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Abstract
Autonomous driving (AD) is a typical application that requires ef-
fectively exploiting multimedia information. For AD, it is critical
to ensure safety by detecting unknown objects in an open world,
driving the demand for open world object detection (OWOD). How-
ever, existing OWOD methods treat generic objects beyond known
classes in the train set as unknown objects and prioritize recall in
evaluation. This encourages excessive false positives and endan-
gers safety of AD. To address this issue, we restrict the definition
of unknown objects to threatening objects in AD, and introduce a
new evaluation protocol, which is built upon a new metric named
U-ARecall, to alleviate biased evaluation caused by neglecting false
positives. Under the new evaluation protocol, we re-evaluate exist-
ing OWODmethods and discover that they typically perform poorly
in AD. Then, we propose a novel OWOD paradigm for AD based on
fine-tuning foundational open-vocabulary models (OVMs), as they
can exploit rich linguistic and visual prior knowledge for OWOD.
Following this new paradigm, we propose a brand-newOWOD solu-
tion, which effectively addresses two core challenges of fine-tuning
OVMs via two novel techniques: 1) the maintenance of open-world
generic knowledge by a dual-branch architecture; 2) the acquisition
of scenario-specific knowledge by the visual-oriented contrastive
learning scheme. Besides, a dual-branch prediction fusion module
is proposed to avoid post-processing and hand-crafted heuristics.
Extensive experiments show that our proposed method not only
surpasses classic OWODmethods in unknown object detection by a
large margin (∼3× U-ARecall), but also notably outperforms OVMs
without fine-tuning in known object detection (∼ 20% K-mAP). Our
codes are available at https://github.com/harrylin-hyl/AD-OWOD.
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1 Introduction
Autonomous driving (AD) is a typical application that demands
effective exploitation of multimedia information such as visual and
linguistic modalities [13, 23, 24]. For AD, ensuring driving safety
stands as a fundamental requirement, with one critical aspect be-
ing the detection of potential unknown objects in an open world.
Recently, open world object detection (OWOD) task has been pro-
posed to address this problem, aiming to bridge the gap between
classic object detection (OD) [2, 34, 43] and practical OD in the open
world. OWOD methods are expected to detect unknown objects
beyond the known classes in the train set, which poses a challenge
to evaluating their performance due to the extreme difficulty of
defining “unknown objects” and labeling them all. To handle this
issue, existing OWOD methods [8, 16] adopt a compromised way
by re-organizing the original dataset, where a subset of classes
is treated as known and the remainder as unknown. Meanwhile,
recent works [30, 44] utilize the mean average precision of known
classes (K-mAP) and the recall of the unknown class (U-Recall) to
evaluate the performance of detecting known and unknown ob-
jects, respectively. However, U-Recall encourages the generation of
high-confidence predictions to cover as many unknown objects as
possible, regardless of whether many of them are false alarms (see
Fig. 2). As a result, existing methods cannot satisfactorily address
OWOD in AD. To this end, this paper focuses on this challenge and
makes three-level contributions:
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Figure 1: Performance Comparison for AD-oriented OWOD.
K-mAP and U-ARecall (details in Sec. 4) are used to evaluate
the performance of known and unknown object detection,
respectively. Classic OWODmethods exhibit a notable per-
formance gap in U-ARecall. The OVM without fine-tuning
excels in U-ARecall but falls short in K-mAP. Other OWOD
methods based on fine-tuning OVMs improve K-mAP but
show an apparent decline in U-ARecall. Compared to them
all, ourmethod achieves state-of-the-art overall performance
in both U-ARecall and K-mAP.

(a) Ground-truth (b) OW-DETR

(c) PROB (d) Ours

Figure 2: Visualization comparison for AD-oriented OWOD.
(a) Ground-truth, classic OWOD methods: (b) OW-DETR [8]
and (c) PROB [44], along with (d) Our method. As can be seen,
an abundance of false positives are notable in (b) and (c).

(1) On the level of evaluation, we argue that unknown objects
should be strictly restricted to those that likely emerge on the
road and pose a threat to AD (i.e., threatening objects), such
as roadblocks and wild animals, rather than all generic objects in
previous OWOD works. By this definition, we are able to avoid
introducing irrelevant objects and significantly reduce the diffi-
culty of labeling. Meanwhile, we devise a new evaluation metric,
termed average recall of the unknown class (U-ARecall) detailed in
Sec. 4, to amplify the penalty for false positives including irrelevant
objects to AD. This prevents the misguidance in original OWOD
evaluation, which overemphasizes the recall of all unknown objects
while neglecting the problem of false alarms due to incorrect recall.
With the above definition and the proposed U-ARecall, we establish
a new evaluation protocol for AD-oriented OWOD. Based on this
evaluation protocol, we re-evaluate existing OWOD methods (see
Fig. 1), and unveil that they typically yield low U-ARecall values,
indicating their poor ability to accurately detect unknown objects.

