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Abstract

Prostate cancer and benign prostatic hyperplasia are common diseases in men and require
early and accurate diagnosis for optimal treatment. Standard diagnostic tests such as the
prostate-specific antigen test and digital rectal examination are inconvenient. Thus, non-
invasive methods such as magnetic resonance imaging (MRI) and automated image analysis
are increasingly utilised to facilitate and improve prostate diagnostics. Segmentation is a
vital part of the prostate image analysis pipeline, and deep neural networks are now the
tool of choice to automate this task. In this work, we benchmark various deep neural
networks for 3D prostate segmentation using four different publicly available datasets and
one private dataset. We show that popular networks such as U-Net trained on one dataset
typically generalise poorly when tested on others due to data heterogeneity. Aiming to
address this issue, we propose a novel deep-learning architecture for prostate whole-gland
segmentation in T2-weighted MRI images that exploits various techniques such as pyramid
pooling, concurrent spatial and channel squeeze and excitation, and deep supervision. Our
extensive experiments demonstrate that it performs superiorly without requiring special
adaptation to any specific dataset.

Keywords: Prostate, Image Segmentation, Neural Networks, Deep Learning, Attention
Mechanisms, Magnetic Resonance Imaging, Domain Heterogeneity.

1. Introduction

Prostate cancer (PCa) and benign prostatic hyperplasia (BPH) are common diseases in
men (Bray et al., 2018; Rawla, 2019). Frontline tests used by clinicians for identification,
screening and staging of these diseases include a prostate-specific antigen (PSA) test and
digital rectal examination (DRE), however these suffer from low diagnostic performance.
Multiparametric MRI has shown great promise and increased performance in diagnosing
PCa and assessing BPH (Samarasinghe, 2018; Weinreb et al., 2016; Cuocolo et al., 2020).
In particular, T2-weighted MRI provides good anatomical definition owing to its high spatial
resolution and soft-tissue contrast, facilitating image analysis.

Image segmentation is a vital part of any automated image analysis pipeline for prostate
diagnostics. Many methods have been developed for this purpose and several public datasets
have been made available in the past decade to evaluate and compare their performance,
notably from the MICCAI 2012 Grand Challenge on Prostate MR Image Segmentation
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2012 (PROMISE12) (Litjens et al., 2014), the Initiative for Collaborative Computer Vi-
sion Benchmarking (I2CVB) (Lemaitre et al., 2015), and the NCI-ISBI 2013 Challenge on
Automated Segmentation of Prostate Structures (Farahani et al., 2013).

Despite significant progress reported in published benchmarks, accurate prostate seg-
mentation on new datasets remains a challenge, with much room for further performance
improvement. Virtually all recent top-performing prostate segmentation methods are based
on deep learning of artificial (in particular convolutional) neural networks. However, in prac-
tice, a deep-learning model trained on a specific dataset tends to perform well only on that
dataset and does not generalise well to data from other sites. Especially, a model trained
on public data is not guaranteed to perform well on a private dataset. Also, in multisite
studies, the data can be quite heterogeneous, due to the use of different scanners, sequences,
field strengths, resolutions, matrix sizes, coils and other factors.

There have been several recent attempts to develop more generalisable deep-learning
solutions for biomedical image segmentation. A notable example is nnU-Net (Isensee et al.,
2021), which automatically configures itself for any dataset and segmentation task to be per-
formed on any hardware platform, by selecting the optimal preprocessing, network architec-
ture, training strategy and post-processing methods. It generates three U-Net (Ronneberger
et al., 2015) configurations, including a two-dimensional (2D) U-Net, a three-dimensional
(3D) U-Net operating at full image resolution, and a 3D U-Net cascade with the first U-Net
operating on downsampled images and the second refining the segmentation maps at full
resolution. After cross validation, nnU-net chooses the best-performing configuration or en-
semble for the task at hand. While successful in various challenges, it is a computationally
demanding framework, and it would be more practical to have a single segmentation model
that performs well across heterogeneous data.

In this work, we propose a novel deep-learning architecture for prostate whole-gland
segmentation in T2-weighted 3D MRI images and investigate its generalisability to multisite
data from different public datasets as well as a private dataset. The architecture design
exploits various techniques such as pyramid pooling, concurrent spatial and channel squeeze
and excitation, and deep supervision. After a brief discussion of related work, we present
the data we used, our proposed model and our experimental results and conclusions.

