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ABSTRACT

Since the pioneering work on the lottery ticket hypothesis for graph neural networks
(GNNs) was proposed in Chen et al. (2021), the study on finding graph lottery
tickets (GLT) has become one of the pivotal focus in the GNN community, inspiring
researchers to discover sparser GLT while achieving comparable performance to
original dense networks. In parallel, the graph structure has gained substantial
attention as a crucial factor in GNN training dynamics, also elucidated by several
recent studies. Despite this, contemporary studies on GLT, in general, have not
fully exploited inherent pathways in the graph structure and identified tickets in
an iterative manner, which is time-consuming and inefficient. To address these
limitations, we introduce TEDDY, a one-shot edge sparsification framework that
leverages structural information by incorporating edge-degree statistics. Following
the edge sparsification, we encourage the parameter sparsity during training via
simple projected gradient descent on the ℓ0 ball. Given the target sparsity levels for
both the graph structure and the model parameters, our TEDDY facilitates efficient
and rapid realization of GLT within a single training. Remarkably, our experimen-
tal results demonstrate that TEDDY significantly surpasses conventional iterative
approaches in generalization, even when conducting one-shot sparsification that
solely utilizes graph structures, without taking feature information into account.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as a powerful tool for modeling graph-structured
data and addressing diverse graph-based tasks, such as node classification (Kipf & Welling, 2016;
Hamilton et al., 2017; Xu et al., 2018b; Wang et al., 2020; Park et al., 2021), link prediction (Zhang
& Chen, 2018; Li et al., 2018; Yun et al., 2021b; Ahn & Kim, 2021; Zhu et al., 2021), and graph
classification (Hamilton et al., 2017; Xu et al., 2018b; Lee et al., 2018; Sui et al., 2022; Hou et al.,
2022). In conjunction with the notable performance achieved in GNNs, a substantial number of
recent attempts have been made to handle large-scale real-world datasets. Owing to this, datasets and
network architectures in graph-related tasks have progressively become more intricate, which incurs
the notorious computational overhead both in training and inference.

In response to this challenge, GNN compression has emerged as one of the main research areas in
GNN communities, and the Graph Lottery Ticket (GLT) hypothesis was articulated (Chen et al.,
2021), serving as an extension of the conventional lottery ticket hypothesis (LTH, Frankle & Carbin
(2019)) for GNN. Analogous to the conventional LTH, Chen et al. (2021) claimed that the GNNs
possess a pair of core sub-dataset and sparse sub-network with admirable performance, referred to as
GLT, which can be jointly identified from the original graph and the original dense model. In order to
identify GLT, Chen et al. (2021) employ an iterative pruning as LTH where the edges/parameters are
pruned progressively through multiple rounds until they arrive at the target sparsity level.

In parallel with advancements in GNN compression, a surge of recent studies has begun to underscore
the increasing significance of graph structure over node features in GNN training dynamics. Notably,
Tang & Liu (2023) have derived generalization error bounds for various GNN families. Specifically,
they have discovered that the model generalization of GNNs predominantly depends on the graph
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structure rather than node features or model parameters. Furthermore, highlighted by the recent study
(Sato, 2023), it has been both theoretically and empirically elucidated that GNNs can recover the
hidden features even when trained on uninformative node features without the original node feature.
Despite this, the preceding edge sparsification studies on identifying GLT have largely overlooked
the paramount importance of graph structure.

Given the studies on GLT and the growing significance of graph structure, we introduce TEDDY, a
novel edge sparsification framework that considers the structural information of the graph, aiming to
maintain the primary message pathways. We begin by presenting the impact of degree information,
which is observed in terms of both pruning performance and spectral stability. In alignment with
our observation, TEDDY selectively discards graph edges based on scores designed by utilizing edge
degrees. Our TEDDY integrates degree characteristics into the message-passing algorithm to carefully
identify essential information pathways in multi-level consideration. Following this, our framework
directly sparsifies parameters via projected gradient descent on ℓ0 ball. It should be noted that the
sparsification of both edges and parameters in our TEDDY can be achieved within a single training,
promoting enhanced efficiency compared to existing methods that require iterative procedures.

Our contributions are summarized as follows:

• We introduce TEDDY, a novel edge sparsification method that leverages structural information
to preserve the integrity of principal information flow. In particular, our key observation for
TEDDY lies in the importance of low-degree edges in the graph. We validate the significance of
low-degree edges via comprehensive analysis.

• We encourage the parameter sparsity via projected gradient descent (PGD) onto ℓ0 ball. While
conventional approaches identify the parameter tickets in an iterative fashion, only a single
training process is required for our PGD strategy, which is much more computationally affordable.

• Our extensive experiments demonstrate the state-of-the-art performance of TEDDY over iterative
GLT methods across diverse benchmark datasets and architectures. We note that TEDDY accom-
plishes one-shot edge pruning without considering node features, yet it asserts highly superior
performance compared to the baselines that take node features into account.

2 RELATED WORK

Graph compression can be broadly categorized into two main approaches.

Edge Sparsification removes the edges in the graph with the number of nodes unchanged. In this
line of work, in general, GNNs have differentiable masks for both graph and model parameter, and
edges are pruned by the magnitudes of trained masks (Chen et al., 2021; You et al., 2022; Hui et al.,
2023). As the first example, Chen et al. (2021) propose a unified framework for finding GLT by
training ℓ1-regularized masks. To reach the target sparsity levels, they employ an iterative pruning
which involves multiple pruning rounds gradually removing edges/parameters at each round. Due to
the considerable time required for an iterative pruning, You et al. (2022) devise an algorithm to find
GLT in an early pruning stage. More recent study (Hui et al., 2023) points out that the graph sparsity
matters in GLT and proposes novel regularization based on Wasserstein distance between different
classes, thereby searching better generalized GLT.

Graph Coarsening, in general, reduces the graph structure typically by grouping the existing nodes
into super (or virtual) nodes and defining connections between them. Loukas & Vandergheynst
(2018); Loukas (2019) propose randomized edge contraction, which provably ensures that the spectral
properties of the coarsened graph and the original graph are close. Also, Chiang et al. (2019) cluster
the entire graph into several small subgraphs and approximate the entire gradient via the gradient
for the subgraphs, thereby increasing scability. Cai et al. (2021) introduce a novel framework that
learns the connections between the super nodes via graph neural networks. Jin et al. (2022) propose
graph condensation to reduce the number of nodes and to learn synthetic nodes and connections in a
supervised manner. The recent study (Si et al., 2023) focus on graph compression in serving time,
which constructs a small set of virtual nodes that summarize the entire training set with artificially
modified node features.

The main purpose of this paper is to devise the edge sparsification algorithm that carefully considers
the structural information of graph.
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3 PRELIMINARIES

Before introducing TEDDY, we organize the problems of interest and necessary concepts in the paper.

3.1 PROBLEM SETUP

We consider an undirected graph G = (V, E) which consists of N = |V| vertices and M = |E| edges.
The vertex set V is characterized by a feature matrix X ∈ RN×F with rows {xi}Ni=1. In parallel,
the edge set E is characterized by an adjacency matrix A ∈ RN×N where A[i, j] = 1 if an edge
eij = (i, j) ∈ E , and A[i, j] = 0 otherwise. Given a graph G = (V, E) and a feature matrix X , a
GNN fΘ learns the representation of each node v by iteratively aggregating hidden representations
of its adjacent nodes u in the neighborhood set Nv in the previous layer, formulated as follows:

h(l+1)
v = ψ

(
h(l)
v , ϕ({h(l)

u ,∀u ∈ Nv})
)

(1)

where ϕ serves as an aggregation function, ψ combines the previous representation of v and aggregated
neighbors. The initial representation is h

(0)
v = xv and we denote this multi-layered process by

f(G,Θ) or fΘ(G) where G is characterized by G = {A,X}. Our focus is a semi-supervised node
classification task, and the objective function L is defined as the cross-entropy loss between the
prediction P = softmax(Z) = softmax

(
f(G,Θ)

)
∈ RN×C and the label matrix Y ∈ RN×C :

L(G,Θ) = − 1

N

N∑
i∈V

C∑
k=1

Yik logPik, (2)

where Z denotes the representation from the GNN, and C represents the total number of classes.

