cora and CBAS datasets225

provided by Gui et al. (2022), and follow the recommended hyperparameters for training. In our226

implementation of node feature anchoring, we use 10 random anchors to obtain predictions with227

G-∆UQ. All our results are averaged over 5 seeds and post-hoc calibration methods (described further228

in App. A.7) are fitted on the in-distribution validation dataset. The expected calibration error and229

accuracy on the unobserved “OOD test” split are reported.230

Results. A subset of our results (Cora-Degree) are presented in Table 1 (remaining results are in the231

supplementary Table 10). We observe that G-∆UQ is substantially better calibrated than the vanilla232

model under both concept (0.307 vs. 0.13) and covariate shift (0.348 vs. 0.141), while maintaining233

comparable, if not better accuracy. Most notably, we see that G-∆UQ outperforms vanilla models234

that have been calibrated with graph-specific techniques CaGCN and GATS. Not only does this235

suggest that G-∆UQ inherently provides more robust estimates but that there is substantial room for236

improving the OOD calibration of post-hoc GNN calibrators. Further, we can combine G-∆UQ with237

post-hoc calibration strategies leading to even better performance. Our observations are generally238

consistent across the other datasets as well.239

5 Graph Classification Uncertainty Experiments with G-∆UQ240

While applying G-∆UQ to node classification tasks was relatively straightforward, performing241

stochastic centering with graph classification tasks is more nuanced. As discussed in Sec. 3,242

different anchoring strategies can introduce varying levels of stochasticity, and it is unknown how243

these strategies affect uncertainty estimate reliability. Therefore, we begin by demonstrating that244

fully stochastic GNNs are not necessary for producing reliable estimates (Sec. 5.1). We then245

extensively evaluate the calibration of partially stochastic GNNs on covariate and concept shifts with246

and without post-hoc calibration strategies (Sec. 5.2), as well as for different UQ tasks (Sec. 5.3).247

Lastly, we demonstrate that G-∆UQ’s uncertainty estimates remain reliable when used with different248

architectures and pretrained backbones (Sec. 6).249

5.1 Is Full Stochasticity Necessary for G-∆UQ?250

By changing the anchoring strategy and intermediate anchoring layer, we can induce varying levels251

of stochasticity in the resulting GNNs. As discussed in Sec. 3, we hypothesize that the decreased252

stochasticity incurred by performing anchoring at deeper network layers will lead to more functionally253

diverse hypotheses, and consequently more reliable uncertainty estimates. We verify this hypothesis254

here, by studying the effect of anchoring layer on calibration under graph-size distribution shift.255

Namely, we find that READOUT anchoring sufficiently balances stochasticity and functional diversity.256

Experimental Setup. We study the effect of different anchoring strategies on graph classification257

calibration under graph-size shift. Following the procedure of (Buffelli et al., 2022; Yehudai et al.,258
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Figure 2: Effect of Anchoring Layer. Anchoring at different layers induces different hypotheses
spaces. READOUT anchoring generally performs well across datasets and architectures.

2021), we create a size distribution shift by taking the smallest 50%-quantile of graph size for the259

training set, and evaluate on the largest 10% quantile. Following (Buffelli et al., 2022), we apply260

this splitting procedure to NCI1, NCI09, and PROTEINS (Morris et al., 2020), consider 3 GNN261

backbones (GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019), and PNA (Corso et al., 2020)) and262

use the same architectures/parameters. (See Appendix A.5 for dataset statistics.) The accuracy and263

expected calibration error over 10 seeds on the largest-graph test set are reported for models trained264

with and without stochastic anchoring.265

Results. We compare the performance of anchoring at different layers in Fig. 2. We find overall that266

applying anchoring at the READOUT layer yields competitive performance on size generalization267

benchmarks and better convergence compared to stochastic centering performed at earlier layers.268

Notably, the success of READOUT anchoring validates our hypothesis that full stochasticity is not269

necessary for reliable estimates. This finding is also practically useful as such models are faster to270

train and able to support pretrained models. Given these benefits and its empirical performance, we271

perform READOUT anchoring for all following experiments.272

Table 1: Calibration under Covariate and Concept shifts. G-∆UQ leads to better calibrated
models for node-(GOODCora) and graph-level prediction tasks under different kinds of distribution
shifts. Notably, G-∆UQ can be combined with post-hoc calibration techniques to further improve
calibration. The expected calibration error (ECE) is reported. Best, Second.

Shift: Concept Shift: Covariate

Accuracy (↑) ECE (↓) Accuracy (↑) ECE (↓)
Dataset Domain Calibration No G-∆ UQ G-∆ UQ No G-∆ UQ G-∆ UQ No G-∆ UQ G-∆ UQ No G-∆ UQ G-∆ UQ

✕ 0.581±0.003 0.595±0.003 0.307±0.009 0.13±0.011 0.47±0.002 0.518±0.014 0.348±0.032 0.141±0.008

CAGCN 0.581±0.003 0.597±0.002 0.135±0.009 0.128±0.025 0.47±0.002 0.522±0.025 0.256±0.08 0.231±0.025

Dirichlet 0.534±0.007 0.551±0.004 0.12±0.004 0.196±0.003 0.414±0.007 0.449±0.01 0.163±0.002 0.356±0.01

ETS 0.581±0.003 0.596±0.004 0.301±0.009 0.116±0.018 0.47±0.002 0.523±0.003 0.31±0.077 0.141±0.003

GATS 0.581±0.003 0.596±0.004 0.185±0.018 0.229±0.039 0.47±0.002 0.521±0.011 0.211±0.004 0.308±0.011

IRM 0.582±0.002 0.597±0.002 0.125±0.001 0.102±0.002 0.469±0.001 0.522±0.004 0.194±0.005 0.13±0.004

Orderinvariant 0.581±0.003 0.592±0.002 0.226±0.024 0.213±0.049 0.47±0.002 0.498±0.027 0.318±0.042 0.196±0.027

Spline 0.571±0.003 0.595±0.003 0.080±0.004 0.068±0.004 0.459±0.003 0.52±0.004 0.158±0.01 0.098±0.004

GOODCora Degree

VS 0.581±0.003 0.596±0.004 0.306±0.004 0.127±0.002 0.47±0.001 0.522±0.005 0.345±0.005 0.146±0.005

✕ 0.499±0.003 0.497±0.002 0.439±0.078 0.334±0.066 0.348±0.009 0.355±0.034 0.551±0.147 0.423±0.172

