
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

JACKPOT: ALIGN ACTOR-POLICY DISTRIBUTION FOR
SCALABLE AND STABLE RL FOR LLM

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) has become an increasingly important paradigm for
improving large language models (LLMs) on alignment, reasoning, and coding tasks,
yet it remains extremely costly. The majority of training time is spent on rollouts.
Allowing actor and policy distributions to differ could unlock substantial scalability and
efficiency benefits, such as supporting large-batch or asynchronous training, and even
enabling a lightweight rollout model. However, existing importance sampling–based
corrections for distribution mismatch suffer from an inherent trade-off between stability
and training performance. To tackle this problem, we propose Jackpot, which leverages
Optimal Budget Rejection Sampling to directly reduce the gap between actor and policy
distributions. For efficiency and stability in practical training, We introduce an efficient
probability estimation strategy based on Top-K logits with batch bias correction, and
designs a stabilized Jackpot-PPO loss that jointly accounts for both the importance
sampling ratio and the trust-region constraint in PPO. Empirically, our method achieves
stable improvements in large-batch and asynchronous training, and in extreme off-policy
training it substantially delays the onset of collapse and delivers competitive performance.
Specifically, we achieve 20% improvement on AMC benchmarks and 8% AIME
benchmarks over the off-policy baseline under 128× actor-policy update ratio for
Qwen3-4B-Base and 64× for Qwen3-8B-Base, while achieving greater stability and
better performance than prior off-policy RL methods under extreme settings.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated substantial effectiveness in the post-training of large language
models (LLMs), yielding significant improvements in domains such as mathematics (Guo et al., 2025;
Azerbayev et al., 2023), coding (Jimenez et al., 2023; Ouyang et al., 2025), and agentic tasks (Liu et al., 2023).
Despite these successes, RL remains computationally expensive (Sheng et al., 2025; Fu et al., 2025; Zheng
et al., 2025b), with the majority of the training cost, often exceeding 70%, attributed to rollouts, wherein
LLMs generate solution trajectories for tasks in order to compute rewards. If actors and policies were allowed
to follow different distributions, the scalability and efficiency of RL could be elevated to an entirely new level.
For instance, such flexibility would make it possible to support large-batch or asynchronous training, thereby
improving the utilization of serving systems (Zheng et al., 2025a). Moreover, quantized or sparse models,
and even distilled smaller models, could be deployed as actors to further enhance efficiency. In practice,
however, the mismatch between actor and policy distributions often leads to instability and severe degradation
in performance (Liu et al., 2025), posing a fundamental barrier to the reliable adoption of these techniques.

When the distribution gap between the actor and the policy becomes large, existing importance sampling
(IS)-based correction methods (Liu et al., 2025; Wu et al., 2025b; Fu et al., 2025) perform suboptimally
compared with the baseline PPO. In practice, truncated importance sampling methods (TIS) either
underperform or exhibit substantial convergence gap to the on-policy baseline when the truncation threshold
is low or conservative, or TIS crashes before policy plateaus from RL training when the truncation threshold
is set to a higher or aggressive value. The importance weight used by TIS is pref(a)

ptarget(a)
. Once the actor

drifts too far, many tokens that the actor samples with high probability have very low probability under
the policy, since pinf>ptarget. These actor trajectories are effectively treated as low-likelihood samples by
the policy, causing TIS to train on tokens the policy would never select at inference and creating a widening
train-inference mismatch. This naturally raises the following question: Can we directly modify the actor’s
sampling distribution and sampled trajectories to reduce its distributional gap to the policy?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: RL training requires actor-policy maintaining strong probability distribution alignment. When
actor and policy aren’t aligned, they will result in training collapse. Here we show training setting
use a Qwen3-1.7B-Base model training rollout to train a Qwen3-8B-Base model policy. Without any
alignment procedures, training collapses (pink). Prior method TIS (green) also show significant gap towards
Qwen3-8B-Base on-policy baseline (purple), while collapsing, using TIS sees KL divergence also violently
increasing. Our proposed method, Jackpot (yellow) maintains small KL divergence between actor and policy
model probability distribution, while showing stable and competitive training convergence to on-policy setting.

Rejection sampling, which can simulate a target distribution from an accessible proposal distribution, has
a long history and has been widely applied in fields such as biology (Carrella et al., 2024), the social
sciences, machine learning (Naesseth et al., 2016), and statistics (Martino & Mı́guez, 2011; Gilks et al.,
1995). However, a direct application of rejection sampling is prohibitively expensive in the context of RL.
Specifically, token i must be accepted with probability pi

λqi
, where λ=maxi

pi
qi

. For contemporary LLMs,
which typically possess vocabularies exceeding 100,000 tokens, this constant C can become extremely large,
since the majority of token probabilities are exceedingly close to zero. As a result, nearly all tokens proposed
by the actor are rejected, rendering naive rejection sampling impractical for large-scale RL and leading to
prohibitively low sample efficiency. Fortunately, Optimal Budget Rejection Sampling (OBRS) (Verine et al.,
2024) relaxes the requirement of classical rejection sampling and, although it does not enforce the actor
distribution to be identical to the policy distribution, it provably reduces their distance and guarantees that for
any rejection ratio the adjusted actor distribution is strictly closer to the policy distribution than the unadjusted
one. This provides us with an opportunity fundamentally different from standard rejection sampling.

However, applying OBRS directly in RL systems introduces several technical challenges. First, PPO relies on
the existence of a trust region to stabilize the training process, which means that modifying the actor probabil-
ities through OBRS may compromise training stability. Second, in order to compute the true probabilities of
the remaining tokens after the rejection process, OBRS requires access to the probabilities of all tokens in the
vocabulary, which imposes significant memory overhead for modern LLMs with extremely large vocabularies.

In this paper, we propose JACKPOT, which consists of three key components. First, an OBRS-based masking
mechanism ensures that the adjusted actor distribution remains strictly closer to the policy distribution.
Second, an efficient probability estimation strategy is introduced, which leverages Top-K logits together
with batch-wise bias correction to approximate the full-vocabulary probabilities while mitigating memory
overhead. Third, we design a stabilized JACKPOT-PPO loss that jointly accounts for both the importance
sampling ratio and the trust region constraint in PPO, thereby preserving training stability.

To validate the effectiveness of our method, we consider two representative scenarios. (1) Large-batch
training. In this setting, the LLM generates up to 128 mini-batches in a single rollout step, which enables
more efficient utilization of serving system hardware resources. Empirically, we observe more than a 2×
improvement in end-to-end RL throughput compared to on-policy training. However, this comes at the
cost of substantial policy drift during training, resulting in significant divergence between the rollout actor
and the updated policy. (2) Extreme off-policy training. In this setting, we employ a fixed model for rollouts
that is different from the one being optimized. This configuration introduces a severe distributional mismatch,
under which standard approaches typically fail and training collapses rapidly.

We organize the remainder of this paper as follows.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• In Section 2, we formally introduce the distribution mismatch between actors and policy, discuss its sources
under different training scenarios, and review related work.

• In Section 3, we describe our application of OBRS to RL and validate its effectiveness through numerical
experiments and empirical observations.

• In Section 4, we provide a detailed description of JACKPOT-PPO, including three key components: (i) OBRS
masking, (ii) efficient probability estimation with Top-K logits and batch bias correction, and (iii) a stabilized
JACKPOT-PPO loss that jointly considers importance sampling ratios and PPO’s trust-region constraint.

