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ABSTRACT

Reinforcement learning (RL) has become an increasingly important paradigm for
improving large language models (LLMs) on alignment, reasoning, and coding tasks,
yet it remains extremely costly. The majority of training time is spent on rollouts.
Allowing actor and policy distributions to differ could unlock substantial scalability and
efficiency benefits, such as supporting large-batch or asynchronous training, and even
enabling a lightweight rollout model. However, existing importance sampling–based
corrections for distribution mismatch suffer from an inherent trade-off between stability
and training performance. To tackle this problem, we propose Jackpot, which leverages
Optimal Budget Rejection Sampling to directly reduce the gap between actor and policy
distributions. For efficiency and stability in practical training, We introduce an efficient
probability estimation strategy based on Top-K logits with batch bias correction, and
designs a stabilized Jackpot-PPO loss that jointly accounts for both the importance
sampling ratio and the trust-region constraint in PPO. Empirically, our method achieves
stable improvements in large-batch and asynchronous training, and in extreme off-policy
training it substantially delays the onset of collapse and delivers competitive performance.
Specifically, we achieve 20% improvement on AMC benchmarks and 8% AIME
benchmarks over the off-policy baseline under 128× actor-policy update ratio for
Qwen3-4B-Base and 64× for Qwen3-8B-Base, while achieving greater stability and
better performance than prior off-policy RL methods under extreme settings.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated substantial effectiveness in the post-training of large language
models (LLMs), yielding significant improvements in domains such as mathematics (Guo et al., 2025;
Azerbayev et al., 2023), coding (Jimenez et al., 2023; Ouyang et al., 2025), and agentic tasks (Liu et al., 2023).
Despite these successes, RL remains computationally expensive (Sheng et al., 2025; Fu et al., 2025; Zheng
et al., 2025b), with the majority of the training cost, often exceeding 70%, attributed to rollouts, wherein
LLMs generate solution trajectories for tasks in order to compute rewards. If actors and policies were allowed
to follow different distributions, the scalability and efficiency of RL could be elevated to an entirely new level.
For instance, such flexibility would make it possible to support large-batch or asynchronous training, thereby
improving the utilization of serving systems (Zheng et al., 2025a). Moreover, quantized or sparse models,
and even distilled smaller models, could be deployed as actors to further enhance efficiency. In practice,
however, the mismatch between actor and policy distributions often leads to instability and severe degradation
in performance (Liu et al., 2025), posing a fundamental barrier to the reliable adoption of these techniques.

When the distribution gap between the actor and the policy becomes large, existing importance sampling
(IS)-based correction methods (Liu et al., 2025; Wu et al., 2025b; Fu et al., 2025) perform suboptimally
compared with the baseline PPO. In practice, truncated importance sampling methods (TIS) either
underperform or exhibit substantial convergence gap to the on-policy baseline when the truncation threshold
is low or conservative, or TIS crashes before policy plateaus from RL training when the truncation threshold
is set to a higher or aggressive value. The importance weight used by TIS is pref(a)

ptarget(a)
. Once the actor

drifts too far, many tokens that the actor samples with high probability have very low probability under
the policy, since pinf>ptarget. These actor trajectories are effectively treated as low-likelihood samples by
the policy, causing TIS to train on tokens the policy would never select at inference and creating a widening
train-inference mismatch. This naturally raises the following question: Can we directly modify the actor’s
sampling distribution and sampled trajectories to reduce its distributional gap to the policy?
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Figure 1: RL training requires actor-policy maintaining strong probability distribution alignment. When
actor and policy aren’t aligned, they will result in training collapse. Here we show training setting
use a Qwen3-1.7B-Base model training rollout to train a Qwen3-8B-Base model policy. Without any
alignment procedures, training collapses (pink). Prior method TIS (green) also show significant gap towards
Qwen3-8B-Base on-policy baseline (purple), while collapsing, using TIS sees KL divergence also violently
increasing. Our proposed method, Jackpot (yellow) maintains small KL divergence between actor and policy
model probability distribution, while showing stable and competitive training convergence to on-policy setting.

Rejection sampling, which can simulate a target distribution from an accessible proposal distribution, has
a long history and has been widely applied in fields such as biology (Carrella et al., 2024), the social
sciences, machine learning (Naesseth et al., 2016), and statistics (Martino & Mı́guez, 2011; Gilks et al.,
1995). However, a direct application of rejection sampling is prohibitively expensive in the context of RL.
Specifically, token i must be accepted with probability pi

λqi
, where λ=maxi

pi
qi

. For contemporary LLMs,
which typically possess vocabularies exceeding 100,000 tokens, this constant C can become extremely large,
since the majority of token probabilities are exceedingly close to zero. As a result, nearly all tokens proposed
by the actor are rejected, rendering naive rejection sampling impractical for large-scale RL and leading to
prohibitively low sample efficiency. Fortunately, Optimal Budget Rejection Sampling (OBRS) (Verine et al.,
2024) relaxes the requirement of classical rejection sampling and, although it does not enforce the actor
distribution to be identical to the policy distribution, it provably reduces their distance and guarantees that for
any rejection ratio the adjusted actor distribution is strictly closer to the policy distribution than the unadjusted
one. This provides us with an opportunity fundamentally different from standard rejection sampling.

However, applying OBRS directly in RL systems introduces several technical challenges. First, PPO relies on
the existence of a trust region to stabilize the training process, which means that modifying the actor probabil-
ities through OBRS may compromise training stability. Second, in order to compute the true probabilities of
the remaining tokens after the rejection process, OBRS requires access to the probabilities of all tokens in the
vocabulary, which imposes significant memory overhead for modern LLMs with extremely large vocabularies.

In this paper, we propose JACKPOT, which consists of three key components. First, an OBRS-based masking
mechanism ensures that the adjusted actor distribution remains strictly closer to the policy distribution.
Second, an efficient probability estimation strategy is introduced, which leverages Top-K logits together
with batch-wise bias correction to approximate the full-vocabulary probabilities while mitigating memory
overhead. Third, we design a stabilized JACKPOT-PPO loss that jointly accounts for both the importance
sampling ratio and the trust region constraint in PPO, thereby preserving training stability.

To validate the effectiveness of our method, we consider two representative scenarios. (1) Large-batch
training. In this setting, the LLM generates up to 128 mini-batches in a single rollout step, which enables
more efficient utilization of serving system hardware resources. Empirically, we observe more than a 2×
improvement in end-to-end RL throughput compared to on-policy training. However, this comes at the
cost of substantial policy drift during training, resulting in significant divergence between the rollout actor
and the updated policy. (2) Extreme off-policy training. In this setting, we employ a fixed model for rollouts
that is different from the one being optimized. This configuration introduces a severe distributional mismatch,
under which standard approaches typically fail and training collapses rapidly.

We organize the remainder of this paper as follows.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• In Section 2, we formally introduce the distribution mismatch between actors and policy, discuss its sources
under different training scenarios, and review related work.