(2) On the level of overall detection paradigm, we propose a
novel OWOD paradigm based onfine-tuning foundational open-
vocabulary models (OVMs), e.g., GroundingDINO [28]. OVMs
possess the capability to comprehend high-level language semantics

and recognize diverse visual patterns, which evidently contributes
to detecting threatening objects in the open world. To further assist
OVMs in comprehending the semantics of “threatening objects”,
we propose to concretize the concept of “threatening objects” by
constructing a general vocabulary bag (see Sec. 5.1.2). This vocab-
ulary bag is generally applicable to the AD scenario and contains
vocabularies of possible threatening objects. Notably, we avoid us-
ing the unknown class vocabularies from the test set during the
generation process, thus ensuring the generality of vocabulary bag
and preventing information leakage. Meanwhile, we notice that
OVMs tend to be “generalists” in generic scenarios rather than
“specialists” in a specific scenario, which is reflected by the poor
K-mAP of GroundingDINO in Fig. 1. Thus, OVMs need to be further
fine-tuned in our paradigm to adapt the AD scenario.

(3) On the level of specific solution, we first identify two core
challenges when fine-tuning OVMs for AD-oriented OWOD: 1)
The risk of forgetting open-world generic knowledge, e.g., the
OVM’s performance in U-ARecall is degraded by 36% and 7.5%
after being fine-tuned by fully fine-tuning (FFT) and LoRA [12]
(see Fig. 1). 2) The effectiveness of acquiring scenario-specific
knowledge, i.e., how to improve the K-mAP of OVMs while pre-
serving a satisfactory U-ARecall performance. To address the two
challenges above, we propose a brand-new solution that includes
the following novel techniques: 1) A dual-branch architecture (DBA)
that contains a frozen and a trainable branch to preserve general
open-world knowledge by freezing the parameters of OVMs. 2) A
visual-oriented contrastive learning scheme to enhance the effec-
tiveness of acquiring scenario-specific knowledge by minimizing
the contrastive loss between training samples and high-confidence
visual exemplars. Besides, we propose a prediction fusion module
to integrate predictions of two branches in DBA by aligning their
query positions, thereby avoiding hand-crafted post-processing.

In summary, our contributions are four-fold: (1) We devise a
more suitable evaluation protocol for AD-oriented OWOD, which
includes restricting unknown objects to threatening objects in AD
and introducing a new evaluation metric to alleviate the biased eval-
uation in OWOD. Based on this evaluation protocol, we re-evaluate
existing OWOD methods and establish the AD-oriented OWOD
benchmark. (2) We propose a new OWOD paradigm for AD based
on fine-tuning OVMs, exploiting rich prior knowledge, including
high-level language semantic and diverse visual patterns, to dis-
tinguish between threatening objects and false positives. (3) We
identify and address two core challenges when fine-tuning OVMs:
preserving open-world generic knowledge by dual-branch architec-
ture and acquiring scenario-specific knowledge by visual-oriented
contrastive learning. (4) We propose a prediction fusion module
that can integrate predictions from multiple branches without the
need of post-processing and hand-crafted heuristics, serving as a
generalized method applicable to transformer-based detectors.

2 Related Works
Open World Object Detection. Open world object detection
(OWOD) aims to adapt classic object detection to the open-world
setting. In this setting, methods are required to detect unknown
objects beyond the known classes in the train set. OWOD task
initially proposed by Joseph et al. [16] has garnered significant
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Figure 3: Examples of calculation process for (a) U-Recall
and (b) the proposed U-ARecall. For simplicity, we sample
three values of 𝑁 in U-ARecall for demonstration.

U-Recall: 100%
U-ARecall: 44.4%

U-Recall: 100%
U-ARecall: 57.2%

（a） （b）
Figure 4: Examples to show the differences in value between
U-Recall and U-ARecall for the same predictions.

attention [8, 30, 31, 36, 39, 44]. ORE [16] adapted Faster-RCNN [34]
detector with an energy based unknown identifier for the OWOD
objective. Subsequently, OW-DETR [8] adapted Transformer-based
detector (D-DETR [43]) into OWOD, employing a pseudo-labeling
scheme to guide the detection of unknown objects. PROB [44] then
introduced a probabilistic objectness head to identify unknown
objects by estimating their likelihood. VOS [7] modeled a decision
boundary to distinguish between unknown objects by adaptively
synthesizing virtual outliers. UnSniffer [25] established a gener-
alized object confidence score to separate non-object and object
classes. Despite these efforts, existing classic OWOD methods tend
to yield an intolerably high false alarm rate for AD. Meanwhile,
OWOD research for the AD scenario is also underway. ORDER [36]
is a pioneering work in extending OWOD to AD, introducing a
feature-mix method to enhance the semantics of unknown objects.
However, it followed the original evaluation in classic OWOD, and
its code is not available. SalienDet [6] utilized the saliency map
to improve the capabilities of unknown object detection, but the
saliency map is not always available in practical application. In [31],
they explored the zero-shot object detection in AD by exploiting
the language model BERT [5], but did not consider detecting open-
world unknown objects. Besides, its code is also not available. There-
fore, there is an urgent demand for a comprehensive AD-oriented
OWOD benchmark to advance the research of this field.
Open-vocabulary Model. Open-vocabulary model (OVM) aims to
expand the recognizable classes of models by constructing a open
vocabulary bag. Recently, vision-language pretraining [14, 33] has
become a popular paradigm for OVMs to learn rich prior knowledge
from large amounts of raw image-text pairs. CLIP [33] is a represen-
tative OVM work, which has shown strong zero-shot recognition
ability in open vocabulary classification (OVC). In addition to OVC,
OVMs have also been adapted into various tasks, e.g., open vocabu-
lary detection (OVD) [21, 28]. In OVD, OVR-CNN [41] first adopted
BERT [5] to pre-train the detector on image-caption pairs and then
fine-tuned the model for the downstream detection task. Follow-
ing it, significant efforts [18, 35, 38] have been made to enhance
the OVD benchmark. Visual grounding is another related research
direction, first proposed by GLIP [21], which reformulated object

