
TimeStacker: A Novel Framework with Multilevel Observation for Capturing
Nonstationary Patterns in Time Series Forecasting

Qinglong Liu 1 Cong Xu 1 Wenhao Jiang 1 Kaixuan Wang 1 Lin Ma 1 Haifeng Li 1

Abstract
Real-world time series inherently exhibit signif-
icant non-stationarity, posing substantial chal-
lenges for forecasting. To address this issue,
this paper proposes a novel prediction frame-
work, TimeStacker, designed to overcome the
limitations of existing models in capturing the
characteristics of non-stationary signals. By em-
ploying a unique stacking mechanism, TimeS-
tacker effectively captures global signal features
while thoroughly exploring local details. Further-
more, the framework integrates a frequency-based
self-attention module, significantly enhancing its
feature modeling capabilities. Experimental re-
sults demonstrate that TimeStacker achieves out-
standing performance across multiple real-world
datasets, including those from the energy, finance,
and weather domains. It not only delivers supe-
rior predictive accuracy but also exhibits remark-
able advantages with fewer parameters and higher
computational efficiency.

1. Introduction
Time series forecasting, which involves inferring future
trends and patterns from historical observations, is widely
applied in diverse domains, including weather forecast-
ing(Wu et al., 2023), energy scheduling(Chou & Tran,
2018), traffic management(Zhou et al., 2021), medical anal-
ysis(Čepulionis & Lukoševičiūtė, 2016), and financial eco-
nomics(Cheng et al., 2022). However, the complexity of
real-world systems often results in non-stationary time se-
ries(Wang et al., 2024b), which complicates accurate pre-
diction using traditional methods and presents substantial
challenges for time series forecasting.

With the rapid advancement of deep learning, numerous neu-

1Faculty of Computing, Harbin Institute of Technology, Harbin,
China, Harbin, China. Correspondence to: Haifeng Li <li-
haifeng@hit.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ral network models have been developed, exhibiting remark-
able performance in time series forecasting. For example,
MLP-based approaches such as DLinear(Zeng et al., 2023),
SOFTS(Han et al., 2024a), SparseTSF(Lin et al., 2024) and
TimeMixer(Wang et al., 2024a), and Transformer-based
architectures include Crossformer(Zhang & Yan, 2023),
PatchTST(Nie et al., 2022), SAMformer(Ilbert et al.), and
iTransformer(Liu et al., 2023). These models have achieved
state-of-the-art performance in time series forecasting due to
their advanced architectural designs and innovative method-
ologies.

Figure 1. Under observations with different window sizes, the fre-
quency of the same non-stationary signal exhibits varying pat-
terns. The blue signal represents the original non-stationary signal,
while the red components illustrate the frequency patterns obtained
through Short-Time Fourier Transform (STFT) with window sizes
of L, 2/L, and 4/L, respectively.

Despite the substantial advancements made by these meth-
ods in time series forecasting, the majority of studies pri-
marily explore temporal correlations, often overlooking
the frequency-domain characteristics of non-stationary sig-
nals. Based on stochastic process theory(Cox, 2017), the
frequency of non-stationary signals fluctuates over time,
and frequency-domain representations are more effective
than time-domain signals in capturing signal characteristics
within specific time intervals. Thus, analyzing the frequency
variation patterns of non-stationary signals is essential for
time series forecasting.

1

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

However, the uncertainty principle of time-frequency anal-
ysis(Cohen, 1995) precludes the precise observation of a
signal’s frequency at a specific moment. To overcome this
limitation, the short-time Fourier transform (STFT) is com-
monly employed to segment the original signal (i.e., divide
it into patches) for frequency analysis within specific time
intervals. The selection of patch size significantly influences
the ability to capture frequency variation patterns: larger
patches are more effective in capturing global signal fea-
tures, whereas smaller patches better reveal local details. As
depicted in Figure 1, signal frequencies corresponding to
different patch sizes are visualized. Hence, identifying an
optimal patch size for effectively extracting and represent-
ing signal patterns remains a key challenge in revealing the
intrinsic regularities of sequences.

To overcome these challenges, this paper introduces a novel
framework, TimeStacker. Rather than selecting a single
optimal patch size, patches of varying sizes are sequentially
stacked and aggregated based on frequency. Through itera-
tive stacking, the most expressive patterns within the signal
are progressively emphasized, enhancing the representation
of the overall time series. Specifically, patterns within the
signal are aggregated layer by layer in descending order of
patch size, allowing the model to capture global features
while retaining local details.

To further optimize the stacking process, a frequency-based
enhanced self-attention module is designed to aggregate
patches of the same size. Within this module, signal similar-
ity is computed in the frequency domain, whereas aggrega-
tion operations are conducted in the time domain. This ap-
proach effectively mitigates the detrimental effects of inher-
ent Fourier transform errors and spectral leakage in signal
modeling. Experimental results indicate that TimeStacker
attains state-of-the-art performance across most forecasting
tasks while maintaining fewer parameters and significantly
greater efficiency than other models.