2. Related Work

Many prostate gland segmentation methods have been proposed. They may be categorised
into traditional image analysis methods such as active contours (Cheng et al., 2016), con-
ditional random fields (Toth and Madabhushi, 2012), graph-based semiautomatic methods
(Artan et al., 2011), fuzzy-clustering methods (Ghose et al., 2012), and deep-learning meth-
ods such as convolutional neural networks (CNNs) (Dai et al., 2020) or fully convolutional
networks (FCNs) (Long et al., 2015) including SegNet (Alqazzaz et al., 2019), PSPNet
(Zhao et al., 2017), U-Net (Ronneberger et al., 2015), and others (Khan et al., 2020), or
combinations of traditional and deep-learning methods (da Silva et al., 2020).
Deep-learning based segmentation methods typically use an encoder-decoder network
architecture. The encoder learns the relevant image features in a latent representation,
which are used by the decoder to generate the final segmentation mask. A recent evaluation
of deep neural networks for prostate segmentation in T2-weighted MRI included U-Net,
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SegNet, and DeeplabV3+ (Khan et al., 2020), and the current leaderboard of PROMISE12
features networks such as MSD-Net, HD-Net, and nnU-Net.

For many biomedical image segmentation tasks such as liver segmentation, lung seg-
mentation, and brain segmentation, 2D U-Net (Ronneberger et al., 2015) and 3D U-Net
(Cigek et al., 2016) are considered to be the baseline. U-Net variants such as UNet++
(Zhou et al., 2018), RA-UNet (Jin et al., 2020), 3D U2-Net (Huang et al., 2019), UNet3+
(Huang et al., 2020), Cascaded UNet (Chen et al., 2019), Attention U-Net (Oktay et al.,
2018), and USE-Net (Rundo et al., 2019) have been reported to perform better on specific
segmentation tasks. However, it has not been shown so far that existing models perform
consistently well on prostate gland segmentation in heterogeneous data.

Starting with U-Net, several refinements have proven advantageous. Examples include
the pyramid convolution block, channel attention block, and residual refinement block in
HD-Net (Jia et al., 2019), the replacement of skip connections between encoder and de-
coder in MultiResUNet (Ibtehaz and Rahman, 2020), full-scale skip connections in UNet3+
(Huang et al., 2020), and squeeze-and-excitation blocks used successfully in a range of net-
works (Rundo et al., 2019; Roy et al., 2018a). In our proposed network we adapt several of
them to achieve more robust prostate segmentation.

3. Heterogeneous Data

We collected publicly available datasets from various challenges and archives as well as
private data from a local radiology practice (Table 1).

The PROMISE12 dataset contains 50 training images and their respective prostate gland
annotation masks. In the challenge, a separate test set of 30 images was used for evaluation
and leaderboard ranking, however their annotations are not publicly available, and therefore
we used only the training dataset in our experiments. The scans are from four different
institutions and were acquired using Siemens or GE scanners with or without endorectal
coils and field strengths of 1.5 T or 3 T at different resolutions.

Data Cases Institution Field Strength Resolution Coil Manufacturer
PROMISE12 50 HK 15T 0.625/3.6 Yes  Siemens
BIDMC 3T 0.25/2.2-3 Yes GE
UCL 1.50r3T 0.325-0.625/3-3.6 No Siemens
RUNMC 3T 0.5-0.75/3.6—4 No  Siemens
12CVB 19 HCRUDB 3T 0.67/0.79 No  Siemens
ISBI3T 30 RUNMC 3T 0.6-0.625/3.64 Yes  Siemens
ISBIPD 30 BMC 15T 0.4/3 Yes  Philips
Private 50 SMI 3T 0.35/3.3 Yes GE

Table 1: Datasets used in this study. See the original PROMISE12, I2CVB, and ISBI ref-
erences in the introduction for more detailed information on the public data. The
private dataset was provided by Spectrum Medical Imaging, Sydney, Australia.
Resolution is given in millimetres in-plane/through-plane.
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To make our dataset even more heterogenous than PROMISE12, we also included the
12CVB benchmark data, which contains 19 scans from another institute acquired using a
Siemens scanner at 3 T field strength and a fixed resolution.

