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Multiple sclerosis is a chronic autoimmune disease that affects the central nervous system. Understanding 
multiple sclerosis progression and identifying the implicated brain structures is crucial for personalized treatment 
decisions. Deformation-based morphometry utilizes anatomical magnetic resonance imaging to quantitatively 
assess volumetric brain changes at the voxel level, providing insight into how each brain region contributes to 
clinical progression with regards to neurodegeneration. Utilizing such voxel-level data from a relapsing multiple 
sclerosis clinical trial, we extend a model-agnostic feature importance metric to identify a robust and predictive 
feature set that corresponds to clinical progression. These features correspond to brain regions that are clinically 
meaningful in MS disease research, demonstrating their scientific relevance. When used to predict progression 
using classical survival models and 3D convolutional neural networks, the identified regions led to the best
performing models, demonstrating their prognostic strength. We also find that these features generalize well 
to other definitions of clinical progression and can compensate for the omission of highly prognostic clinical 
features, underscoring the predictive power and clinical relevance of deformation-based morphometry as a 
regional identification tool.

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease that affects 
the central nervous system (CNS) in young adults [1]. Magnetic res
onance imaging (MRI) of the brain is a key tool for diagnosing and 
monitoring MS progression. Different types of MRI data possess over
lapping yet complementary properties and applications. For instance, 
brain volume measurements derived from T1-weighted MRI provide in
sights into brain atrophy, which is associated with disability and disease 
progression [2--5]. Identifying specific brain regions with atrophy and 
volume changes that are linked to disease progression enhances patient 

Abbreviations: MS, Multiple sclerosis; MR, Magnetic resonance imaging; DBM, Deformation-based morphometry; VBM, voxel-based morphometry; LOCO-MP, Leave-one-covariate

out minipatch; RSF, Random survival forest; CNN, Convolutional neural network; CCDP24, Confirmed composite disability progression sustained for at least 24 weeks; T25FW, Timed 
25-foot walking speed test; 9HPT, 9-hole peg test; EDSS, Expanded Disability Status Scale; S25FW, Sustained disability progression in 25-foot walking test sustained for at least 24 
weeks; BT25FW, Baseline timed 25-foot walking speed test.
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monitoring and facilitates the evaluation of treatment efficacy [6]. Early 
efforts to assess volume changes in MS consisted of using voxel-based 
morphometry (VBM), a method designated for volume assessment of 
gray matter regions [7]. VBM demonstrated limited associations with 
clinical outcomes in MS studies [8] and a majority of VBM studies were 
cross-sectional and thus unable to track disease-related changes at the 
individual level. On the other hand, deformation-based morphometry 
(DBM) [9,10] provides voxel-level measurements of volume assessment 
across the entire brain, including gray matter, white matter, and the 
ventricles. We note that enlargement of the fluidfilled ventricles in the 
brain typically reflect either local or global brain tissue loss, which can
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not be captured by VBM due to its focus on gray matter regions. While 
VBM often suffers from tissue segmentation errors [10,11], DBM only 
relies on image registration, making it a more robust tool to assess voxel
based volume differences.

MRI data has proven instrumental in predicting disease progression 
and plays a critical role in personalizing patient treatment decisions 
[12,13]. Despite recent progress in using T1-weighted MRI data to pre
dict MS progression [14,15,4,16], several open questions remain regard
ing how data and methodological choices may affect model reliability. 
For example, recent work leveraging random survival forests achieved 
high accuracy in predicting clinical progression over a 10-year period 
based on changes in T1-weighted MRI-derived features within the first 
2 years [17]. However, baseline T1-weighted MRI data alone demon
strated relatively limited predictive power for 2-year progression [18]. 
Similarly, it was shown that, while voxel clusters derived from inde
pendent components analysis (ICA) applied to 2-year volume change 
data were predictive of 10-year progression, the voxel cluster values 
at baseline were similar between progressors and non-progressors [19]. 
Some studies have also noted unclear predictive value of T1-weighted 
MRI, which can vary between studies and can depend on outcome def
initions [18,20]. These issues also persist in deep learning frameworks 
[21,22]. It also remains unclear whether T1-weighted MRI data pro
vides complementary information for progression prediction beyond 
clinician-measured variables of disease state, some of which are used to 
define common progression endpoints themselves [23,24]. Ultimately, 
there is a lack of literature on detecting baseline volume measurements 
from T1-weighted brain MRI that are predictive of clinical progression 
within two years. For broader reviews of data-driven approaches to clin
ical modeling of MS, we refer readers to [14,15,4,16,25].

In this study, we utilize baseline deformation-based morphometry 
derived from T1-weighted MRI of a Phase III MS clinical trial [26,6] 
to investigate the impact of various methodological choices, particu
larly those used to identify predictive DBM features, on the reliability of 
conclusions drawn from this dataset. We first employ a state-of-the-art, 
model-agnostic feature importance algorithm, adapted using leave-one
covariate-out methods [27] and minipatch ensembles (LOCO-MP) [28], 
to identify brain regions from low-signal T1-weighted MRI baseline 
data that are predictive of MS progression. Broadly speaking, LOCO-MP 
computes feature importance by aggregating predictions from models 
trained on multiple small, randomly selected subsets of the data (mini
patches). We observe that LOCO-MP combined with a survival random 
forest model identifies features in a more consistent and stable manner 
than survival random forests alone. This is because LOCO-MP leverages 
learning from small feature subsets to isolate the effects of highly corre
lated regions while other methods often yield inconsistent results when 
the data are highly correlated and high-dimensional [29].

Next, we apply traditional survival models to examine how different 
outcome/endpoint definitions, in conjunction with feature selection by 
LOCO-MP, influence prediction power. Although our progression end
point (CCDP24, discussed in Section 2.1) is highly censored within the 
two-year study period, it represents a well-defined and clinically mean
ingful composite marker of MS progression. To validate the DBM fea
tures identified using LOCO-MP, we assess their generalizability across 
alternative progression endpoints (S25FW, discussed in Section 2.1) to 
compare a single, objective measure of physical disability with the com
posite measure, the latter involving some degree of clinician discretion 
[23]. We also verify that our selected features generalize well across a 
separate patient cohort (see Appendix D).

By using DBM at baseline to identify patient volumetric abnormal
ities and by applying LOCO-MP to enforce sparsity in the DBM feature 
set, we achieve improved prediction performance compared to models 
that use whole-brain T1-weighted MRI data as input. Additionally, we 
compare the model performance of DBM features against models us
ing conventional, non-DBM clinical features (such as age and sex), also 
measured at baseline. We introduce these conventional features in Sec
tion 2.1. Interestingly, models using selected MRI features alone perform 

on par with those using only the baseline conventional measurements. 
Combined models incorporating both selected MRI features and conven
tional measures do not necessarily outperform individual models (those 
using either selected MRI features or conventional measures alone). No
tably, removing the conventional features that define certain endpoints 
significantly reduces the predictive power of the conventional feature 
models, underscoring the strong predictive value of the selected MRI 
features.

We further analyze whether 3D convolutional neural networks 
(CNNs) using only the LOCO-MP regions perform better than full brain 
architectures. We develop a 3D CNN architecture, Region CNN, that 
accepts a set of atlas region tensors as input. While full brain MRI 
deep transformer models [30,31] are unstable and show low predic
tion accuracy, Region CNN using LOCO-MP identified features performs 
substantially better. This highlights the importance in filtering out un
necessary regions via LOCO-MP for extracting prognostic signal from 
CNNs for this cohort.