• In Section 3, we describe our application of OBRS to RL and validate its effectiveness through numerical
experiments and empirical observations.

• In Section 4, we provide a detailed description of JACKPOT-PPO, including three key components: (i) OBRS
masking, (ii) efficient probability estimation with Top-K logits and batch bias correction, and (iii) a stabilized
JACKPOT-PPO loss that jointly considers importance sampling ratios and PPO’s trust-region constraint.

• In Section 5, we present experiments on Qwen models and mathematical reasoning tasks to validate
JACKPOT. First, in large-batch training, our method maintains stable learning, outperforming offline and TIS
baselines and approaching the performance of the online setting. Second, in extreme off-policy training, the
proposed method substantially delays the onset of training collapse and achieves competitive performance.

Using JACKPOT, we achieve 20% improvement on AMC benchmarks and 8% AIME benchmarks over the
off-policy baseline under 128× actor-policy update ratio for Qwen3-4B-Base and 64× for Qwen3-8B-Base,
while achieving greater stability and better performance than prior off-policy RL methods under extreme
settings. Overall, JACKPOT is simple to plug in, theoretically well-grounded, and holds the potential to enable
more aggressive forms of off-policy RL.

2 BACKGROUND

In this section, we first formalize the distribution mismatch problem that arises in RL for LLMs. We then
review several strands of related work of JACKPOT.

2.1 PROBLEM SETTING: PPO OBJECTIVE AND ACTOR-POLICY DISTRIBUTION MISMATCH

We begin with the clipped objective in PPO (Schulman et al., 2017), whose expectation can be written as
LPPO(θ)=Ex∼Pinf

[
min

(
rθ(x)Â(x),clip(rθ(x),1−ϵ,1+ϵ)Â(x)

)]
(1)

where rθ(x)=pθnew(x)/pref(x) is the likelihood ratio between the updated policy pθnew and the reference
policy pref, and Â(x) denotes the estimated advantage at decision x. pinf is the inference distribution used
to generate rollouts, pref is the reference policy distribution assumed in the objective, and pθnew is the updated
policy distribution. In the standard process, it is assumed that pinf = pref, but in practice this assumption
is often violated, leading to actor–policy distribution mismatch.

Distribution mismatch is common and arises for several reasons, such as minor discrepancies between the
inference engine and the reference policy by FSDP engines, the use of stale or asynchronous data, or rollouts
generated by approximated models (e.g., quantized, sparsified, or distilled). Such mismatches can destabilize
training and therefore require additional mechanisms to correct or mitigate their impact. .

2.2 RELATED WORK

RL for LLM. Reinforcement learning has been widely applied to LLMs to improve human alignment,
reasoning, coding, and other complex tasks. Beyond PPO, memory efficient methods have been proposed,
including ReMax (Li et al., 2023), RLOO (Ahmadian et al., 2024), and GRPO (Shao et al., 2024). In addition,
methods such as SimPO (Meng et al., 2024) and DPO (Rafailov et al., 2023), which are based on offline
RL, have also been employed for human alignment. RL training systems for LLMs, such as Verl (Sheng
et al., 2025), AReal (Fu et al., 2025), TRL (von Werra et al., 2020), and OpenRLHF (Hu et al., 2024), have
been developed to improve training throughput and scalability.

Distribution Mismatch Correction in RL. Actor-policy mismatch is a common problem that has long
been studied, e.g. Impala Espeholt et al. (2018). To alleviate the actor-policy distribution gap, the method
introduces a truncated importance sampling (TIS) to approximate the true PPO objective.

LPPO(θ)=Ex∼Pinf

[
min

(pref(x)
pinf(x)

,C
)
min

(
rθ(x)Â(x),clip(rθ(x),1−ϵ,1+ϵ)Â(x)

)]
(2)

The truncation thresholdC is for maintaining the stability of the range of the importance ratio. Recently, several
methods apply the truncated importance sampling method to RL of LLMs. Methods such as FlashRL (Liu et al.,
2025), AReal (Fu et al., 2025), and LlamaRL (Wu et al., 2025b) address distribution mismatch by introducing
(truncated) importance sampling ratios, typically of the form pref/pinf, to correct the impact of mismatch on
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advantage estimation. From system perspective, FP32 LM heads (Liu et al., 2025) and deterministic LLM
Inference (He & Lab, 2025) are implemented to mitigate the numerical issue of serving systems when rollout.

In this paper, we proposed JACKPOT. Our method is orthogonal to the above prior works. We directly modify
pinf through rejection sampling and reweighting of the output probabilities so that the divergence between pinf
and the target distributions pref is provably reduced. Moreover, techniques such as TIS can be applied on top
of this improved distribution to further correct the remaining mismatch in a complementary way. JACKPOT
offers a mechanism that is shown to be effective in stabilizing RL training under severe mismatches.

3 CORRECTING DISTRIBUTION MISMATCH WITH BUDGETED REJECTION SAMPLING

One of the most fundamental challenges of modern RL framework for LLMs is the distributional mismatch
between samples generated by our inference model (actor), or pinf, and the true reference policy distribution,
or pθref . One way is through Importance Sampling, or adding an importance ratio term pref

pinf
. However, as the

trajectories are sampled and pinf(x) can be small, the importance ratio sometimes blows up in numeric value.
In practice, min(pref

pinf
,C) is used Espeholt et al. (2018) to cap out the dangerously large values, leading to huge

bias in correcting the distribution misalignment. Instead of solely relying on Importance Sampling, can we
modify pinf and the sampled trajectories directly so that it is closer in probability distribution to pref?

One direct idea is Rejection Sampling (RS), or stochastically rejecting tokens in the tractories sampled with
pinf based on the difference between the two distributions. Once a token is rejected, it contributes nothing
to the loss and gradient calculation. While canonical rejection sampling could resolve this, its application
here—using pinf as the proposal and pθnew as the target—is impractical, as rejection sampling aims for
identical probability distribution after correction. The potentially large divergence between these distributions
would lead to a prohibitively low acceptance rate, essentially leading to most tokens being rejected. The
data efficiency of RL training will be severely degraded, failing to meet practical requirements.

To overcome this, we adopt the principled approach of Optimal Budgeted Rejection Sampling (OBRS)
(Verine et al., 2024). This technique reframes the problem: instead of demanding perfect adherence to the
target distribution at the cost of sample efficiency, it seeks the optimal rejection rule that, for a given target
acceptance rate (a ”budget”), produces a distribution as close as possible to the target. This is precisely the
trade-off our problem requires.

The method employs a scaled acceptance probability, where a scaling factor λ is chosen to meet the desired
sample throughput. A token a sampled from the proposal pinf is accepted with probability αC(a) defined
as αC(a)=min

(
1,

ptarget(a)
λ·pinf(a)

)
3.1 NUMERICAL SIMULATION

Figure 2: OBRS calibration results across three views: (a) per-token probability-ratio clipping pulls the
model distribution toward the target, (b) acceptance remains high (≈ 95%) even at large initial KL, and
(c) overall KL is reduced by roughly an order of magnitude.