Dirichlet 0.495±0.009 0.510±0.008 0.303±0.012 0.304±0.007 0.350±0.053 0.335±0.059 0.542±0.091 0.406±0.076

ETS 0.499±0.011 0.500±0.013 0.433±0.014 0.359±0.013 0.348±0.037 0.336±0.067 0.538±0.077 0.467±0.088

IRM 0.499±0.006 0.500±0.010 0.285±0.004 0.283±0.008 0.348±0.049 0.336±0.071 0.416±0.084 0.425±0.093

Orderinvariant 0.499±0.030 0.500±0.028 0.379±0.050 0.386±0.042 0.348±0.036 0.337±0.059 0.475±0.077 0.542±0.104

Spline 0.495±0.008 0.497±0.010 0.29±0.007 0.291±0.008 0.346±0.051 0.335±0.071 0.414±0.085 0.425±0.093

VS 0.499±0.007 0.500±0.012 0.439±0.006 0.377±0.009 0.349±0.037 0.336±0.067 0.549±0.071 0.468±0.089

GOODCMNIST Color

Ensembling 0.505±0.001 0.509±0.004 0.437±0.082 0.343±0.004 0.397±0.005 0.408±0.006 0.423±0.017 0.327±0.013

✕ 0.925±0.001 0.925±0.003 0.095±0.014 0.078±0.007 0.691±0.001 0.689±0.002 0.329±0.274 0.342±0.266

Dirichlet 0.925±0.011 0.923±0.010 0.081±0.015 0.103±0.007 0.686±0.009 0.681±0.009 0.337±0.067 0.316±0.047

ETS 0.925±0.009 0.927±0.012 0.095±0.010 0.096±0.013 0.691±0.011 0.699±0.016 0.314±0.041 0.304±0.049

IRM 0.925±0.014 0.93±0.013 0.087±0.018 0.097±0.010 0.691±0.011 0.698±0.016 0.316±0.051 0.305±0.045

Orderinvariant 0.925±0.010 0.928±0.011 0.091±0.009 0.093±0.007 0.691±0.011 0.690±0.011 0.321±0.050 0.319±0.041

Spline 0.925±0.010 0.927±0.011 0.091±0.008 0.089±0.012 0.691±0.010 0.689±0.016 0.324±0.055 0.313±0.051

VS 0.925±0.009 0.927±0.012 0.095±0.010 0.095±0.013 0.683±0.013 0.680±0.018 0.326±0.057 0.311±0.059

GOODMotif Basis

Ensembling 0.932±0.002 0.943±0.006 0.086±0.016 0.047±0.003 0.714±0.012 0.699±0.009 0.298±0.383 0.321±0.196

✕ 0.694±0.002 0.693±0.001 0.288±0.017 0.277±0.011 0.826±0.002 0.828±0.004 0.159±0.027 0.154±0.039

Dirichlet 0.686±0.02 0.683±0.001 0.15±0.021 0.138±0.015 0.793±0.005 0.8±0.012 0.15±0.02 0.131±0.007

ETS 0.685±0.02 0.683±0.001 0.21±0.009 0.211±0.003 0.794±0.005 0.8±0.011 0.287±0.007 0.296±0.014

IRM 0.685±0.019 0.682±0.002 0.239±0.002 0.231±0.006 0.796±0.006 0.801±0.011 0.26±0.005 0.265±0.011

Orderinvariant 0.685±0.02 0.683±0.001 0.225±0.002 0.222±0.003 0.794±0.005 0.8±0.011 0.226±0.003 0.224±0.007

Spline 0.684±0.02 0.683±0.002 0.233±0.005 0.23±0.005 0.79±0.004 0.794±0.016 0.259±0.005 0.263±0.012

VS 0.685±0.019 0.683±0 0.334±0.044 0.374±0.002 0.787±0.008 0.8±0.013 0.307±0.116 0.32±0.011

GOODSST2 Length

Ensembling 0.705±0.002 0.709±0.004 0.276±0.038 0.248±0.022 0.838±0.001 0.842±0.006 0.154±0.032 0.132±0.019
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5.2 Calibration under Concept and Covariate Shifts273

Next, we assess the ability of G-∆UQ to produce well-calibrated models under covariate and concept274

shift in graph classification tasks. We find that G-∆UQ not only provides better calibration out of the275

box, its performance is further improved when combined with post-hoc calibration techniques.276

Experimental Setup. We use four different datasets (GOODCMNIST, GOODMotif-basis,277

GOODMotif-size, GOODSST2) with their corresponding splits and shifts from the recently proposed278

Graph Out-Of Distribution (GOOD) benchmark (Gui et al., 2022). The architectures and hyperparam-279

eters suggested by the benchmark are used for training. G-∆UQ uses READOUT anchoring and 10280

random anchors (see App. A.6 for more details). We report accuracy and expected calibration error281

for the OOD test dataset, taken over three seeds.282

Results. As shown in Table 1, we observe that G-∆UQ leads to inherently better calibrated models,283

as the ECE from G-∆UQ without additional post-hoc calibration (✕) is better than the vanilla284

("No G-∆UQ") counterparts on 5/6 datasets. Moreover, we find that the performance of post-hoc285

calibration methods is further improved when applied to stochastically centered models. Indeed, on286

5/6 datasets, the best calibration is obtained by a G-∆UQ temperature scaled variant. When directly287

comparing performance for a fixed post-hoc calibration strategy, G-∆UQ improves the calibration,288

while maintaining comparable if not better accuracy on the vast majority of the methods and datasets.289

Our results clearly indicate that, unlike images, partially stochastic GNNs are sufficient for providing290

meaningful uncertainity estimates under challenging distribution shifts with minimal cost. In Sec. 6,291

we build upon this observation to demonstrate that G-∆UQ is effective at improving the calibration292

of pretrained models as well.293

5.3 Using Confidence Estimates in Safety-Critical Tasks294

While post-hoc calibration strategies rely upon an additional calibration dataset to provide meaningful295

uncertainty estimates, such calibration datasets are not always available and may not necessarily296

improve OOD performance (Ovadia et al., 2019). Thus, we also evaluate the quality of the uncertainty297

estimates directly provided by G-∆UQ on two additional UQ-based, safety-critical tasks (Hendrycks298

et al., 2022b, 2021; Trivedi et al., 2023b): (i) generalization error prediction (GEP) (Jiang et al.,299

2019), which attempts to predict the generalization on unlabeled test datasets (to the best of our300

knowledge, we are the first to study GEP of graph classifiers), and (ii) OOD detection (Hendrycks301

et al., 2019), which attempts to classify samples as in- or out-of-distribution.302