2. Materials and methods

2.1. Data and image preprocessing

The data used in this study are from a comparator arm of a phase 3 
clinical trial of relapsing multiple sclerosis (OPERA I: NCT01247324), in 
which the patients were treated with interferon (IFN) 𝛽-1a (44 μg) three 
times per week throughout the 96-week treatment period. Our sample 
consisted of 350 patients. Details on patient selection, MRI acquisition, 
and clinical assessments are provided in the original report [26]. Briefly, 
patients were recruited with an age range of 18 to 55 years; McDonald 
criteria diagnosis of multiple sclerosis; Expanded Disability Status Scale 
(EDSS) score between 0 to 5.5; more than 2 documented clinical relapses 
within the previous 2 years or one clinical relapse within the year before 
screening; brain MRI evidence of multiple-sclerosis-related abnormali
ties. Conventional T1-weighted 3D spoiled gradient-recalled echo brain 
MRI was acquired at baseline, Weeks 24, 48 and 96 (repetition time = 
28--30 ms, echo time = 5--11 ms, flip angle = 27--30 deg, 60 oblique 
axial slices of 1 mm in-plane resolution and 3 mm slice thickness). The 
primary clinical outcome was defined as a composite measure of disabil
ity progression which included three clinical assessments: EDSS, Timed 
25-Foot Walk (T25FW, a measure of short distance walking speed), and 
9-Hole Peg Test (9HPT, a measure of upper limb function) [32]. This 
composite measure was developed to capture a broader aspect of disabil
ity in patients with multiple sclerosis. The 24-week composite confirmed 
disability progression (CCDP24) was defined as progression on any one 
of the three components (EDSS, T25FW, or 9HPT): an increase of EDSS 
score from the baseline at least 1.0 point (or 0.5 points if the baseline 
EDSS score was larger than 5.5) or a 20% minimum threshold change 
for T25FW and 9HPT. We also consider a 24-week progression outcome 
based solely on the 25-foot walking score (S25FW) in Section 3.2.2. 
Table 1 summarizes the conventional features we use for prediction, 
grouped by those who experienced CCDP24 progression and those who 
were censored.

Since MS progression is influenced by many factors, our models con
sider a variety of demographic and clinical measurements as well as 
standard imaging metrics. Broadly speaking, we refer to these features as 
“conventional features'' throughout the manuscript to distinguish them 
from DBM-based features. The conventional features serve as a compar
ison against the DBM features to assess which feature set performs more 
optimally. We record nine conventional features which include the pa
tient’s age, birth sex, years of onset, weight (in kg), total brain volume, 
total T2 lesion volume,2 baseline 25-foot walking test score, baseline 

2 The T2-weighted MRI sequence was described by Elliot et al. (2019) [32]: 
axial 3 mm T2- weighted slices were acquired with 2D fast spin-echo, repeti
tion time = 4000--6190 ms, echo time = 74--91 ms and echo train length = 
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Table 1
Baseline characteristics stratified by CCDP24 outcome (censored/progressed).

Variable Censored (N = 269) Progressed (N = 81) p-value 
Mean (SD) or n / N (%) Mean (SD) or n / N (%) 

Baseline age (years) 37 (9) 37 (10) > 0.9
Years of onset 6.3 (6.2) 7.3 (6.0) 0.088 
Baseline weight (kg) 76 (18) 74 (16) 0.4 
Baseline 9-hole peg test score time (seconds) 23.1 (6.6) 24.2 (5.2) 0.033 
Baseline 25-foot walking test score time (seconds) 7.0 (5.0) 5.9 (3.7) 0.049 
Baseline EDSS 2.73 (1.28) 2.57 (1.25) 0.4 
T2 lesion volume 8 (9) 13 (14) 0.019 
Brain volume 1,501 (86) 1,480 (85) 0.066 
Proportion female 185 / 269 (69%) 50 / 81 (62%) 0.2 

Wilcoxon rank sum test for continuous variables; Pearson’s Chi-squared test for categorical variable.

Fig. 1. Illustration of the deformation-based morphometry (DBM) analysis. For each T1-weighted brain MR image, the registration with the group template generates 
a Jacobian map over the whole brain, which is a voxel-level measure of volume relative to the group template. Regional labels on the brain atlas were mapped to 
the group template to extract statistical features of the Jacobian maps at the patient level.

9-hole peg test score, and baseline EDSS, which are generally thought 
to be related to MS disease progression [34].

Statistical features of regional brain volume were extracted from T1
weighted brain MRI, using a deformation-based morphometry (DBM) 
pipeline based on the diffeomorphic image registration of advanced nor
malization tools [35]. (See Fig. 1.) The Mindboggle atlas was used to 
identify individual brain regions [36]. In addition, prior probability im
ages of six major brain regions based on the Mindboggle atlas, including 
CSF, cortical gray matter, deep gray matter, cortical white matter, the 
brainstem, and the cerebellum, were binarized at a probability threshold 
of 0.5. A population-specific group template of the T1-weighted brain 
MRI was constructed by advanced normalization tools with T1-weighted 
brain MRI images of 171 healthy adults (aged 20--59 years). Before be
ing fed into the pipeline, each individual brain image was preprocessed 
with the following steps: 1) resampling to an isotropic resolution of 1 
mm; 2) N4 bias correction [37]; and 3) denoising with a non-local al
gorithm [38]. Regional labels were mapped from the group template to 
individual images so that volume change of any predefined region could 
be measured.

As mentioned in the introduction, all of the conventional and DBM 
features we use for prediction are measured at baseline. The tabular 

7--11. The T2 lesion volume was measured from T2-weighted MRI images us
ing a proprietary, semi-automatic method. The initial automatic segmentation 
was performed using a Bayesian classifier [33] which was then verified and cor
rected by qualified readers.

DBM feature set consists of the median and standard deviation voxel 
values for each of the 51 atlas regions, resulting in 102 total features. 
Prior to performing feature selection and modeling, we filter out features 
with a variance below 0.01 across all patients, reducing the number 
of DBM features from 102 to 56. No other conventional features were 
excluded in this filtering step.

2.2. Feature importance using minipatch ensembles

Identifying features that genuinely contribute to prediction is cru
cial for model interpretability and guiding practical decision-making. 
Feature selection methods are used to filter out variables that are incon
sequential to prediction, retaining those with the most predictive value. 
Since our dataset consists of high-dimensional and highly correlated 
features, traditional feature selection methods can potentially misat
tribute the importance of a feature when other correlated features are 
present. To offer a more reliable assessment of feature importance, we 
extend a feature importance method called leave-one-covariate-out mini

patch (LOCO-MP) prediction [27,39,40,28] to survival analysis. LOCO
MP consists of taking a subsample of the data, called a ``minipatch.'' The 
purple cells in Fig. 2 shows a simple example of what three minipatches 
may look like. A model is then trained on the minipatch and this process 
is repeated over many minipatches to ensure an even distribution of ob
servations and features are sampled. After training on all minipatches, 
LOCO-MP determines feature importance for a certain target feature 𝑗
by comparing the average prediction error across minipatches with and 
without feature 𝑗.
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Fig. 2. General overview of LOCO-MP. Each plot demonstrates how a subset of observations (orange) and features (blue) are subsampled to form a ``minipatch'' 
(purple cells). A model is trained on the purple cells and predictions are generated using the unselected observations (blue cells). This process is repeated over 
numerous minipatches to ensure each feature and observation is selected enough times to perform inference. Feature importance for a target feature is assessed by 
evaluating performance on minipatches with and without that feature.

LOCO-MP is advantageous over other feature selection techniques 
due to its ability to provide asymptotic inferential guarantees [28]. 
Moreover, LOCO-MP can also account for dependencies across features, 
a common issue in high-dimensional settings like ours -- Gan et al. (2023) 
[28] discuss that, by generating randomly subsampled features across 
minipatches, LOCO-MP ensures that the predictive value of each fea
ture is not being diminished by other strongly correlated features, since 
groups of strongly correlated features will not always appear in the same 
minipatch. The full LOCO-MP procedure and its theoretical guarantees 
are discussed in Gan et al. (2023) [28].

The procedure is summarized graphically in Fig. 2 and outlined be
low for a target feature 𝑗:

1. Subsample the data: Subsample a set of observations (rows) and 
features (columns), denoted by purple cells. This forms a ``mini
patch.''

2. Train a model: Fit a model to the minipatch and evaluate predic
tions using the remaining observations (blue cells).

3. Repeat steps 1 and 2 over 𝐾 minipatches, where 𝐾 is user
determined.

4. Compute feature importance: Compute Δ̄𝑗 , the feature impor
tance score of feature 𝑗 (discussed in the following paragraphs).

Our outcome of interest, patient progression, is recorded as a time
to-event pair (𝑇𝑖,𝐶𝑖), where 𝑇𝑖 is the event time and 𝐶𝑖 ∈ {0,1} is an 
indicator for whether the patient’s disease progression is observed dur
ing the study period (𝐶𝑖 = 1) or is right-censored (𝐶𝑖 = 0). Because our 
outcomes of interest are recorded in this time-to-event format, we ex
tend LOCO-MP to survival analysis. This is done by predicting discrete 
instantaneous hazards from the trained models and computing an asso
ciated individual-level discrete hazard loss [41,42]. We refer the reader 
to Appendix A for a full technical description of LOCO-MP and the haz
ard loss function used to characterize prediction error in our survival 
models.