3.2 GRAPH LOTTERY TICKET (GLT)

In recent study (Chen et al., 2021), the conventional lottery ticket hypothesis (LTH, Frankle & Carbin
(2019)) was extended to graph representation learning. Analogous to conventional LTH, which asserts
that one can discover sparse subnetworks with comparable performance to dense networks, Chen et al.
(2021) claim that both core sub-dataset and sparse sub-networks can be simultaneously identified,
called graph lottery ticket (GLT). Formally, graph lottery ticket can be characterized as follows.
Definition 1 (Graph Lottery Tickets (GLT), Chen et al. (2021)). Given a graph G = {A,X} and
GNN fΘ(·) parametrzied by Θ ∈ Rd, let mg ∈ {0, 1}N×N and mθ ∈ {0, 1}d be the binary masks
for A and Θ respectively. Let Θ′ = mθ ⊙Θ be a sparse parameter and G′ = {A′,X} be a sparse
subgraph where A′ = mg ⊙A with ∥A′∥0 < M and ∥Θ′∥0 < d. If a subnetwork fΘ′(·) trained
on a subgraph A′ has a comparable or superior performance to the original GNN fΘ(·) trained on
the entire graph G, then we call A′ and fΘ′ as graph lottery ticket (GLT).

After the proposal of GLT, numerous studies (Chen et al., 2021; You et al., 2022; Hui et al., 2023;
Wang et al., 2023) have been carried out to identify more sparse masks mg and mθ with better
performance. The most studies identify GLT in an iterative manner, in which the edges/parameters
are gradually removed at each round and GLT with desired sparsity levels is realized after multiple
rounds. However, a majority of studies falls short in contemplating the graph structure information.

4 MOTIVATION: LOW-DEGREE EDGES ARE IMPORTANT

Empirical observations. We first highlight a critical graph structural property that profoundly
impacts the performance of the graph sparsification. Toward this, we compare the performances of
GAT (Veličković et al., 2017) with two simple edge pruning strategies: pruning graph edges by (1)
the highest edge degree and (2) the lowest edge degree. Throughout our observations, we define the
edge degree of e = (i, j) as (|N (i)|+ |N (j)|)/2 where N (k) denotes the set of neighboring nodes
connected to the node k. As illustrated in Figure 1, pruning low-degree edges significantly degrades
the performance compared to the pruning of high-degree edges. In particular, the performance gap
gradually increases approaching to high sparsity regime, especially in Citeseer and Pubmed datasets.
Similar observations can be found for other standard GNN architectures such as GCN (Kipf &
Welling, 2016) and GIN (Xu et al., 2018a), and they are provided in in Appendix A.1.
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Figure 1: Empirical observations for the importance of edge degrees.

Figure 2: The changes of Laplacian energy for single edge removal on Cora/Citeseer/Pubmed datasets.

Normalized graph Laplacian energy. In addition to empirical observations, we further explore
the influence of edge degree on the graph stability. Toward this, in the context of graph theory, we
consider the graph Laplacian energyE(G) mathematically defined as:

∑N
n=1 |λn−1| where {λn}Nn=1

represents the spectrum of normalized graph Laplacian (Allem et al., 2016). Since all eigenvalues
of the normalized graph Laplacian are bounded in [0, 2], E(G) measures how much the spectrum
deviates from the median value 1. In our analysis, we investigate the quantity ∆ij := E(G−ij)−E(G)
where G−ij =

(
V, E − {(i, j)}

)
, that is, how the energy changes if we remove each edge (i, j) for

all (i, j) ∈ E . If ∆ij > 0, it means that the subgraph G−ij has higher energy than that of the original
graph, thus it can be understood that removing edge (i, j) makes the graph spectrally unstable. As
depicted in Figure 2 for popular graph datasets, it is observed that the higher energy predominantly
occurs when low-degree edges are eliminated. This observation substantiates the importance of
preserving low-degree edges in terms of spectral stability.

Theoretical evidence. The very recent study (Tang & Liu, 2023) provides the theoretical under-
standing of model generalization for popular GNN families. More precisely, the upper bound for
generalization error of each GNN family F relies on its Lipschitz constant, denoted by LF . In
the same study, in case of GCN (the following argument is similar for other GNN families), LGCN
is known to be dominantly governed by the norm ∥Asym∥∞ rather than the node feature X or
model parameter Θ where Asym is a symmetrically normalized adjacency matrix. Further, the norm

∥Asym∥∞ can be upper-bounded by
√

degmax+1
degmin+1 where degmax and degmin represent the maximum

and minimum node degree respectively. From this bound, removing low-degree edges would result in
a larger generalization gap, which corroborates the importance of low-degree edges in theory.

5 TEDDY: TRIMMING EDGES WITH DEGREE-BASED DISCRIMINATION
STRATEGY

Given the empirical and theoretical evidence on the importance of graph structures in Section 4, we
introduce TEDDY, a novel framework for one-shot edge sparsification. Our method selectively prunes
edges leveraging scores assigned to individual edges derived from degree information (Section 5.1),
followed by parameter sparsification (Section 5.3) based on ℓ0 projection. The whole process is
accomplished within a single training phase, eliminating the need for conventional iterative training
to attain GLT.
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Figure 3: Overall framework for our graph sparsification TEDDY and parameter sparsification with
projected gradient descent on ℓ0 ball.

5.1 GRAPH SPARSIFICATION

Figure 4: A toy example highlighting the im-
portance of multi-level degree incorporation.

To integrate the significance of degree information
discussed in Section 4, we design an edge-wise score
in proportional to the inverse degree. The primary
observation here is that relying solely on the degree
of the corresponding node pair to prune high-degree
edges does not sufficiently uncover the structural in-
formation pathways across multi-hop neighbors.

To see this more clearly, we consider a toy exam-
ple in Figure 4. In this example, the edge degree
of directly attributed nodes i and j is defined as
deg1-hop(eij) = (|Ni| + |Nj |)/2, and the respective
2-hop edge degree is represented as deg2-hop(eij) =

(Ea∈Ni |Na|+ Eb∈Nj |Nb|)/2. The most natural con-
sideration of degrees is deg1-hop to average the degrees
of the node pairs, but it fails to distinguish the relative importance of e12, e13, and e23 in this example
since they are all identical, i.e., deg1-hop(e12) = deg1-hop(e13) = deg1-hop(e23). As a result, deg1-hop-
based score overlooks diverse message pathways through the common neighbor v2 (colored in green)
and 2-hop adjacent nodes (colored in gray) of v1 and v3. In contrast, the 2-hop edge degree allows for
giving the priorities to edges e12 and e23 over e13, i.e., deg2-hop(e12) < deg2-hop(e23) < deg2-hop(e13),
facilitating a more refined edge score. This emphasizes the necessity to recognize degree information
from a hierarchical perspective, culminating in a more nuanced score.