GEP Experimental Setup. GEPs (Garg et al., 2022; Ng et al., 2022; Jiang et al., 2019; Trivedi et al.,303

2023a; Guillory et al., 2021) aggregate sample-level scores capturing a model’s uncertainty about304

the correctness of a prediction into dataset-level error estimates. Here, we use maximum softmax305

probability for scores and a thresholding mechanism as the GEP. (See Appendix A.8 for more details.)306

We consider READOUT anchoring with both pretrained and end-to-end training, and report the mean307

absolute error between the predicted and true target dataset accuracy on the OOD test split.308

GEP Results. As shown in Table 2a, both pretrained and end-to-end G-∆UQ outperform the vanilla309

model on 7/8 datasets. Notably, we see that pretrained G-∆UQ is particularly effective as it obtains310

the best performance across 6/8 datasets. This not only highlights its utility as a flexible, light-weight311

strategy for improving uncertainty estimates without sacrificing accuracy, but also emphasizes that312

importance of structure, in lieu of full stochasticity, when estimating GNN uncertainties.313

OOD Detection Experimental Setup. By reliably detecting OOD samples and abstaining from314

making predictions on them, models can avoid over-extrapolating to irrelevant distributions. While315

many scores have been proposed for detection (Hendrycks et al., 2019, 2022a; Lee et al., 2018; Wang316

et al., 2022a; Liu et al., 2020), popular scores, such as maximum softmax probability and predictive317

entropy (Hendrycks & Gimpel, 2017), are derived from uncertainty estimates. Here, we report the318

AUROC for the binary classification task of detecting OOD samples using the maximum softmax319

probability as the score (Kirchheim et al., 2022).320

OOD Detection Results. As shown in Table 2b, we observe that G-∆UQ variants improve OOD321

detection performance over the vanilla baseline on 6/8 datasets, where pretrained G-∆UQ obtains the322

best overall performance on 6/8 datasets. G-∆UQ performs comparably on GOODSST2(concept323

shift), but does lose some performance on GOODMotif(Covariate). We note that vanilla models324

provided by the original benchmark generalized poorly on this particular dataset (increased training325
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(a) GOOD-Datasets, Generalization Error Prediction Performance. The MAE between the predicted and
true test error on the OOD test split is reported. G-∆UQ variants outperform vanilla models on 7/8 datasets.

CMNIST (Color) MotifLPE (Basis) MotifLPE (Size) SST2
Method Concept(↓) Covariate (↓) Concept(↓) Covariate(↓) Concept(↓) Covariate(↓) Concept(↓) Covariate(↓)

Vanilla 0.200± 0.009 0.510± 0.089 0.045± 0.003 0.570± 0.012 0.324± 0.018 0.537± 0.146 0.117± 0.006 0.056± 0.044
G-∆UQ 0.190± 0.010 0.493± 0.072 0.023± 0.003 0.572± 0.019 0.317± 0.007 0.528± 0.189 0.124± 0.016 0.054± 0.043
Pretr. G-∆UQ 0.192± 0.005 0.387± 0.048 0.018± 0.012 0.573± 0.004 0.307± 0.016 0.356± 0.143 0.114± 0.004 0.030± 0.026

(b) GOOD-Datasets, OOD Detection Performance. The AUROC of the binary classification tasks of classifying
OOD samples is reported. G-∆UQ outperforms vanilla models on 6/8 datasets.

CMNIST (Color) MotifLPE (Basis) MotifLPE (Size) SST2
Method Concept(↑) Covariate(↑) Concept(↑) Covariate(↑) Concept(↑) Covariate(↑) Concept(↑) Covariate(↑)

Vanilla 0.759± 0.006 0.468± 0.092 0.736± 0.021 0.466± 0.001 0.680± 0.003 0.755± 0.074 0.350± 0.014 0.345± 0.066
G-∆UQ 0.771± 0.002 0.470± 0.043 0.758± 0.006 0.328± 0.022 0.677± 0.005 0.691± 0.067 0.338± 0.023 0.351± 0.042
Pretr. G-∆UQ 0.774± 0.016 0.543± 0.152 0.769± 0.029 0.272± 0.025 0.686± 0.004 0.829± 0.113 0.324± 0.055 0.446± 0.049

Table 3: RotMNIST-Calibration. Here, we report expanded results (calibration) on the Rotated
MNIST dataset, including a variant that combines G-∆UQ with Deep Ens. Notably, we see that
anchored ensembles outperform basic ensembles in both accuracy and calibration.

Architecture LPE? G-∆UQ Calibration Avg.ECE (↓) ECE (10) (↓) ECE (15) (↓) ECE (25) (↓) ECE (35) (↓) ECE (40) (↓)

✕ ✕ ✕ 0.038 ±0.001 0.059 ±0.001 0.068 ±0.340 0.126 ±0.008 0.195 ±0.012 0.245 ±0.011

✕ ✓ ✕ 0.018 ±0.008 0.029 ±0.013 0.033 ±0.164 0.069 ±0.033 0.117 ±0.048 0.162 ±0.067

✕ ✕ Ensembling 0.026 ±0.000 0.038 ±0.001 0.042 ±0.001 0.084 ±0.002 0.135 ±0.001 0.185 ±0.003
GatedGCN

✕ ✓ Ensembling 0.014 ±0.003 0.018 ±0.005 0.021 ±0.005 0.036 ±0.012 0.069 ±0.032 0.114 ±0.056

✓ ✕ ✕ 0.036 ±0.003 0.059 ±0.002 0.068 ±0.340 0.125 ±0.006 0.191 ±0.007 0.240 ±0.008

✓ ✓ ✕ 0.022 ±0.007 0.028 ±0.014 0.034 ±0.169 0.062 ±0.022 0.109 ±0.019 0.141 ±0.019

✓ ✕ Ensembling 0.024 ±0.001 0.038 ±0.001 0.043 ±0.002 0.083 ±0.001 0.139 ±0.004 0.181 ±0.002
GatedGCN

✓ ✓ Ensembling 0.017 ±0.002 0.024 ±0.005 0.027 ±0.008 0.030 ±0.004 0.036 ±0.012 0.059 ±0.033

✓ ✕ ✕ 0.026 ±0.001 0.044 ±0.001 0.052 ±0.156 0.108 ±0.006 0.197 ±0.012 0.273 ±0.008

✓ ✓ ✕ 0.022 ±0.001 0.037 ±0.005 0.044 ±0.133 0.091 ±0.008 0.165 ±0.018 0.239 ±0.018