2.3. MS progression with classical survival models

To assess the predictive power of the DBM and conventional fea
tures, we apply random survival forests (RSF) [43] to train the tabular 
dataset on the progression endpoint(s). RSF is an extension of Breiman’s 
random forest algorithm to the time-to-event setting. In Appendix C, 
we include additional results using a penalized Cox proportional haz

ards model with a 𝓁2 penalty (analogous to ridge regression) and a 𝓁1
penalty (analogous to lasso regression). All analyses in this section were 
conducted using R (version 4.2.1). RSF models were implemented using 
the package randomforestSRC [44] and the Cox models were imple
mented using the package glmnet [45].

In order to evaluate the quality of predictive information yielded via 
LOCO-MP, we trained the survival models on several distinct feature 
groupings of conventional and DBM features, outlined below:

1. Conventional-only: this model consists solely of the conventional 
features introduced in Section 2.1.

2. All DBM: this model consists of all DBM features (median and stan
dard deviation of each region), after removing features with low 
variance (< 0.01). No conventional features are included.

3. Conventional + All DBM: this model uses all features from the 
“Conventional-only'' and ``All DBM'' feature sets.

4. Top DBM: this model consists only of the top selected DBM features 
from the LOCO-MP algorithm, ranked by their feature occlusion 
scores Δ̄𝑗 .

3 No conventional features are included.
5. Conventional + Top DBM: this model uses all conventional fea

tures and includes the top selected DBM features from the LOCO-MP 
algorithm, ranked by their feature occlusion scores Δ̄𝑗 .

The first three feature groupings assess the individual and combined 
performance of the conventional and DBM features. The last two feature 
groupings are designed to evaluate the predictive potential of the DBM 
features selected by LOCO-MP.

The models were trained on each grouping using six repeats of 5
fold cross-validation. Model performance was measured by computing 
the Harrell’s Concordance index (C-index). The C-index is analogous to 
the area under the ROC curve (AUROC) for binary classification tasks 
by comparing the observed time-to-event with the predicted risk and 
computing the proportion of patients where the two values are consis
tent (e.g. predicting higher risk for a patient with observed progression 
prior to another patient). A C-index of 1 denotes perfect model discrim
ination between patients, and a C-index of 0.5 indicates a fully random 

3 For illustration, we use the top six LOCO-MP features and discuss the motiva
tion for this choice in the results section. We later demonstrate that the specific 
number of features used for modeling is less important than identifying a broad 
set of features for prediction.
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Fig. 3. Architecture diagram of the shallow full brain 3D CNN model. 3D convolutional layers extract local volumetric features from the MRI DBM voxel tensor. 
Summary features from 8 sections of the tensor are collected and passed to a feed-forward predictor module to output the discrete conditional hazards.

model. The primary outcome of our analysis is CCDP24, discussed in 
Section 2.1. In Section 3.2, we consider an alternative definition of pro
gression based on the 25-foot walking test (S25FW).

2.4. MS progression with 3D convolutional neural networks

In contrast to the summary statistic featurization of the DBM data, 
3D CNNs allow for flexible learning of localized features from the full 
brain or atlas region voxel-level tensors. Several applied works in MS 
have considered shallow 3D CNNs [22,20,46]. These relatively ``parsi
monious'' architectures can be better suited to tasks with small sample 
size and without pretrained neural network weights to initialize the 
model with.

Our 3D CNN survival analysis pipeline, as applied to the full brain 
DBM tensor, is shown in Fig. 3. After the original full brain tensor is 
downsampled, it is passed through four 3D convolutional layers with 
kernel size 3, followed by a spatial adaptive max pool. The features 
resulting from the pool are flattened to a vector and passed through 
a two layer fully connected predictor module, which outputs discrete 
survival hazards. The network is trained using the same log-likelihood 
loss function as described in Equation (A.2). All neural networks are 
trained using Pytorch 2.3.0 and Python 3.10.14.

We also train two additional CNN models from the literature, a 
deep convolutional attention model (CoAtNet), and a hierarchical trans
former model designed for medical segmentation tasks (UNesT) [30,31]. 
A 3D implementation of CoAtNet is used [47] and it is pretrained using 
ImageNet [48]. For UNesT, the model is pretrained using T1-w MRIs. 
For both models, the final layer of their feature extractor modules are 
fed to an analogous predictor module as the in-house shallow architec
ture in Fig. 3.

Finally, we propose a novel convolutional module to process a user 
selected subset of the atlas regions. This region-level convolutional 
model, which we refer to as Region CNN, permits the user to use do
main knowledge or previous feature selection work to select a sparse 
set of regions for the CNN to completely focus on, rather than process
ing the full brain. The architecture for Region CNN is depicted in Fig. 4. 
The user first specifies which regions are included in the model and 
separate CNN weights are then learned for each region. If the region 
is larger than 16 × 16 × 16, it is cropped into regions of interest (ROIs) 
of this size, only keeping ROIs with sufficient (> 30%) nonzero voxels. 

Otherwise, the region tensor is left as a single ROI. The region ROIs are 
passed through an analogous set of four 3D CNN layers as described in 
Fig. 3. The only difference is that the stride of all CNN layers is 1. The 
resulting ROI feature vectors are collapsed to a single region-level fea
ture vector using attention pooling [49]. Finally, the region-level feature 
vectors are concatenated to form the DBM feature vector for the patient. 
For model training, this vector is processed through a predictor module 
in the same fashion as Fig. 3.

3. Results

We begin by discussing our feature selection results from LOCO-MP 
and compare this against a traditional random survival forest model 
(Section 3.1). Sections 3.2 and 3.3 discuss the prediction modeling from 
traditional survival models and convolutional neural networks, respec
tively.

3.1. LOCO-MP feature selection

LOCO-MP identifies the most important DBM features for predic
tion in a stable manner. Each minipatch has dimension 𝑛 = 𝑁∕5 and 
𝑚 =

√
𝑀 , where 𝑁 = 350 and 𝑀 = 56. LOCO-MP was first applied to 

the entire dataset with 𝐾 = 10000 minipatches. RSF and CCDP24 were 
used as the prediction model and progression outcome, respectively. 
The first four columns of Table 2 show the regions, summary statistics 
(i.e., the features), feature importance scores Δ̄𝑗 , and rankings of the 
top six features identified from applying LOCO-MP to the full dataset. 
Fig. B.12 in the Appendix shows this for all 56 features. In the following 
paragraphs, we demonstrate the robustness of these feature importance 
results through various stability checks.

Stability of LOCO-MP In addition to the theoretical guarantees enjoyed 
by the LOCO-MP framework, we empirically validate its stability by test
ing its robustness against various data perturbations [50,51]. We first 
assess the robustness of the feature importance list by generating ten 
80% subsamples of the data and applying LOCO-MP to each subsample, 
collecting the corresponding feature importance scores (Δ̄𝑗 ) and rank
ings. This is shown in the latter two columns of Table 2. Despite a low 
signal-to-noise ratio in the DBM data, the top six features are identical 
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Fig. 4. Architecture diagram of the region-based 3D CNN feature extraction. For each atlas region, the DBM voxels are cropped into 16 × 16 × 16 regions of interest 
(ROIs) comprising at least 30% nonzero values, if the region is larger than this crop size. The ROIs are passed through a 3D CNN feature extractor, following the 
specs of the feature extraction module in Fig. 3. The resulting tensors are spatially pooled and flattened to a feature vector for each ROI. The ROI feature vectors are 
pooled to a region-level feature vector using attention. Finally, the region-level feature vectors are concatenated to form the final DBM feature vector passed into the 
survival hazard predictor module from Fig. 3. A separate feature extractor is learned jointly for each selected atlas region.

Table 2
Top six LOCO-MP selected features based on full data and ten subsamples. The feature occlusion 
scores (Δ̄𝑗 ) and full data/median subsample ranks are also shown.

Region Feature Summary 
Statistic

Full Data Ten Subsamples 
Rank Δ̄𝑗 Median Rank Median Δ̄𝑗

3rd Ventricle Std. Dev 1 0.00104 2 0.00090 
Lateral Ventricle Median 2 0.00101 1 0.00095 
Precuneus Median 3 0.00088 3 0.00078 
Cerebellum White Matter Median 4 0.00056 4 0.00064 
Lingual Median 5 0.00051 5 0.00061 
Parahippocampal Median 6 0.00051 6 0.00042 

Table 3
Summary of Jaccard index 𝐽 for increasing numbers of top features.