Inspired by this insight, we facilitate multi-level consideration of degree information within the
message-passing (MP) algorithm, the core nature of contemporary GNNs. Our TEDDY adapts the
original MP by injecting an edge-wise score within the MP. Toward this edge-wise score construction,
we first define several quantities related to a node-wise score connected to individual edges. As an
initial step, we adopt a monotonically decreasing function with respect to the node degree deg(v),
defined by g : V → R that can be regarded as a type of score function for each node v ∈ V . The
monotonically decreasing characteristic of the function g would reflect the importance of low-degree
edges to some extent. As a design choice of g, there can be several candidates and we simply adopt
g(v) = 1/

√
deg(v) in this paper. Equipped with this function g, TEDDY computes the importance

of each node v considering the average degree information of neighbors as below:

g(v) =
1

|Nv|
∑
u∈Nv

g(u) (3)
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Following this, TEDDY divides g(v) by the degree of the node itself, represented as g̃(v), reflecting
the significance of preserving edges with lower degrees:

g̃(v) =
g(v)

deg(v)
(4)

Let g ∈ RN denote the aggregated values of the function g computed at all nodes v ∈ V . Finally, our
method attains edge-wise scores Tedge through the outer-product of g̃:

Tedge = g̃g̃T (5)

In practice, Eq. (3) is computed as Âg ∈ RN , where Â = D−1A with D−1 being utilized
to average the degree information of neighbors. Hence, Eq. (4) can be equivalently written as
g̃ = D−1Âg ∈ RN . In this perspective, the computation of g̃ exhibits a form of edge-centric MP,
which is depicted as well in Figure 5(b). As illustrated, the degree information of neighboring edges,
eik, of the given edge eij is propagated via proposed edge-wise score matrix Tedge. At the same time,
the self-information 1/deg(i) is integrated during our edge-centric MP, analogous to standard MP
across all nodes illustrated in (a).

Figure 5: Illustration of Edge-centric MP.

Propagating the degree information, TEDDY effec-
tively assigns lower scores to non-critical edges -
those with a high priority for removal. These edges
either possess high degree or are part of alternative
multi-hop pathways for message propagation. Our
method also demonstrates linear complexity in the
number of nodes and edges, which will be detailed
in Appendix A. Concurrently, our TEDDY aims to
selectively preserve pivotal edges by considering low-
degrees in a broader view, thereby maintaining essen-
tial information flow across the influential reception regions of individual nodes.

5.2 DISTILLATION FROM DENSE GNNS

To effectively maintain information in the original graph, we employ the distillation phase by matching
the logits of the representation learned on the entire graph (Hinton et al., 2015). In our experience,
we observe that the representation obtained from the entire graph plays an important role in model
generalization. Let Zdense and Z be the representation trained on the whole graph and the sparse
subgraphs, respectively. Then, our final objective function would be mathematically

Ldt(G,Θ) := L(G,Θ) + λdtKL
(
softmax(Z/τ), softmax

(
Zdense/τ)

)
, (6)

where KL(p, q) represents the KL-divergence between two (possibly empirical) distributions p(·)
and q(·). Further, λdt controls the strength of the distillation and τ is a temperature parameter. For
marginal hyperparameter tuning, we use a unit temperature τ = 1 in practice.

5.3 PARAMETER SPARSIFICATION

The iterative nature of previous studies (Chen et al., 2021; You et al., 2022; Hui et al., 2023) on
identifying sparse subnetworks necessitates an infeasible search space. The aforementioned studies
require determining the number of pruning rounds and the per-round pruning ratio in advance to
achieve target sparsity level. To alleviate such computational inefficiency, we prune the parameter
connection within just single training with a sparsity-inducing optimization algorithm; projected
gradient descent (PGD) on ℓ0 ball. In optimization literature, the projected gradient descent can be
regarded as a special case of the proximal-type algorithm, which is known to enjoy rich properties
both in theory and practice in the perspective of deep learning (Oymak, 2018; Yun et al., 2021a).
Given target sparsity ratio pθ ∈ [0, 1] for the model parameter, the expected number of non-zero
entries would be h := ⌈(1 − pθ)d⌉. Let Ch := {Θ ∈ Rd : ∥Θ∥0 = h} be the ℓ0 ball for h-sparse
parameter, then our parameter sparsification can be described only in a single line as

Θt+1 = projCh

(
Θt − η∇ΘLdt(G,Θt)

)
(7)
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Algorithm 1 TEDDY: Trimming Edges with Degree-based Discrimination strategY
1: Input: Graph G = {A,X}, GNN f(G,Θ), target sparsity ratio pg, pθ ∈ [0, 1]
2: Initialize: Initial model parameter Φ0,Θ0 ∈ Rd for pretraining and sparse training respectively
3: procedure PRETRAINING ON ENTIRE GRAPH
4: for t = 0, 1, . . . , T − 1 do
5: Φt+1←Φt − η∇ΦL(G,Φt)
6: end for
7: Choose Φ∗ ∈ {Φ1, · · · ,Φt} for best validation and get representation Zdense ← f(G,Φ∗)
8: end procedure

9: procedure SEARCHING SUBGRAPH
10: A′ ← A and I ← Smallest

⌈
pg |E|

⌉
entries among edge index in Tedge ▷ Eq. (5)

11: A′[I]← 0 and obtain sparse subgraph G′ ← {A′,X}
12: end procedure

13: procedure SEARCHING SUBNETWORK
14: C ← {Θ ∈ Rd : ∥Θ∥0 = ⌈(1− pθ)d⌉} ▷ ℓ0 ball for ⌈(1− pθ)d⌉-sparse parameter
15: for t = 0, 1, . . . , T − 1 do
16: Zt← f(G′,Θt)
17: Ldt(G′,Θt)←L(G′,Θt) + λdtKL

(
softmax(Zt), softmax(Zdense)

)
▷ Eq. (6)

18: Θt+1← projC
(
Θt − η∇ΘLdt(G′,Θt)

)
▷ Eq. (7)

19: end for
20: Choose Θ′ ∈ {Θ1, · · · ,ΘT } for best validation and obtain sparse subnetwork fΘ′

21: end procedure

22: Output: Graph lottery tickets {G′, fΘ′}. ▷ Definition 1

where Ldt is defined in Eq. (6). The main advantage of PGD-based sparsification lies in its ability
to encourage the desired level of sparsity without iterative processes, which enables us to rapidly
identify graph lottery tickets. We summarize the detailed overall procedures in Algorithm 1 and
Figure 3 illustrates our framework.

6 EXPERIMENTS

In our empirical studies, we primarily focus on semi-supervised node classification tasks, most
regularly considered in graph representation learning. We consider two sets of experiments: (i) small-
and medium-size problems (Section 6.1) and (ii) large-scale experiments (Section 6.2). We compare
our TEDDY with original GNN performance (Vanilla), UGS (Chen et al., 2021) and WD-GLT (Hui
et al., 2023) on regular-scale experiments (Section 6.1). Due to the computational time required
for the Sinkhorn iterations in WD-GLT, the baseline WD-GLT is inevitably excluded for our large-
scale experiments (Section 6.2). The GNN models, our proposed method, and the baselines are
implemented upon PyTorch (Paszke et al., 2019), PyTorch Geometric (Fey & Lenssen, 2019), and
OGB (Hu et al., 2020). The detailed experimental configurations are provided in Appendix B.

6.1 SMALL- AND MEDIUM-SCALE TASKS

In alignment with experiments in UGS, we evaluate the performance of our TEDDY on three bench-
mark datasets: Cora, Citeseer, and Pubmed (Sen et al., 2008) on three representative GNN archi-
tectures: GCN (Kipf & Welling, 2016), GIN (Xu et al., 2018a), and GAT (Veličković et al., 2017).
Figure 6 illustrates the performance comparison with varying level of graph sparsity.

Although the main goal is to preserve the performance of vanilla dense GNN, our method improves
the original accuracy in more than half of the considered settings across all sparsity levels. In
particular, GIN on the Citeseer dataset shows the outstanding result (refer to the second row and third
column in Figure 6). In this setting, the best accuracy is observed as 73.20%, at the graph sparsity
pg = 43.12% achieving a 5.4% improvement upon the vanilla performance. Moreover, our TEDDY
consistently outperforms the baselines across all experimental settings with remarkable improvements
in GAT. Note that, at the maximum graph sparsity, TEDDY enhances the performance in a range of
12.8%∼20.4% compared to the optimal performances of the baselines. In addition, we highlight
MACs (Multiply-Accumulate operations) at inference for GIN as showcase examples. In Figure 7,
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Figure 6: Experimental results on training GCN/GAT/GIN on Cora/Citeseer/Pubmed datasets.