✓ ✕ Ensembling 0.016 ±0.001 0.026 ±0.002 0.030 ±0.000 0.066 ±0.000 0.123 ±0.000 0.195 ±0.000
GPS

✓ ✓ Ensembling 0.014 ±0.000 0.023 ±0.002 0.027 ±0.003 0.055 ±0.004 0.103 ±0.006 0.164 ±0.006

time/accuracy did not improve performance), and this behavior was reflected in our experiments. We326

suspect that poor generalization coupled with stochasticity may explain G-∆UQ’s performance here.327

6 Fine Grained Analysis of G-∆UQ328

Given that the previous sections extensively verified the effectiveness of G-∆UQ on a variety of329

covariate and concept shifts across several tasks, we seek a more fine-grained understanding of330

G-∆UQ’s behavior with respect to different architectures and training strategies. In particular,331

we demonstrate that G-∆UQ continues to improve calibration with expressive graph transformer332

architectures, and that using READOUT anchoring with pretrained GNNs is an effective lightweight333

strategy for improving calibration of frozen GNN models.334

6.1 Calibration under Controlled Shifts335

Recently, it was shown that modern, non-convolutional architectures (Minderer et al., 2021) are not336

only more performant but also more calibrated than older, convolutional architectures (Guo et al.,337

2017) under vision distribution shifts. Here, we study an analogous question: are more expressive338

GNN architectures better calibrated under distribution shift, and how does G-∆UQ impact their339

calibration? Surprisingly, we find that more expressive architectures are not considerably better340

calibrated than their MPNN counterparts, and ensembles of MPNNs outperform ensembles of GTrans.341

Notably, G-∆UQ continues to improve calibration with respect to these architectures as well.342

Experimental Setup. (1) Models. While improving the expressivity of GNNs is an active area343

of research, positional encodings (PEs) and graph-transformer (GTran) architectures (Müller et al.,344

2023) are popular strategies due to their effectiveness and flexibility. GTrans not only help mit-345

igate over-smoothing and over-squashing (Alon & Yahav, 2021; Topping et al., 2022) but they346

also better capture long-range dependencies (Dwivedi et al., 2022b). Meanwhile, graph PEs help347

improve expressivity by differentiating isomorphic nodes, and capturing structural vs. proximity348
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information (Dwivedi et al., 2022a). Here, we ask if these enhancements translate to improved349

calibration under distribution shift by comparing architectures with/without PEs and transformer350

vs. MPNN models. We use equivariant and stable PEs (Wang et al., 2022b), the state-of-the-351

art, “general, powerful, scalable" (GPS) framework with a GatedGCN backbone for the GTran,352

GatedGCN for the vanilla MPNN, and perform READOUT anchoring with 10 random anchors.353
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Figure 3: Out-of-distribution cal-
ibration error from applying G-
∆UQ in end-to-end training vs. to
a pretrained model, which is a sim-
ple yet effective way to use stochas-
tic anchoring.

(2) Data. In order to understand calibration behavior as dis-354

tribution shifts become progressively more severe, we create355

structurally distorted but valid graphs by rotating MNIST im-356

ages by a fixed number of degrees (Ding et al., 2021) and then357

creating the corresponding super-pixel graphs (Dwivedi et al.,358

2020; Knyazev et al., 2019; Velickovic et al., 2018). (See Ap-359

pendix, Fig. 4.) Since superpixel segmentation on these rotated360

images will yield different superpixel k-nn graphs but leave361

class information unharmed, we can emulate different severi-362

ties of label-preserving structural distortion shifts. We note that363

models are trained only using the original (0◦ rotation) graphs.364

Accuracy (see appendix) and ECE over 3 seeds are reported for365

the rotated graphs.366

Results. In Table 3, we present the OOD calibration results,367

with results of more variants and metrics in the supplementary368

Table 5 and 6. First, we observe that PEs have minimal effects369

on both calibration and accuracy by comparing GatedGCN with370

and without LPEs. This suggests that while PEs may enhance371

theoretical and empirical expressivity, they do not directly induce better calibration. Next, we find372

that while vanilla GPS is better calibrated when the distribution shift is not severe (10, 15, 25 degrees),373

it is less calibrated (but more performant) than GatedGCN at more severe distribution shifts (35, 40374

degrees). This is in contrast to known findings about vision transformers, where such a tradeoff is375

not observed. Lastly, we see that G-∆UQ continues to improve calibration across all considered376

architectural variants, with minimal accuracy loss. Surprisingly, however, we observe that ensembles377

of G-∆UQ models not only effectively resolve any performance drops, they also cause MPNNs to be378

better calibrated than their GTran counterparts. Overall, our results indicate the interaction between379

increased expressivity and GNN calibration remains under-explored, though G-∆UQ improves380

uncertainty estimates.381

6.2 How does G-∆UQ perform with pretrained models?382

As large-scale pretrained models become increasingly more common, it is beneficial if practitioners383

are able to perform lightweight training that leads to more calibrated or safer models. Here, we384

investigate if READOUT anchoring is such a viable strategy when working with pretrained GNN385

backbones, as it only requires training a stochastically centered classifier on top of a frozen backbone.386

Indeed, in Fig. 3, we observe that across datasets, pretraining yields competitive (often superior)387

OOD calibration with respect to end-to-end G-∆UQ. Given that G-∆UQ already outperformed other388

techniques (Sec. 3), this suggests that READOUT anchoring is a plausible solution for improving389

uncertainty estimation with pretrained backbones (we show results for additional performance metrics390

in the supplementary Fig. 6).391

7 Conclusion392

In this work, we propose G-∆UQ, a novel training approach that adapts stochastic data centering393

for GNNs through newly introduced graph-specific anchoring strategies. Our extensive experiments394

demonstrate G-∆UQ’s effectiveness for improving calibration and uncertainty estimates of GNNs395

under distribution shifts. Furthermore, we demonstrate that partially stochastic GNNs are sufficient396

for obtaining reliable uncertainty estimates and show that G-∆UQ can be used as a lightweight397

strategy for improving the calibration of pretrained GNNs. Overall, G-∆UQ is an effective strategy398

for improving the intrinsic quality of GNN uncertainty estimates.399
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A.1 Ethics Statement576

This work proposes a method to improve uncertainty estimation in graph neural networks, which has577

potential broader societal impacts. As graph learning models are increasingly deployed in real-world578

applications like healthcare, finance, and transportation, it becomes crucial to ensure these models579

make reliable predictions and know when they may be wrong. Unreliable models can lead to harmful580

outcomes if deployed carelessly. By improving uncertainty quantification, our work contributes581

towards trustworthy graph AI systems.582

We also consider several additional safety-critical tasks, including generalization gap prediction for583

graph classification (to the best of our knowledge, we are the first to report results on this task) and584