The main contributions of this paper are summarized as
follows:

i) A novel framework, TimeStacker, is proposed to compre-
hensively capture the variation patterns of frequency scales.
By stacking patches sequentially from large to small, it
facilitates a simple yet effective approach to time series
forecasting.

ii) A novel frequency-based self-attention module is de-
signed to more effectively compute the similarity between
patches based on their frequencies. Additionally, this mod-
ule mitigates the detrimental effects of inherent Fourier
transform errors and spectral leakage in signal modeling.

iii) Experimentally, TimeStacker demonstrates state-of-the-
art predictive accuracy across most real-world datasets while
utilizing fewer parameters and exhibiting higher computa-

tional efficiency than other benchmark models. This frame-
work offers a viable solution for time series forecasting of
non-stationary signals.

2. Related Work
Time series forecasting models have undergone substantial
evolution over time. Early approaches to time series fore-
casting were primarily based on statistical theories, which
typically assumed that time series exhibit stationarity or
linear relationships(Box et al., 2015). These methods pre-
dicted trends, seasonality, and stochastic variations by mod-
eling these components. Representative models include
AutoRegressive Integrated Moving Average (ARIMA)(Lee
& Tong, 2011), Exponential Smoothing (ETS)(De Livera
et al., 2011), and Seasonal AutoRegressive Integrated Mov-
ing Average (SARIMA)(Dubey et al., 2021).

The emergence of deep learning facilitated significant ad-
vancements in time series forecasting, particularly with the
introduction of Transformer models(Li et al., 2019). In
contrast to traditional approaches, deep learning models
are capable of automatically extracting features and ef-
fectively capturing complex nonlinear relationships. For
example, Recurrent Neural Networks (RNNs)(Sagheer &
Kotb, 2019) capture temporal dependencies in time series
through their recursive structure, making them particularly
effective for modeling short-term dependencies. Convolu-
tional Neural Networks (CNNs)(Sezer et al., 2020) utilize
one-dimensional convolutional operations to extract local
features, effectively capturing short-term patterns and regu-
larities in sequences.

The introduction of the Transformer architecture represented
a fundamental paradigm shift in time series forecasting. For
instance, PatchTST partitioned time series into independent
patches embedded in high-dimensional spaces while pre-
serving channel independence, enabling all series to share
weights and establishing a foundation for subsequent re-
search. Crossformer improved multivariate forecasting ca-
pabilities by capturing cross-dimensional patch dependen-
cies in multivariate time series. iTransformer revisited the
hierarchical design of traditional Transformer architectures,
utilizing self-attention mechanisms to model inter-variable
relationships and employing feedforward networks to cap-
ture nonlinear variable transformations.

Beyond Transformer-based architectures, recent years have
seen substantial advancements in MLP-based models. DLin-
ear highlighted the effectiveness of linear layers in time
series forecasting, particularly excelling in long-sequence
modeling. SparseTSF simplifies the forecasting task by
disentangling the periodic and trend components of time se-
ries data through cross-period sparse prediction techniques.
TimeMixer introduced a fully MLP-based model designed

2

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

Figure 2. Overall Architecture of TimeStacker. The overall architecture comprises multiple Stacker Blocks. Each Stacker Block consists
of a Smooth Layer and an Inter-Patch Frequency-based Attention Module, responsible for smoothing the time series and aggregating
patches, respectively. Within each block, patches of the same size are aggregated based on their frequency characteristics. Subsequent
blocks sequentially process patches of decreasing sizes.

to explore multiscale temporal information in time series
across various temporal domains.

3. Method
This section begins with the task definition, followed by
an overview of the preliminaries, the overall structure of
TimeStacker, implementation details, theoretical analysis,
and complexity analysis. The overall architecture of the
proposed model is depicted in Figure 2.

3.1. Problem Definition

The time series forecasting problem is formulated as fol-
lows: Given a time series Xt−T+1:t = {xt−T+1, . . . , xt} ∈
RD×T , where t represents a specific timestamp, Dis the
number of variables, and xt ∈ RD denotes the observed
value at time t, the objective is to predict the future values
X̂t+1:t+τ = {x̂t+1, . . . , x̂t+τ} ∈ RD×τ , where τ repre-
sents the prediction horizon.

3.2. Preliminaries

Normalization. Time series datasets often exhibit vary-
ing numerical ranges, which can result in unequal model
attention to different data and lead to biased parameter up-
dates. Revin(Kim et al., 2021) demonstrated that appropriate
normalization significantly enhances time series forecast-
ing performance and plays a crucial role in model training.
Therefore, this model employs the same normalization and
denormalization approach as Revin, utilizing mean and vari-
ance for standardization. The formulas are as follows:

X
′
= normal(X) =

X − µ

σ
(1)

X̂ = denormal
(
X̂

′
)
= X̂

′
σ + µ (2)

Here, X
′

denotes the normalized time series, µ represents
the mean of the input time series, and σ represents the
standard deviation. This normalization process ensures that

the data have a mean of 0 and a variance of 1, thereby
mitigating the impact of scale differences on model training.