Figure 7: MAC comparisons for (Left) GIN on Citeseer (Middle) GIN on Pubmed (Right) SAGE on
Reddit (large-scale experiment) as showcase examples.

GLTs found by TEDDY achieve dramatic savings of MACs (about 8 times smaller) on Citeseer and
Pubmed, even with superior performance to the vanilla networks. Due to the space constraints, our
state-of-the-art performance concerning the weight sparsity is deferred to Appendix A.

Figure 8: Qualitative analysis.

Qualitative Analysis. To demonstrate that our
method proficiently incorporates the degree in-
formation inherent in the graph structure, we
provide qualitative analysis concerning the av-
erage degrees of pruned edges for our TEDDY
and baselines. As illustrated in Figure 8, our
method effectively targets edges with high de-
grees across various graph sparsity levels. More-
over, the average degree of TEDDY continues to
decrease as the sparsity ratio increases, which underscores that TEDDY prioritizes edges display-
ing low-degree information over multi-level adjacency considerations. On the contrary, the same
phenomenon is not observed in UGS and WD-GLT, implying a lack of awareness of edge degrees.
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Figure 9: Experimental results on large-scale datasets, training GCN/SAGE on Arxiv/Reddit.

Table 1: Performance of proposed TEDDY (in percentage) on extremely sparse regimes, averaged
over 5 runs.

Simulations Vanilla 20-th 25-th 30-th 35-th 40-th
GS(%) 0 64.14 72.25 78.53 83.38 87.14

WS(%) 0 64.15 72.26 78.54 83.39 87.15

Cora 76.34 ± 0.79 76.20 ± 0.69 76.64 ± 0.76 77.38 ± 0.97 77.20 ± 1.12 76.82 ± 1.00

Citeseer 68.10 ± 0.77 71.16 ± 0.66 70.58 ± 1.43 71.54 ± 0.52 71.42 ± 0.56 71.12 ± 0.51

Pubmed 77.90 ± 0.14 79.70 ± 0.26 79.36 ± 0.71 79.68 ± 0.37 80.48 ± 0.50 80.98 ± 0.42

Quantitative Analysis. We expand our investigation to assess the efficacy of our proposed method
under extreme sparsity conditions. Employing GIN as a base architecture, we increase both the graph
sparsity and the weight sparsity to a maximum of 87% and conduct the same pruning procedure
across 5 runs. According to Table 1, our TEDDY persists in enhancing classification accuracy even
under harsh scenarios. Our method surpasses the original performance in all settings across all
datasets except at graph sparsity and weight sparsity pg ≈ pθ = 64.14% (refer to 20-th simulations in
Table 1). Notably, the performance of TEDDY exhibits a progressive improvement with the increment
in sparsity ratio, marking 3.08% advancement in comparison to the vanilla GIN on Pubmed.

6.2 LARGE-SCALE PROBLEMS

To further substantiate our analysis, we extend our experiments for two large-scale datasets:
ArXiv (Hu et al., 2020) and Reddit (Zeng et al., 2019). Unlike in Section 6.1, we choose GCN and
GraphSAGE (SAGE, Hamilton et al. (2017)) as backbone architectures since they are representative
GNNs for these datasets. Displayed in Figure 9, TEDDY can relatively preserve the test accuracy
compared to UGS. Specifically, in training SAGE on the Reddit, it is apparent that our TEDDY even
surpasses the original performance of vanilla SAGE up to graph sparsity pg = 62.26%, which indi-
cates the significant elevation (refer to the second last sparsity). The best performance in this setting
is observed as 82.72% at the graph sparsity pg = 40%, which shows 7.4% and 12.4% improvements
upon vanilla SAGE and UGS respectively. Concurrently, TEDDY exhibits more advanced pruning
performance upon UGS when it comes to the Arxiv dataset as well. Our method succeeds in attaining
the GLT up to the graph sparsity pg = 33.66% and pg = 45.96% for GCN and SAGE, whereas UGS
fails to discover GLT at this regime. Hence, these results imply that TEDDY can identify GLT with
advanced performance regardless of graph size, which underscores its high versatility. Moreover, we
accentuate MACs savings in large-scale experiments with SAGE on Reddit as our spotlight example.
As can be seen in Figure 7, our TEDDY achieves 5.5 times smaller models maintaining the original
performance while UGS shows significant degradation in this regime.

7 CONCLUSION

In this paper, we introduced TEDDY, the novel edge sparsification method that leverages structural
information to preserve the integrity of principal information flow. Based on our observations on
low-degree edges, we carefully designed an edge sparsification that effectively incorporates the graph
structural information. After sparse subgraphs in hand, we efficiently induced the parameter sparsity
via projected gradient descent on the ℓ0 ball with distillation. We also validated the superiority of
TEDDY via extensive empirical studies and successfully identified sparser graph lottery tickets with
significantly better generalization. As future work, we plan to investigate how to incorporate the node
feature information into our TEDDY framework and explore the theoretical properties of TEDDY.
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SUPPLEMENTARY MATERIALS

A FURTHER ANALYSES AND EXPERIMENTS

This section provides supplemental analyses and experiments to further validate the efficacy of TEDDY. We
begin by examining the complexity of TEDDY in Section A.1, followed by an investigation of low-degree edges
in other GNN architectures in Section A.2. Subsequently, we discuss the pruning performance relative to weight
sparsity in Section A.3. Sections A.4 and A.5 extend our evaluation of TEDDY to include pruning on graph
transformers and inductive node classification scenarios. A step-wise evaluation of our approach is detailed in
Section A.6. Section A.7 focuses on experiments investigating sole graph sparsification under dense weight
conditions, specifically assessing TEDDY’s edge pruning capabilities against baselines, including the random
pruning method in DropEdge (Rong et al., 2019). Finally, Sections A.8 and A.9 present a pairwise sparsity
analysis and pruning time consumption metrics, respectively, to demonstrate the efficiency and effectiveness of
TEDDY against comparative baselines.

A.1 COMPLEXITY ANALYSIS

In practice, the computation of edge-wise scores in TEDDY requires O(N + M) space complexity, since
Tedge ∈ RM is only computed for the existing edges. More precisely, g(v) is first computed by the row-
wise summation of the sparse adjacency matrix. Then we compute g(v) via sparse matrix multiplication
between degree vector and the adjacency matrix. Following this, g̃g̃T is efficiently obtained by element-wise
multiplication between g̃(v) of nodes v in rows and g̃(u) of nodes u in columns of the edge index. Hence, Tedge

can be efficiently obtained with a complexity linear in the number of nodes and edges.

A.2 LOW-DEGREE OBSERVATION ON OTHER GNN ARCHITECTURES

Figure 10: Low degree observations for GCN/GIN architectures on Cora/Citeseer/Pubmed datasets.

As an extension to Section 4, we compare the performance between the highest and the lowest degree edge
elimination, leveraging GCN (Kipf & Welling, 2016) and GIN (Xu et al., 2018a). As depicted in Figure 10,
removing low-degree edges consistently deteriorates the performance across all scenarios, especially for GIN
trained on Cora dataset. The same trend is observed in the average performance of all configurations across
multiple runs, as shown in Table 2.

A.3 SPARSIFICATION PERFORMANCE RELATIVE TO WEIGHT SPARSITY

Here, we present the pruning performance of our TEDDY and baselines according to the weight sparsity, displayed
in Figure 11 and 12. Consistent with the results related to graph sparsity, our method shows predominant
performance compared to baselines across all evaluated settings, independent of the graph sizes.
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Table 2: Performance on different edge degree pruning criteria (in percentage), averaged over 5 runs.
deglow denotes low edge degree-based pruning, whereas deghigh refers to high edge degree-based
pruning.

