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Abstract

Document-level relation extraction typically re-001
lies on text-based encoders and hand-coded002
pooling heuristics to aggregate information003
learned by the encoder. In this paper, we lever-004
age the intrinsic graph processing capabilities005
of the Transformer model and propose replac-006
ing hand-coded pooling methods with new to-007
kens in the input, which are designed to aggre-008
gate information via explicit graph relations in009
the computation of attention weights. We intro-010
duce a joint text-graph Transformer model and011
a graph-assisted declarative pooling (GADePo)012
specification of the input, which provides ex-013
plicit and high-level instructions for informa-014
tion aggregation. GADePo allows the pooling015
process to be guided by domain-specific knowl-016
edge or desired outcomes but still learned by017
the Transformer, leading to more flexible and018
customisable pooling strategies. We evaluate019
our method across diverse datasets and models020
and show that our approach yields promising021
results that are consistently better than those022
achieved by the hand-coded pooling functions.023

1 Introduction024

Document-level relation extraction is an important025

task in natural language processing, which involves026

identifying and categorising meaningful relation-027

ships between entities within a document, as ex-028

emplified in Figure 1. This task is foundational to029

many applications, including knowledge base pop-030

ulation and completion (Banko et al., 2007; Ji et al.,031

2020), information retrieval and extraction (Man-032

ning et al., 2008; Theodoropoulos et al., 2021),033

question answering (Chen et al., 2017; Feng et al.,034

2022) and sentiment analysis (Pang and Lee, 2008),035

to name a few.036

Standard methods that approach this challenge037

generally employ pretrained text-based encoders038

(Devlin et al., 2019; Beltagy et al., 2019; Zhuang039

et al., 2021; Cui et al., 2021), which are responsi-040

ble for capturing the nuances of information con-041

Breakout is an arcade game developed and published by

Atari , Inc. , released on May 13 , 1976 .  It was

conceptualized by Nolan Bushnell and Steve Bristow ,

in�uenced by the 1972 Atari arcade game Pong , and

built by Steve Wozniak aided by Steve Jobs . Breakout

was the basis and inspiration for certain aspects of

the Apple II personal computer . [...]

Breakout

Atari

Subject: Breakout  Object: Atari

Relation: developer ; publisher

May 13 , 1976Atari , Inc.

Nolan Bushnell Steve Bristow

Pong

Steve Wozniak Steve Jobs Breakout

Apple II

Breakout Atari

Figure 1: Document from the Re-DocRED (Tan et al.,
2022b) dataset involving multiple entities and labels.
Subject entity Breakout (red) and object entity Atari
(blue) express relations "developer" and "publisher".
Other entities are indicated as Mention (white).

tained in the entity mentions and their contextual 042

surroundings. Previous successful methods of- 043

ten then use hand-coded pooling heuristics to ag- 044

gregate the information learned by the encoder, 045

with some aimed at creating entity representations, 046

while others directly exploiting the pattern of at- 047

tention weights to capture context aware relations 048

between entity mentions (Zhou et al., 2021; Xiao 049

et al., 2022; Tan et al., 2022a; Ma et al., 2023). 050

These pooling heuristics can be very effective at 051

leveraging the information in a pretrained encoder. 052

However, as shown in Conneau et al. (2017); Jia 053

et al. (2019); Reimers and Gurevych (2019); Choi 054

et al. (2021), the selection of an appropriate pool- 055

ing function can be model-dependent, task-specific, 056

resource-intensive and time-consuming to deter- 057

mine, thereby limiting flexibility. 058

In this paper, we address these issues with a new 059

approach where we leverage the intrinsic graph 060

processing capabilities of the Transformer model 061

(Vaswani et al., 2017), leveraging insights from the 062

work of Mohammadshahi and Henderson (2020); 063

Henderson (2020); Mohammadshahi and Hender- 064

son (2021); Henderson et al. (2023). They argue 065

that attention weights and graph relations are func- 066

tionally equivalent and show how to incorporate 067
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structural dependencies between input elements068

by simply adding relation features to the attention069

functions. Transformers easily learn to integrate070

these relation features into their pretrained atten-071

tion functions, resulting in very successful graph-072

conditioned models (Mohammadshahi and Hen-073

derson, 2021; Miculicich and Henderson, 2022;074

Mohammadshahi and Henderson, 2023). Given075

this effective method for integrating explicit graphs076

with pretrained attention functions, we propose to077

use the attention function itself for aggregation. We078

replace the rigid pooling methods with new tokens079

which act as aggregation nodes, plus explicit graph080

relations which steer the aggregation.081

We introduce a joint text-graph Transformer082

model and a graph-assisted declarative pooling083

(GADePo) method1 that leverages these special084

tokens and graph relations, to provide an explicit085

high-level declarative specification for the infor-086

mation aggregation process. By integrating these087

graphs in the attention functions of a pretrained088

model, GADePo exploits the pretrained embed-089

dings and attention patterns but still has the flex-090

ibility of being trained on data. This enables the091

pooling to be guided by domain-specific knowl-092

edge or desired outcomes but still learned by the093

Transformer, opening up a more customisable but094

still data-driven relation extraction process.095

We evaluate our method across diverse datasets096

and models commonly employed in document-097

level relation extraction tasks, and show that our098

approach yields promising results that are consis-099

tently better than those achieved by the hand-coded100

pooling functions.101

Contributions We propose a new method for102

exploiting pretrained Transformer models which103

replaces hand-coded aggregation functions with ex-104

plicit graph relations and aggregation nodes. We105

introduce a novel form of joint text-graph Trans-106

former model. We evaluate our approach across107

various datasets and models, showing that it yields108

promising results that are consistently better than109

those achieved by hand-coded pooling functions.110

2 Related Work111

In recent studies, the scope of relation extraction112

has been expanded to include not only individ-113

ual sentences but entire documents. This exten-114

sion, known as document-level relation extraction,115

1Code will be made available upon publication.