detection as a phrase grounding problem. GroundingDINO then ex-
tended the advanced transformer-based detector DINO [42] to OVD
by performing vision-language modality fusion. While OVMs have
achieved high accuracy on generic scenarios [19, 27], they are more
like “generalists” rather than “specialists”, and perform poorly in
some specific scenarios. Therefore, it is valuable to fine-tune OVMs
to adapt the specific scenarios, e.g., autonomous driving.
Parameter-efficient Fine-tuning. Fine-tuning is a common strat-
egy to adapt models to specific scenarios. Fully fine-tuning (FFT)
is widely used to make the entire network trainable, but it is time-
consuming and prone to overfitting when trained on small datasets.
Efficient transfer leaning (ETL) attempts to address this issue by
updating or adding a small set of trainable parameters, limiting the
dimension of the optimization problem to prevent catastrophic for-
getting [32]. For methods without introducing new parameters, lin-
ear probing (LP) learned a linear probe on top of frozen embeddings.
LP-FT [17] further adopted a two-stage fine-tuning, first perform-
ing LP and then FFT with the weight of classifier initialized in the
first stage. Alternatively, some methods introduced new parameters
within the network [11, 12, 15, 22]. Adapter [11], as an addition-
based method, incorporated a bottleneck adapter structure into
the transformer blocks. While LoRA [12], as a reparameterization-
based method, optimized two low-rank matrices, and then merged
them into the weight matrices. Currently, most ETL methods are
centered around natural language processing (NLP), with relatively
limited research on OVMs.

3 Preliminaries of OWOD
Referring to [16, 25], the problem of OWOD is formulated as follows:
a model is trained by a dataset with known objects from a set of
known classes C𝑘 = {1, 2, ...,𝐶}. During inference, the model is
required to detect both known objects from C𝑘 and unknown
objects, which are classified into an unknown class C𝑢 = {𝐶 + 1}.
This formulation also applies to the AD scenario in this paper.

Theoretically, “unknown objects” is a vague concept that refers
to all generic objects outside known classes C𝑘 , so it is extremely
difficult to precisely define unknown objects and label them all. To
bypass this difficulty, previous methods typically perform OWOD
by re-organizing existing multi-class object detection datasets (e.g.,
Pascal VOC [10] andMS COCO [27]), i.e., treating a subset of classes
as known and the remainder as unknown, which avoids defining
and labeling unknown objects by themselves. However, such re-
organization does not overcome the difficulty of defining unknown
objects from the root, and many of detected unknown objects are
irrelevant to the specific application scenario like AD.

As to the evaluation of OWOD, recent works like [8, 30, 44] tend
to adopt mAP of known classes (K-mAP) and recall of the unknown
class (U-Recall) to assess the performance of known and unknown
object detection, respectively. Specifically, AP is equal to the area
under precision-recall (PR) curve for one class, and K-mAP denotes
the mean of AP across all known classes. As to the detection of
unknown objects, its U-Recall is yielded by computing the recall
with 100 predictions, i.e., U-Recall100. However, U-Recall100 does not
penalize false positives within predictions. Since 100 is often much
larger than the number of objects in most cases, existing OWOD
methods tend to output as many high-confidence predictions as
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Figure 5: The training architecture of our method. It includes a vision and a text backbone for extracting image and text features,
an encoder for fusing multi-modality features, a decoder for generating region-level visual features, and a head network for
classifying and regressing detection predictions. The only trainable component is a branch (marked by “fire”) of dual-branch
architecture. The visual-oriented contrastive loss is proposed to enhance the effectiveness of fine-tuning OVMs.

possible to cover more unknown objects, regardless of whether
many of them are false positives (see Fig. 2). This will incur higher
false alarm rate and pose a grave threat to the safety of AD.

4 The Proposed Evaluation Protocol
To enable a properer evaluation of OWOD in AD, we propose a new
evaluation protocol, which mainly includes redefining unknown
objects and designing a more valid evaluation metric. Based on this
new evaluation protocol, we re-evaluate existing OWOD methods
and establish the AD-oriented OWOD benchmark.