Simulations 1-st 5-th 10-th 15-th 20-th
GNNs Dataset deglow deghigh deglow deghigh deglow deghigh deglow deghigh deglow deghigh

GCN
Cora 80.38 ± 0.19 81.28 ± 0.64 77.66 ± 0.41 77.92 ± 0.34 75.36 ± 0.42 77.68 ± 0.32 74.24 ± 0.16 76.02 ± 0.43 69.54 ± 0.32 72.62 ± 0.32

Citeseer 70.44 ± 0.21 70.88 ± 0.28 67.0 ± 0.27 70.60 ± 0.18 64.78 ± 0.31 67.58 ± 0.72 63.46 ± 0.42 67.72 ± 0.37 63.22 ± 0.51 65.70 ± 0.56

Pubmed 78.32 ± 0.19 79.18 ± 0.12 76.66 ± 0.79 77.66 ± 0.27 77.52 ± 0.28 77.32 ± 0.20 77.72 ± 0.17 76.74 ± 0.10 75.20 ± 0.20 76.54 ± 0.08

GAT
Cora 77.64 ± 1.33 79.72 ± 1.06 68.34 ± 1.26 78.50 ± 1.16 56.72 ± 0.48 72.44 ± 1.10 50.12 ± 0.93 67.74 ± 0.92 44.78 ± 0.80 51.64 ± 1.67

Citeseer 69.48 ± 1.36 70.96 ± 0.75 57.02 ± 0.64 66.86 ± 0.63 42.68 ± 2.14 59.74 ± 1.64 35.40 ± 1.50 49.86 ± 1.82 28.40 ± 0.97 43.24 ± 1.43

Pubmed 78.40 ± 0.61 78.14 ± 1.01 71.66 ± 0.59 76.32 ± 0.55 58.48 ± 0.85 74.52 ± 0.56 49.52 ± 0.64 72.12 ± 0.64 44.10 ± 0.57 68.20 ± 0.61

GIN
Cora 74.86 ± 1.14 76.48 ± 1.66 70.70 ± 1.13 76.84 ± 1.81 66.70 ± 0.33 74.70 ± 2.32 62.72 ± 1.38 72.96 ± 0.55 58.82 ± 1.99 70.28 ± 0.99

Citeseer 67.52 ± 0.99 68.78 ± 0.98 63.80 ± 1.48 69.16 ± 0.96 62.32 ± 1.14 68.46 ± 0.48 60.60 ± 1.27 66.92 ± 0.27 59.48 ± 2.25 65.64 ± 1.09

Pubmed 75.64 ± 0.72 77.96 ± 0.36 75.12 ± 0.66 77.38 ± 0.27 73.68 ± 1.26 77.44 ± 0.10 70.74 ± 1.39 74.88 ± 0.62 70.88 ± 2.72 73.30 ± 0.11

A.4 TEDDY WITH GRAPH TRANSFORMERS

To demonstrate the versatility of our method, we expand our experiments to encompass recent Transformer-based
GNN architectures, UniMP (Shi et al., 2020), NAGphormer (Chen et al., 2022), and Specformer (Bo et al.,
2023). Note that differentiable mask approach from baselines may prune edges more than pre-defined ratio, due
to the possibility of multiple mask elements having the same value. Moreover, UGS (Chen et al., 2021) and
WD-GLT (Hui et al., 2023) are infeasible to implement on Specformer and NAGphormer, since the differentiable
mask for the adjacency matrix requires backpropagation through eigenvectors and eigenvalues utilized in these
architectures, introducing a practical challenge with high complexity of O(N3) per iteration.

As depicted in Figure 13 and 14, TEDDY accomplishes stable pruning performance, surpassing all baselines
when equipped with UniMP as a backbone. In particular, UGS and WD-GLT show significant degradation with
severe unstability as the sparsity increases, whereas the performance of TEDDY is stable across all benchmark
datasets. Our method also yields decent performance in NAGphormer and Specformer, notably in NAGphormer
on the Cora dataset, with considerable performance enhancement over the original result. Overall, these results
demonstrate TEDDY’s versatility across diverse foundational architectures.

A.5 TEDDY ON INDUCTIVE SEMI-SUPERVISED SETTINGS

We present additional experiments to further evaluate TEDDY’s adaptability on inductive semi-supervised node
classification task, where the fraction of the validation and test set is unobserved and larger than that of the
training set. We modified the Cora, Citeseer, and Pubmed datasets (Sen et al., 2008) to a 20/40/40% split for
training, validation, and testing phases, ensuring that the model had no prior exposure to the validation and test
nodes during training.

The results, illustrated in Figure 15 and 16, demonstrate that TEDDY achieves prominent pruning performance
on inductive setting as well. This is especially pronounced on the Cora and Pumbed datasets with GIN and,
surpassing the accuracy of the vanilla GIN. Moreover, our method consistently achieves stable performance
throughout all simulations on the Pubmed dataset, regardless of the base architectures. These findings strongly
affirm TEDDY’s ability to effectively generalize from smaller to larger graphs.

A.6 ABLATION STUDY

To confirm that each component in our framework contributes individually to the edge/parameter sparsification,
we conduct comprehensive ablation studies. Towards this, we provide a step-wise assessment result on Cora
dataset, equipped with GAT (Veličković et al., 2017) as a base architecture. As illustrated in Figure 17, while
integrating the distillation loss Ldt does improve the performance of the baselines, they still fail to match the
performance of our method, even ours without Ldt. This highlights a significant impact of proposed edge-centric
message passing with degree statistics. Furthermore, our approach, which considers multiple levels of degree
information (specified as Ours), consistently outperforms methods that rely solely on degree information from
direct node pairs (specified as 1-hop Degree).

Further ablation studies were conducted to examine the impact of different components, as shown in Figure 18.
These studies included: (1) TEDDY with all components, (2) TEDDY without distillation loss, (3) TEDDY
with magnitude-based weight mask pruning, (4) UGS with all components, (5) UGS with distillation loss, (6)
UGS with ℓ0-based projected gradient descent (PGD). Analogous to the previous findings, UGS enhanced with
Ldt, remains to be suboptimal compared to TEDDY without Ldt across all benchmark datasets. Meanwhile,
the performance of UGS degrades dramatically when incorporating ℓ0 PGD. Intriguingly, TEDDY maintains
robust performance with magnitude-based weight pruning, highlighting its flexibility across varying weight
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Figure 11: Additional experimental results in Section 6.1 with respect to the weight sparsity.

Figure 12: Additional experimental results in Section 6.2 with respect to the weight sparsity.

sparsification strategies. Nevertheless, leveraging PGD offers an optimal balance of efficiency and effectiveness,
obviating the need for additional iterative training to obtain lottery tickets.

A.7 EXCLUSIVE EDGE SPARSIFICATION PERFORMANCE

In this experiment, we focused exclusively on graph sparsification to directly compare the effects of various
edge pruning techniques, including the random dropping strategy employed in DropEdge (Rong et al., 2019),
with our TEDDY. The results, as shown in Figure 19, indicate that TEDDY consistently outperforms existing
baseline methods, including DropEdge. Notably, our approach not only maintains but also enhances the accuracy
of vanilla GNNs on the Citeseer and Pubmed datasets across all benchmarked GNNs. Furthermore, the figure
highlights that the use of the DropEdge technique leads to suboptimal performance, emphasizing the importance
of a more sophisticated pruning methodology.

A.8 PAIRWISE SPARSITY ANALYSIS

To demonstrate the stability of TEDDY, we present the results in Table 1 as a heatmap in Figure 20. The
performance in each heatmap element is an average performance over 5 random seeds. Overall, the performance
of TEDDY is not uniformly affected by increased sparsity. In the Cora dataset, our method demonstrates resilience
to higher graph sparsity levels, surpassing the vanilla GIN’s accuracy of 76.34%. This suggests that a sparser
graph generated from our method has a potential to mitigate overfitting achieve generalization. For the Citeseer
dataset, the performance remains relatively stable across a range of weight sparsity levels, indicating a degree of
robustness to parameter reduction. Furthermore, all configurations exceed the vanilla GIN’s accuracy of 68.1%,
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Figure 13: Average classification performance of training UniMP on Cora/Citeseer/Pubmed datasets.