• In Section 5, we present experiments on Qwen models and mathematical reasoning tasks to validate
JACKPOT. First, in large-batch training, our method maintains stable learning, outperforming offline and TIS
baselines and approaching the performance of the online setting. Second, in extreme off-policy training, the
proposed method substantially delays the onset of training collapse and achieves competitive performance.

Using JACKPOT, we achieve 20% improvement on AMC benchmarks and 8% AIME benchmarks over the
off-policy baseline under 128× actor-policy update ratio for Qwen3-4B-Base and 64× for Qwen3-8B-Base,
while achieving greater stability and better performance than prior off-policy RL methods under extreme
settings. Overall, JACKPOT is simple to plug in, theoretically well-grounded, and holds the potential to enable
more aggressive forms of off-policy RL.

2 BACKGROUND

In this section, we first formalize the distribution mismatch problem that arises in RL for LLMs. We then
review several strands of related work of JACKPOT.

2.1 PROBLEM SETTING: PPO OBJECTIVE AND ACTOR-POLICY DISTRIBUTION MISMATCH

We begin with the clipped objective in PPO (Schulman et al., 2017), whose expectation can be written as
LPPO(θ)=Ex∼Pinf

[
min

(
rθ(x)Â(x),clip(rθ(x),1−ϵ,1+ϵ)Â(x)

)]
(1)

where rθ(x)=pθnew(x)/pref(x) is the likelihood ratio between the updated policy pθnew and the reference
policy pref, and Â(x) denotes the estimated advantage at decision x. pinf is the inference distribution used
to generate rollouts, pref is the reference policy distribution assumed in the objective, and pθnew is the updated
policy distribution. In the standard process, it is assumed that pinf = pref, but in practice this assumption
is often violated, leading to actor–policy distribution mismatch.

Distribution mismatch is common and arises for several reasons, such as minor discrepancies between the
inference engine and the reference policy by FSDP engines, the use of stale or asynchronous data, or rollouts
generated by approximated models (e.g., quantized, sparsified, or distilled). Such mismatches can destabilize
training and therefore require additional mechanisms to correct or mitigate their impact. .

2.2 RELATED WORK

RL for LLM. Reinforcement learning has been widely applied to LLMs to improve human alignment,
reasoning, coding, and other complex tasks. Beyond PPO, memory efficient methods have been proposed,
including ReMax (Li et al., 2023), RLOO (Ahmadian et al., 2024), and GRPO (Shao et al., 2024). In addition,
methods such as SimPO (Meng et al., 2024) and DPO (Rafailov et al., 2023), which are based on offline
RL, have also been employed for human alignment. RL training systems for LLMs, such as Verl (Sheng
et al., 2025), AReal (Fu et al., 2025), TRL (von Werra et al., 2020), and OpenRLHF (Hu et al., 2024), have
been developed to improve training throughput and scalability.

Distribution Mismatch Correction in RL. Actor-policy mismatch is a common problem that has long
been studied, e.g. Impala Espeholt et al. (2018). To alleviate the actor-policy distribution gap, the method
introduces a truncated importance sampling (TIS) to approximate the true PPO objective.

LPPO(θ)=Ex∼Pinf

[
min

(pref(x)
pinf(x)

,C
)
min

(
rθ(x)Â(x),clip(rθ(x),1−ϵ,1+ϵ)Â(x)

)]
(2)

The truncation thresholdC is for maintaining the stability of the range of the importance ratio. Recently, several
methods apply the truncated importance sampling method to RL of LLMs. Methods such as FlashRL (Liu et al.,
2025), AReal (Fu et al., 2025), and LlamaRL (Wu et al., 2025b) address distribution mismatch by introducing
(truncated) importance sampling ratios, typically of the form pref/pinf, to correct the impact of mismatch on

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

advantage estimation. From system perspective, FP32 LM heads (Liu et al., 2025) and deterministic LLM
Inference (He & Lab, 2025) are implemented to mitigate the numerical issue of serving systems when rollout.

In this paper, we proposed JACKPOT. Our method is orthogonal to the above prior works. We directly modify
pinf through rejection sampling and reweighting of the output probabilities so that the divergence between pinf
and the target distributions pref is provably reduced. Moreover, techniques such as TIS can be applied on top
of this improved distribution to further correct the remaining mismatch in a complementary way. JACKPOT
offers a mechanism that is shown to be effective in stabilizing RL training under severe mismatches.

3 CORRECTING DISTRIBUTION MISMATCH WITH BUDGETED REJECTION SAMPLING

One of the most fundamental challenges of modern RL framework for LLMs is the distributional mismatch
between samples generated by our inference model (actor), or pinf, and the true reference policy distribution,
or pθref . One way is through Importance Sampling, or adding an importance ratio term pref

pinf
. However, as the

trajectories are sampled and pinf(x) can be small, the importance ratio sometimes blows up in numeric value.
In practice, min(pref

pinf
,C) is used Espeholt et al. (2018) to cap out the dangerously large values, leading to huge

bias in correcting the distribution misalignment. Instead of solely relying on Importance Sampling, can we
modify pinf and the sampled trajectories directly so that it is closer in probability distribution to pref?

One direct idea is Rejection Sampling (RS), or stochastically rejecting tokens in the tractories sampled with
pinf based on the difference between the two distributions. Once a token is rejected, it contributes nothing
to the loss and gradient calculation. While canonical rejection sampling could resolve this, its application
here—using pinf as the proposal and pθnew as the target—is impractical, as rejection sampling aims for
identical probability distribution after correction. The potentially large divergence between these distributions
would lead to a prohibitively low acceptance rate, essentially leading to most tokens being rejected. The
data efficiency of RL training will be severely degraded, failing to meet practical requirements.

To overcome this, we adopt the principled approach of Optimal Budgeted Rejection Sampling (OBRS)
(Verine et al., 2024). This technique reframes the problem: instead of demanding perfect adherence to the
target distribution at the cost of sample efficiency, it seeks the optimal rejection rule that, for a given target
acceptance rate (a ”budget”), produces a distribution as close as possible to the target. This is precisely the
trade-off our problem requires.

The method employs a scaled acceptance probability, where a scaling factor λ is chosen to meet the desired
sample throughput. A token a sampled from the proposal pinf is accepted with probability αC(a) defined
as αC(a)=min

(
1,

ptarget(a)
λ·pinf(a)

)
3.1 NUMERICAL SIMULATION

Figure 2: OBRS calibration results across three views: (a) per-token probability-ratio clipping pulls the
model distribution toward the target, (b) acceptance remains high (≈ 95%) even at large initial KL, and
(c) overall KL is reduced by roughly an order of magnitude.

Crucially, this calibration is highly efficient; the acceptance rate remains high even when there is a large
initial KL divergence. The impact on distributional alignment is dramatic: a significant reduction in KL

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

divergence is observed with high acceptance rates. By systematically damping the most extreme probability
ratios, OBRS produces a distribution that is not only provably closer to the on-policy target but also primed
to yield more stable and effective PPO/GRPO policy updates.

3.2 THEORETICAL GUARANTEES

OBRS possesses proven optimality. It has been established that for any desired average acceptance rate
ᾱ ∈ (0,1], there exists a corresponding scaling factor C that achieves it. Crucially, among all possible
rejection rules that satisfy this budget, this scaled acceptance rule is the unique one that minimizes the
Kullback-Leibler (KL) divergence to the target distribution pθnew . A formal statement and proof of this
theorem are provided in Appendix §A.2. This guarantee ensures we are using the provably best method
for trading sample efficiency for distributional accuracy.