Crucially, this calibration is highly efficient; the acceptance rate remains high even when there is a large
initial KL divergence. The impact on distributional alignment is dramatic: a significant reduction in KL
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divergence is observed with high acceptance rates. By systematically damping the most extreme probability
ratios, OBRS produces a distribution that is not only provably closer to the on-policy target but also primed
to yield more stable and effective PPO/GRPO policy updates.

3.2 THEORETICAL GUARANTEES

OBRS possesses proven optimality. It has been established that for any desired average acceptance rate
ᾱ ∈ (0,1], there exists a corresponding scaling factor C that achieves it. Crucially, among all possible
rejection rules that satisfy this budget, this scaled acceptance rule is the unique one that minimizes the
Kullback-Leibler (KL) divergence to the target distribution pθnew . A formal statement and proof of this
theorem are provided in Appendix §A.2. This guarantee ensures we are using the provably best method
for trading sample efficiency for distributional accuracy.

The scaling factor C acts as an explicit control knob for this trade-off. A larger C pushes the post-rejection
distribution closer to the true target pθnew at the expense of a lower acceptance rate, while a smaller C boosts
throughput at the cost of higher divergence. In our experiments, we find C=1 to be a robust default.

This formulation also guarantees that applying this sampling technique is always better than using the original
inference distribution pinf directly. The post-rejection distribution pkept,C is strictly closer to the target pθnew in
KL divergence than the original pinf for any choice of C>0. We provide a summary of this proof tailored to
our notation in Appendix §A. Our algorithm for implementing this procedure is also detailed in Appendix §A.

4 JACKPOT: DESIGN AND METHODOLOGY

In this section, we present details on the design considerations of JACKPOT. We show the token rejection
criteria and reweighting procedures in Section, applying our rejection sampling to the PPO setup in Sections,
and efficiency analysis in Section.

4.1 REJECTION AND REWEIGHTING

To bridge the inference probability distribution pinf and the target distribution ptarget, we use the following
critieria similar to Leviathan et al. (2023). For token sampled by pinf, x, we accept token with probability

min(1,
ptarget(x)

λpinf(x)
). (3)

Note that the above equation is P(x accepted | x sampled by pinf(x)). Once the token x is rejected, it will
be masked out and no longer participate in the loss and gradient propagation. After rejection, the distribution
has expression:

POBRS=
min(pinf(x),

ptarget(x)
λ )∑

x′min(pinf(x′),
ptarget(x′)

λ )
. (4)

4.2 INTEGRATION WITH CONVENTIONAL PPO OBJECTIVE

Following Section 4.1 , we have the following PPO objective and applied Truncated Importance Sampling,

LPPO
standard(θ)=Ex∼pinf

[
f(x)

]
=Ex∼Pinf

[
min

(
rθ(x)Â(x),clip(rθ(x),1−ϵ,1+ϵ)Â(x)

)]
(5)

LPPO
TIS(θ)=Ex∼Pinf

[
min

(pref(x)
pinf(x)

,C
)
f(x)

]
(6)

On top of TIS, we can further corrects the pinf of interest by using our rejection sampling critieria and
reweighting by,

min(
pref(x)

pinf(x)
,C)→min(

pref(x)
min(pref(x′)/λ,pinf(x′))

Z

,C)=min(Z ·max(λ,
pref(x)

pinf(x)
),C) (7)

5
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Ideal RL Training 

Actor 𝑃!"#= 𝑃$%#

Policy 𝑃$%#

x

x ~𝑃$%#

Realistically, 𝑃!"# ≠ 𝑃$%#  occurs and leads to training crashes. 
Here is Jackpot. 

Actor
𝑃!"#

Policy
𝑃$%#

x ~𝑃!"#x

Rollout

Rollout

Rejection 
Sampling
min(1, 

&!"#
&$%#

)

Probability 
Reweighting
min(𝑃$%#,𝑃!"#)

𝑍

The training is stable! The training after Jackpot is stable! 

Figure 3: Illustration of JACKPOT Pipeline focusing on Optimal Budgeted Rejection Sampling (OBRS)
and Reweighting Procedures

where Z is
∑

x′ min(pinf(x
′), pref(x

′)
λ ). Therefore, instead of (6), we use the following PPO objective

formulation,

LPPO
ours(θ)=Ex∼Pinf

[
min(Z ·max(λ,

pref(x)

pinf(x)
),C
)
·f(x)

]
(8)

4.3 WHICH POLICY TO APPROXIMATE?

Conventionally, we assume pinf=pref, but empirically, we discover that for settings where RL training suffers
from severe staleness, e.g. using large batch size or using asynchronized rollout/update cycles, approximating
pinf→pnew the latest updated policy edges out in performance. The rationale is that the reference policy
is too stale and too distant to the latest updated policy to offer reliable trust region. In that case, we adjust
the conventional PPO objective in (2) to the following from importance sampling,

Ex∼Pref

[
f(x)

]
=Ex∼Pnew

[ pref

pnew
f(x)

]
(9)

Then, we can approximate pnew using pinf through our rejection sampling and reweighting. For the high
staleness settings, we use the following approximating formulation,

Ex∼pnew

[ pref

pnew
f(x)

]
←Ex∼pinf

[
min(

pnew

p∗inf
,C1)·min(

pref

pnew
,C2)·f(x)

]
(10)

where p∗inf is the corrected distribution through rejection sampling and reweighting.

We then have the JACKPOT objective,

LPPO
ours(θ)=

[
min(Z ·max(λ,

pnew(x)

pinf(x)
),C1

)
·min(

pref

pnew
,C2)·f(x)

]
(11)

Throughout our experiments, we use λ=1. We offer the user to either use (8) to align to pref or pnew
depending on their target policy desired under their use cases.

4.4 STABILIZATION AND FEASIBILITY CHALLENGES

Implementing JACKPOT directly faces a huge challenge of computational feasibility. Note that the weight’s
normalization constant, Z, requires a sum over the entire vocabulary (|V|>100,000), creating a crippling
memory bottleneck from storing full logit vectors (batch size × seq len × vocab size). This
severely restricts batch sizes, directly undermining the efficiency OBRS is intended to provide. Therefore,
transforming this principled approach into a production-ready algorithm requires non-trivial engineering: we
must introduce mechanisms to both bound the importance weights for stability and develop a computationally
efficient, low-bias estimator for the normalization constant. To overcome the computational bottleneck of
calculating Z, we employ a top-k approximation, which we then de-bias empirically.