Furthermore, we added the data from the NCI-ISBI challenge, which consists of two
subsets, each containing 30 scans acquired using either a Siemens scanner at 3 T or a
Philips scanner at 1.5 T, from two different institutions. In fact, the two subsets are from
two different data collections of The Cancer Imaging Archive (TCIA), namely the Prostate-
3T collection and the Prostate Diagnosis collection, and therefore we treat them as separate
datasets and refer to them as ISBI3T and ISBIPD, respectively. The task in the challenge
was to segment the prostate zones, however we merged the zonal annotation masks to suit
our goal of evaluating whole-gland segmentations.

Finally, a private dataset was obtained via our local collaboration, where each scan was
initially annotated by three well-trained medical students using 3D Slicer, and the masks
were refined and combined by an expert radiologist. Ethics approval for use of this dataset
was given by the UNSW Human Research Ethics Committee.

4. Proposed Model

Exploiting concepts from other areas of computer vision, we developed a new U-Net-like
architecture, named 3DDOSPyUSENet (Figure 1), and evaluated it for the task of whole-
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Figure 1: Proposed 3DDOSPyUSENet using deep supervision with pyramid pooling and
concurrent spatial and channel squeeze and excitation.
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Model PROMISE12 I2CVB ISBI3T ISBIPD ISBI All  Private
3DUNet 0.737 0.562 0.829 0.726 0.813 0.439 0.613
3DUSENet 0.746 0.500 0.812 0.767 0.808  0.399 0.652
3DPyUSENet 0.791 0.649 0.805 0.760 0.823 0.525 0.669
3DDOSUNet 0.799 0.791 0.847 0.786 0.823 0.755 0.669
3DDOSUSENet 0.777 0.745 0.845 0.773 0.817  0.727 0.671
3DDOSPyUSENet 0.806 0.792 0.846 0.777 0.829 0.768 0.673

Table 2: Performance of the six models on the seven datasets, measured as average Dice
scores from 5-fold cross validation. ISBI denotes the combination of ISBI3T and
ISBIPD. All denotes the combination of all public datasets. Best performance per
dataset is indicated in bold. In most cases the variance was less than 1%.

gland prostate segmentation in heterogenous MRI. It uses deep supervision with pyramid
pooling and squeeze-and-excitation modules to boost segmentation accuracy.

Pyramid pooling was originally used in the pyramid scene parsing network (PSPNet)
architecture as an effective global contextual prior (Zhao et al., 2017). It fuses image
information from four different pyramid scales which, after upsampling, are concatenated
with the original feature map. The use of a pyramid pooling module has been shown to
improve performance, for example in skin lesion segmentation (Shahin et al., 2019) where
the module was used throughout many layers, making it computationally expensive. In our
design, we use pyramid pooling only in latent space to aggregate contextual information
from different regions rather than global context information.

Squeeze and excitation (SE) approaches can be categorised into channel SE (cSE), spa-
tial SE (sSE), and concurrent channel-spatial SE (csSE). SE helps in feature map recali-
bration to suppress weak features and enhance meaningful features. Based on the original
experiments with SE (Roy et al., 2018a), csSE performs better than either of ¢SE and sSE
alone in most cases. Subsequent experiments using SE layers in different places within
U-Net for various biomedical image segmentation tasks in brain MRI, whole-body CT, and
retinal OCT scans revealed that the best option is to place them after the last convolutional
layer of every encoder and decoder block (Roy et al., 2018b).

In our proposed 3DDOSPyUSENet, each encoder and decoder block uses dual sequen-
tial convolution with batch normalisation (BN) and rectified linear unit (ReLU) activation
followed by csSE, and 2D pyramid pooling is applied to each channel of the 3D input in
latent space (lowest level in the U-Net). Our network also uses multi-output deep supervi-
sion inspired by DeepHIPs (Manjon et al., 2020) rather than a single-output approach (Liu
et al., 2020; Dou et al., 2017). To this end, the segmentation masks were downsampled to
the resolution of each decoder level (Figure 1).