The scaling factor C acts as an explicit control knob for this trade-off. A larger C pushes the post-rejection
distribution closer to the true target pθnew at the expense of a lower acceptance rate, while a smaller C boosts
throughput at the cost of higher divergence. In our experiments, we find C=1 to be a robust default.

This formulation also guarantees that applying this sampling technique is always better than using the original
inference distribution pinf directly. The post-rejection distribution pkept,C is strictly closer to the target pθnew in
KL divergence than the original pinf for any choice of C>0. We provide a summary of this proof tailored to
our notation in Appendix §A. Our algorithm for implementing this procedure is also detailed in Appendix §A.

4 JACKPOT: DESIGN AND METHODOLOGY

In this section, we present details on the design considerations of JACKPOT. We show the token rejection
criteria and reweighting procedures in Section, applying our rejection sampling to the PPO setup in Sections,
and efficiency analysis in Section.

4.1 REJECTION AND REWEIGHTING

To bridge the inference probability distribution pinf and the target distribution ptarget, we use the following
critieria similar to Leviathan et al. (2023). For token sampled by pinf, x, we accept token with probability

min(1,
ptarget(x)

λpinf(x)
). (3)

Note that the above equation is P(x accepted | x sampled by pinf(x)). Once the token x is rejected, it will
be masked out and no longer participate in the loss and gradient propagation. After rejection, the distribution
has expression:

POBRS=
min(pinf(x),

ptarget(x)
λ)∑

x′min(pinf(x′),
ptarget(x′)

λ)
. (4)

4.2 INTEGRATION WITH CONVENTIONAL PPO OBJECTIVE

Following Section 4.1 , we have the following PPO objective and applied Truncated Importance Sampling,

LPPO
standard(θ)=Ex∼pinf

[
f(x)

]
=Ex∼Pinf

[
min

(
rθ(x)Â(x),clip(rθ(x),1−ϵ,1+ϵ)Â(x)

)]
(5)

LPPO
TIS(θ)=Ex∼Pinf

[
min

(pref(x)
pinf(x)

,C
)
f(x)

]
(6)

On top of TIS, we can further corrects the pinf of interest by using our rejection sampling critieria and
reweighting by,

min(
pref(x)

pinf(x)
,C)→min(

pref(x)
min(pref(x′)/λ,pinf(x′))

Z

,C)=min(Z ·max(λ,
pref(x)

pinf(x)
),C) (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Ideal RL Training

Actor 𝑃!"#= 𝑃$%#

Policy 𝑃$%#

x

x ~𝑃$%#

Realistically, 𝑃!"# ≠ 𝑃$%# occurs and leads to training crashes.
Here is Jackpot.

Actor
𝑃!"#

Policy
𝑃$%#

x ~𝑃!"#x

Rollout

Rollout

Rejection
Sampling
min(1,

&!"#
&$%#

)

Probability
Reweighting
min(𝑃$%#,𝑃!"#)

𝑍

The training is stable! The training after Jackpot is stable!

Figure 3: Illustration of JACKPOT Pipeline focusing on Optimal Budgeted Rejection Sampling (OBRS)
and Reweighting Procedures

where Z is
∑

x′ min(pinf(x
′), pref(x

′)
λ). Therefore, instead of (6), we use the following PPO objective

formulation,

LPPO
ours(θ)=Ex∼Pinf

[
min(Z ·max(λ,

pref(x)

pinf(x)
),C
)
·f(x)

]
(8)

4.3 WHICH POLICY TO APPROXIMATE?

Conventionally, we assume pinf=pref, but empirically, we discover that for settings where RL training suffers
from severe staleness, e.g. using large batch size or using asynchronized rollout/update cycles, approximating
pinf→pnew the latest updated policy edges out in performance. The rationale is that the reference policy
is too stale and too distant to the latest updated policy to offer reliable trust region. In that case, we adjust
the conventional PPO objective in (2) to the following from importance sampling,

Ex∼Pref

[
f(x)

]
=Ex∼Pnew

[pref

pnew
f(x)

]
(9)

Then, we can approximate pnew using pinf through our rejection sampling and reweighting. For the high
staleness settings, we use the following approximating formulation,

Ex∼pnew

[pref

pnew
f(x)

]
←Ex∼pinf

[
min(

pnew

p∗inf
,C1)·min(

pref

pnew
,C2)·f(x)

]
(10)

where p∗inf is the corrected distribution through rejection sampling and reweighting.

We then have the JACKPOT objective,

LPPO
ours(θ)=

[
min(Z ·max(λ,

pnew(x)

pinf(x)
),C1

)
·min(

pref

pnew
,C2)·f(x)

]
(11)

Throughout our experiments, we use λ=1. We offer the user to either use (8) to align to pref or pnew
depending on their target policy desired under their use cases.

4.4 STABILIZATION AND FEASIBILITY CHALLENGES

Implementing JACKPOT directly faces a huge challenge of computational feasibility. Note that the weight’s
normalization constant, Z, requires a sum over the entire vocabulary (|V|>100,000), creating a crippling
memory bottleneck from storing full logit vectors (batch size × seq len × vocab size). This
severely restricts batch sizes, directly undermining the efficiency OBRS is intended to provide. Therefore,
transforming this principled approach into a production-ready algorithm requires non-trivial engineering: we
must introduce mechanisms to both bound the importance weights for stability and develop a computationally
efficient, low-bias estimator for the normalization constant. To overcome the computational bottleneck of
calculating Z, we employ a top-k approximation, which we then de-bias empirically.

4.4.1 TOP-K APPROXIMATION

The probability mass of language models is typically concentrated in a small subset of the vocabulary. We
leverage this property by approximating the sum over V with a sum over a much smaller set, Vk, which

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

contains the most likely tokens from both the inference and current policies. Specifically, let top-k(p) be the
set of k tokens with the highest probability under distribution p. We define our approximation set as the union:

Vk= top-k(pinf)∪top-k(pθnew)
The union is crucial because a token might be highly probable under one distribution but not the other, and the
min function makes these overlapping regions important. The approximate normalization constant, Zapprox,

is then: Zapprox=
∑

a′∈Vk
min

(
pinf(a

′),
ptarget(a

′)
λ

)
4.4.2 BIAS CORRECTION

While efficient, this top-k approximation introduces a systematic bias. Since the terms in the sum are
non-negative, omitting tokens from the full vocabulary V can only decrease the total sum. Therefore, our
approximation is a consistent underestimation of the true value:

E[Zapprox]≤Z
For k=20, . This bias could systematically alter the scale of the gradients during training. Fortunately, there
is an elegant way to correct this. A key property of the framework is that the true normalization constant
Z is exactly equal to the expected acceptance rate, ᾱ:

ᾱ=
∑
a∈V

pinf(a)·min

(
1,
ptarget(a)

λ·pinf(a)

)
=
∑
a∈V

min

(
pinf(a),

ptarget(a)

λ

)
=Z.

During the data collection phase (Algorithm 1, Phase 1), we can compute an unbiased empirical estimate
of ᾱ from the observed samples:

ˆ̄α=
Number of accepted samples

Total number of proposed samples
This gives us two estimators for Z: the low-variance but biased Zapprox, and the unbiased but higher-variance
ˆ̄α. We can combine them to create a de-biased, low-variance estimator. We compute a batch-wide calibration
factor, κ, by dividing the empirical acceptance rate by the batch-averaged Zapprox:

κ=
ˆ̄α

1
B

∑B
i=1Z

(i)
approx

where B is the number of samples in the batch. We then apply this scalar correction to each per-token Zapprox
value used in the loss calculation. This procedure scales our efficient top-k estimate to match the true expected
value observed in practice, effectively removing the bias while retaining the computational benefits and
lower variance of the top-k approach.