presents a more realistic and challenging scenario 116

as it seeks to extract relations both within sentences 117

and across multiple sentences (Yao et al., 2019). 118

Transformer-based (Vaswani et al., 2017) models 119

have shown great potential in addressing this task. 120

Wang et al. (2019) and Tang et al. (2020) show 121

that the BiLSTM-based (Hochreiter and Schmidhu- 122

ber, 1997) baselines lack the capacity to model 123

complex interactions between multiple entities. 124

They propose a more robust approach, which con- 125

sists of using the pretrained BERT (Devlin et al., 126

2019) model and a two-step prediction process, i.e., 127

first identifying if a link between two entities exists, 128

followed by predicting the specific relation type. 129

GAIN (Zeng et al., 2020) leverages BERT as a 130

text encoder and GCNs (Kipf and Welling, 2017) 131

to process two types of graphs, one at mention level 132

and another at entity level, showing notable perfor- 133

mance in inter-sentence and inferential scenarios. 134

Mohammadshahi and Henderson (2020, 2021) 135

propose the G2GT model and show how to lever- 136

age the intrinsic graph processing capabilities of 137

the Transformer model by incorporating structural 138

dependencies between input elements as features 139

input to the self-attention weight computations. 140

SSAN (Xu et al., 2021) leverages this idea and 141

considers the structure of entities. It employs a 142

transformation module that creates attentive biases 143

from this structure to regulate the attention flow 144

during the encoding phase. 145

DocuNet (Zhang et al., 2021) reformulates the 146

task as a semantic segmentation problem. It em- 147

ploys a U-shaped segmentation module and an en- 148

coder module to capture global interdependencies 149

and contextual information of entities, respectively. 150

PL-Marker (Ye et al., 2022) introduces a method 151

that takes into account the interplay between spans 152

via a neighbourhood-oriented and subject-oriented 153

packing approach, highlighting the importance of 154

capturing the interrelation among span pairs in re- 155

lation extraction tasks. 156

SAIS (Xiao et al., 2022) explicitly models key 157

information sources such as relevant contexts and 158

entity types. It improves extraction quality and 159

interpretability, while also boosting performance 160

through evidence-based data augmentation and en- 161

semble inference. 162

KD-DocRE (Tan et al., 2022a) proposes a semi- 163

supervised framework with three key components. 164

Firstly, an axial attention module enhances per- 165

formance in handling two-hop relations by captur- 166

ing the interdependence of entity pairs. Secondly, 167
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Transformer Encoder (ATLOP)

Text Graph

Joint Text-Graph Transformer Encoder (GADePo)

Classifier

Classifier

Previous Method

Proposed Method

Figure 2: Comparison between the previous method ATLOP (left) and the proposed method GADePo (right),
illustrating the document in Figure 1 containing two entities (red and blue), each with two mentions. In ATLOP, the
mentions’ encoder outputs are aggregated into entity representations he, and the encoder’s attention weights are used
to identify which outputs to aggregate for entity-pair representations c(s,o). In GADePo, the textual input is extended
to include the graph special tokens <ent> for entity representations and <pent> for entity-pair representations, and
explicit directional graph relations specify their associated mentions. A joint text-graph Transformer model is then
used to encode this declarative pooling specification graph and compute the relevant aggregations.

an adaptive focal loss solution addresses the class168

imbalance issue. Lastly, the framework employs169

knowledge distillation to improve robustness and170

overall effectiveness by bridging the gap between171

human-annotated and distantly supervised data.172

DREEAM (Ma et al., 2023) is a method designed173

to enhance document-level relation extraction by174

addressing memory efficiency and annotation limi-175

tations in evidence retrieval. It employs evidence176

as a supervisory signal to guide attention and in-177

troduces a self-training strategy to learn evidence178

retrieval without requiring evidence annotations.179

SAIS (Xiao et al., 2022), KD-DocRE (Tan et al.,180

2022a), and DREEAM (Ma et al., 2023) have been181

built upon the foundations of ATLOP (Zhou et al.,182

2021). ATLOP introduces two innovative tech-183

niques, adaptive thresholding, and localised con-184

text pooling, to address challenges in multi-label185

and multi-entity problems. Adaptive thresholding186

employs a learnable entities-dependent threshold,187

replacing the global threshold used in previous ap-188

proaches for multi-label classification (Peng et al.,189

2017; Christopoulou et al., 2019; Nan et al., 2020;190

Wang et al., 2020). Localised context pooling lever-191

ages the attention patterns of a pretrained language192

model to identify and extract relevant context cru-193

cial for determining the relation between entities,194

using specific hand-coded pooling functions.195

3 Background 196

The foundational work of ATLOP (Zhou et al., 197

2021) has been the basis of many State-of-the-Art 198

(SotA) models (Xiao et al., 2022; Tan et al., 2022a; 199

Ma et al., 2023). Given the problems with hand- 200

coded pooling functions, discussed in Section 1, 201

we aim to provide a new baseline that can serve 202

as the foundation for future SotA models. For this 203

reason, we evaluate our proposed models by com- 204

paring them to this established baseline. Our goal 205

is to demonstrate that our method not only achieves 206

results comparable to or better than ATLOP, but 207

also offers a novel approach which addresses its 208

limitations. To provide a better understanding of 209

ATLOP and its components, we present a detailed 210

breakdown in the left portion of Figure 2, which 211

we elaborate on in this section. 212

3.1 Problem Formulation 213

The document-level relation extraction task in- 214

volves analysing a document D that contains a 215

set of entities ED={ei}|ED|
i=1 . The main objec- 216

tive is to determine the presence or absence of 217

various relation types between all entity pairs 218

(es, eo)s,o∈ED,s ̸=o, where the subject and object en- 219

tities are denoted as es and eo, respectively. A key 220

aspect to consider is that an entity can appear mul- 221

tiple times in the document, resulting in a cluster of 222
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multiple mentionsMe={mi}|Me|
i=1 for each entity223