4.4.1 TOP-K APPROXIMATION

The probability mass of language models is typically concentrated in a small subset of the vocabulary. We
leverage this property by approximating the sum over V with a sum over a much smaller set, Vk, which

6
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contains the most likely tokens from both the inference and current policies. Specifically, let top-k(p) be the
set of k tokens with the highest probability under distribution p. We define our approximation set as the union:

Vk= top-k(pinf)∪top-k(pθnew)
The union is crucial because a token might be highly probable under one distribution but not the other, and the
min function makes these overlapping regions important. The approximate normalization constant, Zapprox,

is then: Zapprox=
∑

a′∈Vk
min

(
pinf(a

′),
ptarget(a

′)
λ

)
4.4.2 BIAS CORRECTION

While efficient, this top-k approximation introduces a systematic bias. Since the terms in the sum are
non-negative, omitting tokens from the full vocabulary V can only decrease the total sum. Therefore, our
approximation is a consistent underestimation of the true value:

E[Zapprox]≤Z
For k=20, . This bias could systematically alter the scale of the gradients during training. Fortunately, there
is an elegant way to correct this. A key property of the framework is that the true normalization constant
Z is exactly equal to the expected acceptance rate, ᾱ:

ᾱ=
∑
a∈V

pinf(a)·min

(
1,
ptarget(a)

λ·pinf(a)

)
=
∑
a∈V

min

(
pinf(a),

ptarget(a)

λ

)
=Z.

During the data collection phase (Algorithm 1, Phase 1), we can compute an unbiased empirical estimate
of ᾱ from the observed samples:

ˆ̄α=
Number of accepted samples

Total number of proposed samples
This gives us two estimators for Z: the low-variance but biased Zapprox, and the unbiased but higher-variance
ˆ̄α. We can combine them to create a de-biased, low-variance estimator. We compute a batch-wide calibration
factor, κ, by dividing the empirical acceptance rate by the batch-averaged Zapprox:

κ=
ˆ̄α

1
B

∑B
i=1Z

(i)
approx

where B is the number of samples in the batch. We then apply this scalar correction to each per-token Zapprox
value used in the loss calculation. This procedure scales our efficient top-k estimate to match the true expected
value observed in practice, effectively removing the bias while retaining the computational benefits and
lower variance of the top-k approach.

4.5 IMPLEMENTATION OVERHEAD ANALYSIS

JACKPOT is lightweight. First, JACKPOT requires no additional trajectories sampled, as all the experiments we
conducted in the extensive empirical studies section are using the same rollout width as the on-policy baseline.
A critical distinction to Leviathan et al. (2023) is that JACKPOT doesn’t reject all tokens from the first
place in the trajectory where a token first rejects and resample from where. Instead, JACKPOT only
mask out tokens using our rejection critieria, and no additional trajectories sampling needed. Second,
no additional log prob computation needed, since both pref and pnew will be computed by the standard
objective (5), and JACKPOT only needs to reuse these probability distributions already computed. Third, no
modification required on vLLM. Since JACKPOT doesn’t required special operator or numeric precisions, we
directly based our implementation on standard vLLM for rollout, without relying on custom kernels in vLLM.

JACKPOT indeed add minor additional overhead to standard PPO objective computation. The added
computation comes from forcing vLLM to return top-K logprobs. Fortunately, since we only use k=20
for our runs, the added extra compute only added less than 3% to the total compute. In contrast, JACKPOT
helps models be trained using 64× or higher batch sizes by drastically alleviating the lack of convergence
from the staleness of the actor model. Thus, comparing with the small batch and on-policy performance,
we achieve more than 4 times speedup.

5 EMPIRICAL VALIDATION

In this section, we comprehensively test our method on two different and challenging misalignment settings.
First, we evaluate our method on an extremely large inference batch size, while keeping the training
mini-batch size the same. At the end of each training-inference cycle, the staleness of the model weights

7
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Algorithm 1 The Jackpot Algorithm

Require: Policies: current pnew, reference pref, inference pinf.
Require: Hyperparameters: OBRS threshold λ, PPO clip ϵ, Jackpot clips c1,c2, top-k count.

1: Convention: SG(·) denotes the stop-gradient operation.
2: Implementation note: Jackpot only reweights quantities from the standard rollout and PPO/GRPO

forward passes; it does not perform extra model forward passes or trajectory recomputation.
3: Phase 1: Efficient Rollout (Standard Generation)
4: Initialize experience bufferD←∅.
5: for each trajectory sampling step t do
6: Single forward pass of pinf(· |st), sample at∼pinf(· |st).
7: From the same forward, compute and store top-k log-probabilities of pinf: TopKinf(st).
8: Store (st,at,pinf(at |st),TopKinf(st)) (plus rewards, values, etc.) in bufferD.
9: end for

10: Compute advantages Ât using collected trajectories.
11: Phase 2: PPO Update with Jackpot Reweighting
12: for each mini-batch sampled fromD do
13: // 1. Standard PPO Computation (reused by Jackpot)
14: Forward pass pnew and pref on the mini-batch to get logits, pnew(at |st), pref(at |st), andTopKnew(st).

15: Compute policy ratio: rt(θ)=
pnew(at |st)
pref(at |st)

.

16: Compute vanilla PPO objective: LPPO=min
(
rt(θ)Ât,clip(rt(θ),1−ϵ,1+ϵ)Ât

)
.

17: // 2. Efficient Z-Approximation and Bias Correction (no extra forward passes)
18: Construct approximation set Vk=TopKinf(st)∪TopKnew(st).
19: Compute

Zapprox=
∑
x∈Vk

min

(
pinf(x |st),

pnew(x |st)
λ

)
.

20: Estimate correction factor κ using the OBRS-based bias-correction procedure described in Sec. 4.4.2
(e.g., from batch-level OBRS statistics).

21: Set corrected normalizer Zt←κ·Zapprox.
22: // 3. Jackpot Weight Calculation
23: OBRS weight: wOBRS=Zt·max

(
λ,pnew(at|st)

pinf(at|st)

)
.

24: ρjackpot=min(wOBRS,c1)·min
(

pref(at|st)
pnew(at|st) ,c2

)
.

25: // 4. Apply Weight to Loss
26: Lfinal=SG(ρjackpot)·LPPO.
27: Update policy parameters new using gradient of−Lfinal.
28: end for

in the inference server will be significantly amplified. Secondly, we evaluate our method using two separate
models for training and rollout, an extreme setting where the output distribution gap is more severe than
usual staleness in off-policy RL settings. We show that our technique enables the training model to better
benefit from tokens from a completely distinct model. Because of the limit in space, we list detailed ablation
studies on threshold selection and top-K analysis in the Appendix C.

5.1 INFERENCE WITH LARGE BATCH SIZE AND TRAINING WITH MUCH SMALLER BATCH SIZE

RL training using a much larger batch size for generation and a smaller batch size for training is common
in practice. It is usually due to either system limitation, where the generation is highly parallelizable and
relatively memory-light compared to training (saving optimizer states, etc.), or it is for better stability as
advocated by Schulman et al. (2017). However, the delay in updates results in staleness, which we magnify
for evaluating our method.