Number of top features 2 3 4 5 6 7 8 9 10 11 
Average 𝐽 0.93 0.85 0.84 1.00 0.94 0.80 0.89 0.77 0.72 0.68 
Median 𝐽 1.00 1.00 1.00 1.00 1.00 0.75 0.89 0.80 0.67 0.69 

between the full data and subsampled data models. The first two fea
tures are reversed in rank, but the difference in magnitude is extremely 
small (less than 0.00003).

We measure the consistency of the feature rankings by computing the 
Jaccard similarity index 𝐽 between the ranks derived from the full dataset 
and those from the subsamples. This measures the proportion of overlap 
between two sets, ranging from 0 (no overlap) to 1 (complete overlap). 
By calculating 𝐽 for varying numbers of top-ranked features, we aimed 
to quantify how reliably the top features appeared in the subsampled 
rankings. Table 3 presents the results for the top 11 features from the 
full data model. Across the ten subsamples, the average and median 
values of 𝐽 decrease after six features before starting to plateau after 
ten. Therefore, we choose six as a heuristic number of DBM features 
to include in our model, though we demonstrate in Section 3.2 that 
our results remain relatively robust to varying numbers of top selected 
features.

Permutation test We tested the individual importance of the top DBM 
features by permuting their values across all patients and evaluating the 
ranks. For each feature, we permuted its values 25 times across patients 
and re-applied LOCO-MP for each permutation to evaluate the rank
ing of the permuted feature. The permutation disrupts the connections 
between individual DBM features and the outcome and tests whether 
higher ranks are attributable to specific feature identities. If the ranks 
of the permuted features are close to those from the unpermuted data, 
it would imply that the observed importance of the feature is not driven 
by the uniqueness of the feature (and corresponding brain region) it
self. Instead, the perceived feature importance may be due to random 
and/or other global patterns in the data. The permuted ranks for each 
feature form a ``pseudo-null distribution'' under the null hypothesis that 
the feature is uninformative (shown in Fig. 5). This allows us to assess 
how often permuted ranks are as low or lower than the original rank. 
The results are shown in Fig. 5 -- note that ``Med'' stands for the voxel 
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Fig. 5. LOCO-MP permutation test. We plot the distribution of the top six LOCO-MP features after 1) permuting their identities and 2) re-applying LOCO-MP to each 
permutation. The gray histograms show the rank distribution of each of the top LOCO-MP features after it is permuted. ``Med'' stands for voxel median and ``Sd'' 
stands for voxel standard deviation. The blue and red vertical lines represent the full data and median subsampled ranks (both unpermuted), respectively. These 
lines appear as a single purple line when the permuted and unpermuted ranks are identical.

median feature and ``Sd'' stands for the voxel standard deviation fea
ture. For the top features identified by LOCO-MP, the ranks from the 
unpermuted models consistently fall below most, if not all of the per
muted ranks, yielding a low ``empirical p-value.'' This suggests that the 
feature identities are indeed meaningful and unlikely due to chance, 
highlighting their potential relevance as medically important regions 
for MS progression, discussed in the last paragraph of this section.

LOCO-MP vs random forest-based scoring To assess the effectiveness 
of LOCO-MP, we benchmark it against the default feature importance 
scores produced by the random survival forest model which we refer 
to as ``RF-Imp.'' This comparison illustrates the differences between our 
LOCO-MP approach and the results one might obtain by directly apply
ing standard survival modeling software without first considering the 
underlying assumptions. While such tools are easily accessible, they may 
not be tailored for the challenges of high-dimensional feature selection.

The feature importance scores in RF-Imp are generated as the aver
age difference in out-of-bag prediction error across decision trees when 
the corresponding feature is permuted. In principle, the bagging and 
feature subsets for each decision tree share some similarities with mini
patch ensembling. Incorporating shuffled feature values onto already
trained decision trees can create large erroneous changes to predictions 
that would otherwise have fine performance if retrained without the 
feature. This may introduce unnecessary instability to RF-Imp when 
compared with LOCO-MP. Following the same procedure as LOCO-MP, 
we first compute RF-Imp feature importance scores from the full dataset 
and then on ten subsamples. Fig. 6 shows the top six RF-Imp features 
based on the full data ranking. The blue boxplot shows the rank distri
bution across the ten subsamples, and the orange boxplot above it shows 
the corresponding LOCO-MP subsampled rank distribution for compar
ison.

Although there is alignment in the set of top regions captured be
tween RF-Imp and LOCO-MP, the RF-Imp results alone demonstrate 

larger rank instability, especially beyond the third and lateral ventricles. 
In particular, the 5th and 6th ranked features differ between LOCO-MP 
and RF-Imp, but the top four are the same. It is clear that LOCO-MP has 
considerably lower variability in its rank distributions over the ten sub
samples, establishing it as a more stable choice for feature selection. In 
contrast, the RF-Imp ranks have greater spread across subsamples, in
creasing the possibility of identifying spuriously meaningful features. 
As an additional stability check, we replace random forest with gradi
ent boosting machines (GBM) as the underlying survival algorithm in 
LOCO-MP and find that the subsample ranks of the top regions are con
cordant with RF, excluding the parahippocampal region (Table B.5). The 
greater stability of LOCO-MP allows us to be more confident that the se
lected features are genuinely meaningful and not due to noise or other 
artifacts of the data. In future work, an ensembling of LOCO-MP with 
multiple survival models may yield an even more stable feature set.

Similar top features are identified when LOCO-MP is combined with 
survival gradient boosting machines (GBM) instead of random forest, 
highlighting that LOCO-MP can be relatively algorithm agnostic.

Clinical relevance of identified regions In spite of the modestly sized 
LOCO-MP feature importance scores arising from the small cohort MRI 
data, the features and their ranks are stable. These features also align 
with brain regions that are clinically relevant in MS. The two identi
fied ventricular regions, including the third and lateral ventricles, are 
often indicated in MS progression studies [52--54]. The consistency of 
ventricle-related findings across different studies emphasizes the robust
ness of these regions. Notably, these regions were also identified as 
significant in a recent causal study using the treatment arm of the same 
trial [6]. While this study focused on treatment effects, our use of the 
control arm to predict progression confirms the continued importance 
of the ventricular regions even in the absence of therapeutic interven
tion.
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Fig. 6. Rank distribution for RF-Imp feature importance (blue) vs LOCO-MP (orange). The 𝑦-axis shows the top six RF-Imp features in terms of their feature importance 
score from an RSF model applied to the full data. The 𝑥-axis plots the ranks across different data subsamples. ``Med'' stands for voxel median and ``Sd'' stands for 
voxel standard deviation. The blue boxplots show their subsampled ranks on the 𝑥-axis. The orange boxplot above to each blue boxplot shows the rank distribution 
of that feature from LOCO-MP.

The cerebellum is also frequently indicated in MS studies [55,56], 
which may play a role in impairment of postural control and balance 
in MS patients [57]. The precuneus and lingual gyrus are found abnor
mally activated in the brains of MS patients when performing cognitive 
exercises, and this activation was later associated with increased mental 
fatigue and slower speed in task completion [58]. Finally, the parahip
pocampal gyrus (ranked 6th) has also been linked to varying activation 
patterns in MS patients compared to controls [59], and is also associated 
with much greater lesion activity compared to controls [60].

While the identified regions possess some degree of clinical relevance 
in previous MS studies, we emphasize that our study is exploratory in 
this area and does not intend to draw any clinical conclusions. Patho
logical development of MS can be diffusive across brain anatomy and 
functions [1,61]. As a result, many brain regions can atrophy or be impli
cated by the disease. In order to inform future clinical decision-making, 
further validation on larger and more heterogeneous patient populations 
is required. However, our study provides a practical first step towards 
future scientific studies on certain brain regions.

3.2. Prediction improvements from selected regions under classical survival 
models

We show that the predictive models comprising LOCO-MP identified 
features have stronger discriminative power than models using all DBM 
features. We first present results from CCDP24, a canonical endpoint for 
measuring MS progression. We then discuss how the LOCO-MP selected 
features generalize well to alternative endpoints and compensate for the 
loss of key conventional predictors.