e. The set of relations is defined asR∪ ∅, where ∅224

represents the absence of a relation, often referred225

to as "no-relation". Given the clusters of mentions226

Mes andMeo , the task consists of a multi-label227

classification problem where there can be multiple228

relations between entities es and eo.229

3.2 Previous Method: ATLOP230

Text Encoding A special token ∗ is added at231

the start and end of every mention. Tokens232

TD={ti}|TD|
i=1 are encoded via a Pretrained Lan-233

guage Model (PLM) as follows:234

H,A = PLM(TD), (1)235

where H ∈ R|TD|×d and A ∈ R|TD|×|TD| repre-236

sent the token embeddings and the average atten-237

tion weights of all attention heads, respectively,238

extracted from the last layer of the PLM.239

Entity Embedding (EE) For each individual en-240

tity e with mentionsMe={mi}|Me|
i=1 , an entity em-241

bedding he ∈ Rd is computed as follows:242

he = log

|Me|∑
i=1

exp(Hmi), (2)243

where Hmi ∈ Rd is the embedding of the special244

token ∗ at the starting position of mention mi. The245

choice of the logsumexp pooling function is based246

on the research conducted by Jia et al. (2019). Their247

study offers empirical evidence that supports the248

use of this pooling function over others, as it facil-249

itates accumulating weak signals from individual250

mentions, thanks to its smoother characteristics.251

Localised Context Embedding (LCE) ATLOP252

introduces the concept of localised context em-253

bedding to accommodate the variations in rele-254

vant mentions and context for different entity pairs255

(es, eo). Since the attention mechanism in the PLM256

captures the importance of each token within the257

context, it can be used to determine the context258

relevant for both entities. The importance of each259

token can be computed from the cross-token depen-260

dencies matrix A obtained in Equation 1. When261

evaluating entity es, the importance of individual262

tokens is determined by examining the cross-token263

dependencies across all mentions associated with264

es, denoted asMes . Initially, ATLOP collects and265

averages the attention Ami ∈ R|TD| at the special266

token ∗ preceding each mention mi ∈Mes . This267

process results in as ∈ R|TD|, which represents the 268

importance of each token concerning entity es (and 269

analogously ao for eo). Subsequently, the impor- 270

tance of each token for a given entity pair (es, eo), 271

denoted as q(s,o) ∈ R|TD|, is computed using as 272

and ao as follows: 273

q(s,o) =
as ◦ ao

a⊤
s ao

, (3) 274

where ◦ represents the Hadamard product. Con- 275

sequently, q(s,o) represents a distribution that indi- 276

cates the importance of each token for both tokens 277

in (es, eo). Finally, the localised context embed- 278

ding is computed as follows: 279

c(s,o) = H⊤q(s,o), (4) 280

So c(s,o) ∈ Rd corresponds to a weighted average 281

over all token embeddings that are important for 282

both es and eo. 283

Relation Classification and Loss Function The 284

representations hes , heo and c(s,o) are input to a 285

relation classifier, and the full model is fine-tuned 286

to predict the relation labels for (es, eo). The rela- 287

tion classifier and its loss function are detailed in 288

Appendix Subsection A.1. 289

4 Proposed Method: GADePo 290

We propose to avoid the reliance on the EE (i.e., he) 291

and LCE (i.e., c(s,o)) heuristic aggregation func- 292

tions by leveraging Transformers’ attention func- 293

tions to do aggregation. Given the observation 294

of Henderson (2020); Mohammadshahi and Hen- 295

derson (2020, 2021); Henderson et al. (2023) that 296

attention weights and graph relations are function- 297

ally equivalent, we introduce the inductive biases 298

of EE and LCE directly into the model’s input as 299

graph relations. 300

Our proposed graph-assisted declarative pooling 301

(GADePo) method replaces the hand-coded aggre- 302

gation functions EE and LCE with a declarative 303

graph specification. By using the intrinsic graph 304

processing capabilities of the Transformer model, 305

the specified graph serves as an explicit high-level 306

directive for the information aggregation process of 307

the Transformer. By inputting the graph relations 308

to the Transformer’s self-attention layers, GADePo 309

enables the aggregation to be steered by domain- 310

specific knowledge or desired outcomes, while still 311

allowing it to be learned by the Transformer, open- 312

ing up the possibility for a more tailored and cus- 313

tomised yet data-driven relation extraction. 314
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Our GADePo model is illustrated in the right por-315