5. Experimental Results

The datasets were downloaded in NIFTI or DICOM format as provided and we used the
SimplelTK library for visual inspection and data conversion. Each 3D image was resampled
to a matrix of z X y X z = 96 x 96 x 32 voxels. As the different datasets have different
slice spacing, we resampled the images to obtain the same slice spacing, and subsequently
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Testing Model PROMISE12 12CVB ISBI3T ISBIPD Private

Training Avg Ens Avg Ens Avg Ens Avg Ens Avg Ens
1 0.625 0.694 0.832 0.853 0.610 0.633 0.621 0.653
2 0.671 0.714 0.858 0.874 0.624 0.646 0.648 0.662
3 0.695 0.731 0.863 0.874 0.650 0.550 0.660 0.670

PROMISEL2 4 0.659 0.677 0.863 0.877 0.728 0.739 0.671 0.678
5 0.661 0.682 0.847 0.863 0.688 0.709 0.664 0.672
6 0.639 0.673 0.861 0.878 0.725 0.778 0.670 0.679
1 0.086  0.075 0.139 0.127 0.061 0.066 0.076 0.103
2 0.125  0.120 0.201 0.194 0.100 0.094 0.109 0.118

I2CVB 3 0.168 0.165 0.347 0.378 0.110 0.099 0.178 0.200
4 0.078  0.080 0.268 0.275 0.169 0.153 0.149 0.150
5 0.050  0.040 0.090 0.051 0.074 0.050 0.048 0.021
6 0.097 0.101 0.288 0.300 0.188 0.190 0.138 0.144
1 0.374 0.425 0.357 0.363 0.233 0.206 0.226 0.249
2 0.382 0.423 0427 0.544 0.235 0.233 0.262 0.304

ISBIST 3 0432 0.579 0.371 0.440 0.202 0.192 0.258 0.299
4 0.402 0.431 0.538 0.549 0.364 0.374 0.341 0.349
5 0.349 0.358 0.573  0.602 0.290 0.278 0.333 0.341
6 0476 0.499 0.616 0.644 0.510 0.521 0.379 0.385
1 0.080 0.087 0.203 0.272 0.362 0.469 0.146  0.150
2 0.098 0.122 0.247 0.257 0.394 0.412 0.262 0.268

ISBIPD 3 0.106 0.120 0.171 0.135 0.408 0.439 0.180 0.242
4 0.176  0.175 0.276  0.275 0.488 0.497 0.220 0.214
5 0.085 0.063 0.256 0.247 0.439 0.438 0.138 0.124
6 0.178 0.172 0.309 0.304 0.478 0.486 0.250 0.232
1 0.412 0478 0.492 0.542 0.482 0.548 0471 0.546
2 0.408 0.478 0.511 0.548 0.582 0.602 0.512 0.561

Private 3 0475 0.498 0.600 0.659 0.685 0.711 0.577 0.622
4 0.525 0.529 0.646 0.667 0.731 0.741 0.645 0.662
5 0.484 0.506 0.666 0.695 0.727 0.741 0.656 0.683
6 0.525 0.540 0.666 0.702 0.731 0.745 0.661 0.686

Table 3: Performance of the six models when trained on one of the five datasets and tested
on the other four. Models 1-6 are 3DUNet, 3DUSENet, 3DPyUSENet, 3DDO-
SUNet, 3DDOSUSENet, and 3DDOSPyUSENet, respectively. Values shown are
either average (Avg) Dice scores from 5-fold cross validation or the Dice scores of
ensembling (Ens) the predictions of the folds. Best performance per training-test
dataset pair is indicated in bold.

normalised and saved them as NumPy arrays for model training. In each experiment pre-
sented here, we split the data 80%:20% into training and test sets respectively, and further
split the former into 85%:15% for training and validation.

Using 3D U-Net (hereafter more concisely called 3DUNet) as the baseline, we eval-
uated the performance of our 3DDOSPyUSENet and investigated the effects of pyramid
pooling (Py), squeeze and excitation (SE), and deep output supervision (DOS) by ablation.
Specifically, we considered 3SDUSENet (3DUNet with SE), 3DPyUSENet (with Py and SE),
3DDOSUNet (with DOS), 3DDOSUSENet (with SE and DOS). All models were trained
and tested on an Nvidia V100 GPU of the Gadi server at the National Computer Infras-
tructure (NCI) in Australia. The Anaconda virtual environment with TensorFlow 2.1 was
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used for the experiments. Stochastic gradient descent was used as optimizer with learning
rate 0.001 and all models were trained for up to 150 epochs.