3.2.1. CCDP24 outcome

Our RSF model results for the CCDP24 outcome are presented in 
Fig. 7. Each boxplot shows the distribution of test-set C-indices for a 
specific feature grouping (discussed in Section 2.3) across all cross
validation folds and repeats. The median test-set C-index is annotated 
within each boxplot. Unsurprisingly, the ``All DBM'' model has the low
est C-index across the feature groups, likely due to overfitting from the 
high dimensionality of using all 56 DBM features. A similar conclusion 
can be drawn from the ``Conventional + All DBM'' model which includes 

Fig. 7. CCDP24 RSF model results. Boxplots show the distribution of random 
survival forest test-set C-indices across all cross-validation folds and repeats for 
outcome CCDP24. The 𝑥-axis consists of the feature groupings and the 𝑦-axis 
shows the test set C-indices. ``Top DBM'' refers to the top six DBM features. The 
annotated C-index represents the median value for a specific feature grouping.

even more features, showing how using an extensive set of MRI features 
without clinical context can lead to suboptimal predictive performance. 
These two models were slightly outperformed by the model using con
ventional features only, suggesting that the conventional features alone 
capture some degree of predictive value in CCDP24. In contrast, the two 
models that include the top features selected from DBM demonstrate the 
best prediction performance. Both C-indices are centered around 0.67, 
suggesting moderate predictive ability from the top DBM features. Ad
justing for clinical information in the ``Conventional + All/Top DBM'' 
models did not appear to affect performance.

For simplicity, the ``Top DBM'' models (Top DBM, Conventional + 
Top DBM) shown in Fig. 7 are fit with the top six LOCO-MP features. 
However, the results from these two feature groupings remained stable 
with respect to varying numbers of LOCO-MP-selected features. Fig. 8
plots the distribution of test-set C-indices from these two feature group
ings across the top-ranked DBM features, ranging from 1 to 8. Perfor
mance remains stable across different numbers of features, suggesting 
that the model is robust to how many top features are used -- the precise 
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Fig. 8. CCDP24 model stability. Boxplots show the distribution of CCDP24 test-set C-indices for the Conventional + Top DBM and Top DBM-only RSF models, plotted 
across varying numbers of top LOCO-MP features. The 𝑥-axis represents the number of top LOCO-MP features selected and the 𝑦-axis is the C-index.

rankings between features and the specific number used for modeling 
is less important than identifying a broad set of features that can be in
vestigated for clinical relevance. Although these two feature groupings 
are more investigative, researchers can be confident that the results are 
not overly sensitive to the specific subset of features. To assess gener
alizability of the Top DBM features, Section 3.2.2 applies this feature 
set to an alternative progression outcome, and Appendix D applies this 
feature set to a separate control cohort.

Several conclusions can be drawn from our results. First, many of the 
DBM features contain overlapping information that ultimately results 
in model overfitting, as evidenced by the two ``All DBM'' model box
plots. This underscores the value of LOCO-MP, which can sift through 
highly correlated groups of features to identify the most prognostic ones 
and improve prediction performance. Moreover, the predictive strength 
of the DBM features and the clinical relevance of the corresponding 
brain regions reinforces the validity of these findings, demonstrating 
that LOCO-MP identifies DBM features with genuine predictive value.

3.2.2. 25-foot walking test outcome

Despite variations in performance from across different feature sets, 
the CCDP24 C-indices are modest for even the strongest feature groups. 
This may arise from various factors, including inherent limitations in 
the outcome definition which impacts the model’s ability to identify 
meaningful signal -- CCDP24 is characterized by marked changes in 
multiple events that are sustained for 24 weeks [62,63]. Although com
bining multiple events reduces the censoring rate, it comes at the cost 
of potentially introducing subjective measurements into the analysis: 
EDSS scoring can vary across studies, and the definition of EDSS-based 
progression highly depends on the study at hand [64]. Therefore, includ
ing information from noisy outcome measurements could potentially 
worsen performance and we hypothesize this may be the case with 
CCDP24. To combat this, recent literature has pointed to the timed 25
foot walking test as an alternative measure of disability progression that 
may be more sensitive in detecting genuine disease worsening [64]. This 
test measures the time for a patient to walk 25 feet without any assistive 
devices. Progression is defined as a 20% increase in 25-foot walking time 
that is sustained for 24 weeks (S25FW). Previous studies have demon
strated significantly worse S25FW times in MS patients [65] and S25FW 

Fig. 9. S25FW RSF model results. Boxplots show the distribution of random 
survival forest test-set C-indices across all cross-validation folds and repeats for 
outcome S25FW. The 𝑥-axis consists of the feature groupings and the 𝑦-axis 
shows the test set C-indices. ``Top DBM'' refers to the top six DBM features. The 
annotated C-index represents the median value for a specific feature grouping. 
We also include results after omitting the highly prognostic conventional vari
able BT25FW.

has previously been shown to be strongly correlated with other forms 
of MS progression [66].

This outcome has a higher censoring rate compared to CCDP24 (88% 
compared to 77%), but resulted in higher C-indices across all feature 
groupings, shown in Fig. 9. Similar to CCDP24, a model using all DBM 
features leads to overfitting. However, the conventional feature model 
demonstrates a 12.7% increase in median C-index compared to CCDP24 
(0.63 to 0.71), and the ``Conventional + Top DBM'' and ``Top DBM-only'' 
models also see increases in median C-index. These increases suggest 
that DBM information is more effective in predicting S25FW-based pro
gression. This also supports previously stated claims about the improved 
sensitivity of S25FW, illustrating the perils of using a noisy outcome 
measurement like CCDP24. The C-index for S25FW also remained ro
bust to different numbers of top DBM features, as shown in Fig. 10.

The strong performance in the conventional model for S25FW is 
largely attributed to the baseline 25-foot walking test feature (BT25W, 
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Fig. 10. S25FW model stability. Boxplots show the distribution of S25FW test-set C-indices for the Conventional + Top DBM and Top DBM-only RSF models, plotted 
across varying numbers of top LOCO-MP features. The 𝑥-axis represents the number of top LOCO-MP features selected and the 𝑦-axis is the C-index.

see Section 2.1) which is highly predictive of S25FW progression. The 
C-indices decrease after omitting BT25W as a conventional covariate 
in our models -- the ``Conventional-only'' and ``Conventional + All DB
M'' models achieve a median C-index of 0.59 and 0.62, respectively, as 
shown in Fig. 9. These performances are comparable to their CCDP24 
counterparts. While omitting BT25FW results in worse performance 
across all feature groupings with conventional features, the ``Conven
tional + Top DBM'' model performs fairly robustly even after omitting 
BT25FW, achieving a median C-index of 0.67. This demonstrates that 
the top DBM features may be able to compensate for the loss of key con
ventional predictors and shows how LOCO-MP can identify robust and 
generalizable features.

We also note that the two ``Top DBM'' models in the S25FW analysis 
use LOCO-MP features identified from the CCDP24 outcome -- the algo
rithm encountered challenges when applied to S25FW due to its high 
censoring rate, which limited the number of informative minipatches 
(many minipatches consisted entirely of censored patients). Despite this, 
the increased performance in the two ``Top DBM'' S25FW models demon
strates the reliability of LOCO-MP in identifying a stable feature set 
that captures fundamental aspects of disease progression that are robust 
across different outcome definitions. Appendix D further demonstrates 
that these identified DBM improve S25FW prediction in a separate val
idation cohort. These strong generalizations are further evidence that 
the top features may be genuine markers of disease worsening, enhanc
ing its potential for broader clinical applications and underscoring the 
value of DBM as a regional identification framework.

While this new outcome allowed for more precise patient risk dis
crimination, the variance of the C-index estimates was higher than that 
of CCDP24. This is due to the higher censoring rate in S25FW which, by 
reducing the number of informative events, lowers the effective sample 
size. This generally leads to increased variance in the estimates because 
there is less observed data available to accurately capture the under
lying risk. Even though S25FW provides clearer risk stratification, the 
higher variation in the C-index reflects the statistical challenges intro
duced by a lower effective sample size. In contrast, the CCDP24 outcome 
has lower variance but lower C-indices as well.