To tackle the vagueness of “unknown objects”, we propose to
strictly restrict them to threatening objects, i.e., objects that likely
emerge on the road and pose a threat to AD. By this definition,
we can mitigate the ambiguity when labeling unknown objects
for OWOD in AD, as the concept of “threatening objects” is more
definite than that of “unknown objects”. Besides, we can also en-
sure that the detected unknown objects are tightly relevant to the
AD scenario. In this way, our definition enables more meaningful
OWOD for AD than previous research like [8, 16, 30, 36, 44].

Having redefined “unknown objects” for OWOD in AD, we in-
tend to devise a new evaluation metric to amplify the penalty for
false positives (e.g., distracting background and irrelevant objects
to AD). As stated in Sec. 3, we observe that the number of predic-
tions used in evaluation (𝑁 ) usually poses a significant impact on
the value of recall, i.e., allowing more predictions for evaluation
often leads to a higher recall, but it may also introduce more false
positives. Previous methods typically use U-Recall100 that simply
sets 𝑁 to a relatively large number (100), which overemphasizes the
recall but ignores false positives. To address this problem, given the
maximum number of unknown objects 𝑁𝑚𝑎𝑥 in the test set (𝑁𝑚𝑎𝑥

is available in evaluation), we first sample 𝑟 values of 𝑁 from 0 to
𝑁𝑚𝑎𝑥 : 0 < 𝑁1 < ... < 𝑁𝑟 < 𝑁𝑚𝑎𝑥 at an equal interval. Then, we
propose a new evaluation metric named U-ARecall to evaluate the
performance of unknown object detection:

U-ARecall =
∑𝑟
𝑖=1 U-Recall

𝑁𝑖

𝑟
, (1)

where U-Recall𝑁𝑖 is the recall value with 𝑁𝑖 predictions.
By virtue of U-ARecall, when only a small number of predictions

are allowed for evaluation, we can penalize those high-confidence
false positives by a low recall in this case. Meanwhile, we are also
able to yield a more comprehensive assessment of recall by vary-
ing the value of 𝑁 , so as to handle images with different number
of unknown objects. In this way, U-ARecall amplifies the penalty
for excessive false positives, thereby providing a more reasonable
measurement for OWOD in AD compared to frequently-used U-
Recall100, simplified as U-Recall (see Fig. 4). In addition, we intro-
duce a metric named UK-Mean to assess the overall performance
of both known and unknown object detection:

UK-Mean = 𝛽 · K-mAP + (1 − 𝛽) · U-ARecall, (2)

where 𝛽 is a parameter to trade off the importance of K-mAP and
U-ARecall. In our setup, 𝛽 is set to 0.5. We also carefully select
appropriate data sets from the AD scenario (details in Sec. 6.1),
which are combined with the aforementioned redefinition and new
metric to construct a new benchmark for AD-oriented OWOD.

5 Methodology
5.1 The Proposed OWOD Paradigm
5.1.1 Motivation. With our new benchmark above, we extensively
re-evaluate previous OWOD methods for AD-oriented OWOD. Un-
fortunately, those methods typically perform unsatisfactorily (see
Fig. 1). The reason is that the detection paradigms of all existing
OWOD methods fail to exploit the knowledge from the open world,
which is exactly the key to discovering open-world unknown ob-
jects. To address this issue, we propose a new OWOD paradigm
based on fine-tuning OVMs, which possess the knowledge to com-
prehend rich high-level language semantics and recognize diverse
visual patterns in the open world. Our OWOD paradigm consists of
two stages: 1) generating a vocabulary bag to determine the range
of detection classes. 2) fine-tuning OVMs to adapt the AD scenario.
5.1.2 Vocabulary Bag Generation. To ensure generality and sim-
plicity, we generate a general vocabulary bag to concretize the
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Figure 6: The Inference architecture of our method. The general vocabulary bag, including known and unknown class texts, is
used to generate text features. Meanwhile, the input image is used to produce image features. With these features above, the
known and unknown branches generate respective predictions. Finally, the PPF module fuses the predictions of two branches.

semantics of “unknown objects”, so as to correctly distinguish be-
tween unknown objects and false positives. Specifically, we define
three coarse classes according to the common sense in the traffic
scenario, i.e., {“obstacle”, “vehicle”, “roadblock”}. Despite the sim-
plicity, those coarse classes have already covered most unknown
objects on the road, as they are relatively abstract and each of them
semantically includes many sub-classes. Meanwhile, our vocabulary
bag avoids using any unknown class text from the test set, thereby
avoiding information leakage. Therefore, the vocabulary bag is
highly generalizable and not specific to a certain dataset. Pleas-
antly surprising, this general vocabulary bag is simple yet effective,
which exhibits excellent performance in our later experiments.

5.1.3 Fine-tuning OVMs. By pre-training on massive image-text
data, OVMs enjoy a strong ability to recognize diverse objects in
the open world. However, OVMs tend to be “generalists” rather
than “specialists”. In the specific scenario like AD, OVMs suffer
from a notable performance gap in detecting known objects (see
K-mAP in Fig. 1). Thus, our OWOD paradigm fine-tunes OVMs
to adapt the current AD scenario. We select the recently proposed
GroundingDINO [28] as the default OVM, as it achieves state-of-the-
art performance across various zero-shot OD benchmarks [19, 27].