tion of Figure 2. We address both EE and LCE316

with the introduction of two special tokens, <ent>317

(i.e., entity) and <pent> (i.e., pair entity), and two318

explicit graph relations of types <ent>←→ ∗ and319

<pent> ←→ ∗ in both directions, where ∗ repre-320

sents the special token at the starting position of a321

specific mention. The set of relations is specified322

as cij ∈ C which each identify the relation label323

from i to j. Each of these relation labels is asso-324

ciated with an embedding vector of dimension d,325

as are the special token inputs <ent> and <pent>.326

These two special tokens are added to the PLM’s327

vocabulary of input tokens, while relation label em-328

beddings are input to the self-attention functions329

for every pair of related tokens. These new em-330

beddings represent learnable parameters that are331

trained during the PLM fine-tuning on the down-332

stream tasks. As reported in Appendix Subsection333

A.2, GADePo adds a negligible number of extra334

parameters, namely only the special token inputs335

and the graph directional relation inputs.336

Special Token <ent> To tackle the EE pooling337

function, we add to the input tokens TD as many338

<ent> special tokens as entities in the document.339

This way each entity e has a corresponding en-340

tity token <ent> in the input. We connect each341

<ent> token with its corresponding cluster of men-342

tions Me={mi}|Me|
i=1 , and vice-versa. The two343

graph relations we use are thus <ent> −→ ∗ and344

∗ −→ <ent>, where ∗ represents the special to-345

ken at the starting position of mention mi. Each346

<ent> token receives the same <ent> embedding,347

with no positional encoding, since each one collec-348

tively represents a set of mentions from different349

positions in the input graph. These identical inputs350

are only disambiguated through the connections to351

and from mentions expressed as the <ent> −→ ∗352

and ∗ −→ <ent> graph relations. These relations353

tell the self-attention mechanism to use the <ent>354

token to aggregate information from the associated355

mentions, and thus the <ent> tokens have a direct356

correspondence to the computed he in Equation 2.357

Special Token <pent> ATLOP performs infor-358

mation filtering by calculating via Equation 4 a359

localised context embedding (LCE) c(s,o) that is360

dependent on the cross-token attention matrix A361

output by the PLM. The intuition behind it is that362

the dependencies between different tokens are en-363

coded as attention weights. We propose a straight-364

forward adjustment of the input graph used for the 365

EE pooling to effectively model and capture these 366

dependencies. To address the LCE pooling func- 367

tion, we add to the input tokens TD as many <pent> 368

special tokens as the number of all possible pairs of 369

entities. Each special token <pent> thus refers to 370

a pair of entities (es, eo). We connect each <pent> 371

token with each mention in the two clusters of men- 372

tionsMes={mi}|Mes |
i=1 andMeo={mi}|Meo |

i=1 and 373

vice-versa. Since the attention weights used in LCE 374

are computed from these mention embeddings, we 375

expect that they are sufficient for the Transformer 376

to learn to find the relevant contexts. The two 377

graph relations we use are thus <pent> −→ ∗ 378

and ∗ −→ <pent>. Analogously to the <ent> 379

tokens, the <pent> tokens all receive the same 380

<pent> embedding, with no positional embeddings, 381

and thus are only disambiguated by their different 382

<pent> −→ ∗ and ∗ −→ <pent> graph relations. 383

These relations tell the <pent> token to pay atten- 384

tion to its associated mentions, which in turn allows 385

it to find the relevant context shared by these men- 386

tions. Thus, each <pent> token can be seen as 387

having a direct correspondence to the computed 388

c(s,o) in Equation 4. 389

All equations relative to the relation classifica- 390

tion and the corresponding loss function reported 391

in Appendix Subsection A.1 remain valid as we 392

merely substitute the hand-coded computations of 393

he and c(s,o) with the embeddings of <ent> and 394

<pent>, respectively. 395

Text-Graph Encoding We follow Mohammad- 396

shahi and Henderson (2020, 2021); Henderson et al. 397

(2023) in leveraging the intrinsic graph processing 398

capabilities of the Transformer model by incorpo- 399

rating graph relations as relation embeddings input 400

to the self-attention function. For every pair of 401

input tokens ij, the pre-softmax attention weight 402

eij ∈ R is computed from both the respective to- 403

ken embeddings xi,xj ∈ Rd, and an embeddings 404

of the graph relation cij between the i-th and j-th 405

tokens. However, we change the attention weight 406

computation to: 407

eij =
xiWQ diag(LN(cijWC)) (xjWK)⊤√

d
,

(5) 408

where WQ,WK ∈ Rd×d represent the query and 409

key matrices, respectively. cij ∈ {0, 1}|C| rep- 410

resents a 0/1 encoded label of the graph rela- 411

tion between the i-th and j-th input elements, and 412

WC ∈ R|C|×d represents the relations’ embedding 413
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Re-DocRED HacRED
Model Aggregation Ign F1 F1 P R F1

ATLOP⋆ he 75.27 75.92 76.27 76.83 76.55
GADePo (ours) <ent> 75.55 76.38 74.13 79.46 76.70
ATLOP•,⋄ he ; c(s,o) 76.82 77.56 77.89 76.55 77.21

ATLOP⋆ he ; c(s,o) 77.62 78.38 76.36 78.86 77.59
GADePo (ours) <ent> ; <pent> 77.70 78.40 78.27 79.03 78.65

Table 1: Comparative analysis between the previous method ATLOP and the proposed method GADePo on the test
set. ATLOP⋆ indicates our reimplementation of the previous method. For Re-DocRED and HacRED we report in
percentage the results obtained by Tan et al. (2022b) (ATLOP•) and Cheng et al. (2021) (ATLOP⋄), respectively.
The results are reported in terms of F1 scores, Precision (P ), and Recall (R), following the same metrics reported in
prior research specific to each dataset. Ign F1 denotes the F1 score that excludes relational facts shared between the
training and evaluation sets. We also comply with the standard practice where test scores are determined based on
the best checkpoint from five training runs with distinct random seeds.