Figure 14: Average classification performance of training NAGphormer (left) /Specformer (right) on
Cora/Citeseer datasets.

strongly indicating the effectiveness of TEDDY across diverse sparsities. The similar efficacy is observed in
the Pubmed dataset, where all elements surpasses the vanilla GIN’s performance of 77.9%. Interestingly, we
observe a trend in the Pubmed where the performance generally improves with increased sparsity, with the
highest accuracy achieved under the most extreme sparsity (pg = pθ = 85%).

A.9 COMPARISON OF PRUNING PROCESS DURATION

This subsection details an wall-clock time analysis of (1) TEDDY with all components and (2) Projected Gradient
Descent (PGD), the weight sparsification method in TEDDY, to verify its efficiency in comparison to the baselines.
We reported the time consumption of our method and baselines for each distinct simulation, average over five
runs. As demonstrated in Table 3, the results clearly substantiates that TEDDY consistently achieves a significant
reduction in pruning time relative to the baselines. This is especially pronounced in GIN on the Pubmed dataset,
where TEDDY outperforms WD-GLT by a remarkable margin, displaying a maximum time saving of 220.72
seconds during the 15-th simulation. Similar trend is observed in the results in large-scale datasets, depicted
in Table 4 and 5, where TEDDY’s time consumption is nearly half that of UGS. The maximum duration gap is
revealed in the Reddit dataset, with TEDDY concluding the last simulation 131.84 seconds quicker than UGS
in GCN. Note that the duration of WD-GLT is reported as N/A due to prohibitable computational time for the
Sinkhorn iteration.

Following the comparison of wall-clock times for the overall process, we further investigate how efficient our
projected gradient descent on the ℓ0-ball is in terms of actual runtime compared to iterative approaches. For fair
comparison, we use the original dense adjacency matrix without graph sparsification while pruning only model
parameters. Table 6 ∼ 8 illustrate our wall-clock time comparison for citation networks, Arxiv, and Reddit
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Figure 15: Inductive experimental results on training GCN/GAT/GIN on Cora/Citeseer/Pubmed
datasets, with respect to the graph sparsity.

Figure 16: Inductive experimental results on training GCN/GAT/GIN on Cora/Citeseer/Pubmed
datasets, with respect to the weight sparsity.

datasets. As similar to the overall process depicted in Table 3 ∼ 5, TEDDY consistently saves the actual time
about more than 2 times upon baselines across most of the considered settings. More notably, for large-scale
dataset Arxiv and Reddit, the wall-clock time gap become markedly pronounced. This is might be due to the
fact that the iterative approaches additionally introduce a larger number of learning parameters (for parameter
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Figure 17: Ablation study on GAT architectures trained on Cora dataset.

Figure 18: Ablation study on GAT trained on Cora/Citeseer/Pubmed dataset, across diverse configu-
rations.

masks) particularly when dealing with large-scale datasets. As in overall pruning process, duration of WD-GLT
is reported as N/A or OOM due to prohibitive computation incurred by Sinkhorn iterations.
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Figure 19: Experimental results for a sole graph sparsification including DropEdge (represented as
Random) on Cora/Citeseer/Pubmed datasets, equipped with GCN/GAT/GIN.

Figure 20: Performance on diverse extreme sparsity combinations (in percentage) of TEDDY with
GIN, averaged over 5 runs.
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Table 3: Duration (sec) of the overall pruning process for each simulation on Cora/Citeseer/Pubmed
datasets, averaged over 5 runs. The comparison is conducted on the machine with NVIDIA Titan Xp
and Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz.

Cora 1-st 5-th 10-th 15-th 20-th

GCN
UGS 6.30 ± 0.55 5.84 ± 0.39 5.57 ± 0.80 5.65 ± 0.59 5.56 ± 0.73

WD-GLT 54.11 ± 1.28 53.61 ± 0.39 53.59 ± 0.17 53.52 ± 0.23 53.77 ± 0.37

TEDDY 2.12 ± 0.08 2.15 ± 0.16 2.09 ± 0.12 2.11 ± 0.13 2.18 ± 0.05

GAT
UGS 7.58 ± 0.44 7.11 ± 0.51 6.97 ± 0.59 7.03 ± 0.60 7.26 ± 0.24

WD-GLT 83.81 ± 10.02 79.98 ± 8.09 80.76 ± 6.30 80.84 ± 6.29 79.40 ± 4.81

TEDDY 3.00 ± 0.07 2.96 ± 0.14 3.04 ± 0.08 2.93 ± 0.40 3.01 ± 0.05

GIN
UGS 4.38 ± 0.81 4.11 ± 0.29 4.11 ± 0.28 4.06 ± 0.30 4.01 ± 0.19

WD-GLT 68.55 ± 10.13 72.43 ± 10.91 70.76 ± 10.45 72.04 ± 10.23 72.67 ± 11.89

TEDDY 1.86 ± 0.25 1.91 ± 0.31 1.85 ± 0.28 1.86 ± 0.32 1.86 ± 0.27

Citeseer 1-st 5-th 10-th 15-th 20-th

GCN
UGS 8.21 ± 1.72 7.44 ± 0.52 7.55 ± 0.53 7.36 ± 0.55 7.33 ± 0.42

WD-GLT 83.73 ± 16.75 78.24 ± 14.09 77.67 ± 19.85 70.75 ± 22.62 69.51 ± 17.12

TEDDY 2.65 ± 0.33 2.72 ± 0.29 2.70 ± 0.34 2.71 ± 0.29 2.80 ± 0.34

GAT
UGS 8.78 ± 0.84 8.09 ± 0.52 8.47 ± 0.36 8.64 ± 0.77 8.41 ± 0.64

WD-GLT 93.96 ± 20.92 86.23 ± 19.97 89.55 ± 22.03 89.03 ± 22.84 86.74 ± 21.02

TEDDY 3.21 ± 0.57 3.35 ± 0.46 3.51 ± 0.50 3.55 ± 0.49 3.63 ± 0.51

GIN
UGS 6.61 ± 1.11 6.44 ± 0.77 6.05 ± 0.38 5.98 ± 0.38 6.16 ± 0.42

WD-GLT 108.74 ± 3.78 109.59 ± 4.25 106.69 ± 3.24 109.91 ± 4.16 107.93 ± 3.35

TEDDY 2.51 ± 0.10 2.53 ± 0.11 2.46 ± 0.09 2.49 ± 0.05 2.52 ± 0.16

Pubmed 1-st 5-th 10-th 15-th 20-th

GCN
UGS 8.40 ± 0.54 7.80 ± 0.31 7.61 ± 0.55 7.95 ± 0.27 8.12 ± 0.30

WD-GLT 176.48 ± 26.20 161.88 ± 31.51 160.96 ± 34.56 141.58 ± 9.83 142.68 ± 12.39

TEDDY 3.23 ± 0.20 3.27 ± 0.13 3.16 ± 0.14 3.14 ± 0.21 3.08 ± 0.12

GAT
UGS 9.85 ± 0.91 9.35 ± 0.59 9.16 ± 0.72 9.61 ± 0.67 9.41 ± 0.75

WD-GLT 69.64 ± 8.76 68.69 ± 8.31 66.07 ± 5.49 64.38 ± 2.74 63.66 ± 1.11

TEDDY 3.90 ± 0.26 3.82 ± 0.18 3.58 ± 0.20 3.63 ± 0.21 3.50 ± 0.30

GIN
UGS 7.42 ± 1.01 7.17 ± 0.41 7.11 ± 0.51 7.03 ± 0.49 6.95 ± 0.41

WD-GLT 218.87 ± 6.40 214.61 ± 7.44 213.63 ± 5.83 223.74 ± 4.99 216.23 ± 6.28

TEDDY 3.20 ± 0.18 3.12 ± 0.13 3.06 ± 0.10 3.02 ± 0.07 2.97 ± 0.12

Table 4: Duration of the overall pruning process
for each simulation on Arxiv dataset, averaged
over 5 runs. The comparison is conducted on the
machine with NVIDIA GeForce RTX 3090 and
Intel(R) Xeon(R) Gold 5215 CPU @ 2.50GHz.