4.5 IMPLEMENTATION OVERHEAD ANALYSIS

JACKPOT is lightweight. First, JACKPOT requires no additional trajectories sampled, as all the experiments we
conducted in the extensive empirical studies section are using the same rollout width as the on-policy baseline.
A critical distinction to Leviathan et al. (2023) is that JACKPOT doesn’t reject all tokens from the first
place in the trajectory where a token first rejects and resample from where. Instead, JACKPOT only
mask out tokens using our rejection critieria, and no additional trajectories sampling needed. Second,
no additional log prob computation needed, since both pref and pnew will be computed by the standard
objective (5), and JACKPOT only needs to reuse these probability distributions already computed. Third, no
modification required on vLLM. Since JACKPOT doesn’t required special operator or numeric precisions, we
directly based our implementation on standard vLLM for rollout, without relying on custom kernels in vLLM.

JACKPOT indeed add minor additional overhead to standard PPO objective computation. The added
computation comes from forcing vLLM to return top-K logprobs. Fortunately, since we only use k=20
for our runs, the added extra compute only added less than 3% to the total compute. In contrast, JACKPOT
helps models be trained using 64× or higher batch sizes by drastically alleviating the lack of convergence
from the staleness of the actor model. Thus, comparing with the small batch and on-policy performance,
we achieve more than 4 times speedup.

5 EMPIRICAL VALIDATION

In this section, we comprehensively test our method on two different and challenging misalignment settings.
First, we evaluate our method on an extremely large inference batch size, while keeping the training
mini-batch size the same. At the end of each training-inference cycle, the staleness of the model weights

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 1 The Jackpot Algorithm

Require: Policies: current pnew, reference pref, inference pinf.
Require: Hyperparameters: OBRS threshold λ, PPO clip ϵ, Jackpot clips c1,c2, top-k count.

1: Convention: SG(·) denotes the stop-gradient operation.
2: Implementation note: Jackpot only reweights quantities from the standard rollout and PPO/GRPO

forward passes; it does not perform extra model forward passes or trajectory recomputation.
3: Phase 1: Efficient Rollout (Standard Generation)
4: Initialize experience bufferD←∅.
5: for each trajectory sampling step t do
6: Single forward pass of pinf(· |st), sample at∼pinf(· |st).
7: From the same forward, compute and store top-k log-probabilities of pinf: TopKinf(st).
8: Store (st,at,pinf(at |st),TopKinf(st)) (plus rewards, values, etc.) in bufferD.
9: end for

10: Compute advantages Ât using collected trajectories.
11: Phase 2: PPO Update with Jackpot Reweighting
12: for each mini-batch sampled fromD do
13: // 1. Standard PPO Computation (reused by Jackpot)
14: Forward pass pnew and pref on the mini-batch to get logits, pnew(at |st), pref(at |st), andTopKnew(st).

15: Compute policy ratio: rt(θ)=
pnew(at |st)
pref(at |st)

.

16: Compute vanilla PPO objective: LPPO=min
(
rt(θ)Ât,clip(rt(θ),1−ϵ,1+ϵ)Ât

)
.

17: // 2. Efficient Z-Approximation and Bias Correction (no extra forward passes)
18: Construct approximation set Vk=TopKinf(st)∪TopKnew(st).
19: Compute

Zapprox=
∑
x∈Vk

min

(
pinf(x |st),

pnew(x |st)
λ

)
.

20: Estimate correction factor κ using the OBRS-based bias-correction procedure described in Sec. 4.4.2
(e.g., from batch-level OBRS statistics).

21: Set corrected normalizer Zt←κ·Zapprox.
22: // 3. Jackpot Weight Calculation
23: OBRS weight: wOBRS=Zt·max

(
λ,pnew(at|st)

pinf(at|st)

)
.

24: ρjackpot=min(wOBRS,c1)·min
(

pref(at|st)
pnew(at|st) ,c2

)
.

25: // 4. Apply Weight to Loss
26: Lfinal=SG(ρjackpot)·LPPO.
27: Update policy parameters new using gradient of−Lfinal.
28: end for

in the inference server will be significantly amplified. Secondly, we evaluate our method using two separate
models for training and rollout, an extreme setting where the output distribution gap is more severe than
usual staleness in off-policy RL settings. We show that our technique enables the training model to better
benefit from tokens from a completely distinct model. Because of the limit in space, we list detailed ablation
studies on threshold selection and top-K analysis in the Appendix C.

5.1 INFERENCE WITH LARGE BATCH SIZE AND TRAINING WITH MUCH SMALLER BATCH SIZE

RL training using a much larger batch size for generation and a smaller batch size for training is common
in practice. It is usually due to either system limitation, where the generation is highly parallelizable and
relatively memory-light compared to training (saving optimizer states, etc.), or it is for better stability as
advocated by Schulman et al. (2017). However, the delay in updates results in staleness, which we magnify
for evaluating our method.

We use the best results under 30k examples for Qwen3-4B-Base as our metrics, and the best under 50k
for Qwen3-8B-Base. 1. The results of our run are summarized in table 1. On-policy RL generally converges

1Qwen3-4B-Base on-policy run crashes at 30k examples.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Evaluation scores across benchmarks. TIS + Adjustment is explained in Section B.1.

GSM8K MATH-500 AMC22 & 23 AMC12 2024 AIME24 AIME25

Models / Methods Mean@4 Mean@4 Mean@4 Mean@4 Mean@16 Pass@16 Mean@16 Pass@16

Qwen3-4B-Base on DeepScaleR-Preview Dataset (rollout batch size = 2048; train batch size = 32; 64×)

On Policy 92.19 81.55 58.43 51.11 23.12 33.13 22.91 30.95
Off Policy 88.04 71.15 39.15 29.44 13.96 23.03 11.04 18.61
TIS 89.67 72.00 42.77 31.67 11.88 17.56 11.25 17.28
TIS + Adjustment 92.76 79.50 57.22 43.33 18.75 26.03 17.71 24.61
Jackpot (Ours) 92.24 80.05 53.92 50.00 20.63 29.48 18.13 23.63

Qwen3-4B-Base on DeepScaleR-Preview Dataset (rollout batch size = 4096; train batch size = 32; 128×)

Off Policy 79.70 60.20 33.00 24.44 8.00 15.73 5.00 11.00
TIS + Adjustment 20.70 19.10 7.80 5.00 1.00 4.00 1.00 2.00
Jackpot (Ours) 92.00 80.00 51.20 47.22 19.16 24.58 18.52 25.08

Qwen3-8B-Base on DeepScaleR-Preview Dataset (rollout batch size = 2048; train batch size = 32; 64×)

On Policy 94.24 93.99 28.95 54.44 28.95 37.89 22.50 28.54
Off Policy 91.05 77.15 50.60 40.00 18.54 28.67 14.16 21.98
TIS + Adjustment 93.85 82.55 60.54 48.33 24.58 35.06 20.00 22.90
Jackpot (Ours) 94.01 83.05 63.55 54.44 26.87 36.23 20.41 26.57

Table 2: AMC22&23 results of two model training using various methods across the training steps.
Mean@k/Pass@k.