matrix, so cijWC is the embedding of the rela-414

tion between i and j. Finally, LN stands for the415

LayerNorm operation and diag returns a diago-416

nal matrix.417

Compared to the standard attention function,418

where eij = xiWQ(xjWK)⊤/
√
d, the relation419

embedding determines a weighting of the different420

dimensions. This is a novel way to condition on421

the relation embedding compared to the original422

formulation, which only models query-relation in-423

teractions (Mohammadshahi and Henderson, 2020).424

This change is motivated by our task requiring425

a more flexible formulation which models query-426

relation-key interactions via a multiplicative mech-427

anism, without requiring a full d× d matrix of bi-428

linear parameters. This way, a key will be relevant429

to a query only when both agree on the relation.430

In preliminary experiments, we explored various431

methods for biasing attention and found that the432

formulation presented in Equation 5 produced the433

best results.434

5 Experiments435

5.1 Datasets and Models436

Re-DocRED (Tan et al., 2022b) is a revisited437

version of the DocRED (Yao et al., 2019) dataset.438

It is built from English Wikipedia and Wikidata439

and contains both distantly-supervised and human-440

annotated documents with named entities, corefer-441

ence data, and intra- and inter-sentence relations,442

supported by evidence. It requires analysing mul-443

tiple sentences to identify entities, establish their444

relationships, and integrate information from the445

entire document. We comply with the model used446

by the authors and employ the RoBERTaLARGE447

(Zhuang et al., 2021) model in our experiments.448

HacRED (Cheng et al., 2021) is a large-scale, 449

high-quality Chinese document-level relation ex- 450

traction dataset, with a special focus on practical 451

hard cases. As the authors did not provide specific 452

information about the model used in their study, 453

we conducted our experiments using the Chinese 454

BERTBASE with whole word masking model (Cui 455

et al., 2021). 456

Datasets statistics Re-DocRED and HacRED 457

exhibit notable distinctions in their statistics, as 458

summarised in Table 2. Re-DocRED comprises 459

a larger number of facts, entities per document, 460

and relations compared to HacRED. This indicates 461

a potentially richer and more extensive dataset in 462

terms of factual information and relationship types. 463

However, HacRED contains more documents and 464

may present a broader range of scenarios for rela- 465

tion extraction, including more challenging cases, 466

as it has been specifically created with a focus on 467

practical hard cases. 468

Statistic Re-DocRED HacRED
Facts 120,664 65,225
Relations 96 26
Documents 4,053 9,231
Average Entities 19.4 10.8

Table 2: Re-DocRED and HacRED human-annotated
datasets statistics.

5.2 Results and Discussion 469

We follow the standard practice from prior research 470

and report the results of our experiments on the 471

Re-DocRED and HacRED datasets in Table 1 and 472

Figure 4. For all datasets and models, we provide 473

our reimplementation of the ATLOP baseline (indi- 474

cated as ATLOP⋆), which achieves or surpasses pre- 475

6



00 *
01 B

reak
02 out
03 *
04 is
05 an
06 arc
07 ade
08 gam

e
09 developed
10 and
11 published
12 by
13 *
14 A

t
15 ari
16 ,
17 Inc
18 .
19 *
20 ,
21 released
22 on
23 *
24 M

ay
25 13
26 ,
27 1976
28 *
29 .
30 It
31 w

as
32 concept
33 ual
34 ized
35 by
36 *
37 N
38 olan
39 B

ush
40 nell
41 *
42 and
43 *
44 Steve
45 B
46 rist
47 ow
48 *
49 ,
50 inf
51 lu
52 enced
53 by
54 the
55 *
56 1972
57 *
58 *
59 A

t
60 ari
61 *
62 arc
63 ade
64 gam

e
65 *
66 P
67 ong
68 *
69 ,
70 and
71 built
72 by
73 *
74 Steve
75 W
76 oz
77 ni
78 ak
79 *
80 a
81 ided
82 by
83 *
84 Steve
85 J
86 obs
87 *
88 .
89 *
90 B

reak
91 out
92 *

<ent> 08
<ent> 07
<ent> 06
<ent> 05
<ent> 04
<ent> 03
<ent> 02
<ent> 01
<ent> 00

0

0.05

0.1

Keys

Q
ue

rie
s

Figure 3: Attention weights A from GADePo via Equation 1 for the document in Figure 1. For clarity, only a subset
of <ent> and document tokens are shown on the y-axis (queries) and x-axis (keys), respectively.