First we evaluated the performance of each of the six models on each of the five datasets
as well as on the combined ISBI data sets and on all public datasets combined. We employed
the commonly used Dice similarity coefficient (DSC) as the performance metric (Taha and
Hanbury, 2015). For each of the 6% (5+2) = 42 experiments we used 5-fold cross validation
and computed the averaged Dice value, increasing the total number of experiments per-
formed to 42 « 5 = 210. From the results (Table 2) we observe that Py, SE, and DOS had
different effects. Specifically, adding SE to 3DUNet improved the performance especially
on the PROMISE12 and private datasets, but it was not necessarily beneficial on the other
public datasets. Adding Py on top of SE yielded either improved performance in most cases
or otherwise had little negative effect. Adding DOS without Py and SE generally improved
the results, whereas the combination of DOS and SE performed worse. Finally, the full
model performed best overall and seems a safe choice. It produced fairly good results even
for the most heterogeneous dataset (All).

Next we evaluated the performance of the six models when trained on any of the original
five datasets (Table 1) and tested on any of the four others. Here again we used 5-fold cross
validation, and considered the average Dice score of the folds as well as the Dice score after
ensembling the predictions of the folds. Thus in total 6 x5 % 4 x5 = 600 experiments were
performed. From the results (Table 3) we see that the models trained on PROMISE12
performed well when tested on the 12CVB, ISBI3T, ISBIPD, and private data, whereas
models trained on any of the latter generalised relatively poorly. This can be explained by
the fact that the PROMISE12 dataset itself is already an heterogeneous collection of data
from various sources. As in the previous experiment, we observe that Py, SE, and DOS have
different effects, however their combination works well in most cases. Also, we conclude
that ensembling seems to perform better than averaging. We found that when trained
on all public datasets and tested on our private dataset, our proposed 3SDDOSPyUSENet
model had an average Dice score of 0.6517, which is similar to training on PROMISE12
and superior to the other models, from which we conclude that the other training datasets
made little difference.

Although the presented results are encouraging, both quantitatively (Tables 2 and 3)
and qualitatively (Figure 2), they are not yet as high as the best scores on the current
PROMISE12 leaderboard. However, our results cannot be compared directly with the
latter, as the test sets are different (the PROMISE12 test set is not publicly available, so
we used only the training set, from which we used a subset for training and the rest for
testing). In a pilot experiment (data not shown) we tested published methods such as
nnU-Net on the training subset we used here and found that 3DDOSPyUSENet gave better
results. Therefore we suspect that when using the full training set, rather than a subset,
our method will perform comparably or better than some of those on the leaderboard.

6. Conclusion

Public challenges in the past decade have stimulated the development of improved methods
for prostate segmentation in 3D MRI images and have shown the great potential of deep-
learning based methods for this purpose. Despite success stories in individual benchmarks,
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Case Ground Truth Prediction Comparison
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Figure 2: Visual comparison (volume renderings) of 3D segmentation results (prediction)
of our proposed 3DDOSPyUSENet model and the consensus manual annotations
(ground truth) for four sample cases from our private dataset.

the performance of models trained on one dataset and tested on another is often quite
limited, especially on private data that may not match the characteristics of public datasets
very well. In this paper we have demonstrated this to be the case with the popular baseline
3D U-Net model. We have also proposed a new model, namely 3DDOSPyUSENet, that
exploits pyramid pooling, concurrent channel and spatial squeeze and excitation, and deep
output supervision. Our extensive experiments clearly show the superior performance of the
new model across multisite heterogeneous public and private data. From this we conclude
that the use of these modifications help in suppressing weak features, enhancing meaningful
features, and reducing the loss of information throughout the different layers of the network.
In future work we aim to compare our new model with a wider range of existing baseline
models and obtain the scores on the test sets of ongoing public benchmarks.
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