OOD detection. We hope our work will encourage further study in these important areas.585

However, there are some limitations. Our method requires (modest) additional computation during586

training and inference, which increases resource usage. Although G-∆UQ, unlike post-hoc methods,587

does not need to be fit on a validation dataset, evaluation of its benefits also also relies on having588

some out-of-distribution or shifted data available, which may not always be feasible. Finally, there589

are open questions around how much enhancement in uncertainty calibration translates to real-world590

safety and performance gains.591

Looking ahead, we believe improving uncertainty estimates is an important direction for graph neural592

networks and deep learning more broadly. This will enable the development safe, reliable AI that593

benefits society. We hope our work inspires more research in the graph domain that focuses on594

uncertainty quantification and techniques that provide guarantees about model behavior, especially for595

safety-critical applications. Continued progress will require interdisciplinary collaboration between596

graph machine learning researchers and domain experts in areas where models are deployed.597

A.2 Reproducibility598

For reproducing our experiments, we have made our code available at this anonymous repository. In599

the remainder of this appendix (specifically App. A.5, A.6), and A.8), we also provide additional600

details about the benchmarks and experimental setup.601

A.3 Details on Super-pixel Experiments602

We provide an example of the rotated images and corresponding super-pixel graphs in Fig. 4. (Note603

that classes “6” and “9” may be confused under severe distribution shift, i.e. 90 degrees rotation or604

more. Hence, to avoid harming class information, our experiments only consider distribution shift605

from rotation up to 40 degrees.)606

Tables 4 and 5 provided expanded results on the rotated image super-pixel graph classification task,607

discussed in Sec. 6.1.608

In addition to the structural distribution shifts we get by rotating the images before constructing609

super-pixel graphs, we also simulate feature distribution shifts by adding Gaussian noise with different610

standard deviations to the pixel value node features in the super-pixel graphs. In Table 6, we report611

accuracy and calibration results for varying levels of distribution shift (represented by the size of the612
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Table 4: RotMNIST-Accuracy. Here, we report expanded results (accuracy) on the Rotated MNIST
dataset, including a variant that combines G-∆UQ with Deep Ens. Notably, we see that anchored
ensembles outperform basic ensembles in both accuracy and calibration.

MODEL G-∆UQ? LPE? Avg. Test (↑) Acc. (10) (↑) Acc. (15) (↑) Acc. (25) (↑) Acc. (35) (↑) Acc. (40) (↑)

✕ ✕ 0.947 ±0.002 0.918 ±0.002 0.904 ±0.005 0.828 ±0.009 0.738 ±0.009 0.679 ±0.007

✓ ✕ 0.933 ±0.015 0.894 ±0.019 0.878 ±0.020 0.794 ±0.032 0.698 ±0.036 0.636 ±0.048

✕ ✓ 0.949 ±0.002 0.917 ±0.004 0.904 ±0.005 0.829 ±0.007 0.744 ±0.007 0.685 ±0.006
GatedGCN

✓ ✓ 0.915 ±0.032 0.872 ±0.038 0.852 ±0.0414 0.776 ±0.039 0.680 ±0.037 0.631 ±0.033

✕ ✓ 0.970 ±0.001 0.948 ±0.001 0.938 ±0.001 0.873 ±0.006 0.770 ±0.013 0.688 ±0.009
GPS

✓ ✓ 0.969 ±0.001 0.946 ±0.003 0.937 ±0.003 0.869 ±0.003 0.769 ±0.012 0.679 ±0.014

GPS (Pretrained) ✓ ✓ 0.967 ±0.002 0.945 ±0.004 0.934 ±0.005 0.864 ±0.009 0.759 ±0.010 0.674 ±0.002

✕ ✕ 0.963 ±0.0002 0.943 ±0.001 0.933 ±0.001 0.874 ±0.002 0.794 ±0.002 0.731 ±0.002

✓ ✕ 0.949 ±0.008 0.922 ±0.008 0.907 ±0.011 0.828 ±0.020 0.733 ±0.032 0.662 ±0.046

✕ ✓ 0.965 ±0.001 0.943 ±0.001 0.933 ±0.001 0.873 ±0.001 0.792 ±0.004 0.736 ±0.003
GatedGCN-DENS

✓ ✓ 0.954 ±0.005 0.930 ±0.010 0.917 ±0.011 0.850 ±0.023 0.759 ±0.025 0.696 ±0.032

✕ ✓ 0.980 ±0.000 0.969 ±0.000 0.961 ±0.000 0.913 ±0.000 0.834 ±0.000 0.750 ±0.000
GPS-DENS

✓ ✓ 0.978 ±0.001 0.963 ±0.000 0.953 ±0.001 0.905 ±0.000 0.822 ±0.002 0.736 ±0.003

Table 5: RotMNIST-Calibration. Here, we report expanded results (calibration) on the Rotated
MNIST dataset, including a variant that combines G-∆UQ with Deep Ens. Notably, we see that
anchored ensembles outperform basic ensembles in both accuracy and calibration.

MODEL G-∆UQ LPE? Avg.ECE (↓) ECE (10) (↓) ECE (15) (↓) ECE (25) (↓) ECE (35) (↓) ECE (40) (↓)

✕ ✕ 0.035 ±0.001 0.054 ±0.002 0.062 ±0.003 0.118 ±0.007 0.185 ±0.006 0.233 ±0.008
GatedGCN-TS

✕ ✓ 0.033 ±0.002 0.053 ±0.002 0.061 ±0.004 0.116 ±0.005 0.179 ±0.006 0.225 ±0.005

✕ ✕ 0.038 ±0.001 0.059 ±0.001 0.068 ±0.340 0.126 ±0.008 0.195 ±0.012 0.245 ±0.011

✓ ✕ 0.018 ±0.008 0.029 ±0.013 0.033 ±0.164 0.069 ±0.033 0.117 ±0.048 0.162 ±0.067

✕ ✓ 0.036 ±0.003 0.059 ±0.002 0.068 ±0.340 0.125 ±0.006 0.191 ±0.007 0.240 ±0.008
GatedGCN

✓ ✓ 0.022 ±0.007 0.028 ±0.014 0.034 ±0.169 0.062 ±0.022 0.109 ±0.019 0.141 ±0.019