Arxiv 1-st 5-th 10-th 15-th 20-th

GCN

UGS 82.28 ± 19.32 77.93 ± 13.14 75.26 ± 12.89 73.18 ± 11.94 71.50 ± 10.81

WD-GLT N/A N/A N/A N/A N/A

TEDDY 43.45 ± 0.02 39.70 ± 0.04 36.10 ± 0.05 33.35 ± 0.03 31.16 ± 0.02

SAGE

UGS 74.22 ± 3.98 73.37 ± 2.61 76.18 ± 4.86 75.18 ± 5.07 70.94 ± 1.00

WD-GLT N/A N/A N/A N/A N/A

TEDDY 45.10 ± 0.02 41.96 ± 0.02 38.85 ± 0.02 36.43 ± 0.01 34.58 ± 0.02

Table 5: Duration of the overall pruning process
for each simulation on Reddit dataset, averaged
over 5 runs. The comparison is conducted on the
machine with NVIDIA GeForce RTX 3090 and
Intel(R) Xeon(R) Gold 5215 CPU @ 2.50GHz.

Reddit 1-st 5-th 10-th 15-th 20-th

GCN
UGS 180.80 ± 69.56 176.25 ± 54.61 158.97 ± 52.54 154.12 ± 42.40 155.35 ± 49.46

WD-GLT OOM OOM OOM OOM OOM

TEDDY 47.68 ± 0.02 40.29 ± 0.03 32.92 ± 0.02 27.56 ± 0.01 23.51 ± 0.10

SAGE
UGS 174.47 ± 34.80 173.08 ± 31.65 167.41 ± 32.09 166.55 ± 30.85 161.88 ± 30.77

WD-GLT OOM OOM OOM OOM OOM

TEDDY 65.53 ± 0.03 55.77 ± 0.03 46.25 ± 0.03 39.12 ± 0.05 33.45 ± 0.04
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Table 6: Comparisons of duration (sec) of the parameter sparsification process for each method for
each simulation on Cora/Citeseer/Pubmed datasets, averaged over 5 runs. For fair comparison, we
consider only the parameter sparsification with original dense graph (i.e. without graph sparsification).
The comparison is conducted on the machine with NVIDIA Titan Xp and Intel(R) Xeon(R) CPU
E5-2630 v4 @ 2.20GHz.

Cora 1-st 5-th 10-th 15-th 20-th

GCN
UGS 6.09 ± 0.81 5.42 ± 0.22 5.71 ± 0.47 5.47 ± 0.29 5.51 ± 0.22

WD-GLT 62.78 ± 3.06 60.89 ± 0.96 61.38 ± 0.93 61.82 ± 1.15 61.92 ± 0.87

TEDDY 2.39 ± 0.06 2.43 ± 0.04 2.44 ± 0.10 2.41 ± 0.04 2.41 ± 0.04

GAT
UGS 6.00 ± 1.04 5.58 ± 0.34 5.60 ± 0.29 5.50 ± 0.18 5.48 ± 0.19

WD-GLT 61.95 ± 3.52 61.45 ± 2.13 61.40 ± 1.90 59.99 ± 1.48 60.27 ± 2.29

TEDDY 2.43 ± 0.09 2.47 ± 0.09 2.50 ± 0.15 2.45 ± 0.08 2.44 ± 0.08

GIN
UGS 4.33 ± 0.74 4.15 ± 0.46 4.05 ± 0.18 3.99 ± 0.29 3.87 ± 0.20

WD-GLT 61.98 ± 3.15 60.63 ± 0.39 60.38 ± 0.46 60.46 ± 0.30 60.42 ± 0.45

TEDDY 1.76 ± 0.03 1.80 ± 0.05 1.82 ± 0.04 1.81 ± 0.02 1.81 ± 0.01

Citeseer 1-st 5-th 10-th 15-th 20-th

GCN
UGS 8.84 ± 2.27 7.87 ± 1.16 7.56 ± 0.81 7.56 ± 0.62 7.43 ± 0.65

WD-GLT 56.97 ± 2.45 56.05 ± 0.86 55.96 ± 1.33 55.38 ± 0.60 55.29 ± 0.53

TEDDY 3.27 ± 0.04 3.37 ± 0.06 3.46 ± 0.03 3.50 ± 0.01 3.60 ± 0.05

GAT
UGS 8.42 ± 1.17 7.95 ± 0.58 7.91 ± 0.70 7.89 ± 0.49 7.77 ± 0.58

WD-GLT 57.67 ± 2.29 56.90 ± 0.57 56.47 ± 0.80 57.30 ± 1.17 56.51 ± 0.57

TEDDY 3.35 ± 0.05 3.39 ± 0.04 3.50 ± 0.03 3.55 ± 0.01 3.66 ± 0.05

GIN
UGS 8.28 ± 1.00 8.37 ± 1.01 8.18 ± 0.84 8.16 ± 0.95 7.81 ± 0.64

WD-GLT 57.50 ± 2.02 56.11 ± 0.26 56.19 ± 0.54 56.88 ± 1.40 56.38 ± 0.71

TEDDY 3.42 ± 0.05 3.46 ± 0.04 3.57 ± 0.04 3.62 ± 0.02 3.71 ± 0.05

Pubmed 1-st 5-th 10-th 15-th 20-th

GCN
UGS 9.21 ± 0.96 8.48 ± 0.46 8.66 ± 0.62 8.28 ± 0.20 8.38 ± 0.42

WD-GLT 202.28 ± 1.98 201.13 ± 1.54 200.82 ± 2.08 201.07 ± 1.53 201.16 ± 1.22

TEDDY 3.91 ± 0.08 3.88 ± 0.07 3.90 ± 0.11 3.89 ± 0.10 3.91 ± 0.12

GAT
UGS 13.69 ± 0.97 13.18 ± 0.23 13.05 ± 0.24 13.07 ± 0.21 13.12 ± 0.14

WD-GLT 66.03 ± 0.75 65.68 ± 0.06 65.65 ± 0.12 65.66 ± 0.14 65.62 ± 0.09

TEDDY 6.33 ± 0.05 6.32 ± 0.03 6.33 ± 0.04 6.32 ± 0.04 6.33 ± 0.02

GIN
UGS 8.68 ± 0.78 8.38 ± 0.15 8.37 ± 0.19 8.35 ± 0.11 8.26 ± 0.07

WD-GLT 157.18 ± 0.48 157.03 ± 1.12 156.43 ± 0.93 157.75 ± 0.59 157.88 ± 0.51

TEDDY 4.07 ± 0.04 4.04 ± 0.03 4.06 ± 0.01 4.04 ± 0.04 4.04 ± 0.06

Table 7: Duration of the parameter sparsification
process for each simulation on Arxiv dataset, aver-
aged over 5 runs. The comparison is conducted on
the machine with NVIDIA Titan Xp and Intel(R)
Xeon(R) CPU E5-2630 v4 @ 2.20GHz.

Arxiv 1-st 5-th 10-th 15-th 20-th

GCN

UGS 130.66 ± 15.32 125.78 ± 13.97 128.90 ± 14.12 113.48 ± 11.06 119.41 ± 11.84

WD-GLT N/A N/A N/A N/A N/A

TEDDY 62.68 ± 1.29 57.10 ± 1.33 51.75 ± 0.97 47.55 ± 1.21 45.07 ± 1.20

SAGE

UGS 111.71 ± 7.45 104.29 ± 9.21 106.31 ± 8.13 94.02 ± 7.78 90.71 ± 6.59

WD-GLT N/A N/A N/A N/A N/A

TEDDY 64.03 ± 0.16 64.03 ± 0.09 64.44 ± 0.17 64.13 ± 0.07 64.34 ± 0.13

Table 8: Duration of the parameter sparsification
process for each simulation on Reddit dataset, aver-
aged over 5 runs. The comparison is conducted on
the machine with NVIDIA Titan Xp and Intel(R)
Xeon(R) CPU E5-2630 v4 @ 2.20GHz.