5.2 The Proposed OWOD Solution
5.2.1 Motivation. Following the proposed OWOD paradigm, we
customize some classic fine-tuning techniques like linear probe
(LP), as well as some recent fine-tuning methods like LoRA [12]
and Adapter [11], specifically for AD-orientated OWOD. However,
as shown in Fig. 1, they either suffer from catastrophically forget-
ting open-world generic knowledge (e.g. LP-FT), or fail to effec-
tively learn scenario-specific knowledge (e.g., LoRA). Therefore,
we identify those challenges and tackle them by corresponding
techniques: 1) the maintenance of open-world generic knowledge
by a dual-branch architecture (DBA) in Sec. 5.2.2. 2) the acquisition
of scenario-specific knowledge by a visual-oriented contrastive
learning (VorCL) scheme in Sec. 5.2.3. Besides, a post-processing-
free prediction fusion (PPF) module is introduced in Sec. 5.2.4 to
integrate the dual-branch predictions. Based on those novel tech-
niques, we propose a brand-new OWOD solution, the training and
inference procedures of which are elucidated in Fig. 5 and Fig. 6.

5.2.2 Dual-branch Architecture. To mitigate catastrophic forget-
ting, the proposed DBA first uses the frozen vision/text backbone to
extract image/text features, which are then fed into a dual-branch
architecture that consists of a frozen unknown class branch and
a trainable known class branch. With the frozen backbones and
the frozen unknown class branch, DBA can effectively preserve the
generic knowledge within OVMs to handle the unknown objects
in the open world. Meanwhile, the trainable known class branch
enables DBA to acquire the specific knowledge of the AD scenario
for detecting known objects. Since the number of parameters in the
known class branch is much less than the OVM, the computational
cost of DBA is affordable. Besides, DBA is parallelizable and can be
optimized to reduce inference time during deployment.

Let us define 𝐼 as the input image, 𝑇 as the input text, B𝑣 as the
vision backbone, B𝑡 as the text backbone. Since the components
of both the known class branch and the unknown class branch
are identical, we use the same notation for their corresponding
components for simplicity. Let E andD be the encoder and decoder
of the branch. F denotes a query selection function that selects
top-k confident query embeddings from the output of E, and p is
the query positions. The forward pass of a branch starts by:

F, r𝑡 = E(B𝑣 (𝐼 ), (B𝑡 (𝑇 )) (3)

r𝑏 = D(F, F (F), p) (4)

where F and r𝑡 are the enhanced image and text features, respec-
tively. r𝑏 is the region-level visual features at positions p. Then, the
detection scores are calculated by the classification headH𝑐𝑙𝑠 :

s = H𝑐𝑙𝑠 (r𝑡 , r𝑏 ) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑇 · ⟨r𝑡 · r𝑏⟩), (5)

where ⟨·⟩ is the similarity function that computes the inner product.
𝑇 is the temperature to re-scale the value, set to 1 as [28]. Bounding
boxes can be obtained by the regression head H𝑟𝑒𝑔 : b = H𝑟𝑒𝑔 (r𝑏 ).

5.2.3 Visual-oriented Contrastive Learning. We begin by reviewing
the standard contrastive learning [33] in OVMs, which minimizes
the distance between visual features and textual features. It uses
the detection scores s in Eq. 5 to calculate the contrastive loss. For
example, the Focal loss [26] for contrastive learning is:

L𝑐𝑙 = −𝑦 (1 − s)𝛾 log(s) − (1 − 𝑦)s𝛾 log(1 − s), (6)
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Figure 7: Illustration of the basic idea behind visual-oriented
contrastive learning. It generates exemplar visual features
from high-confidence samples, and treats them as visual
semantic centers to optimize the other hard samples.

where 𝑦 denotes the labels of known classes, and 𝛾 is a hyper-
parameter that is set to 2 [28].

To further enhance the effectiveness of fine-tuning via con-
trastive learning, we propose the VorCL scheme that aims to mini-
mize the distance between visual features from training samples
and high-confidence exemplar visual features. These exemplar vi-
sual features serve as semantic centers to optimize hard samples,
as illustrated in Fig. 7. The known class branch is the only trainable
part of our solution, while its enhanced text features r𝑡 , region-level
visual features r𝑏 and corresponding scores s, can be obtained by
Eq. 3, Eq. 4 and Eq. 5, respectively. Let 𝑁𝑞 be the number of queries
per image and 𝐵 be the training batch size. The 𝑐-th class exemplar
visual feature (r𝑣)𝑐 can be obtained as follows:

(r𝑣)𝑐 =

∑𝑁𝑞𝐵

𝑖=1 1(max((s𝑖 )𝑐 ) ≥ 𝜏) (r𝑏
𝑖
)𝑐 · (s𝑖 )𝑐∑𝑁𝑞𝐵

𝑖=1 1(max((s𝑖 )𝑐 ) ≥ 𝜏) (s𝑖 )𝑐
(7)

where (s𝑖 )𝑐 and (r𝑏
𝑖
)𝑐 are s and r𝑏 for 𝑖-th query and 𝑐-th class, re-

spectively. 𝜏 is a selection threshold used to select r𝑣 . As described
in Eq. 7, the r𝑏 with the same class will be weighted by their corre-
sponding scores s and summed, producing r𝑣 in the current training
batch. Then, we adopt a memory bank with the length of known
classes to store and update r𝑣 . The memory bank is initialized by
r𝑡 and continuously updated with the input training batch. In the
next training batch, the (r𝑣)𝑐 at the 𝑡-th iteration is updated by
exponential moving average (EMA):

(r𝑣𝑡 )𝑐 = (1 − 𝜆) (r𝑣𝑡 )𝑐 + 𝜆(r𝑣𝑡−1)𝑐 , (8)

where 𝜆 is an EMA hyper-parameter. Then, the visual-oriented
detection scores s𝑣 are computed by: s𝑣 = H𝑐𝑙𝑠 (r𝑣, r𝑏 ). The calcu-
lation process of VorCL loss is analogous to Eq. 6 but uses s𝑣 :

L𝑣𝑜𝑟𝑐𝑙 = −𝑦 (1 − s𝑣)𝛾 log(s𝑣) − (1 − 𝑦)s𝛾𝑣 log(1 − s𝑣) . (9)

Based on Eq. 6 and Eq. 9, the total loss of our OWOD solution is:

L𝑡𝑜𝑡𝑎𝑙 = L𝑟𝑒𝑔 + L𝑐𝑙 + L𝑣𝑜𝑟𝑐𝑙 (10)

where L𝑟𝑒𝑔 is the regression loss as in [28].

5.2.4 Post-processing-free Prediction Fusion. PPF module aims to
integrate the predictions of the known class branch and the un-
known class branch to produce the final predictions. In general,
non-maximum suppression (NMS) is a prevalent module to fuse
two distinct sets of predictions in OD. However, it introduces hand-
crafted heuristics, which contradicts the core idea of transformer-
based detectors (GroundingDINO also falls to this category), i.e.,
minimizing the manual design. This motivates us to propose a new
fusion technique without the need of hand-crafted post-processing.

By inspecting the positional variation of proposals and bounding
boxes, we found that the misalignment between predictions of
the known and the unknown branch arises from the differences
in query positions, i.e., p in Eq. 4. Query positions represent the
positions of learnable proposals, which are continuously updated
and changed during training, thereby leading this misalignment
problem. By applying the same query position for both branches,
their predictions can be well aligned as a one-to-one pairing, so as to
achieve one-to-one fusion. Specifically, we use the query positions
of the unknown branch p𝑢 for both branches. This is because p𝑢
is class-agnostic and can already cover the majority of objects. As
mentioned in Sec. 5.2.2, we can obtain the detection scores and
bounding boxes of the known branch (s𝑘 , b𝑘 ) and the unknown
branch (s𝑢 , b𝑢 ). Then, we apply the geometric mean to combine s𝑘
and s𝑢 . The 𝑐-th class final detection scores (s𝑓 )𝑐 are calculated by:

(s𝑓 )𝑐 =

{
(s𝑘 )

(1−𝛼)
𝑐 · (s𝑢 )𝛼𝑐 if 𝑐 ∈ 𝐶𝑘

(s𝑢 )𝑐 if 𝑐 ∈ 𝐶𝑢
(11)

where 𝛼 is the hyper-parameter to control the contributions of
(𝑠𝑘 )𝑐 and (𝑠𝑢 )𝑐 . Subsequently, we adopt a class-wise box selection
operation to fuse b𝑘 and b𝑢 . The 𝑐-th class final bounding boxes
(b𝑓 )𝑐 are calculated as follows:

(b𝑓 )𝑐 =

{
(b𝑘 )𝑐 if 𝑐 ∈ 𝐶𝑘

(b𝑢𝑘 )𝑐 if 𝑐 ∈ 𝐶𝑢𝑘
(12)

6 Experiment
6.1 Datasets
For the evaluation of AD-oriented OWOD, we survey existing AD
datasets [1, 4, 9, 20, 37, 40] and discover that, to our best knowl-
edge, only the labeling criteria of the CODA dataset [20] align
well with our definition of threatening objects. However, CODA
is originally designed for corner case detection, and corner cases
in validation set are accessible, which contradicts to the problem
setting of OWOD that open-world objects are strictly unknown
during training. Therefore, in our evaluation protocol, we treat the
common classes of CODA as known classes and its corner-case
classes as unknown classes. We leverage the released validation set
of CODA as the test set of our evaluation protocol. It consists of
4,484 road driving images with 29 representative classes, including
6 common classes and 23 corner-case classes.