We use the best results under 30k examples for Qwen3-4B-Base as our metrics, and the best under 50k
for Qwen3-8B-Base. 1. The results of our run are summarized in table 1. On-policy RL generally converges

1Qwen3-4B-Base on-policy run crashes at 30k examples.
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Table 1: Evaluation scores across benchmarks. TIS + Adjustment is explained in Section B.1.

GSM8K MATH-500 AMC22 & 23 AMC12 2024 AIME24 AIME25

Models / Methods Mean@4 Mean@4 Mean@4 Mean@4 Mean@16 Pass@16 Mean@16 Pass@16

Qwen3-4B-Base on DeepScaleR-Preview Dataset (rollout batch size = 2048; train batch size = 32; 64×)

On Policy 92.19 81.55 58.43 51.11 23.12 33.13 22.91 30.95
Off Policy 88.04 71.15 39.15 29.44 13.96 23.03 11.04 18.61
TIS 89.67 72.00 42.77 31.67 11.88 17.56 11.25 17.28
TIS + Adjustment 92.76 79.50 57.22 43.33 18.75 26.03 17.71 24.61
Jackpot (Ours) 92.24 80.05 53.92 50.00 20.63 29.48 18.13 23.63

Qwen3-4B-Base on DeepScaleR-Preview Dataset (rollout batch size = 4096; train batch size = 32; 128×)

Off Policy 79.70 60.20 33.00 24.44 8.00 15.73 5.00 11.00
TIS + Adjustment 20.70 19.10 7.80 5.00 1.00 4.00 1.00 2.00
Jackpot (Ours) 92.00 80.00 51.20 47.22 19.16 24.58 18.52 25.08

Qwen3-8B-Base on DeepScaleR-Preview Dataset (rollout batch size = 2048; train batch size = 32; 64×)

On Policy 94.24 93.99 28.95 54.44 28.95 37.89 22.50 28.54
Off Policy 91.05 77.15 50.60 40.00 18.54 28.67 14.16 21.98
TIS + Adjustment 93.85 82.55 60.54 48.33 24.58 35.06 20.00 22.90
Jackpot (Ours) 94.01 83.05 63.55 54.44 26.87 36.23 20.41 26.57

Table 2: AMC22&23 results of two model training using various methods across the training steps.
Mean@k/Pass@k.

AMC22 & 23 Rollout Model Train Model 0 20 30 40 50 60 70

Vanilla GRPO Q2.5-1.5B-IT Qwen2.5-3B-Base 18.1/48.2 31.8/59.0 32.2/61.5 33.3/59.0 30.0/49.4 22.4/42.3 5.7/16.9
TIS Qwen2.5-1.5B-IT Q2.5-3B-Base 18.1/48.2 28.9/57.8 28.2/54.2 32.5/68.7 26.8/56.6 0/0 0/0
Jackpot (ours) Q2.5-1.5B-IT Qwen2.5-3B-Base 18.1/48.2 29.4/59.0 31.2/57.8 33.9/60.2 31.9/62.7 28.8/54.2 13.4/31.3

AMC22 & 23 Rollout Model Train Model 0 20 30 40 50 60 70

Vanilla GRPO Q2.5-MATH-1.5B-IT Qwen2.5-3B-Base 18.1/48.2 23.3/60.2 22.6/57.8 24.7/53.0 17.0/43.4 3.9/14.5 0
TIS Q2.5-MATH-1.5B-IT Qwen2.5-3B-Base 18.1/48.2 25.8/59 25.0/59.0 21.7/55.4 0 0 0
Jackpot (ours) Q2.5-MATH-1.5B-IT Qwen2.5-3B-Base 18.1/48.2 27.3/57.8 29.4/63.9 26.7/59.0 28.6/60.2 22.4/54.2 2.9/16.9

much faster than off-policy runs. We observed that for less aggressive off-policy settings, our method’s
margin is quite small. However, for extreme settings, such as 4096-32 for Qwen3-4B-Base and 2048-32
for Qwen3-8B-Base. We observed consistently that TIS-adjusted crashes occurred way earlier than our
settings, often resulting in inferior results. For example, Qwen3-4B-Base TIS-adjusted fails to converge
from the beginning. Also, as shown in Figure fig. 4 (a), TIS-adjusted also crashes way earlier than ours under
the 2048-32 setting. Across all settings we tested, our method greatly improves the speed of convergence
of the off-policy RL, while also resulting in performance numbers comparable to the on-policy runs.

Besides, as a much less aggressive setting, KV FP8 quantization can result in a performance crash as shown
in Figure 4(b). Here, we apply only our rejection sampling algorithm, without clipping/truncation or any
similar tricks. We show our performance recovers from crashes.

5.2 EXTREME OFFPOLICY SETTINGS

In this section, we demonstrate our method’s effectiveness on the extreme setting where the model under
inference and training are fundamentally two separate models. Specifically, we hypothesize that our sampling
algorithm can always filter out useful tokens for the model training, even given a completely exotic output
response. We use Qwen2.5-3B-Base as the trainer model, and we adopt different inference models from
Qwen2.5-1.5B-Instruct to Qwen2.5-Math-1.5B-Instruct, trained on MATH-8K Hendrycks et al. (2021)
dataset. We find out that our method can still improve itself under such extreme settings.

Shown in Figure 4 (c), we see that our run green curve shows clear improvement over our baseline GRPO
and TIS settings. It even increases by 12% on MATH-500 under such an extreme misaligned setting. More
results are summarized in Table 2, showing that the improvement also exists on AMC problems. We believe
our method offers a new possibility to unlock much more scalability in RL efficiency and performance.
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(a) (b) (c) 

Figure 4: Overview of our empirical experiment results. (a) shows our proposed method’s strength in
correcting stale inference model distribution, and approaches the on-policy trend while maintaining training
stability; (b) shows our proposed method to align output distribution can correct RL training instability even
if applied alone; (c) The strength in our model’s ability to align two different distributions allows us to put
it in the most extremely misalignment setting where the rollout and the training model are separate of different
architecture, our method shows early glimpse of hope and beats the baseline.

6 CONCLUSION

We propose Jackpot, which leverages Optimal Budget Rejection Sampling to directly reduce the gap between
actor and policy distribution. Empirically, our method achieves stable improvements in large-batch and
asynchronous training and also demonstrates stability under extreme misalignment settings.
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7 ETHICS STATEMENT

Our study is centered on the development of reinforcement learning techniques for large language models.
The research does not involve the use of human subjects, personal data, or other sensitive information. All
datasets employed are openly accessible and commonly utilized within the research community. We recognize
that advancements in LLMs may lead to societal risks, such as the potential misuse for generating harmful
or deceptive outputs. To address such concerns, this work is conducted strictly within controlled academic
environments, with the primary objective of enhancing the robustness and efficiency of training methodologies.