Reddit 1-st 5-th 10-th 15-th 20-th

GCN
UGS 210.36 ± 51.92 200.75 ± 43.13 197.71 ± 47.39 173.81 ± 39.13 170.48 ± 42.65

WD-GLT OOM OOM OOM OOM OOM

TEDDY 70.34 ± 0.05 65.69 ± 0.11 58.43 ± 0.03 51.72 ± 0.15 47.03 ± 0.13

SAGE
UGS 203.75 ± 29.72 194.58 ± 25.91 188.02 ± 31.74 181.86 ± 35.12 182.97 ± 26.94

WD-GLT OOM OOM OOM OOM OOM

TEDDY 80.63 ± 0.11 78.21 ± 0.06 67.93 ± 0.13 63.11 ± 0.04 51.03 ± 0.16
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B EXPERIMENTAL SETTINGS

B.1 DATASET STATISTICS

Table 9: Statistics of benchmark datasets.

Dataset #Nodes #Edges #Classes #Features Split ratio
Cora 2,708 5,429 7 1,433 120/500/1000
Citeseer 3,327 4,732 6 3,703 140/500/1000
Pubmed 19,717 44,338 3 500 60/500/1000
Arxiv 169,343 1,166,243 40 128 54%/18%/28%
Reddit 232,965 23,213,838 41 602 66%/10%/24%

Table 9 provides comprehensive statistics of the datasets used in our experiments, including the number of nodes,
edges, classes, and features.

B.2 IMPLEMENTATION DETAILS

We implement GNN models and our proposed TEDDY using PyTorch Paszke et al. (2019) and PyTorch
Geometric Fey & Lenssen (2019). The experiments are conducted on an RTX 2080 Ti (11GB) and RTX
3090 (24GB) GPU machines. Following the experiments in UGS (Chen et al., 2021), we consider the same
experiment settings on Cora, Citeseer, and Pubmed dataset across all GNN architectures, except for GAT whose
hidden dimension is set to 64 owing to the suboptimal performance of vanilla GAT. Regarding the experiments
on large-scale datasets, we employ three-layer and two-layer GNN on Arxiv and Reddit, respectivly, while
fixing the hidden dimension as 256 across both GCN and SAGE. Analogous to the regular-scale experiment,
we select the Adam optimizer with an initial learning rate of 0.01 and weight decay as 0 uniformly across
all large-scale settings. We adopted per-simulation pruning ratio as pg = pθ = 0.05 and hyperparameter
search space for Ldt within the range of [0.01, 200]. The source code for our experiments is available at
https://github.com/hyunjin72/TEDDY.

B.3 IMPLEMENTATION DISCREPANCY OF BASELINES WITH GAT

During our experiments, we observe an implementation discrepancy in the baselines (Chen et al., 2021; Hui et al.,
2023) when interfaced with GAT. Specifically, at the attention phase, the edge mask to eliminate edges in the
adjacency matrix is applied preceding the softmax operation on attention coefficients, yielding non-zero outputs
even for pruned edges. In effect, the edges are not expected to be actually pruned. To rectify this inconsistency,
we slightly revise the source code to guarantee the actual removal of designated edges during the forward pass of
GAT.

B.4 REPRODUCING WD-GLT (HUI ET AL., 2023)

Since there is no official implementations in public, we reproduce the baseline results in Hui et al. (2023) by
ourselves. In order for our paper to be self-contained, we introduce the technique in Hui et al. (2023) in this
section. For better generalization of GLT, Hui et al. (2023) propose a novel regularization based on Wasserstein
distance (WD) between different classes. Toward this, let Z := f(G,Θ) be the representation obtained from
GNN. Further, we define Zc and Zc as

Zc := {zi ∈ row(Z) : argmax(zi) = c}, Zc := {zi ∈ row(Z) : argmax(zi) ̸= c}

The authors maximize the Wasserstein distance between Zc and Zc which is defined by

WD(Zc,Zc) := inf
π∼Π(Zc,Zc)

E(zi,zj)∼π

[
∥zi − zj∥2

]
(8)

where Π(Zc,Zc is the set of all joint distributions π(zi,zj) whose marginals are Zc and Zc respectively. The
authors compute this WD for all classes c ∈ C = {1, 2, · · · , C}, thus the regularization term would be

R(mg,mθ,Θ) = −
∑
c∈C

WD(Zc,Zc) (9)

The Wasserstein distance between two empirical distributions can be estimated by solving the entropy-regularized
Wasserstein distance with Sinkhorn iterations. Together with the loss function L in Eq. (2), WD-GLT consider
the final objective L̃ = L+ λR with regularization coefficient λ.
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Equipped with the objective in Eq. (9), Hui et al. (2023) solve the minmax optimization problem for robustness
formulated as

min
mθ,Θ

max
mg

L̃(mg,mθ,Θ) (10)

The optimization has two procedures: (i) adversarially perturbing the mask mg via gradient ascent and (ii)
minimizing the objective L with respect to mθ and Θ via gradient descent. More precisely, the update rule
would be

m(t+1)
g = proj[0,1]N×N

(
m(t)

g + η1∇mg L̃(m
(t)
g ,m

(t)
θ ,Θ(t))

)
(11)

m
(t+1)
θ = m

(t)
θ − η2

(
∇mθ L̃(m

(t+1)
g ,m

(t)
θ ,Θ(t)) + α

(∂m(t+1)
g

∂mθ

)T

∇mg L̃(m
(t+1)
g ,m

(t)
θ ,Θ(t))︸ ︷︷ ︸

Implicit gradient by Eq. (11)

)
(12)

Θ(t+1) = Θ(t) − η2
(
∇ΘL̃(m(t+1)

g ,m
(t)
θ ,Θ(t)) + α

(∂m(t+1)
g

∂Θ

)T

∇mg L̃(m
(t+1)
g ,m

(t)
θ ,Θ(t))︸ ︷︷ ︸

Implicit gradient by Eq. (11)

)
(13)

where η1 and η2 are learning rates for mg and (mθ,Θ) respectively, and α controls the strength of the implicit
gradient by chain rule. The projection operator onto [0, 1]N×N ensures that each entry in the graph mask mg

has its value in the interval [0, 1]. Hui et al. (2023) report that η1 = η2 = 0.01 and α = 0.1 are used for
experiments. The update rules in can be also found in Equation (9) ∼ (11) in Hui et al. (2023).

We make several remarks on solving the minmax optimization in Eq. (10) from our experiences.

• In fact, the only case of α = 1 corresponds to the correct update rule for the minmax optimization in
Eq. (10).

• In terms of implementations, the cases for α = 0 and α = 1 are easy to implement. For exam-
ple, in PyTorch library, when solving the inner maximization problem, we only turn on or off the
create_graph option in loss.backward() where α = 0 corresponds to False and α = 1
is for True. The other case α ̸= 0, 1 might require non-trivial handling in backpropagation with
Sinkhorn iterations multiple times, which could be computationally infeasible.

• Hence, we could not consider the case α = 0.1 which is the reported hyperparameter in Hui et al.
(2023). However, we conisder the cases of α = 0 and α = 1. For both cases of α = 0 and
α = 1, we observe that the values of each entry of mg always tends to increase, hence the projection
operator proj[0,1]N×N makes all the entries of mg by 1. Therefore, the magnitude-based graph edge
sparsification could not select suitable coordinates to be pruned.

For such reasons, we revise the optimization problem in Eq. (11) as

min
mg,mθ,Θ

L̃(mg,mθ,Θ) (14)

which just minimize the objective with respect to all trainable parameters (specifically, for updating mg , we keep
the projection operator proj[0,1]N×N ). Under the revised optimization, we only require just single Sinkhorn
iterations for approximating Wasserstein distance and successfully reproduce the similar results in Hui et al.
(2023).
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