Fig. 11. CNN model performance for CCDP24. Boxplots show the distribution 
of test C-indices for each of the tested CNN models. Results are presented both 
for the trained CNN predictor module (CNN Predictor Module), as well as an 
RSF trained on the extracted feature vector of each trained CNN (RF Retrained 
on Extracted Features). The 𝑥-axis labels first give the CNN model architecture 
used, followed by the inputs used. Specifically, full brain models are compared 
with Region CNN, using either the top 6 LOCO-MP regions or random 6 regions 
(excluding 6 LOCO-MP regions) with each fold.

3.3. Prediction improvements from selected regions under convolutional 
neural networks

We compare full brain CNNs against Region CNN using only the top 
6 identified LOCO-MP regions to assess the extent to which an unsuper
vised deep learning feature extraction improves prediction performance. 
Fig. 11 presents CNN model test C-indices over 30 80%/20% data splits 
for predicting CCDP24. The evaluated models include the three base
line full brain models (Shallow, CoAtNet UNesT), Region CNN trained 
on the top 6 LOCO-MP regions, and Region CNN trained on 6 randomly 
selected regions (excluding the top 6 LOCO-MP regions). Each of these 
models are described in Section 2.4. Red boxplots show the C-index 
distribution from the predictions of the CNN predictor module. The 
learned latent features from each CNN (i.e., the concatenated green bar 
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in Fig. 3) were also extracted and retrained using a conventional RSF 
survival model (without conventional features), enabling the continu
ous survival times to be used as the outcome. Teal boxplots show the 
C-index distribution of the RSF models trained on these extracted CNN 
feature vectors.

These results underscore the importance of subsetting the DBM in
put to the top 6 LOCO-MP regions in order to extract signal from a 
CNN. Each of the full brain CNN models struggle to achieve nonran
dom performance (C-index ≥ 0.5). The shallow full brain CNN features 
perform modestly better than the complex CoAtNet and UNesT archi
tectures. This suggests that, for this data and cohort size, neither an 
attention mechanism nor a very deep architecture are able to adequately 
predict CCDP24. Additionally, CoAtNet was pretrained using ImageNet 
[48] and UNesT was pretrained using raw T1-w MRI tensors, indicating 
that the DBM data may reflect critically different patterns than the raw 
MRI. Region CNN fares quite poorly when trained on 6 random non
LOCO-MP regions. However, it extracts strong predictive signal when 
LOCO-MP features are used. The LOCO-MP features were more helpful 
in the RSF model, achieving a median C-index of 0.61. Region CNN with 
the top 6 LOCO-MP regions performs comparably on the S25FW out
come (median predictor module C-Index: 0.57; median RSF retrained 
C-Index: 0.61). Ultimately, even the best CNN fares moderately worse 
than the corresponding classical survival model in Section 3.2, high
lighting the challenge of learning complex models for the DBM data 
on this cohort size. With more data, Region CNN (and CNNs generally) 
may be able to extract more expressive features from the T1-w MRI 
data.

4. Discussion

This study develops a data analysis pipeline that balances stability, 
predictive performance, and domain-level interpretability to improve 
MS prediction models with DBM-based features. We demonstrate how 
LOCO-MP identifies clinically relevant features in a stable manner, out
performing other feature importance approaches. Our sample size of 
350 is modest for complex prediction tasks such as MS progression pre
diction from neuroimaging data. While sample size can influence the 
stability and generalizability of model outputs, we mitigated these con
cerns by conducting extensive stability checks discussed in Section 3.1
and varying the number of top DBM features used for modeling (Figs. 8
and 10). The selected LOCO-MP features generalized well to a separate 
validation cohort Appendix D. We note that our analysis pipeline is scal
able and well-suited to larger datasets as they become available.

Regarding prediction performance, we observe that the test set C
indices for the strongest feature groupings primarily range between 
0.65-0.75. We note that our prediction task focuses on 24-week pro
gression, a relatively short time frame for a chronic illness such as MS. 
Predicting over such brief periods is inherently challenging, as disease 
progression tends to be subtler and more variable, limiting the ability 
of models to capture robust patterns. This limitation likely prevents the 
observed C-index from being higher. In fact, several other RRMS patient 
studies that predict short-term progression with similar sample sizes re
port comparable C-indices or AUROC values4 (between 0.48 and 0.73) 
when using a similarly-defined outcome with different types of brain 
data [18,67--69]. Another study reported slightly higher C-indices (0.76) 
when integrating genotypic factors with clinical variables [70] -- the use 
of non-MRI based features, such as those based on genetic or gut mi
crobiome information, has proven to yield strong predictions and is a 
potential future direction for MS prediction [71]. In addition, Pellegrini 
et al. (2020) observed that C-indices did not exceed 0.65 with conven
tional survival models, despite using a larger cohort [18].

4 The C-index is analogous to the AUROC in binary prediction tasks with sur
vival data.

The endpoints themselves also have limitations. As mentioned in 
Section 3.2.2, CCDP24 is derived by combining the scores of EDSS, 
9HPT, and T25FW. While each of the three clinical assessments has its 
own limitations [72--74], EDSS is more subjective and less sensitive to 
disease-related changes [72]. S25FW is a quantitative measure of lower 
limb movement function. Because it only captures one specific function, 
its two-year progression rate experiences more censoring. Progression 
on this metric regardless has a high correspondence with overall RRMS 
progression [73]. It remains an area of future work to find a clinical pro
gression measure that optimally balances sensitivity and censoring rates.

We additionally explored the performance of 3D CNN models us
ing the full brain versus the LOCO-MP top regions. Though the 3D CNN 
models substantially improved when constraining the DBM input to the 
LOCO-MP top DBM regions, their performance still lagged behind con
ventional modeling using summary statistics of these regions. State of 
the art 3D CNN architectures did not change this story; the small sample 
size could be the main limiting factor for deep learning performance. In 
the future, we are interested in a deeper exploration of small sample size 
strategies for CNNs, such as DBM pretraining with self-supervised learn
ing (SSL) on DBM-processed T1 MRI data, model ensembling, domain
tailored attention, and few-shot learning techniques.

Ultimately, our results suggest that DBM uniquely captures subtle 
volumetric abnormalities across the brain and provides orthogonal in
formation to the conventional features, contributing to MS progression 
in a way that is stable and clinically meaningful across multiple def
initions of progression. Future work could integrate DBM with other 
MRI modalities used for lesion localization. Additionally, our study was 
restricted solely to patients with relapsing MS. Future work could uti
lize DBM to differentiate between different subtypes of MS or predict 
the conversion of relapsing MS to secondary progressive MS [75] when 
those subtypes are available. Our analysis pipeline is an initial starting 
point for more advanced data-driven studies that may provide better 
scientific and clinical insights about how MS impacts the brain.
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Appendix A. Details of LOCO-MP for survival analysis

Following the notation of Gan et al. (2023) [28], we denote the 𝑁 ×𝑀 data matrix as 𝑋 and the outcome as 𝑌 . Let (𝑋𝑖, 𝑌𝑖) denote the feature
outcome pair for individual 𝑖, where 𝑋𝑖 is a 𝑀 -dimensional vector and 𝑌𝑖 = (𝑇𝑖,𝐶𝑖). For every minipatch 𝑘 = 1…𝐾 , we sample 𝑛 observations 𝐼𝑘
and 𝑚 features 𝐹𝑘 from 𝑋. Denote this minipatch as 𝑋𝐼𝑘,𝐹𝑘

. A prediction model 𝜇̂𝑘 is then trained on 𝑋𝐼𝑘,𝐹𝑘
and predictions are generated for the 

remaining observations 𝑋−𝐼𝑘,𝐹𝑘 , which includes features 𝐹𝑘 and observations outside 𝐼𝑘. Repeating this over all 𝐾 minipatches, we compute the 
individual feature occlusion score for feature 𝑗 and observation 𝑖:

Δ̂𝑖𝑗 = Error(𝑌𝑖, 𝜇̂
−𝑗
−𝑖 (𝑋𝑖)) − Error

(
𝑌𝑖, 𝜇̂−𝑖(𝑋𝑖)

)
,

where

𝜇̂−𝑖(𝑋𝑖) =
1 ∑𝐾

𝑘=1 1(𝑖 ∉ 𝐼𝑘)

𝐾∑
𝑘=1

1(𝑖 ∉ 𝐼𝑘)𝜇̂𝑘(𝑋𝑖), and

𝜇̂
−𝑗
−𝑖 (𝑋𝑖) =

1 ∑𝐾

𝑘=1 1(𝑖 ∉ 𝐼𝑘)1(𝑗 ∉ 𝐹𝑘)

𝐾∑
𝑘=1

1(𝑖 ∉ 𝐼𝑘)1(𝑗 ∉ 𝐹𝑘)𝜇̂𝑘(𝑋𝑖),

and Error() refers to any observation-level prediction error function, in our case the discrete hazard loss discussed in the following paragraph. The 
individual Δ̂𝑖𝑗 values are then averaged, giving us the feature occlusion score for feature 𝑗:

Δ̄𝑗 =
1 
𝑁

𝑁∑
𝑖=1 

Δ̂𝑖𝑗 . (A.1)

Δ̂𝑖𝑗 is the difference in error for observation 𝑖 when feature 𝑗 is omitted. Concretely, this can be thought of as the change in prediction capability for 
patient 𝑖 when a specific DBM feature is omitted. Larger, positive values of Δ̂𝑖𝑗 indicate greater feature importance since the model performs worse 
(has larger error) when feature 𝑗 is excluded.