We fine-tune OVMs by the train set of the SODA [9] or the
BDD100K [40] dataset. The two datasets are used to simulate the
case with small or large domain differences from CODA. In this
way, we can inspect the generalization abilities of methods. Specifi-
cally, SODA includes 10,000 images with 6 classes, while BDD100K
contains 70,000 images with 10 classes. All classes in the train set of
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Table 1: Performance comparison using SODA for the AD-
oriented OWOD benchmark. U-R means U-Recall. FR and
R-OVM represent FasterRCNN and Raw OVM, respectively.
Method U-R10 U-R20 U-R30 U-ARecall K-mAP UK-Mean

FR[34] 0. 0. 0. 0. 53.4 26.7
D-DETR[43] 0. 0. 0. 0. 53.3 26.6

PROB[44] 12.9 20.1 25.0 19.3 50.2 34.7
OW-DETR[8] 2.6 5.4 8.3 5.4 51.4 28.4
VOS[7] 8.9 11.4 13.0 11.1 49.2 30.1
UnSniffer[25] 20.6 24.7 25.4 23.6 53.7 38.6

R-OVM[28] 67.8 78.7 83.0 76.5 42.4 59.4

FFT 33.3 41.7 46.6 40.5 64.6 52.5
LP 50.6 61.2 65.2 59.0 66.1 62.5
LP-FT[17] 30.1 38.4 44.1 37.5 65.0 51.2
Adapter[11] 31.3 38.2 42.4 37.3 57.9 47.6
LoRA[12] 60.7 71.5 74.9 69.0 59.5 64.2

Ours 68.2 79.6 84.1 77.3 65.9 71.6

Table 2: Performance comparison using BDD100K for the
AD-oriented OWOD benchmark. U-R denotes U-Recall. R-
OVMmeans Raw OVM. Only classic OD and OWODmethods
with the best performance are included due to page limit.
Method U-R10 U-R20 U-R30 U-ARecall K-mAP UK-Mean

FR[34] 0. 0. 0. 0. 53.3 26.6

UnSniffer[25] 11.3 21.3 27.3 20.0 55.3 37.6

R-OVM[28] 55.2 71.5 78.8 68.5 42.2 55.3

FFT 34.5 40.4 43.6 39.5 60.3 49.9
LP 34.6 41.5 45.1 40.4 60.7 50.5
LP-FT[17] 30.0 37.0 39.9 35.6 60.6 48.1
Adapter[11] 37.0 44.7 48.8 43.5 60.1 51.8
LoRA[12] 44.9 61.5 68.8 58.4 56.4 57.4

Ours 54.9 71.3 78.8 68.3 60.5 64.4

SODA are viewed as known classes. We view 5 of the 10 classes of
BDD100k as known classes (i.e., person, rider, car, bus, and truck),
as only those 5 classes appear in common classes of CODA.

6.2 Implementation Details
As to the setting of U-ARecall, we get the maximum value of labeled
unknown objects in CODA (𝑁𝑚𝑎𝑥 = 43), and adopt three sampling
prediction numbers (𝑁1 = 10, 𝑁2 = 20, 𝑁3 = 30) to handle images
with different numbers of unknown objects. Due to the superior
open-world capabilities of GroundingDino [28], we choose it as
the OVM for further fine-tuning, which is implemented by MMDe-
tection [3]. We train the model over 12 epochs with the adamW
optimizer [29], and its weight decay is set to 1× 10−4. The learning
rate is initialized by 1 × 10−4 and reduced by a factor of 10 after
reaching the 11-th epoch. Without careful selection, we set the
hyper-parameters in VorCL and PPF based on our intuition and
experience: 𝜏 = 0.3 in Eq.7, 𝜆 = 0.99 in Eq.8, and 𝛼 = 0.2 in Eq. 11.

6.3 Comparison with State-of-the-art Methods
In our AD-oriented OWOD benchmark, as shown in Tab. 1 and
Tab. 2, methods under comparison are categorized into five types:
classic OD methods (the first part), classic OWOD methods (the
second part), the raw OVM [28] without fine-tuning (the third part),
the OVM directly fine-tuned by standard fine-tuning methods (the

fourth part) and our method (the last part). We list results of classic
OD methods to show their inability to handle OWOD, and results
of classic OWOD methods to demonstrate the greater difficulty of
AD-orientated OWOD than classic OWOD. As our method is based
on OVM fine-tuning, we also include the raw OVM and OVM fine-
tuned by standard methods to present a fairer comparison. Methods
employed for fine-tuning the OVM include fully fine-tuning (FFT),
linear probing (LP), LP-FT [17], Adapter [11], and LoRA [12].