8 REPRODUCIBILITY STATEMENT

We have provided a comprehensive account of implementation details, hyperparameters, and experimental
configurations in both the main text and the appendix. This documentation is intended to ensure that other
researchers are able to independently reproduce our findings without ambiguity.
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A ANALYSIS OF OBRS

This appendix provides the theoretical foundation for OBRS. We first formally define the post-rejection
distribution that results from our method. We then prove two key results:

1. Optimality: For any desired sample efficiency (i.e., acceptance rate), OBRS is the unique optimal
rejection mechanism that produces a post-rejection distribution closest to the target pθnew in terms
of KL divergence (Theorem 1).

2. Monotonic Improvement: The post-rejection distribution monotonically approaches the target
distribution as the scaling factor C increases. This guarantees that for any C>0, OBRS reduces
the KL divergence compared to using the proposal pinf directly. (Proposition 1).

For notational clarity, we consider the distributions over tokens for a single, fixed prompt and omit the explicit
conditioning. Let pt≡pθnew denote the target distribution and pp≡pinf denote the proposal distribution.

Algorithm 2 Implementation of Optimal Budgeted Rejection Sampling

Require: Proposal distribution pinf, Target distribution pθnew

Require: Scaling factor C>0, Number of samples to accept N
Ensure: Set of accepted samples Skept

1: Initialize Skept←∅
2: while |Skept|<N do
3: Sample a token a∼pinf(·)
4: Calculate acceptance probability α←min

(
1,

pθnew(a)
C·pinf(a)

)
5: if U(0,1)<α then
6: Add a to Skept
7: end if
8: end while
9:

10: return Skept

A.1 THE POST-REJECTION DISTRIBUTION

Recall from Definition 1 that OBRS accepts a token a∼pp(a) with probability αC(a)=min
(
1, pt(a)

C·pp(a)

)
.

The unnormalized probability of sampling and keeping a token a is pp(a) ·αC(a), which simplifies to
min{pp(a),pt(a)/C}.
The overall probability of accepting any token, which we denote as the acceptance rate ZC , is the sum over
all possible tokens:

ZC=
∑
a∈A

min

{
pp(a),

pt(a)

C

}
.
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The distribution of the tokens that are kept, which we call the post-rejection distribution pkept,C , is therefore:

pkept,C(a)=
min{pp(a),pt(a)/C}

ZC
.

Special cases clarify the role of C: as C→0, ZC→1 and pkept,C→pp (all tokens are kept). As C→∞,
ZC→ 0 and pkept,C→ pt (perfect alignment with vanishing throughput). Standard rejection sampling is
the special case where C≥maxa(pt(a)/pp(a)).

A.2 OPTIMALITY FOR A FIXED ACCEPTANCE BUDGET

We first establish that OBRS is not merely a heuristic but is the provably optimal strategy for minimizing
distributional error given a fixed efficiency budget.

Theorem 1 (Budgeted Optimal Acceptance). Fix a target acceptance rate (budget) z ∈ (0, 1].
Among all possible token-wise acceptance rules α : A → [0, 1] that satisfy the budget constraint
Ea∼pp[α(a)]=

∑
app(a)α(a)=z, the rule that generates a post-rejection distribution pkept(a)∝pp(a)α(a)

minimizing the Kullback-Leibler (KL) divergence KL(pt||pkept) is uniquely given by the OBRS rule:

α⋆(a)=min

(
1,

pt(a)

λ·pp(a)

)
for some constant λ>0 (equivalent to C) whose value is determined by the budget z.

Proof. The post-rejection distribution is pkept(a)=pp(a)α(a)/z. The KL divergence is:

KL(pt||pkept)=
∑
a

pt(a)log
pt(a)

pkept(a)

=
∑
a

pt(a)log
pt(a)

pp(a)α(a)/z

=
∑
a

pt(a)log
pt(a)

pp(a)
+logz︸ ︷︷ ︸

constant w.r.t. α

−
∑
a

pt(a)logα(a).

Minimizing KL(pt||pkept) is therefore equivalent to maximizing
∑

apt(a)logα(a) subject to the constraints:

1.
∑

app(a)α(a)=z (budget constraint)

2. 0≤α(a)≤1 for all a∈A (valid probability constraint)

This is a convex optimization problem. The Lagrangian is:

L=−
∑
a

pt(a)logα(a)+λ

(∑
a

pp(a)α(a)−z

)
+
∑
a

µa(α(a)−1)−
∑
a

νaα(a)

where λ,µa,νa are the KKT multipliers. From the stationarity condition ∂L
∂α(a)=0, we get−pt(a)

α(a) +λpp(a)+

µa−νa=0. The complementary slackness conditions imply that if 0<α(a)<1, then µa=νa=0, which
gives α(a)= pt(a)

λpp(a)
. If α(a)=1, then νa=0, which requires λpp(a)≥pt(a). If α(a)=0, this form is not

well-defined, but the logic holds. Combining these cases, the optimal rule is to cap the acceptance ratio at 1:

α⋆(a)=min

(
1,

pt(a)

λpp(a)

)
.

The Lagrange multiplier λ is chosen to meet the budget constraint
∑

app(a)α
⋆(a)=z. Uniqueness follows

from the strict concavity of the log objective function.

A.3 GUARANTEED KL DIVERGENCE REDUCTION

Next, we show that our method provides a guaranteed improvement over the proposal distribution pp and
that this improvement is monotonic in the control parameter C.

Proposition 1 (Monotonic KL Contraction). The function G(C)=KL(pt||pkept,C) is non-increasing for
C∈(0,∞). It is strictly decreasing wherever the set of tokens {a |pt(a)<C ·pp(a)} has non-zero probability
mass under pt.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. Let ρ(a)= pt(a)/pp(a). We partition the vocabulary A into two sets: AC = {a | ρ(a)>C} and
BC = {a | ρ(a)≤C}. On any open interval of C where this partition is constant, we can write the KL
divergence G(C)=−

∑
apt(a)logpkept,C(a) as:

G(C)=−
∑
a∈AC

pt(a)log
pp(a)

ZC
−
∑
a∈BC

pt(a)log
pt(a)/C

ZC

Differentiating with respect to C (and noting that only ZC depends on C), we get
dG
dC =− d

dC

∑
apt(a)(−logZC)=

1
ZC

dZC

dC . The acceptance rate is ZC=
∑

a∈AC
pp(a)+

1
C

∑
a∈BC

pt(a).
Its derivative is:

dZC

dC
=− 1

C2

∑
a∈BC

pt(a).

Therefore, G′(C)= 1
ZC

(
− 1

C2

∑
a∈BC

pt(a)
)
≤0, since all terms are non-negative. The derivative is strictly

negative if
∑

a∈BC
pt(a)> 0. As G(C) is continuous and piecewise differentiable with a non-positive

derivative, it is non-increasing everywhere.

Corollary 1 (Strict Improvement over Proposal). For any C > 0, OBRS produces a distribution pkept,C
that is strictly closer to the target distribution pt than the original proposal distribution pp, i.e.,

KL(pt||pkept,C)<KL(pt||pp),
unless pp=pt or C≤min( ptpp ), in which case the KL divergences are both zero .