AMC22 & 23 Rollout Model Train Model 0 20 30 40 50 60 70

Vanilla GRPO Q2.5-1.5B-IT Qwen2.5-3B-Base 18.1/48.2 31.8/59.0 32.2/61.5 33.3/59.0 30.0/49.4 22.4/42.3 5.7/16.9
TIS Qwen2.5-1.5B-IT Q2.5-3B-Base 18.1/48.2 28.9/57.8 28.2/54.2 32.5/68.7 26.8/56.6 0/0 0/0
Jackpot (ours) Q2.5-1.5B-IT Qwen2.5-3B-Base 18.1/48.2 29.4/59.0 31.2/57.8 33.9/60.2 31.9/62.7 28.8/54.2 13.4/31.3

AMC22 & 23 Rollout Model Train Model 0 20 30 40 50 60 70

Vanilla GRPO Q2.5-MATH-1.5B-IT Qwen2.5-3B-Base 18.1/48.2 23.3/60.2 22.6/57.8 24.7/53.0 17.0/43.4 3.9/14.5 0
TIS Q2.5-MATH-1.5B-IT Qwen2.5-3B-Base 18.1/48.2 25.8/59 25.0/59.0 21.7/55.4 0 0 0
Jackpot (ours) Q2.5-MATH-1.5B-IT Qwen2.5-3B-Base 18.1/48.2 27.3/57.8 29.4/63.9 26.7/59.0 28.6/60.2 22.4/54.2 2.9/16.9

much faster than off-policy runs. We observed that for less aggressive off-policy settings, our method’s
margin is quite small. However, for extreme settings, such as 4096-32 for Qwen3-4B-Base and 2048-32
for Qwen3-8B-Base. We observed consistently that TIS-adjusted crashes occurred way earlier than our
settings, often resulting in inferior results. For example, Qwen3-4B-Base TIS-adjusted fails to converge
from the beginning. Also, as shown in Figure fig. 4 (a), TIS-adjusted also crashes way earlier than ours under
the 2048-32 setting. Across all settings we tested, our method greatly improves the speed of convergence
of the off-policy RL, while also resulting in performance numbers comparable to the on-policy runs.

Besides, as a much less aggressive setting, KV FP8 quantization can result in a performance crash as shown
in Figure 4(b). Here, we apply only our rejection sampling algorithm, without clipping/truncation or any
similar tricks. We show our performance recovers from crashes.

5.2 EXTREME OFFPOLICY SETTINGS

In this section, we demonstrate our method’s effectiveness on the extreme setting where the model under
inference and training are fundamentally two separate models. Specifically, we hypothesize that our sampling
algorithm can always filter out useful tokens for the model training, even given a completely exotic output
response. We use Qwen2.5-3B-Base as the trainer model, and we adopt different inference models from
Qwen2.5-1.5B-Instruct to Qwen2.5-Math-1.5B-Instruct, trained on MATH-8K Hendrycks et al. (2021)
dataset. We find out that our method can still improve itself under such extreme settings.

Shown in Figure 4 (c), we see that our run green curve shows clear improvement over our baseline GRPO
and TIS settings. It even increases by 12% on MATH-500 under such an extreme misaligned setting. More
results are summarized in Table 2, showing that the improvement also exists on AMC problems. We believe
our method offers a new possibility to unlock much more scalability in RL efficiency and performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) (b) (c)

Figure 4: Overview of our empirical experiment results. (a) shows our proposed method’s strength in
correcting stale inference model distribution, and approaches the on-policy trend while maintaining training
stability; (b) shows our proposed method to align output distribution can correct RL training instability even
if applied alone; (c) The strength in our model’s ability to align two different distributions allows us to put
it in the most extremely misalignment setting where the rollout and the training model are separate of different
architecture, our method shows early glimpse of hope and beats the baseline.

6 CONCLUSION

We propose Jackpot, which leverages Optimal Budget Rejection Sampling to directly reduce the gap between
actor and policy distribution. Empirically, our method achieves stable improvements in large-batch and
asynchronous training and also demonstrates stability under extreme misalignment settings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

Our study is centered on the development of reinforcement learning techniques for large language models.
The research does not involve the use of human subjects, personal data, or other sensitive information. All
datasets employed are openly accessible and commonly utilized within the research community. We recognize
that advancements in LLMs may lead to societal risks, such as the potential misuse for generating harmful
or deceptive outputs. To address such concerns, this work is conducted strictly within controlled academic
environments, with the primary objective of enhancing the robustness and efficiency of training methodologies.

8 REPRODUCIBILITY STATEMENT

We have provided a comprehensive account of implementation details, hyperparameters, and experimental
configurations in both the main text and the appendix. This documentation is intended to ensure that other
researchers are able to independently reproduce our findings without ambiguity.

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet
Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for mathematics. arXiv
preprint arXiv:2310.10631, 2023.

Ernesto Carrella, Joseph Powers, Steven Saul, Richard M Bailey, Nicolas Payette, Katyana A Vert-pre, Aarthi
Ananthanarayanan, Michael Drexler, Chris Dorsett, and Jens Koed Madsen. Rejection sampling and
agent-based models for data limited fisheries. Frontiers in Marine Science, 11:1243954, 2024.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures, 2018. URL
https://arxiv.org/abs/1802.01561.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun Mei, Jiashu
Wang, et al. Areal: A large-scale asynchronous reinforcement learning system for language reasoning.
arXiv preprint arXiv:2505.24298, 2025.

Wally R Gilks, Nicky G Best, and Keith KC Tan. Adaptive rejection metropolis sampling within gibbs
sampling. Journal of the Royal Statistical Society Series C: Applied Statistics, 44(4):455–472, 1995.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Horace He and Thinking Machines Lab. Defeating nondeterminism in llm inference. Thinking Machines
Lab: Connectionism, 2025. doi: 10.64434/tml.20250910. https://thinkingmachines.ai/blog/defeating-
nondeterminism-in-llm-inference/.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
https://arxiv.org/abs/2103.03874.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An easy-to-use,
scalable and high-performance rlhf framework. arXiv preprint arXiv:2405.11143, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan.
Swe-bench: Can language models resolve real-world github issues? arXiv preprint arXiv:2310.06770, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding.
In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

11

https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/2103.03874

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A simple,
effective, and efficient reinforcement learning method for aligning large language models. arXiv preprint
arXiv:2310.10505, 2023.

Liyuan Liu, Feng Yao, Dinghuai Zhang, Chengyu Dong, Jingbo Shang, and Jianfeng Gao. Flashrl: 8bit
rollouts, full power rl, August 2025. URL https://fengyao.notion.site/flash-rl.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen Men,
Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang, Sheng Shen,
Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang. Agentbench: Evaluating
llms as agents. arXiv preprint arXiv: 2308.03688, 2023.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai, Jeffrey
Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview with a 1.5b model
by scaling rl, 2025. Notion Blog.

Luca Martino and Joaquı́n Mı́guez. A generalization of the adaptive rejection sampling algorithm. Statistics
and Computing, 21(4):633–647, 2011.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-free
reward. Advances in Neural Information Processing Systems, 37:124198–124235, 2024.

Christian A Naesseth, Francisco JR Ruiz, Scott W Linderman, and David M Blei. Rejection sampling
variational inference. stat, 1050:18, 2016.

Anne Ouyang, Simon Guo, Simran Arora, Alex L Zhang, William Hu, Christopher Ré, and Azalia Mirhoseini.
Kernelbench: Can llms write efficient gpu kernels? arXiv preprint arXiv:2502.10517, 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model. Advances in neural
information processing systems, 36:53728–53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin
Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings of the Twentieth
European Conference on Computer Systems, pp. 1279–1297, 2025.