viously reported results for ATLOP, and compare476

the proposed GADePo model against this model.477

We evaluate all datasets using the F1 metric. For478

Re-DocRED, Ign F1 (or Ignored F1) is also re-479

ported, and refers to the F1 score that excludes480

relational facts that are shared between the training481

and development/test sets. This is done to avoid482

potential biases in the evaluation metrics due to483

overlap in content between the sets, which might484

not reflect the model’s ability to generalise to truly485

unseen data. For HacRED, we adhere to the for-486

mat introduced by Cheng et al. (2021) and report487

also the Precision (P ) and Recall (R) metrics. We488

comply with previous research and report the test489

score achieved by the best checkpoint on the de-490

velopment set. In Appendix Subsection A.4, we491

additionally present the mean and standard devia-492

tion on the development set, calculated from five493

training runs with distinct random seeds. We also494

provide in Appendix Subsection A.4, the same set495

of experiments conducted on the original DocRED496

dataset. Training details and hyperparameters are497

outlined in Appendix Subsection A.3.498

Re-DocRED Results We evaluate our proposed499

GADePo method against the previous ATLOP500

method in two stages, first comparing the use of501

<ent> tokens against the use of EE pooling (he),502

and then comparing our full model against the full503

ATLOP model, including <pent> tokens and LCE504

pooling (c(s,o)), respectively.505

Table 1 highlights the effectiveness of our pro-506

posed method. When comparing he with <ent>,507

we observe a noticeable improvement in both Ign508

F1 and F1 scores, achieving 75.55% and 76.38%509

respectively, compared to 75.27% and 75.92% at-510

tained by ATLOP⋆. This demonstrates the practical511

utility of employing the special token <ent> for in-512

formation aggregation. This is illustrated in the at-513

tention weights heatmap in Figure 3. Incorporating514

c(s,o) and <pent> into the comparison, GADePo515

maintains performance parity with the significantly516

enhanced ATLOP⋆, which outperformed ATLOP• 517

from Tan et al. (2022b). The latter improvement 518

suggests that a more refined hyperparameter search 519

can lead to performance gains, as evidenced by 520

the increase in F1 score from 77.56% to 78.38%. 521

GADePo achieves an F1 score of 78.40%, affirm- 522

ing its competitive edge and the effectiveness of 523

employing <pent> for aggregation. 524

Model Aggregation Ign F1 F1

ATLOP⋆ he 76.39 76.97
GADePo (ours) <ent> 76.99 77.79
ATLOP⋆ he ; c(s,o) 77.49 78.09
GADePo (ours) <ent> ; <pent> 77.50 78.15

Table 3: Re-DocRED results on the test set following
prior finetuning on the distantly supervised dataset.

Table 3 illustrates the results obtained with prior 525

finetuning on the distantly supervised dataset, 526

which contains approximately 100K documents 527

(Yao et al., 2019). Interestingly, distant supervi- 528

sion appears to have a slightly negative impact on 529

the results of both methods when incorporating 530

c(s,o) or <pent>. However, it proves to be highly 531

beneficial when utilising solely he or <ent> for 532

aggregation. This suggests that although distant 533

supervision might introduce noise into the training 534

process, it can also provide valuable information 535

that improves model generalisation, particularly 536

when leveraging simpler feature representations 537

like he and <ent>, possibly due to their robustness 538

in capturing essential information amidst noise. 539

HacRED Results We observe a similar pattern 540

to Re-DocRED, with ATLOP⋆ displaying a slight 541

performance advantage over ATLOP⋄ from Cheng 542

et al. (2021) (Table 1). On this dataset, GADePo 543

shows a significantly improved performance, pri- 544

marily driven by a substantial increase in Recall 545

(R), indicating that the GADePo model is more 546

effective at identifying relevant instances. As al- 547

ready reported for the Re-DocRED dataset, the 548

performance boost after the inclusion of c(s,o) and 549
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Figure 4: Performance of ATLOP⋆ (he ; c(s,o)) and GADePo (<ent> ; <pent>) on the development set under
varying data availability conditions on Re-DocRED (4a) and HacRED (4b). The x-axis represents the percentage
and number of documents from the training dataset, while the y-axis displays the F1 score in percentage. Each point
on the graph represents the mean value, while error bars indicate the standard deviation derived from five distinct
training runs with separate random seeds.

<pent> into ATLOP⋆ and GADePo, respectively,550

highlight the significant contributions of these fea-551

tures. GADePo outperforms ATLOP⋆ with an F1552

score of 78.65% compared to 77.59%. This larger553

improvement on HacRED suggests that GADePo554

is better at handling challenging cases, which is not555

surprising given its greater flexibility over the fixed556

pooling functions of ATLOP.557

Data Ablation To evaluate the models’ sensitiv-558

ity to dataset size, the performance evaluation de-559

picted in Figure 4 compares ATLOP⋆ (he ; c(s,o))560

and GADePo (<ent> ; <pent>) on the develop-561

ment set, considering different levels of training562

data availability on the Re-DocRED and HacRED563

datasets. Accuracies generally converge as the564

dataset sizes increase, but on the challenging cases565

of HacRED, GADePo maintains a substantial ad-566

vantage across the full range. On Re-DocRED,567

GADePo catches up with and slightly outperforms568

ATLOP⋆ as data size increases. This lower per-569

formance on smaller datasets is presumably be-570

cause GADePo must learn how to exploit the graph571

relations to the special tokens <ent> and <pent>572

and pool information through them, whereas for573

ATLOP this pooling is hand-coded. On the Re-574

DocRED dataset, ATLOP⋆ appears to have rela-575

tively consistent variance, while GADePo exhibits576

higher variance in the smaller training sets, while577

on the HacRED dataset, GADePo is significantly578

more stable for smaller datasets.579

The data ablation analysis shows that the per-580

formance of hand-coded pooling functions can be581

dataset-specific, which restricts their adaptability.582

In contrast, GADePo consistently outperforms its583

hand-coded counterparts on larger datasets, and 584

matches them on all but some smaller datasets, 585

presumably due to its flexibility. This pattern sug- 586

gests that GADePo has a greater potential for op- 587

timisation, particularly on larger datasets. This 588

is supported by GADePo’s better performance on 589

HacRED, which is both larger and designed to be 590

more challenging than Re-DocRED. 591

6 Conclusion 592

In this paper we proposed a novel approach to 593

document-level relation extraction, challenging the 594

conventional reliance on hand-coded pooling func- 595

tions for information aggregation. Our method 596

leverages the power of Transformer models by 597

incorporating explicit graph relations as instruc- 598

tions for information aggregation. By combining 599

graph processing with text-based encoding, we 600

introduced the graph-assisted declarative pooling 601

(GADePo) specification, which allows for more 602

flexible and customisable specification of pooling 603

strategies which are still learned from data. 604

We conducted evaluations using diverse datasets 605

and models commonly employed in document- 606

level relation extraction tasks. The results of our ex- 607

periments demonstrated that our approach achieves 608

promising performance that is comparable to or bet- 609

ter than that of hand-coded pooling functions. This 610

suggests that our method can serve as a viable basis 611

for other relation extraction methods, providing a 612

more adaptable and tailored approach. In partic- 613

ular, recent methods have improved performance 614

by exploiting information about evidence, which 615

can naturally be incorporated in our graph-based 616

approach. 617
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Limitations618