The prediction error for survival analysis models is commonly measured as the reciprocal of the overall concordance index (C-index) of risk scores 
between pairs of observations. However, this metric is not an aggregation of observation-level errors, preventing its direct usage in the LOCO-MP 
framework. To address this, we utilize discrete hazard loss functions used in deep learning survival analysis models [41,42,76]. Specifically, we 
evenly divide the survival time scale of the study into 𝑑 intervals: [𝑡0, 𝑡1),… , [𝑡𝑑−1, 𝑡𝑑 ), where 𝑡𝑑 is the end of the study period. The patient’s event 
time is now denoted 𝑇𝑖 = 𝑞 if and only if 𝑇𝑖 ∈ [𝑡𝑞 , 𝑡𝑞+1).

Given this setup, we may define a patient’s conditional hazard probability as:

ℎ(𝑞 ∣𝑋𝑖) = ℙ(𝑇𝑖 = 𝑞 ∣ 𝑇𝑖 ≥ 𝑞,𝑋𝑖).

This patient’s survival probability follows as the probability of surviving until the end of the current interval or longer:

𝑆(𝑞 ∣𝑋𝑖) = ℙ(𝑇𝑖 > 𝑞 ∣𝑋𝑖) =
𝑞∏

𝑠=1 
(1 − ℎ(𝑠 ∣𝑋𝑖)).

From these definitions, we can compute an observation-level likelihood. For uncensored patients, this is the product of the conditional hazard at 
their event time and the survival function of the prior time period:

𝓁𝑈 (𝑇𝑖 = 𝑞) = ℎ(𝑞 ∣𝑋𝑖) 𝑆(𝑞 − 1 ∣𝑋𝑖).

For patients that are right-censored at time period 𝑞, their likelihood is simply the survival function at time period 𝑞:

𝓁𝐶 (𝑇𝑖 > 𝑞) = 𝑆(𝑞 ∣𝑋𝑖).

Altogether, given the censoring status 𝐶𝑖 for each patient, the observation level model error for LOCO-MP at time 𝑇𝑖 = 𝑞 is defined as the negative 
log-likelihood of the discretized observation:

Error((𝑇𝑖,𝐶𝑖), 𝜇̂
−𝑗
−𝑖 ) =

{
−log(ℎ(𝑞 ∣𝑋𝑖)) − log(𝑆(𝑞 − 1 ∣𝑋𝑖)); 𝐶𝑖 = 0
− log(𝑆(𝑞 ∣𝑋𝑖)); 𝐶𝑖 = 1

(A.2)

Here, 𝜇̂−𝑗
−𝑖 encapsulates the collection of conditional hazards that are computed with the underlying minipatch model. Assuming that the patient 

conditional hazard probabilities are not exactly 0 or 1 over the study period, this loss framework satisfies the necessary assumptions for the theoretical 
guarantees of LOCO-MP [28].

LOCO-MP is advantageous over other feature selection techniques due to its ability to provide asymptotic inferential guarantees [28]. Moreover, 
LOCO-MP can also account for dependencies across features, a common issue in high-dimensional settings like ours -- Gan et al. (2023) [28] discuss 
that, by generating randomly subsampled features across minipatches, LOCO-MP ensures that the predictive value of each feature is not being 
diminished by other strongly correlated features, since groups of strongly correlated features will not always appear in the same minipatch. The full 
LOCO-MP procedure and its theoretical guarantees are discussed in Gan et al. (2023) [28].
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Appendix B. Additional LOCO-MP and feature selection results

B.1. Full LOCO-MP results

Fig. B.12 shows boxplots for all 56 DBM features, similar to Fig. 6 in the main text. Blue boxplots show the rank distribution from RF-Imp while 
orange boxplots show the rank distribution from LOCO-MP.

Table B.4 shows the LOCO-MP feature importance scores for all 56 DBM features.

Fig. B.12. Rank distribution for RSF feature importance (blue) vs LOCO-MP (orange) for all DBM features. The 𝑥-axis shows the features (from highest to lowest 
rank) in terms of their feature importance score from an RSF model applied to the full data, and the blue boxplots show their subsampled ranks on the 𝑦-axis. The 
orange boxplot next to each blue boxplot shows the rank distribution of that feature from LOCO-MP.

Table B.4

Feature importance scores and rankings from full data and subsamples for all 56 high
variance VoxelDBM regions.

Region Full Data Subsamples 
Rank Δ̄𝑗 Median Rank Median Δ̄𝑗

3rd Ventricle SD 1 0.00104 2 0.00090 
Lateral Ventricle Median 2 0.00101 1 0.00095 
Precuneus Median 3 0.00088 3 0.00078 
Cerebellum White Matter Median 4 0.00056 4 0.00064 
Lingual Median 5 0.00051 5 0.00061 
Parahippocampal Median 6 0.00051 6 0.00042 
Cerebellar Vermal Lobules VIII-X Median 7 0.00029 8 0.00027 
3rd Ventricle Median 8 0.00028 7 0.00037 
Basal Forebrain Median 9 0.00026 12.5 0.00016 
Caudal Anterior Cingulate Median 10 0.00023 16 0.00014 
Caudal Middle Frontal Median 11 0.00017 12.5 0.00019 
Supramarginal Median 12 0.00016 12.5 0.00017 
Rostral Middle Frontal Median 13 0.00016 12 0.00019 
CSF Median 14 0.00015 14 0.00015 
Lateral Orbitofrontal Median 15 0.00014 19 0.00008 
Posterior Cingulate Median 16 0.00014 13 0.00017 
Pars Orbitalis Median 17 0.00012 18.5 0.00008 
Caudate SD 18 0.00010 17.5 0.00009 
Medial Orbitofrontal Median 19 0.00005 17.5 0.00008 
Paracentral Median 20 0.00004 26 -0.00002 
Pericalcarine Median 21 0.00003 32 -0.00010 
Superior Parietal Median 22 0.00002 16 0.00014 
Cerebellum Exterior Median 23 -0.00000 30 -0.00007 
Entorhinal Median 24 -0.00002 14 0.00014 
Amygdala Median 25 -0.00002 28 -0.00003 
Brain Stem Median 26 -0.00003 36.5 -0.00014 

(continued on next page)
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Table B.4 (continued)

Region Full Data Subsamples 
Rank Δ̄𝑗 Median Rank Median Δ̄𝑗

Rostral Anterior Cingulate Median 27 -0.00003 23 0.00001 
Lateral Occipital Median 28 -0.00005 34.5 -0.00011 
Isthmus Cingulate Median 29 -0.00005 25 -0.00002 
Pars Triangularis Median 30 -0.00006 42 -0.00021 
Superior Frontal Median 31 -0.00007 43.5 -0.00021 
Pars Opercularis Median 32 -0.00008 32 -0.00007 
Lateral Orbitofrontal SD 33 -0.00010 28 -0.00005 
Hippocampus Median 34 -0.00010 34.5 -0.00011 
Cerebellar Vermal Lobules I-V Median 35 -0.00010 25.5 -0.00003 
Caudate Median 36 -0.00012 36 -0.00012 
Fusiform Median 37 -0.00012 36 -0.00015 
Accumbens Area Median 38 -0.00013 45 -0.00022 
Insula Median 39 -0.00019 40 -0.00020 
Inferior Parietal Median 40 -0.00019 41.5 -0.00019 
Postcentral Median 41 -0.00019 31.5 -0.00010 
Pallidum Median 42 -0.00020 47 -0.00023 
Ventral DC Median 43 -0.00020 40.5 -0.00018 
Precentral Median 44 -0.00023 38 -0.00016 
Transverse Temporal Median 45 -0.00023 53.5 -0.00035 
Cerebellar Vermal Lobules VI-VII Median 46 -0.00024 49 -0.00026 
Putamen Median 47 -0.00025 48.5 -0.00027 
Lateral Ventricle SD 48 -0.00025 46.5 -0.00024 
4th Ventricle Median 49 -0.00025 45.5 -0.00024 
Inferior Lateral Ventricle Median 50 -0.00026 43.5 -0.00021 
Superior Temporal Median 51 -0.00026 47 -0.00023 
Paracentral SD 52 -0.00029 42.5 -0.00020 
Cuneus Median 53 -0.00033 52.5 -0.00033 
Thalamus Proper Median 54 -0.00035 43.5 -0.00022 
Inferior Temporal Median 55 -0.00047 55 -0.00041 
Middle Temporal Median 56 -0.00052 56 -0.00046 