Alexandre Verine, Muni Sreenivas Pydi, Benjamin Negrevergne, and Yann Chevaleyre. Optimal budgeted
rejection sampling for generative models. In International Conference on Artificial Intelligence and
Statistics, pp. 3367–3375. PMLR, 2024.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement learning.
https://github.com/huggingface/trl, 2020.

Bo Wu, Sid Wang, Yunhao Tang, Jia Ding, Eryk Helenowski, Liang Tan, Tengyu Xu, Tushar Gowda,
Zhengxing Chen, Chen Zhu, Xiaocheng Tang, Yundi Qian, Beibei Zhu, and Rui Hou. Llamarl: A
distributed asynchronous reinforcement learning framework for efficient large-scale llm training, 2025a.
URL https://arxiv.org/abs/2505.24034.

Bo Wu, Sid Wang, Yunhao Tang, Jia Ding, Eryk Helenowski, Liang Tan, Tengyu Xu, Tushar Gowda,
Zhengxing Chen, Chen Zhu, et al. Llamarl: A distributed asynchronous reinforcement learning framework
for efficient large-scale llm trainin. arXiv preprint arXiv:2505.24034, 2025b.

12

https://fengyao.notion.site/flash-rl
https://arxiv.org/abs/1707.06347
https://github.com/huggingface/trl
https://arxiv.org/abs/2505.24034

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng,
Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan
Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun
Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025. URL
https://arxiv.org/abs/2505.09388.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang, Yuqiong Liu,
Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint arXiv:2507.18071, 2025a.

Haizhong Zheng, Yang Zhou, Brian R Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and Beidi Chen.
Act only when it pays: Efficient reinforcement learning for llm reasoning via selective rollouts. arXiv
preprint arXiv:2506.02177, 2025b.

A ANALYSIS OF OBRS

This appendix provides the theoretical foundation for OBRS. We first formally define the post-rejection
distribution that results from our method. We then prove two key results:

1. Optimality: For any desired sample efficiency (i.e., acceptance rate), OBRS is the unique optimal
rejection mechanism that produces a post-rejection distribution closest to the target pθnew in terms
of KL divergence (Theorem 1).

2. Monotonic Improvement: The post-rejection distribution monotonically approaches the target
distribution as the scaling factor C increases. This guarantees that for any C>0, OBRS reduces
the KL divergence compared to using the proposal pinf directly. (Proposition 1).

For notational clarity, we consider the distributions over tokens for a single, fixed prompt and omit the explicit
conditioning. Let pt≡pθnew denote the target distribution and pp≡pinf denote the proposal distribution.

Algorithm 2 Implementation of Optimal Budgeted Rejection Sampling

Require: Proposal distribution pinf, Target distribution pθnew

Require: Scaling factor C>0, Number of samples to accept N
Ensure: Set of accepted samples Skept

1: Initialize Skept←∅
2: while |Skept|<N do
3: Sample a token a∼pinf(·)
4: Calculate acceptance probability α←min

(
1,

pθnew(a)
C·pinf(a)

)
5: if U(0,1)<α then
6: Add a to Skept
7: end if
8: end while
9:

10: return Skept

A.1 THE POST-REJECTION DISTRIBUTION

Recall from Definition 1 that OBRS accepts a token a∼pp(a) with probability αC(a)=min
(
1, pt(a)

C·pp(a)

)
.

The unnormalized probability of sampling and keeping a token a is pp(a) ·αC(a), which simplifies to
min{pp(a),pt(a)/C}.
The overall probability of accepting any token, which we denote as the acceptance rate ZC , is the sum over
all possible tokens:

ZC=
∑
a∈A

min

{
pp(a),

pt(a)

C

}
.

13

https://arxiv.org/abs/2505.09388

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The distribution of the tokens that are kept, which we call the post-rejection distribution pkept,C , is therefore:

pkept,C(a)=
min{pp(a),pt(a)/C}

ZC
.

Special cases clarify the role of C: as C→0, ZC→1 and pkept,C→pp (all tokens are kept). As C→∞,
ZC→ 0 and pkept,C→ pt (perfect alignment with vanishing throughput). Standard rejection sampling is
the special case where C≥maxa(pt(a)/pp(a)).

A.2 OPTIMALITY FOR A FIXED ACCEPTANCE BUDGET

We first establish that OBRS is not merely a heuristic but is the provably optimal strategy for minimizing
distributional error given a fixed efficiency budget.

Theorem 1 (Budgeted Optimal Acceptance). Fix a target acceptance rate (budget) z ∈ (0, 1].
Among all possible token-wise acceptance rules α : A → [0, 1] that satisfy the budget constraint
Ea∼pp[α(a)]=

∑
app(a)α(a)=z, the rule that generates a post-rejection distribution pkept(a)∝pp(a)α(a)

minimizing the Kullback-Leibler (KL) divergence KL(pt||pkept) is uniquely given by the OBRS rule:

α⋆(a)=min

(
1,

pt(a)

λ·pp(a)

)
for some constant λ>0 (equivalent to C) whose value is determined by the budget z.

Proof. The post-rejection distribution is pkept(a)=pp(a)α(a)/z. The KL divergence is:

KL(pt||pkept)=
∑
a

pt(a)log
pt(a)

pkept(a)

=
∑
a

pt(a)log
pt(a)

pp(a)α(a)/z

=
∑
a

pt(a)log
pt(a)

pp(a)
+logz︸ ︷︷ ︸

constant w.r.t. α

−
∑
a

pt(a)logα(a).

Minimizing KL(pt||pkept) is therefore equivalent to maximizing
∑

apt(a)logα(a) subject to the constraints:

1.
∑

app(a)α(a)=z (budget constraint)

2. 0≤α(a)≤1 for all a∈A (valid probability constraint)

This is a convex optimization problem. The Lagrangian is:

L=−
∑
a

pt(a)logα(a)+λ

(∑
a

pp(a)α(a)−z

)
+
∑
a

µa(α(a)−1)−
∑
a

νaα(a)

where λ,µa,νa are the KKT multipliers. From the stationarity condition ∂L
∂α(a)=0, we get−pt(a)

α(a) +λpp(a)+

µa−νa=0. The complementary slackness conditions imply that if 0<α(a)<1, then µa=νa=0, which
gives α(a)= pt(a)

λpp(a)
. If α(a)=1, then νa=0, which requires λpp(a)≥pt(a). If α(a)=0, this form is not

well-defined, but the logic holds. Combining these cases, the optimal rule is to cap the acceptance ratio at 1:

α⋆(a)=min

(
1,

pt(a)

λpp(a)

)
.

The Lagrange multiplier λ is chosen to meet the budget constraint
∑

app(a)α
⋆(a)=z. Uniqueness follows

from the strict concavity of the log objective function.

A.3 GUARANTEED KL DIVERGENCE REDUCTION

Next, we show that our method provides a guaranteed improvement over the proposal distribution pp and
that this improvement is monotonic in the control parameter C.

Proposition 1 (Monotonic KL Contraction). The function G(C)=KL(pt||pkept,C) is non-increasing for
C∈(0,∞). It is strictly decreasing wherever the set of tokens {a |pt(a)<C ·pp(a)} has non-zero probability
mass under pt.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. Let ρ(a)= pt(a)/pp(a). We partition the vocabulary A into two sets: AC = {a | ρ(a)>C} and
BC = {a | ρ(a)≤C}. On any open interval of C where this partition is constant, we can write the KL
divergence G(C)=−

∑
apt(a)logpkept,C(a) as:

G(C)=−
∑
a∈AC

pt(a)log
pp(a)

ZC
−
∑
a∈BC

pt(a)log
pt(a)/C

ZC

Differentiating with respect to C (and noting that only ZC depends on C), we get
dG
dC =− d

dC

∑
apt(a)(−logZC)=

1
ZC

dZC

dC . The acceptance rate is ZC=
∑

a∈AC
pp(a)+

1
C

∑
a∈BC

pt(a).
Its derivative is:

dZC

dC
=− 1

C2

∑
a∈BC

pt(a).