Proof. From Proposition 1, we know that KL(pt || pkept,C) is non-increasing in C. In the limit
as C → 0, the acceptance probability αC(a) → 1 for all a, meaning pkept,C → pp. Therefore,
limC→0KL(pt||pkept,C)=KL(pt||pp). For any C>0, as long as pp ≠pt and C>min( ptpp ), there must
exist some tokens for which pt(a)<C ·pp(a) or pt(a)>C ·pp(a), ensuring the condition for a strictly
decreasing KL divergence is met over some interval (0,C]. Thus, G(C)<G(ϵ) for some small ϵ>0, which
implies KL(pt||pkept,C)<KL(pt||pp).

A.4 PRACTICAL GUIDANCE

• Setting C. C=1 is a robust default: it contracts the per-prompt KL (strictly unless pinf=ptr), keeps
acceptance high (Z1), and is O(1) per token. Larger C pushes qC closer to ptr but reduces throughput
(ZC≤1/C); use it only if variance or bias considerations demand stronger alignment.

• Compatibility. The rule uses only per-token log-probabilities already computed by PPO/GRPO, so
it introduces no new estimators and preserves gradient flow exactly as described in Algorithm 1.

B DETAILS OF THE EXPERIMENTS

B.1 TIS ADJUSTMENT EXPLANATION

However, the delay in updates results in staleness, which we magnify for evaluating our method.

In this section, we push the above scenario to its limit by asking the inference batch size to be 64x and 128x
the training batch size. Concretely, we choose to use a training batch size of 32. We train models on the
DeepScalerR-Preview dataset Luo et al. (2025), which contains 40k challenging competition math problems.
We select Qwen3-4B-Base and Qwen3-8B-Base models Yang et al. (2025) to run RL on. An important baseline
to our method is the Truncated Importance Sampling (TIS) as in Wu et al. (2025a). However, in the original
technique is proposed only for the approximate models in the inference server. Thus, in the following loss form.

Ea∼π(θold)[
π(θref)

π(θold,inf)
∇θclip(

π(θnew)

π(θref)
Â)]

The weights update frequency is close to on-policy settings, but the gap between the approximate and efficient
inference model and the training weights is the primary goal to solve. However, the original formula cannot
easily be adapted for our extremely large batch setting, as there is no term regularizing the difference between
πθnew and πθold . We found that a very simple trick results in a very strong baseline on top of the TIS method,
that is we write it this way.

Ea∼π(θold)[
π(θnew,detached)

π(θold,inf)
∇θclip(

π(θnew)

π(θnew,detached)
Â)]
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Table 3: Evaluation scores across benchmarks (GSM8K, MATH-500, AMC22 & AMC23).

GSM8K MATH-500 AMC22 & AMC23

Models / Methods Mean@4 Pass@4 Mean@4 Pass@4 Mean@4 Pass@4

Qwen3-4B-Base on DeepScaler (rollout batch size = 2048; train batch size = 32; 64×)

On Policy 92.19 95.988 81.55 88.00 58.43 71.76
Off Policy 88.04 95.03 71.15 82.24 39.15 55.57
TIS 89.67 95.53 72.00 80.96 42.77 56.71
TIS with Adjustment 92.76 96.09 79.50 85.81 57.22 66.61
Jackpot (Ours) 92.24 95.891 80.05 85.89 53.916 65.034

Qwen3-4B-Base on DeepScaler (rollout batch size = 4096; train batch size = 32; 128×)

Off Policy 79.70 92.96 60.20 76.60 33.00 48.446
TIS with Adjustment 20.697 43.00 19.10 37.751 7.80 17.83
Jackpot (Ours) 92.00 95.00 80.00 85.50 51.20 60.35

Qwen3-8B-Base on DeepScaler (rollout batch size = 2048; train batch size = 32; 64×)

On Policy 94.238 96.78 93.99 96.65 28.95 37.89
Off Policy 91.05 95.62 77.15 84.90 50.60 65.20
TS with Adjustment 93.85 96.58 82.55 88.38 60.54 72.79
Jackpot (Ours) 94.01 96.63 83.05 88.76 63.55 74.12

where we use the detached most recent model output distribution as the term in the importance sampling.
However, the consequence is also very clear, the internal clip around ratio is now ’short-circuited’ or no
longer useful. Nevertheless, the setting produces very strong convergence is correction over the off-policy
baseline. We call it TIS-adjusted.

To fairly compare against the baseline, we also modify our training loss as follows, effectively also
’short-circuiting’ the internal ratio clip. The only difference between our setting and theirs is that we use
our proposed sampling method to regularize the πθold,inf .

Ea∼π(θold)[
π(θnew,detached)

π(θold,inf)∗new ∇θclip(
π(θnew)

π(θnew,detached)
Â)]

.

B.2 FULL DETAILS OF EXTREME SIZE BATCH SIZE EXPERIMENTS

C ABLATION STUDIES ON COMPONENTS OF JACKPOT, THRESHOLD, AND TOP-K

C.1 COMPONENTS’ CONTRIBUTION TO JACKPOT

Rejection bridges the gap between the rollout and the current policy (see FP8 on-policy training without
explicit jackpot reweighting; this is essentially the vanilla PPO loss with the probability fixed, and the OBRS
distribution in this case matches the reference policy exactly). Because the rollout–training distribution gap is
now removed, stability is significantly better than the vanilla baseline: even without TIS, training does not crash.

However, without correct importance sampling (see the huge-staleness training regime, where the importance
distribution no longer matches Pref but instead matches the current policy), training will eventually collapse.

On the other hand, jackpot reweighting does not solve the rollout–training gap (because under the FP8 setting
it falls back to vanilla on-policy training, which again leads to a crash). But in the huge-staleness regime,
where the rollout–training gap is not the main issue, jackpot reweighting combined with OBRS is effective:
it performs correct importance sampling, tracks the proper target distribution, and keeps the overall training
procedure stable and efficient.
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Table 4: Evaluation scores across benchmarks (AMC12 2024, AIME24, AIME25).

AMC12 2024 AIME24 AIME25

Models / Methods Mean@4 Pass@4 Mean@16 Pass@16 Mean@16 Pass@16

Qwen3-4B-Base on DeepScaler (rollout batch size = 2048; train batch size = 32; 64×)

On Policy 51.11 65.45 23.12 33.13 22.91 30.95
Off Policy 29.44 41.802 13.958 23.03 11.042 18.607
TIS 31.667 50.844 11.875 17.561 11.25 17.278
TIS with Adjustment 43.33 60.67 18.75 26.03 17.708 24.607
Jackpot (Ours) 50.00 63.00 20.625 29.484 18.125 23.627

Qwen3-4B-Base on DeepScaler (rollout batch size = 4096; train batch size = 32; 128×)

Off Policy 24.44 38.41 8.00 15.73 5.00 11.00
TIS with Adjustment 5.00 11.00 1.00 4.00 1.00 2.00
Jackpot (Ours) 47.22 57.99 19.16 24.58 18.52 25.078

Qwen3-8B-Base on DeepScaler (rollout batch size = 2048; train batch size = 32; 64×)

On Policy 54.44 68.47 28.95 37.89 22.50 28.542
Off Policy 40.00 54.75 18.54 28.67 14.16 21.98
TS with Adjustment 48.33 59.78 24.58 35.06 20.00 22.90
Jackpot (Ours) 54.44 66.09 26.87 36.23 20.41 26.57

Table 5: FP8 on-policy training (no staleness). Best scores before crash for the vanilla baseline.