Table B.5

Ranks of median predictive importance across ten subsamples under 
GBM and GBM-LOCO. Results presented for top six LOCO-MP random 
survival forest features.

Region Feature Summary 
Statistic

Median Subsample Rank 
GBM GBM-LOCO 

3rd Ventricle Std. Dev 6 2 
Lateral Ventricle Median 1 1 
Precuneus Median 18.5 7 
Cerebellum White Matter Median 5 5 
Lingual Median 9.5 13 
Parahippocampal Median 25 21.5 

B.2. LOCO-MP under gradient boosting machines

Though we primarily study the performance of LOCO-MP under nonparametric random survival forests, the feature selection framework may 
utilize other machine learning survival algorithms, such as gradient boosting machines (GBM). We incorporate a survival GBM implementation [77] 
into LOCO-MP (GBM-LOCO), and capture its DBM feature importance ranks in OPERA I across ten 80% subsamples, analogously to the experiments 
in Section 3.1. We also capture the feature ranks of GBM alone, which are assigned based on the reduction in negative Cox partial log likelihood.

In Table B.5, for the top six LOCO-MP random forest features, we present the ranks of their median predictive importance across ten subsamples 
under GBM and GBM-LOCO. The importance of the third and lateral ventricles and the cerebellum white matter is retained for both GBM and GBM
LOCO. The GBM-LOCO ranks are more concordant with RF-LOCO than are the GBM ranks, particularly for the third ventricle and precuneus. The 
parahippocampal region is unimportant under both GBM and GBM-LOCO. This suggests that an ensembling approach of multiple machine methods 
under LOCO could help further validate brain regions that are stably identified.

Appendix C. Penalized Cox proportional hazards modeling

Figs. C.13 and C.14 show the distribution of test set C-indices across all folds for each feature group when a penalized Cox proportional hazards 
model (ridge penalty) is used to predict progression. Fig. C.13 uses the CCDP24 outcome and Fig. C.14 uses the 25-foot walking outcome. Figs. C.15
and C.16 show the analogous plots for the Cox proportional hazards model with a lasso penalty. (See Figs. C.17 and C.18.)
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Fig. C.13. CCDP24 Cox model results (ridge). Boxplots show the distribution of penalized Cox proportional hazards model (ridge penalty) test-set C-indices across 
all cross-validation folds and repeats for outcome CCDP24. The 𝑥-axis consists of the five feature groupings and the 𝑦-axis shows the test set C-indices. ``Top MRI'' 
refers to the top six DBM features. The annotated C-index represents the median value for a specific feature grouping.

Fig. C.14. S25FW Cox model results (ridge). Boxplots show the distribution of penalized Cox proportional hazards model (ridge penalty) test-set C-indices across all 
cross-validation folds and repeats for outcome 25FW. The 𝑥-axis consists of the five feature groupings and the 𝑦-axis shows the test set C-indices. ``Top MRI'' refers 
to the top six DBM features. The annotated C-index represents the median value for a specific feature grouping.

Fig. C.15. CCDP24 Cox model results (lasso). Boxplots show the distribution of penalized Cox proportional hazards model (lasso penalty) test-set C-indices across 
all cross-validation folds and repeats for outcome CCDP24. The 𝑥-axis consists of the five feature groupings and the 𝑦-axis shows the test set C-indices. ``Top MRI'' 
refers to the top six DBM features. The annotated C-index represents the median value for a specific feature grouping.

Figs. C.19 and C.20 show the stability of the test set C-indices across varying numbers of top LOCO-MP features for the penalized Cox proportional 
hazards model (ridge penalty). Fig. C.19 uses the CCDP24 outcome and Fig. C.20 uses the 25FW outcome. Again, Figures X and Y show the analogous 
plots for the Cox proportional hazards model with a lasso penalty.
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Fig. C.16. S25FW Cox model results (lasso). Boxplots show the distribution of penalized Cox proportional hazards model (lasso penalty) test-set C-indices across all 
cross-validation folds and repeats for outcome 25FW. The 𝑥-axis consists of the five feature groupings and the 𝑦-axis shows the test set C-indices. ``Top MRI'' refers 
to the top six DBM features. The annotated C-index represents the median value for a specific feature grouping.

Fig. C.17. CCDP24 Cox model stability (ridge). Boxplots show the distribution of CCDP24 test-set C-indices for the conventional + top MRI and top MRI-only Cox 
proportional hazard (ridge penalty) models, plotted across varying numbers of top LOCO-MP features. The 𝑥-axis represents the number of top LOCO-MP features 
selected and the 𝑦-axis is the C-index.



Computational and Structural Biotechnology Journal 27 (2025) 2014–2033

2030

A.A. Shen, A. McLoughlin, Z. Vernon et al. 

Fig. C.18. S25FW Cox model stability (ridge). Boxplots show the distribution of S25FW test-set C-indices for the conventional + top MRI and top MRI-only Cox 
proportional hazards (ridge penalty) models, plotted across varying numbers of top LOCO-MP features. The 𝑥-axis represents the number of top LOCO-MP features 
selected and the 𝑦-axis is the C-index.

Fig. C.19. CCDP24 Cox model stability (lasso). Boxplots show the distribution of CCDP24 test-set C-indices for the conventional + top MRI and top MRI-only Cox 
proportional hazard (lasso penalty) models, plotted across varying numbers of top LOCO-MP features. The 𝑥-axis represents the number of top LOCO-MP features 
selected and the 𝑦-axis is the C-index.
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Fig. C.20. S25FW Cox model stability (lasso). Boxplots show the distribution of S25FW test-set C-indices for the conventional + top MRI and top MRI-only Cox 
proportional hazards (lasso penalty) models, plotted across varying numbers of top LOCO-MP features. The 𝑥-axis represents the number of top LOCO-MP features 
selected and the 𝑦-axis is the C-index.

Appendix D. Generalizability across study arms

To evaluate the generalizability of the LOCO-MP features, we replicated the random survival forest models in Section 3.2 using an additional 
internal control cohort that is demographically matched to OPERA I (OPERA II: NCT01412333) [26]. This arm was previously not used for feature 
selection or modeling and serves as an independent validation cohort. We use the same feature groupings and modeling process outlined in Section 2.3
to assess whether the LOCO-MP features identified with OPERA I can generalize to an unseen cohort. The RSF models are retrained on OPERA II for 
CCDP24 and S25FW progression with and without the conventional features, with hyperparameter tuning for number of trees. We compare models 
using all DBM features versus the LOCO-MP selected top DBM features, and look at median performance over thirty 80/20 data splits, analogously 
to the main text. Table D.6 shows that the Top DBM features induce substantial C-Index gains over all DBM features for each retrained model set.

Table D.6

Median C-Index improvements when using sparse DBM feature set over all 
DBM features in OPERA II validation cohort (𝑛 = 340). Results are from 
thirty 80/20 splits of the data.

Outcome Includes Conventional Features Median C-Index Δ of Top DBM 
CCDP No +0.06 
CCDP Yes +0.04 
S25FW No +0.15 
S25FW Yes +0.12 

Data availability

The fully anonymized, individual patient raw data including clinical and MRI data of the OPERA trials are made available through the International 
Progressive MS Alliance (www.progressivemsalliance.org).

http://www.progressivemsalliance.org
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