Therefore, G′(C)= 1
ZC

(
− 1

C2

∑
a∈BC

pt(a)
)
≤0, since all terms are non-negative. The derivative is strictly

negative if
∑

a∈BC
pt(a)> 0. As G(C) is continuous and piecewise differentiable with a non-positive

derivative, it is non-increasing everywhere.

Corollary 1 (Strict Improvement over Proposal). For any C > 0, OBRS produces a distribution pkept,C
that is strictly closer to the target distribution pt than the original proposal distribution pp, i.e.,

KL(pt||pkept,C)<KL(pt||pp),
unless pp=pt or C≤min(ptpp), in which case the KL divergences are both zero .

Proof. From Proposition 1, we know that KL(pt || pkept,C) is non-increasing in C. In the limit
as C → 0, the acceptance probability αC(a) → 1 for all a, meaning pkept,C → pp. Therefore,
limC→0KL(pt||pkept,C)=KL(pt||pp). For any C>0, as long as pp ≠pt and C>min(ptpp), there must
exist some tokens for which pt(a)<C ·pp(a) or pt(a)>C ·pp(a), ensuring the condition for a strictly
decreasing KL divergence is met over some interval (0,C]. Thus, G(C)<G(ϵ) for some small ϵ>0, which
implies KL(pt||pkept,C)<KL(pt||pp).

A.4 PRACTICAL GUIDANCE

• Setting C. C=1 is a robust default: it contracts the per-prompt KL (strictly unless pinf=ptr), keeps
acceptance high (Z1), and is O(1) per token. Larger C pushes qC closer to ptr but reduces throughput
(ZC≤1/C); use it only if variance or bias considerations demand stronger alignment.

• Compatibility. The rule uses only per-token log-probabilities already computed by PPO/GRPO, so
it introduces no new estimators and preserves gradient flow exactly as described in Algorithm 1.

B DETAILS OF THE EXPERIMENTS

B.1 TIS ADJUSTMENT EXPLANATION

However, the delay in updates results in staleness, which we magnify for evaluating our method.

In this section, we push the above scenario to its limit by asking the inference batch size to be 64x and 128x
the training batch size. Concretely, we choose to use a training batch size of 32. We train models on the
DeepScalerR-Preview dataset Luo et al. (2025), which contains 40k challenging competition math problems.
We select Qwen3-4B-Base and Qwen3-8B-Base models Yang et al. (2025) to run RL on. An important baseline
to our method is the Truncated Importance Sampling (TIS) as in Wu et al. (2025a). However, in the original
technique is proposed only for the approximate models in the inference server. Thus, in the following loss form.

Ea∼π(θold)[
π(θref)

π(θold,inf)
∇θclip(

π(θnew)

π(θref)
Â)]

The weights update frequency is close to on-policy settings, but the gap between the approximate and efficient
inference model and the training weights is the primary goal to solve. However, the original formula cannot
easily be adapted for our extremely large batch setting, as there is no term regularizing the difference between
πθnew and πθold . We found that a very simple trick results in a very strong baseline on top of the TIS method,
that is we write it this way.

Ea∼π(θold)[
π(θnew,detached)

π(θold,inf)
∇θclip(

π(θnew)

π(θnew,detached)
Â)]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Evaluation scores across benchmarks (GSM8K, MATH-500, AMC22 & AMC23).

GSM8K MATH-500 AMC22 & AMC23

Models / Methods Mean@4 Pass@4 Mean@4 Pass@4 Mean@4 Pass@4

Qwen3-4B-Base on DeepScaler (rollout batch size = 2048; train batch size = 32; 64×)

On Policy 92.19 95.988 81.55 88.00 58.43 71.76
Off Policy 88.04 95.03 71.15 82.24 39.15 55.57
TIS 89.67 95.53 72.00 80.96 42.77 56.71
TIS with Adjustment 92.76 96.09 79.50 85.81 57.22 66.61
Jackpot (Ours) 92.24 95.891 80.05 85.89 53.916 65.034

Qwen3-4B-Base on DeepScaler (rollout batch size = 4096; train batch size = 32; 128×)

Off Policy 79.70 92.96 60.20 76.60 33.00 48.446
TIS with Adjustment 20.697 43.00 19.10 37.751 7.80 17.83
Jackpot (Ours) 92.00 95.00 80.00 85.50 51.20 60.35

Qwen3-8B-Base on DeepScaler (rollout batch size = 2048; train batch size = 32; 64×)

On Policy 94.238 96.78 93.99 96.65 28.95 37.89
Off Policy 91.05 95.62 77.15 84.90 50.60 65.20
TS with Adjustment 93.85 96.58 82.55 88.38 60.54 72.79
Jackpot (Ours) 94.01 96.63 83.05 88.76 63.55 74.12

where we use the detached most recent model output distribution as the term in the importance sampling.
However, the consequence is also very clear, the internal clip around ratio is now ’short-circuited’ or no
longer useful. Nevertheless, the setting produces very strong convergence is correction over the off-policy
baseline. We call it TIS-adjusted.

To fairly compare against the baseline, we also modify our training loss as follows, effectively also
’short-circuiting’ the internal ratio clip. The only difference between our setting and theirs is that we use
our proposed sampling method to regularize the πθold,inf .

Ea∼π(θold)[
π(θnew,detached)

π(θold,inf)∗new ∇θclip(
π(θnew)

π(θnew,detached)
Â)]

.

B.2 FULL DETAILS OF EXTREME SIZE BATCH SIZE EXPERIMENTS

C ABLATION STUDIES ON COMPONENTS OF JACKPOT, THRESHOLD, AND TOP-K

C.1 COMPONENTS’ CONTRIBUTION TO JACKPOT

Rejection bridges the gap between the rollout and the current policy (see FP8 on-policy training without
explicit jackpot reweighting; this is essentially the vanilla PPO loss with the probability fixed, and the OBRS
distribution in this case matches the reference policy exactly). Because the rollout–training distribution gap is
now removed, stability is significantly better than the vanilla baseline: even without TIS, training does not crash.

However, without correct importance sampling (see the huge-staleness training regime, where the importance
distribution no longer matches Pref but instead matches the current policy), training will eventually collapse.

On the other hand, jackpot reweighting does not solve the rollout–training gap (because under the FP8 setting
it falls back to vanilla on-policy training, which again leads to a crash). But in the huge-staleness regime,
where the rollout–training gap is not the main issue, jackpot reweighting combined with OBRS is effective:
it performs correct importance sampling, tracks the proper target distribution, and keeps the overall training
procedure stable and efficient.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Evaluation scores across benchmarks (AMC12 2024, AIME24, AIME25).