While the proposed GADePo model offers a619

promising and innovative approach to relation ex-620

traction, there are issues which the current study621

does not address. According to the data in Ap-622

pendix Table 2, the average number of entities per623

document across datasets is approximately 15. This624

means that, on average, there will be an additional625

15 <ent> tokens and 105 <pent> tokens. Given626

that the maximum allowable input length for the627

models is 512 tokens, the inclusion of these extra628

tokens results in roughly a 3% and 20% increase629

in the overall input length for <ent> and <pent>,630

respectively. It’s evident that the majority of the631

increase in input length is due to the quadratic num-632

ber of <pent> special tokens, but we believe that633

an appropriate pruning strategy could easily reduce634

this number to linear in the number of entities with-635

out degrading accuracy. One such pruning strategy636

could involve an <ent>-only model with a binary637

classifier which is trained to predict pairs of related638

entities. This model could then be used to prune639

the set of candidate entity pairs for the final relation640

classification, with <pent> tokens being instanti-641

ated only for these candidate pairs. We have chosen642

to leave this approach as a potential avenue for fu-643

ture work, opting instead to focus on demonstrating644

the promise of the current simpler formulation.645

Ethics Statement646

We do not anticipate any ethical concerns related to647

our work, as it primarily presents an alternative ap-648

proach to a previously proposed method. Our main649

contribution lies in introducing a novel method-650

ology for relation extraction. In our experiments,651

we use the same datasets and pretrained models as652

previous research, all of which are publicly avail-653

able. However, it is important to acknowledge that654

these datasets and models may still require further655

examination for potential fairness issues and the656

knowledge they encapsulate.657
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A Appendix 933

A.1 ATLOP: Relation Classification and Loss 934

Function 935

Relation Classification To predict the relation 936

between the subject entity es and object entity eo, 937

ATLOP first generates context-aware subject and 938

object representations as follows: 939

zs = tanh(Ws[hes ; c
(s,o)] + bs) (6) 940

941
zo = tanh(Wo[heo ; c

(s,o)] + bo), (7) 942

where zs, zo ∈ Rd, [·; ·] represents the concatena- 943

tion of two vectors, and Ws,Wo ∈ Rd×2d together 944
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with bs, bo ∈ Rd are trainable parameters. Then,945

the entity pair representation is computed as:946

x(s,o) = zs ⊗ zo, (8)947

where x(s,o) ∈ Rd2 and⊗ stands for the vectorised948

Kronecker product. Finally, relation scores are949

computed as:950

y(s,o) = Wrx
(s,o) + br, (9)951

where y(s,o) ∈ R|R|, with Wr ∈ R|R|×d2 and952

br ∈ R|R| representing learnable parameters. The953

probability of relation r ∈ R between the subject954

and object entities is computed as follows:955

P (r|s, o) = σ(y(s,o)), (10)956

where σ is the sigmoid function. To reduce the957

number of parameters in the classifier, a grouped958

function is used, which splits the embedding di-959

mensions into k equal-sized groups and applies the960

function within the groups as follows:961

zs = [z1
s ; . . . ; z

k
s ] (11)962

963
zo = [z1

o ; . . . ; z
k
o ] (12)964

965

x(s,o) = [x(s,o)1 ; . . . ;x(s,o)k ] (13)966
967

y(s,o) =
k∑

i=1

W i
rx

(s,o)i + br, (14)968

where zi
s, z

i
o ∈ Rd/k, x(s,o)i ∈ Rd2/k, and W i

r ∈969

R|R|×d2/k. This way, the number of parameters970

can be reduced from d2 to d2/k.971

Loss Function ATLOP introduces the adaptive972

thresholding loss concept. This approach involves973

training a model to learn a hypothetical threshold974

class TH , which dynamically adjusts for each rela-975

tion class r ∈ R. During training, for each entity976

pair (es, eo), the loss enforces the model to gener-977

ate scores above TH for positive relation classes978

RP and scores below TH for negative relation979

classesRN . The loss is computed as follows:980

L =−
∑
s ̸=o

∑
r∈RP

exp(y
(s,o)
r )∑

r′∈RP∪{TH} exp(y
(s,o)
r′ )

−
exp(y

(s,o)
TH )∑

r′∈RN∪{TH} exp(y
(s,o)
r′ )

(15)981

A.2 GADePo’s Extra Parameters 982

GADePo introduces few extra parameters to the 983

PLM. The amount of parameters is reported in Ta- 984

ble 4. 985

Parameter Model
RoBERTaLARGE BERTBASE

<ent> 1024 768
<pent> 1024 768
<ent> −→ ∗ 24 × 1024 12 × 768
∗ −→ <ent> 24 × 1024 12 × 768
<pent> −→ ∗ 24 × 1024 12 × 768
∗ −→ <pent> 24 × 1024 12 × 768
Total 100,352 38,400

Table 4: GADePo’s extra parameters count.