The experimental results using SODA dataset are shown in Tab. 1,
which reveal that our method achieves state-of-the-art performance
for AD-oriented OWOD. As for the overall performance (UK-
Mean), our method significantly improves UK-Mean by more than
33 % compared to the best classic OWODmethod (UnSniffer), which
justifies the necessity of exploiting the OVM’s rich open-world
knowledge. Even compared to the second-best method (LoRA), our
method also notably surpasses it by 7.4% in UK-Mean, which indi-
cates the effectiveness of our proposed techniques. When we look at
the performance of unknown object detection (U-ARecall) alone,
our method has achieved an remarkable performance advantage
over classic OWOD methods, and it is even slightly better than the
raw OVM by 0.8%. In particular, our method evidently outperforms
the OVMfine-tuned by standardmethods by at least 8.3% U-ARecall,
which demonstrates that our method can effectively mitigate the
problem of catastrophic forgetting during fine-tuning, thereby pre-
serving the open-world generic knowledge within the OVM. As
for the performance of known object detection (K-mAP), our
method notably improves K-mAP by 23.5% when compared with
the raw OVM, which unveils the necessity of fine-tuning OVMs
to adapt the AD scenario. More importantly, our method performs
comparably to OVM fine-tuned by standard methods (≤ 0.2% K-
mAP). Such results suggest that our method can be as effective as
standard fine-tuning methods in acquiring scenario-specific knowl-
edge, without being severely influenced by catastrophic forgetting
like those methods. As a consequence, our method achieves fairly
satisfactory performance in detecting both unknown and known
objects. In addition, the experimental results using BDD100K (see
Tab. 2) exhibit a very similar trend to that of SODA. This proves
the effectiveness of our method again, and verifies the fine general-
ization ability of our method across different domain gaps.

Fig. 8 depicts the qualitative results of Raw OVM, FFT and our
method. We set a threshold of 0.3 to determine the visualization of
known and unknown objects. As can be seen, the raw OVM tends
to overlook or misidentify certain known objects, e.g., pedestrian,
and bus. FFT typically fails to detect some unknown objects, e.g.,
traffic cone, stroller, and dog. In contrast, our method exhibits a
strong ability to accurately detect both known and unknown objects,
demonstrating its robust open-world recognition capabilities.

6.4 Discussions
Ablation Studies. We analyze the contributions of our proposed
DBA, VorCL and PPF, with the experimental results presented in
Tab 3. When we apply the DBA, U-ARecall improves by a large mar-
gin (27.7%), which unveils its advantage in alleviating knowledge
forgetting. Replacing NMS with PPF leads to notable improvements
in both U-ARecall and K-mAP by 9.4% and 6.4%, respectively, demon-
strating the strength of avoiding hand-crafted heuristics in NMS.
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(c) Ours(b) FFT(a) Raw OVM
Figure 8: Comparison of visualization results. Missing objects and prediction errors are marked by red arrows.

0.99 0.999

Figure 9: Sensitivity analysis of the hyper-parameters in (a) 𝜆 and (b) 𝜏 for VorCL, along with (c) 𝛼 for PPF.

Table 3: Ablation study of our proposed techniques. F. is the
prediction fusion module, e.g., NMS and PPF.

DBA VorCL F. U-ARecall K-mAP UK-Mean

✗ ✗ None 40.5 64.6 52.5
✓ ✗ NMS 68.2 58.4 63.3
✓ ✗ PPF 77.6 64.8 71.2
✓ ✓ PPF 77.3 65.9 71.6

Table 4: Impact of coarse and fine vocabulary bag generation.
Train Set Coarse Fine U-ARecall K-mAP UK-Mean

SODA ✓ 77.3 65.9 71.6
SODA ✓ 59.5 64.3 61.9

BDD100K ✓ 68.3 60.5 64.4
BDD100K ✓ 59.7 58.0 58.8

Additionally, incorporating the VorCL scheme into our solution,
results in a 1.1% improvement in K-mAP, proving its effectiveness
in acquiring scenario-specific knowledge during fine-tuning.
Sensitivity Analysis. As illustrated in Fig. 9, we conducted experi-
ments to analyze the sensitivity of hyper-parameters in our method.
It is evident that our method is not sensitive to hyper-parameters.
Discussion. In Sec. 5.1.2, we define a general vocabulary bag with
three coarse unknown classes for AD-oriented OWOD. An intuitive
question is whether refining the class vocabularies in the vocab-
ulary bag can improve performance. To investigate this issue, we

also design a more delicate method to generate a fine vocabulary
bag, which contains texts of 59 finer classes in total, and compare its
performance with our default vocabulary bag. As shown in Tab. 4,
it is obvious that our default vocabulary bag is much better than
the refined vocabulary bag. This indicates that having more vocab-
ularies is not necessarily better. It increases the risk of more false
positives, as the OVM may not be able to correctly recognize all
classes in the vocabulary bag.

7 Conclusions
This paper address a core challenge that impacts the safety of AD,
i.e., detecting threatening open-world objects in AD. To address this
challenge, we make three-level contributions: 1) On the level of eval-
uation, we mitigate the ambiguity of labeling unknown objects by
restricting them to threatening objects, and prevent the misleading
evaluation in original OWOD by introducing a new evaluation met-
ric named U-ARecall. 2) On the level of overall OWOD paradigm, we
alleviate the difficulty of distinguishing between unknown objects
and false positives by exploiting the rich multimodal knowledge
of OVMs, and adapt them to the AD scenario by fine-tuning. 3)
On the level of specific solution, we identify two challenges when
fine-tuning OVMs: catastrophic forgetting and scenario-specific
knowledge acquisition. By addressing these challenges, our method
achieves state-of-the-art performance for AD-oriented OWOD.
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