AMC12 2024 AIME24 AIME25

Models / Methods Mean@4 Pass@4 Mean@16 Pass@16 Mean@16 Pass@16

Qwen3-4B-Base on DeepScaler (rollout batch size = 2048; train batch size = 32; 64×)

On Policy 51.11 65.45 23.12 33.13 22.91 30.95
Off Policy 29.44 41.802 13.958 23.03 11.042 18.607
TIS 31.667 50.844 11.875 17.561 11.25 17.278
TIS with Adjustment 43.33 60.67 18.75 26.03 17.708 24.607
Jackpot (Ours) 50.00 63.00 20.625 29.484 18.125 23.627

Qwen3-4B-Base on DeepScaler (rollout batch size = 4096; train batch size = 32; 128×)

Off Policy 24.44 38.41 8.00 15.73 5.00 11.00
TIS with Adjustment 5.00 11.00 1.00 4.00 1.00 2.00
Jackpot (Ours) 47.22 57.99 19.16 24.58 18.52 25.078

Qwen3-8B-Base on DeepScaler (rollout batch size = 2048; train batch size = 32; 64×)

On Policy 54.44 68.47 28.95 37.89 22.50 28.542
Off Policy 40.00 54.75 18.54 28.67 14.16 21.98
TS with Adjustment 48.33 59.78 24.58 35.06 20.00 22.90
Jackpot (Ours) 54.44 66.09 26.87 36.23 20.41 26.57

Table 5: FP8 on-policy training (no staleness). Best scores before crash for the vanilla baseline.

Experiments AIME24 AMC MATH500 GSM8K
Vanilla (best before crash) 23.958 57.530 80.900 92.665
Masking-only 25.625 62.048 83.700 92.835
Masking & reweighting 26.667 62.651 82.450 92.305

Table 6: BF16 training with rollout staleness (64/2048). Best scores before crash for masking-only.

Experiments AIME24 AMC MATH500 GSM8K
Masking-only (best before crash) 19.167 49.699 78.750 91.793
Masking & reweighting 25.625 63.855 83.800 92.400

C.2 THRESHOLDS, C1, AND C2

Our method involves three hyperparameters: C1, C2, and the rejection threshold λ. All of them are
straightforward to set, and the technique is robust across a wide range of choices.

C1. We follow standard truncated importance sampling (TIS) choices. Empirically, selecting C1∈ [2,10]
consistently works well, and the method is not sensitive within this interval.

C2 (upper bound for pθref/pθnew). This parameter has no practical effect on performance. We set C2

slightly larger than 1+εhigh (e.g., 1.28 for DAPO), where any ratio clipped by C2 would already be clipped
by the PPO trust region. Thus, C2 mainly serves as a conceptual safeguard for ratio stability.

Rejection threshold λ. Our method performs well across all experiments with a default setting of λ=1.0,
and we recommend choosing λ close to this value. Increasing λ makes the kept-token distribution closer
to the target policy but increases the rejection rate. If λ>1, it begins rejecting tokens even when the policy
and inference distributions are perfectly aligned, causing overly conservative updates. The default value
c=1.0 guarantees full acceptance in the matched-distribution case and already reduces KL substantially
while keeping a high acceptance rate.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Summary. Jackpot is stable and easy to configure: C1 is robust within the typical TIS range 2−10, C2

has no practical impact once chosen above 1+εhigh, and c=1.0 serves as a reliable default.

Table 7: Effect of C1 on benchmark performance. Experiment Setup: Model: Qwen3-4B-Base, C2 =
3.0, threshold c=1.0, response limit: 8k, mini-batch/train-batch: 64/2048, PPO clip: 0.4/0.7, 100k examples.
Numbers are pass@1 accuracy.

Hyperparameters AIME24 AMC MATH500 GSM8K
C1=2 26.875 63.855 82.800 92.267
C1=3 25.625 63.855 83.800 92.703
C1=4 26.042 65.060 83.500 92.684
C1=8 26.875 63.253 83.100 92.437

Table 8: Effect of rejection threshold c on benchmark performance. Experiment Setup: Model:
Qwen3-4B-Base (target) / Qwen3-1.7B-Base (rollout); Generation length limit: 8K; Training examples:
9K. Numbers are pass@1 accuracy.

Threshold c AIME24 AMC MATH500 GSM8K
0.8 14.7 49.4 74.5 92.0
0.9 12.5 47.0 74.6 91.8
1.0 14.7 48.5 74.6 92.2
1.1 12.3 47.4 74.1 92.0
1.2 13.5 45.8 74.1 91.9

C.3 CHOICE OF TOP-K FOR Z APPROXIMATION

In Section 4.4 we approximate the OBRS normalization constant Z by summing over the union of the top-k
tokens under pinf and pθnew , yielding Zapprox≤Z. Increasing k strictly improves this approximation but also
increases the number of logits that must be materialized and stored. In the main experiments we therefore
fix k=20, and here we justify this choice empirically.

We first study the direct effect of k on the quality of the Z estimator. For the extreme off-policy configuration,
we log (i) the fraction of the true normalization captured by the top-k estimator, Zapprox/Z, and (ii) the calibra-
tion factor κ defined in Section 4.4.2, using k∈{10,20,40}. As expected, larger k improves both quantities,
but with rapidly diminishing returns. Even for the smallest value k=10 we already capture at least 87% of Z
at the very beginning of training, and more than 99.98% once the policy has warmed up within few steps; using
k=40 increases the captured mass only slightly (from roughly 91% initially to about 100.0% in the steady
state). Since the union of top-20 tokens is always a superset of the union of top-10 tokens, these diagnostics
imply that k=20 already yields an almost exact estimator of Z while keeping the additional overhead modest.

We next evaluate how k affects downstream performance. Table 9 reports pass@1 accuracy on our four math
benchmarks for Jackpot with k∈{10,20,40}, keeping all other hyperparameters fixed. The differences across
choices of k are small and non-monotonic: k=20 performs slightly better on AMC and MATH500, while
AIME24 and GSM8K show no consistent trend. Overall, the variation is comparable to run-to-run noise,
and there is no evidence that pushing k beyond 20 systematically improves task performance. Taken together,

Table 9: Effect of top-k on benchmark performance. Numbers are pass@1 accuracy.

Hyperparameters AIME24 AMC MATH500 GSM8K
k=10 28.958 61.446 82.650 92.608
k=20 25.625 63.855 83.800 92.703
k=40 27.083 61.446 83.200 92.418

these results show that larger k does improve the Z estimator, but the gains become marginal once k reaches
20. Since the computational overhead of our method scales roughly linearly with k, we adopt k=20 as
a practical default: it provides an accurate, well-calibrated estimate of Z with negligible additional cost (less
than 3% overhead in our setup), and larger values of k do not yield measurable benefits in our experiments.

18

	Introduction
	Background
	Problem Setting: PPO Objective and Actor-Policy Distribution Mismatch
	Related Work

	Correcting Distribution Mismatch with Budgeted Rejection Sampling
	Numerical Simulation
	Theoretical Guarantees

	Jackpot: Design and Methodology
	Rejection and reweighting
	Integration with Conventional PPO Objective
	Which policy to approximate?
	Stabilization and Feasibility Challenges
	Top-k Approximation
	Bias Correction

	Implementation Overhead Analysis

	Empirical Validation
	Inference with large batch size and training with much smaller batch size
	Extreme Offpolicy Settings

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Analysis of OBRS
	The Post-Rejection Distribution
	Optimality for a Fixed Acceptance Budget
	Guaranteed KL Divergence Reduction
	Practical guidance

	Details of the Experiments
	TIS Adjustment Explanation
	Full Details of Extreme Size Batch Size Experiments

	Ablation Studies on Components of Jackpot, Threshold, and Top-K
	Components' Contribution to Jackpot
	Thresholds, C1, and C2
	Choice of Top-K for Z Approximation