A.3 Training Details 986

We generally comply with the hyperparameters of 987

ATLOP and set the output dimension in Equation 988

6 and Equation 7 to 768. We also set the block size 989

in Equation 11 and Equation 12 to 64, i.e., k = 12. 990

In all our experiments we perform early stopping 991

on the development set based on the Ign F1 + F1 992

score for DocRED and Re-DocRED, and F1 score 993

for HacRED. The five different seeds we use are 994

{73, 21, 37, 7, 3}. 995

We use RAdam (Liu et al., 2020) as our opti- 996

mizer. On the RoBERTaLARGE based models we 997

train for 8 epochs and set the learning rates to 998

3e−5 and 1e−4 for the PLM parameters and the 999

new additional parameters, respectively. On the 1000

BERTBASE based models we train for 10 epochs 1001

and set the learning rates to 1e−5 and 1e−4 for the 1002

PLM parameters and the new additional parame- 1003

ters, respectively. We use a cosine learning rate 1004

decay throughout the training process. 1005

In all our experiments the batch size is set to 4 1006

for ATLOP and 2 for GADePo, with gradient accu- 1007

mulation set to 1 and 2, for ATLOP and GADePo, 1008

respectively. We clip the gradients to a max norm 1009

of 1.0. All models are trained with mixed precision. 1010

We run our experiments on two types of 1011

GPUs, namely the NVIDIA V100 32GB for the 1012

RoBERTaLARGE based models and NVIDIA RTX 1013

3090 24GB for the BERTBASE based models, re- 1014

spectively. 1015

We use PyTorch (Paszke et al., 2019), Light- 1016

ning (Falcon and The PyTorch Lightning team, 1017

2019), and Hugging Face’s Transformers (Wolf 1018

et al., 2020) libraries to develop our models. 1019
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Dev Test
Model Aggregation Ign F1 F1 Ign F1 F1

ATLOP⋆ he 75.46± 0.16 76.16± 0.16 75.27 75.92
GADePo (ours) <ent> 75.46± 0.20 76.31± 0.24 75.55 76.38
ATLOP• he ; c(s,o) 76.79 77.46 76.82 77.56

ATLOP⋆ he ; c(s,o) 77.75± 0.08 78.41± 0.10 77.62 78.38
GADePo (ours) <ent> ; <pent> 77.48± 0.12 78.19± 0.14 77.70 78.40

Table 5: Results in percentage for the development and test sets of Re-DocRED. We report the results obtained by
Tan et al. (2022b) (ATLOP•) on Re-DocRED. ATLOP⋆ indicates our reimplementation of the previous method. We
report the mean and standard deviation of Ign F1 and F1 on the development set, calculated from five training runs
with distinct random seeds. We report the test score achieved by the best checkpoint on the development set. Ign F1

refers to the F1 score that excludes relational facts shared between the training and development/test sets.

Dev Test
Model Aggregation P R F1 P R F1

ATLOP⋆ he 77.37± 0.22 77.40± 0.31 77.39± 0.13 76.27 76.83 76.55
GADePo (ours) <ent> 72.96± 0.96 79.22± 1.20 75.96± 0.99 74.13 79.46 76.70
ATLOP⋄ he ; c(s,o) − − − 77.89 76.55 77.21

ATLOP⋆ he ; c(s,o) 77.18± 0.14 77.98± 0.66 77.58± 0.36 76.36 78.86 77.59
GADePo (ours) <ent> ; <pent> 75.98± 0.94 80.54± 0.72 78.19± 0.19 78.27 79.03 78.65

Table 6: Results in percentage for the development and test sets of HacRED. We report the results obtained by
Cheng et al. (2021) (ATLOP⋄) on HacRED. ATLOP⋆ indicates our reimplementation of the previous method. We
report the mean and standard deviation of Precision (P ), Recall (R) and F1 on the development set, calculated
from five training runs with distinct random seeds. We report the test score achieved by the best checkpoint on the
development set.

Dev Test
Model Aggregation Ign F1 F1 Ign F1 F1

ATLOP⋆ he 59.66± 0.20 61.60± 0.21 59.22 61.37
GADePo (ours) <ent> 59.04± 0.52 61.18± 0.46 59.30 61.63
ATLOP◦ he ; c(s,o) 61.32± 0.14 63.18± 0.19 61.39 63.40

ATLOP⋆ he ; c(s,o) 61.41± 0.26 63.38± 0.28 61.62 63.72
GADePo (ours) <ent> ; <pent> 61.19± 0.55 63.26± 0.48 61.52 63.75

Table 7: Results in percentage for the development and test sets of DocRED. We report the results obtained by Zhou
et al. (2021) (ATLOP◦) on DocRED. ATLOP⋆ indicates our reimplementation of the previous method. We report
the mean and standard deviation of Ign F1 and F1 on the development set, calculated from five training runs with
distinct random seeds. We report the test score achieved by the best checkpoint on the development set. Ign F1

refers to the F1 score that excludes relational facts shared between the training and development/test sets.
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A.4 Additional Results1020

Re-DocRED and HacRED Table 5 and Table1021

6 present additional results for Re-DocRED and1022

HacRED, respectively. In addition to the results1023

outlined in Section 5, these tables include the mean1024

and standard deviation on the development set, cal-1025

culated from five training runs with distinct random1026

seeds, as reported in Appendix Subsection A.3.1027

DocRED results The DocRED (Yao et al., 2019)1028

dataset consists of 56, 354 facts, 96 relations,1029

5, 053 documents, and 26.2 average number of en-1030

tities per document. In line with the approach taken1031

for Re-DocRED and HacRED, Table 7 and Figure1032

5 illustrate the results for DocRED.1033
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Figure 5: Performance of ATLOP⋆ (he ; c(s,o)) and
GADePo (<ent> ; <pent>) on the development set un-
der varying data availability conditions on DocRED.
The x-axis represents the percentage and number of
documents from the training dataset, while the y-axis
displays the F1 score in percentage. Each point on the
graph represents the mean value, while error bars in-
dicate the standard deviation derived from five distinct
training runs with separate random seeds.
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