GPS-TS ✕ ✓ 0.024 ±0.001 0.041 ±0.001 0.049 ±0.001 0.102 ±0.006 0.188 ±0.012 0.261 ±0.008

✕ ✓ 0.026 ±0.001 0.044 ±0.001 0.052 ±0.156 0.108 ±0.006 0.197 ±0.012 0.273 ±0.008
GPS

✓ ✓ 0.022 ±0.001 0.037 ±0.005 0.044 ±0.133 0.091 ±0.008 0.165 ±0.018 0.239 ±0.018

GPS (Pretrained) ✓ ✓ 0.021 ±0.001 0.032 ±0.003 0.039 ±0.116 0.083 ±0.002 0.153 ±0.007 0.217 ±0.012

✕ ✕ 0.026 ±0.000 0.038 ±0.001 0.042 ±0.001 0.084 ±0.002 0.135 ±0.001 0.185 ±0.003

✓ ✕ 0.014 ±0.003 0.018 ±0.005 0.021 ±0.005 0.036 ±0.012 0.069 ±0.032 0.114 ±0.056

✕ ✓ 0.024 ±0.001 0.038 ±0.001 0.043 ±0.002 0.083 ±0.001 0.139 ±0.004 0.181 ±0.002
GatedGCN-DENS

✓ ✓ 0.017 ±0.002 0.024 ±0.005 0.027 ±0.008 0.030 ±0.004 0.036 ±0.012 0.059 ±0.033

✕ ✓ 0.016 ±0.001 0.026 ±0.002 0.030 ±0.000 0.066 ±0.000 0.123 ±0.000 0.195 ±0.000
GPS-DENS

✓ ✓ 0.014 ±0.000 0.023 ±0.002 0.027 ±0.003 0.055 ±0.004 0.103 ±0.006 0.164 ±0.006

Table 6: MNIST Feature Shifts. G-∆UQ improves calibration and maintains competitive or even
improved accuracy across varying levels of feature distribution shift.

STD = 0.1 STD = 0.2 STD = 0.3 STD = 0.4

MODEL LPE? G-∆UQ? Calibration Accuracy (↑) ECE (↓) Accuracy (↑) ECE (↓) Accuracy (↑) ECE (↓) Accuracy (↑) ECE (↓)

✕ ✕ ✕ 0.742±0.005 0.186±0.018 0.481±0.015 0.414±0.092 0.293±0.074 0.606±0.147 0.197±0.092 0.71±0.178

✕ ✓ ✕ 0.773±0.053 0.075±0.032 0.536±0.010 0.160±0.087 0.356±0.101 0.422±0.083 0.249±0.074 0.529±0.047

✓ ✕ ✕ 0.751±0.02 0.176±0.014 0.519±0.004 0.348±0.03 0.345±0.032 0.485±0.096 0.233±0.043 0.581±0.142
GatedGCN

✓ ✓ ✕ 0.745±0.026 0.100±0.036 0.541±0.040 0.235±0.067 0.355±0.062 0.408±0.116 0.242±0.063 0.539±0.139
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Rot: 0° Rot: 10° Rot: 15°

Rot: 25° Rot: 35° Rot: 40°

Rot: 60° Rot: 90° Rot: 180°

Figure 4: Rotated Super-pixel MNIST. Rotating images prior to creating super-pixels to leads to
some structural distortion (Ding et al., 2021). However, we can see that the class-discriminative
information is preserved, despite rotation. This allows for simulating different levels of graph structure
distribution shifts, while still ensuring that samples are valid.

standard deviation of the Gaussian noise). Across different levels of feature distribution shift, we613

also see that G-∆UQ results in superior calibration, while maintaining competitive or in many cases614

superior accuracy.615

A.4 Stochastic Centering on the Empirical NTK of Graph Neural Networks616

Using a simple grid-graph dataset and 4 layer GIN model, we compute the Fourier spectrum of the617

NTK. As shown in Fig. 5, we find that shifts to the node features can induce systematic changes to618

the spectrum.619

10 3
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Input Shift G- UQ (input) G- UQ (1) G- UQ (2) G- UQ (3) G- UQ (4) G- UQ (READOUT)

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

Figure 5: Stochastic Centering with the empirical GNN NTK. We find that performing constant
shifts at intermediate layers introduces changes to a GNN’s NTK. We include a vanilla GNN NTK in
black for reference. Further, note the shape of the spectrum should not be compared across subplots
as each subplot was created with a different random initialization.

A.5 Size-Generalization Dataset Statistics620

The statistics for the size generalization experiments (see Sec. 5.1) are provided below in Table 7.621

A.6 GOOD Benchmark Experimental Details622

For our experiments in Sec. 5.2, we utilize the in/out-of-distribution covariate and concept splits623

provided by Gui et al. (2022). Furthermore, we use the suggested models and architectures provided624
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Table 7: Size Generalization Dataset Statistics: This table is directly reproduced from (Buffelli
et al., 2022), who in turn used statistics from (Yehudai et al., 2021; Bevilacqua et al., 2021).

NCI1 NCI109
ALL SMALLEST 50% LARGEST 10% ALL SMALLEST 50% LARGEST 10%

CLASS A 49.95% 62.30% 19.17% 49.62% 62.04% 21.37%
CLASS B 50.04% 37.69% 80.82% 50.37% 37.95% 78.62%
# OF GRAPHS 4110 2157 412 4127 2079 421
AVG GRAPH SIZE 29 20 61 29 20 61

PROTEINS DD
ALL SMALLEST 50% LARGEST 10% ALL SMALLEST 50% LARGEST 10%

CLASS A 59.56% 41.97% 90.17% 58.65% 35.47% 79.66%
CLASS B 40.43% 58.02% 9.82% 41.34% 64.52% 20.33%
# OF GRAPHS 1113 567 112 1178 592 118
AVG GRAPH SIZE 39 15 138 284 144 746

Dataset Shift Train ID validation ID test OOD validation OOD test Train OOD validation ID validation ID test OOD test

Length

GOOD-SST2
covariate 24744 5301 5301 17206 17490
concept 27270 5843 5843 15142 15944

Color

GOOD-CMNIST
covariate 42000 7000 7000 7000 7000
concept 29400 6300 6300 14000 14000
no shift 42000 14000 14000 - -

Base Size

GOOD-Motif
covariate 18000 3000 3000 3000 3000 18000 3000 3000 3000 3000
concept 12600 2700 2700 6000 6000 12600 2700 2700 6000 6000

Word Degree

GOOD-Cora
covariate 9378 1979 1979 3003 3454 8213 1979 1979 3841 3781
concept 7273 1558 1558 3807 5597 7281 1560 1560 3706 5686