Experiments AIME24 AMC MATH500 GSM8K
Vanilla (best before crash) 23.958 57.530 80.900 92.665
Masking-only 25.625 62.048 83.700 92.835
Masking & reweighting 26.667 62.651 82.450 92.305

Table 6: BF16 training with rollout staleness (64/2048). Best scores before crash for masking-only.

Experiments AIME24 AMC MATH500 GSM8K
Masking-only (best before crash) 19.167 49.699 78.750 91.793
Masking & reweighting 25.625 63.855 83.800 92.400

C.2 THRESHOLDS, C1, AND C2

Our method involves three hyperparameters: C1, C2, and the rejection threshold λ. All of them are
straightforward to set, and the technique is robust across a wide range of choices.

C1. We follow standard truncated importance sampling (TIS) choices. Empirically, selecting C1∈ [2,10]
consistently works well, and the method is not sensitive within this interval.

C2 (upper bound for pθref/pθnew). This parameter has no practical effect on performance. We set C2

slightly larger than 1+εhigh (e.g., 1.28 for DAPO), where any ratio clipped by C2 would already be clipped
by the PPO trust region. Thus, C2 mainly serves as a conceptual safeguard for ratio stability.

Rejection threshold λ. Our method performs well across all experiments with a default setting of λ=1.0,
and we recommend choosing λ close to this value. Increasing λ makes the kept-token distribution closer
to the target policy but increases the rejection rate. If λ>1, it begins rejecting tokens even when the policy
and inference distributions are perfectly aligned, causing overly conservative updates. The default value
c=1.0 guarantees full acceptance in the matched-distribution case and already reduces KL substantially
while keeping a high acceptance rate.
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Summary. Jackpot is stable and easy to configure: C1 is robust within the typical TIS range 2−10, C2

has no practical impact once chosen above 1+εhigh, and c=1.0 serves as a reliable default.

Table 7: Effect of C1 on benchmark performance. Experiment Setup: Model: Qwen3-4B-Base, C2 =
3.0, threshold c=1.0, response limit: 8k, mini-batch/train-batch: 64/2048, PPO clip: 0.4/0.7, 100k examples.
Numbers are pass@1 accuracy.

Hyperparameters AIME24 AMC MATH500 GSM8K
C1=2 26.875 63.855 82.800 92.267
C1=3 25.625 63.855 83.800 92.703
C1=4 26.042 65.060 83.500 92.684
C1=8 26.875 63.253 83.100 92.437

Table 8: Effect of rejection threshold c on benchmark performance. Experiment Setup: Model:
Qwen3-4B-Base (target) / Qwen3-1.7B-Base (rollout); Generation length limit: 8K; Training examples:
9K. Numbers are pass@1 accuracy.

Threshold c AIME24 AMC MATH500 GSM8K
0.8 14.7 49.4 74.5 92.0
0.9 12.5 47.0 74.6 91.8
1.0 14.7 48.5 74.6 92.2
1.1 12.3 47.4 74.1 92.0
1.2 13.5 45.8 74.1 91.9

C.3 CHOICE OF TOP-K FOR Z APPROXIMATION

In Section 4.4 we approximate the OBRS normalization constant Z by summing over the union of the top-k
tokens under pinf and pθnew , yielding Zapprox≤Z. Increasing k strictly improves this approximation but also
increases the number of logits that must be materialized and stored. In the main experiments we therefore
fix k=20, and here we justify this choice empirically.

We first study the direct effect of k on the quality of the Z estimator. For the extreme off-policy configuration,
we log (i) the fraction of the true normalization captured by the top-k estimator, Zapprox/Z, and (ii) the calibra-
tion factor κ defined in Section 4.4.2, using k∈{10,20,40}. As expected, larger k improves both quantities,
but with rapidly diminishing returns. Even for the smallest value k=10 we already capture at least 87% of Z
at the very beginning of training, and more than 99.98% once the policy has warmed up within few steps; using
k=40 increases the captured mass only slightly (from roughly 91% initially to about 100.0% in the steady
state). Since the union of top-20 tokens is always a superset of the union of top-10 tokens, these diagnostics
imply that k=20 already yields an almost exact estimator of Z while keeping the additional overhead modest.

We next evaluate how k affects downstream performance. Table 9 reports pass@1 accuracy on our four math
benchmarks for Jackpot with k∈{10,20,40}, keeping all other hyperparameters fixed. The differences across
choices of k are small and non-monotonic: k=20 performs slightly better on AMC and MATH500, while
AIME24 and GSM8K show no consistent trend. Overall, the variation is comparable to run-to-run noise,
and there is no evidence that pushing k beyond 20 systematically improves task performance. Taken together,

Table 9: Effect of top-k on benchmark performance. Numbers are pass@1 accuracy.

Hyperparameters AIME24 AMC MATH500 GSM8K
k=10 28.958 61.446 82.650 92.608
k=20 25.625 63.855 83.800 92.703
k=40 27.083 61.446 83.200 92.418

these results show that larger k does improve the Z estimator, but the gains become marginal once k reaches
20. Since the computational overhead of our method scales roughly linearly with k, we adopt k=20 as
a practical default: it provides an accurate, well-calibrated estimate of Z with negligible additional cost (less
than 3% overhead in our setup), and larger values of k do not yield measurable benefits in our experiments.

18


	Introduction
	Background
	Problem Setting: PPO Objective and Actor-Policy Distribution Mismatch
	Related Work

	Correcting Distribution Mismatch with Budgeted Rejection Sampling
	Numerical Simulation
	Theoretical Guarantees

	Jackpot: Design and Methodology
	Rejection and reweighting
	Integration with Conventional PPO Objective
	Which policy to approximate?
	Stabilization and Feasibility Challenges
	Top-k Approximation
	Bias Correction

	Implementation Overhead Analysis

	Empirical Validation
	Inference with large batch size and training with much smaller batch size
	Extreme Offpolicy Settings

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Analysis of OBRS
	The Post-Rejection Distribution
	Optimality for a Fixed Acceptance Budget
	Guaranteed KL Divergence Reduction
	Practical guidance

	Details of the Experiments
	TIS Adjustment Explanation
	Full Details of Extreme Size Batch Size Experiments

	Ablation Studies on Components of Jackpot, Threshold, and Top-K
	Components' Contribution to Jackpot
	Thresholds, C1, and C2
	Choice of Top-K for Z Approximation