University

GOOD-WebKB
covariate 244 61 61 125 126
concept 282 60 60 106 109

Color

GOOD-CBAS
covariate 420 70 70 70 70
concept 140 140 140 140 140

Table 8: Number of Graphs/Nodes per dataset.

by their package. In brief, we use GIN models with virtual nodes (except for GOODMotif) for625

training, and average scores over 3 seeds. When performing stochastic anchoring at a particular layer,626

we double the hidden representation size for that layer. Subsequent layers retain the original size of627

the vanilla model.628

When performing stochastic anchoring, we use 10 fixed anchors randomly drawn from the in-629

distribution validation dataset. We also train the G-∆UQ for an additional 50 epochs to ensure that630

models are able to converge. Please see our code repository for the full details.631

We also include results on additional node classification benchmarks featuring distribution shift in632

Table 10.633

A.7 Post-hoc Calibration Strategies634

Several post hoc strategies have been developed for calibrating the predictions of a model. These635

have the advantage of flexibility, as they operate only on the outputs of a model and do not require636

that any changes be made to the model itself. Some methods include:637

• Temperature scaling (TS) (Guo et al., 2017) simply scales the logits by a temperature638

parameter T > 1 to smooth the predictions. The scaling parameter T can be tuned on a639

validation set.640

• Ensemble temperature scaling (ETS) (Zhang et al., 2020) learns an ensemble of641

temperature-scaled predictions with uncalibrated predictions (T = 1) and uniform proba-642

bilistic outputs (T = ∞).643

• Vector scaling (VS) Guo et al. (2017) scales the entire output vector of class probabilities,644

rather than just the logits.645
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Dataset model # model layers batch size # max epochs # iterations per epoch initial learning rate

GOOD-SST2 GIN-Virtual 3 32 200/100 – 1e-3
GOOD-CMNIST GIN-Virtual 5 128 500 – 1e-3
GOOD-Motif GIN 3 32 200 – 1e-3
GOOD-Cora GCN 3 4096 100 10 1e-3
GOOD-WebKB GCN 3 4096 100 10 1e-3/5e-3
GOOD-CBAS GCN 3 1000 200 10 3e-3

Table 9: Model and hyperparameters for GOOD datasets.

Table 10: Additional Node Classification Benchmarks. For more datasets with different kinds of
distribution shifts, we find that G-∆UQ improves model calibration and pairs well with post-hoc
calibration methods for even better results.

Shift: Concept Shift: Covariate

Accuracy (↑) ECE (↓) Accuracy (↑) ECE (↓)
Dataset Domain Calibration No G-∆ UQ G-∆ UQ No G-∆ UQ G-∆ UQ No G-∆ UQ G-∆ UQ No G-∆ UQ G-∆ UQ

✕ 0.253±0.003 0.281±0.009 0.67±0.061 0.593±0.025 0.122±0.029 0.115±0.041 0.599±0.091 0.525±0.033

CAGCN 0.253±0.005 0.268±0.008 0.452±0.14 0.473±0.12 0.122±0.018 0.092±0.161 0.355±0.227 0.396±0.161

Dirichlet 0.229±0.018 0.22±0.022 0.472±0.06 0.472±0.03 0.244±0.105 0.295±0.044 0.299±0.092 0.328±0.044

ETS 0.253±0.005 0.273±0.012 0.64±0.06 0.575±0.019 0.121±0.021 0.084±0.027 0.539±0.112 0.499±0.027

GATS 0.253±0.005 0.273±0.01 0.608±0.008 0.485±0.02 0.122±0.018 0.079±0.029 0.455±0.057 0.376±0.029

IRM 0.251±0.005 0.266±0.011 0.342±0.017 0.349±0.006 0.097±0.04 0.046±0.013 0.352±0.037 0.422±0.013

Orderinvariant 0.253±0.005 0.27±0.01 0.628±0.026 0.564±0.024 0.122±0.018 0.106±0.065 0.545±0.079 0.47±0.065

Spline 0.237±0.012 0.257±0.023 0.436±0.029 0.386±0.034 0.122±0.013 0.171±0.056 0.472±0.031 0.39±0.056

WebKB University

VS 0.253±0.005 0.275±0.011 0.67±0.009 0.588±0.011 0.122±0.018 0.095±0.014 0.602±0.044 0.507±0.014

✕ 0.581±0.003 0.595±0.003 0.307±0.009 0.13±0.011 0.47±0.002 0.518±0.014 0.348±0.032 0.141±0.008

CAGCN 0.581±0.003 0.597±0.002 0.135±0.009 0.128±0.025 0.47±0.002 0.522±0.025 0.256±0.08 0.231±0.025

Dirichlet 0.534±0.007 0.551±0.004 0.12±0.004 0.196±0.003 0.414±0.007 0.449±0.01 0.163±0.002 0.356±0.01

ETS 0.581±0.003 0.596±0.004 0.301±0.009 0.116±0.018 0.47±0.002 0.523±0.003 0.31±0.077 0.141±0.003

GATS 0.581±0.003 0.596±0.004 0.185±0.018 0.229±0.039 0.47±0.002 0.521±0.011 0.211±0.004 0.308±0.011

IRM 0.582±0.002 0.597±0.002 0.125±0.001 0.102±0.002 0.469±0.001 0.522±0.004 0.194±0.005 0.13±0.004

Orderinvariant 0.581±0.003 0.592±0.002 0.226±0.024 0.213±0.049 0.47±0.002 0.498±0.027 0.318±0.042 0.196±0.027

Spline 0.571±0.003 0.595±0.003 0.080±0.004 0.068±0.004 0.459±0.003 0.52±0.004 0.158±0.01 0.098±0.004

Cora Degree

VS 0.581±0.003 0.596±0.004 0.306±0.004 0.127±0.002 0.47±0.001 0.522±0.005 0.345±0.005 0.146±0.005

✕ 0.607±0.003 0.628±0.001 0.284±0.009 0.111±0.013 0.603±0.004 0.633±0.031 0.263±0.004 0.118±0.019

CAGCN 0.607±0.002 0.628±0.002 0.138±0.011 0.236±0.019 0.603±0.004 0.634±0.035 0.129±0.009 0.253±0.035

Dirichlet 0.579±0.007 0.588±0.006 0.105±0.011 0.168±0.005 0.562±0.007 0.578±0.007 0.095±0.006 0.269±0.007

ETS 0.607±0.002 0.628±0.002 0.282±0.002 0.11±0.003 0.603±0.004 0.634±0.013 0.243±0.023 0.106±0.013

GATS 0.607±0.002 0.628±0.002 0.166±0.009 0.261±0.028 0.603±0.004 0.635±0.037 0.16±0.015 0.293±0.037

IRM 0.608±0.001 0.63±0.002 0.115±0.002 0.088±0.003 0.602±0.003 0.635±0.004 0.106±0.002 0.098±0.004

Orderinvariant 0.607±0.002 0.624±0.002 0.174±0.024 0.201±0.061 0.603±0.004 0.621±0.076 0.154±0.022 0.202±0.076

Spline 0.598±0.005 0.629±0.002 0.073±0.002 0.062±0.005 0.591±0.002 0.635±0.004 0.063±0.006 0.053±0.004

Cora Word

VS 0.607±0.001 0.63±0.002 0.283±0.003 0.111±0.003 0.603±0.004 0.636±0.003 0.261±0.005 0.119±0.003

✕ 0.83±0.014 0.829±0.011 0.169±0.013 0.151±0.014 0.703±0.015 0.746±0.027 0.266±0.02 0.169±0.018

CAGCN 0.83±0.013 0.83±0.013 0.137±0.011 0.143±0.022 0.703±0.019 0.749±0.033 0.25±0.021 0.186±0.017

Dirichlet 0.801±0.02 0.806±0.008 0.161±0.012 0.17±0.01 0.671±0.018 0.771±0.03 0.241±0.029 0.217±0.017

ETS 0.83±0.013 0.827±0.014 0.146±0.013 0.164±0.007 0.703±0.019 0.76±0.037 0.28±0.023 0.176±0.019

GATS 0.83±0.013 0.83±0.021 0.16±0.009 0.173±0.021 0.703±0.019 0.751±0.016 0.236±0.039 0.16±0.015

IRM 0.829±0.013 0.839±0.015 0.142±0.009 0.133±0.006 0.72±0.019 0.803±0.04 0.207±0.035 0.158±0.017

Orderinvariant 0.83±0.013 0.803±0.008 0.174±0.006 0.173±0.009 0.703±0.019 0.766±0.045 0.261±0.017 0.194±0.031

Spline 0.82±0.016 0.824±0.011 0.159±0.009 0.16±0.014 0.683±0.019 0.786±0.038 0.225±0.034 0.179±0.035

CBAS Color

VS 0.829±0.012 0.840±0.011 0.166±0.011 0.146±0.012 0.717±0.019 0.809±0.008 0.242±0.019 0.182±0.014

• Multi-class isotonic regression (IRM) (Zhang et al., 2020) is a multiclass generalization of646

the famous isotonic regression method (Zadrozny & Elkan, 2002)): it ensembles predictions647

and labels, then learns a monotonically increasing function to map transformed predictions648

to labels.649

• Order-invariant calibration (Rahimi et al., 2020) uses a neural network to learn an intra-650

order-preserving calibration function that can preserve a model’s top-k predictions.651

• Spline calibration instead uses splines to fit the calibration function (Gupta et al., 2021).652

• Dirichlet calibration (Kull et al., 2019) models the distribution of outputs using a Dirichlet653

distribution, using simple log-transformation of the uncalibrated probabilities which are654

then passed to a regularized fully connected neural network layer with softmax activation.655

For node classification, some graph-specific post-hoc calibration methods have been proposed.656

CaGCN (Wang et al., 2021) uses the graph structure and an additional GCN to produce node-wise657

temperatures. GATS (Hsu et al., 2022) extends this idea by using graph attention to model the658

influence of neighbors’ temperatures when learning node-wise temperatures. We use the post hoc659

calibration baselines provided by Hsu et al. in our experiments.660
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Figure 6: Results of applying G-∆UQ to pretrained models vs. in training, on in-distribution and
out-of-distribution accuracy and calibration error. Pretraining is a competitive strategy by all metrics.

All of the above methods, and others, may be applied to the output of any model including one using661

G-∆UQ. As we have shown, applying such post hoc methods to the outputs of the calibrated models662

may improve uncertainty estimates even more. Notably, calibrated models are expected to produce663

confidence estimates that match the true probabilities of the classes being predicted (Naeini et al.,664

2015; Guo et al., 2017; Ovadia et al., 2019). While poorly calibrated CIs are over/under confident in665

their predictions, calibrated CIs are more trustworthy and can also improve performance on other666

safety-critical tasks which implicitly require reliable prediction probabilities (see Sec. 5). We report667

the top-1 label expected calibration error (ECE) (Kumar et al., 2019; Detlefsen et al., 2022). Formally,668

let pi be the top-1 probability, ci be the predicted confidence, bi a uniformly sized bin in [0, 1]. Then,669

ECE :=
∑N

i bi∥(pi − ci)∥.670

A.8 Details on Generalization Gap Prediction671

Accurate estimation of the expected generalization error on unlabeled datasets allows models with672

unacceptable performance to be pulled from production. To this end, generalization error predictors673

(GEPs) (Garg et al., 2022; Ng et al., 2022; Jiang et al., 2019; Trivedi et al., 2023a; Guillory et al., 2021)674

which assign sample-level scores, S(xi) which are then aggregated into dataset-level error estimates,675

have become popular. We use maximum softmax probability and a simple thresholding mechanism676

as the GEP (since we are interested in understanding the behavior of confidence indicators), and677

report the error between the predicted and true target dataset accuracy: GEPError := ||Acctarget−678
1

|X|
∑

i I(S(x̄i; F) > τ)|| where τ is tuned by minimizing GEP error on the validation dataset. We679

use the confidences obtained by the different baselines as sample-level scores, S(xi) corresponding680

to the model’s expectation that a sample is correct. The MAE between the estimated error and true681

error is reported on both in- and out-of -distribution test splits provided by the GOOD benchmark.682

A.9 Additional Study on Pretrained G-∆UQ683

For the datasets and data shifts on which we reported out-of-distribution calibration error of pretrained684

vs. in-training G-∆UQ earlier in Fig. 3, we now report additional results for in-distribution and685

out-of distribution accuracy as well as calibration error. We also include results for the additional686

GOODMotif-basis benchmark for completeness, noting that the methods provided by the original687

benchmark Gui et al. (2022) generalized poorly to this split (which may be related to why G-688

∆UQ methods offer little improvement over the vanilla model.) Fig. 6 shows these extended results.689

By these additional metrics, we again see the competitiveness of applying G-∆UQ to a pretrained690

model versus using it in end-to-end training.691
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