Channel Independence. Channel independence is a fun-
damental strategy in time series forecasting. The core prin-
ciple involves treating each variable in a multivariate time
series as an independent channel and modeling each channel
separately rather than as a whole. This approach was first
introduced by PatchTST(Han et al., 2024b), which demon-
strated its effectiveness in time series forecasting and has
since been widely adopted in subsequent neural network
models for time series prediction. This method mitigates
noise interference between channels and reduces modeling
complexity, thereby facilitating a more effective representa-
tion of individual variable characteristics.

3.3. Overall Architecture

Patches of different sizes capture the frequency variation
patterns of time series to different extents. A decrease in
patch size enhances the temporal resolution of the sequence
while reducing its frequency resolution. Stacking patches
enables a more comprehensive analysis of complex varia-
tion patterns in time series, thereby enhancing forecasting
accuracy.

As illustrated in Figure 2, the overall framework comprises
L StackerBlocks, a normalization-denormalization mod-
ule, and a predictor module. The StackerBlock is designed
to capture variation patterns within patches of the same
size and is elaborated in Section 3.4. The normalization-
denormalization module, as discussed in Section 3.1, per-
forms data preprocessing, while the predictor module is
implemented as a linear layer.

Consider a univariate time series of length T , represented as
X = {x1, x2, . . . , xT } ∈ R1×T .Given L non-overlapping
patch sizes defined by the vector P = {p1, p2, . . . , pL},
where p1 > p2 > . . . > pL and each element in P is re-
quired to be a divisor of T , the goal is to extract features
and progressively stack patches to capture variation pat-

3

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

Figure 3. Internal Structure of FreqAttention. This module initially
computes the similarity between patches in the frequency domain.
It then aggregates these patches in the time domain based on the
computed similarity.

terns effectively. The time series X is first standardized as
follows:

X
(1)

= normal(X) (3)

Let p1 be the first element of P , representing the initial
patch size. The standardized time series X

(1)
is partitioned

into subsequences of size p1 , yielding:

X (1) =
{
§1(1), §2(1), . . . , §k1

(1)
}
∈ Rk1×p1 (4)

Here k1 = T
p1

. Next, §1(1) is fed into the StackerBlock
associated with p1 , which extracts variation patterns within
patches of the same size, yieldingX (1)

. Similarly, let p2
be the next patch size, and re-segment X (1)

into patches,
yielding:

X (2) ∈ Rk2×p2 , k2 =
T

p2
(5)

After applying the same operations, X (2)
is obtained. This

process is iterated L times, with each step further parti-
tioning patches based on the preceding iteration. Through
iterative patch stacking, the variation patterns of the time
series are progressively captured by integrating patches of
different sizes. The formal representation is as follows:

X (l) = Concat

StackerBlockl−1

(
X (l−1)

)
1

StackerBlockl−1

(
X (l−1)

)
2

StackerBlockl−1

(
X (l−1)

)
3

. . .
StackerBlockl−1

(
X (l−1)

)
pl

 ,

l = 1, 2, . . . , L

(6)

3.4. Stacker Block

To effectively capture variation patterns across patches
(inter-patch), the StackerBlock is introduced. This module

comprises two core components: the Smooth Layer and
the Inter-Patch Frequency-Based Attention Module.

In real-world time series, outliers can significantly impact
the model’s ability to capture sequence variation patterns.
To mitigate this issue, the Smooth Layer is introduced, uti-
lizing time points within a patch to reduce the influence
of outliers. Specifically, the Smooth Layer is implemented
using a convolution operation with a kernel size of pl . The
formal representation is given by:

SmoothLayerl

(
X (l)

)
= W ∗ X (l) + b (7)

To exploit frequency variation information within the se-
quence, the Inter-Patch Frequency-Based Attention Mod-
ule (FreqAttention) is introduced. The structure of Fre-
qAttention is depicted in Figure 3. Unlike traditional self-
attention mechanisms, similarity in this approach is com-
puted in the frequency domain. The formal representation
is given by:

X̃ (l) = F
(
X (l)

)
(8)

Q = Wq ⊙ X̃ (l), K = Wk ⊙ X̃ (l) (9)

CorMat = Softmax(
Wq ⊙ X̃ (l) · (Wk ⊙ X̃ (l))T√

dk
)

(10)

Here, F(·) denotes the Fourier transform, ⊙ represents the
Hadamard product, and Wq,Wk ∈ R⌊ pl

2 ⌋+1 are learnable
parameters used to compute the query and key vectors, and
dk is a scalar matching the dimension of widetildeX (l).
From a signal processing perspective, the Hadamard product
enables Wq and Wk to function as learnable filters, extract-
ing frequency components relevant to subsequent sequences.
Consequently, CorMat ∈ Rkl×kl represents the frequency-
based similarity between patches and reflects the sequence’s
variation patterns in the frequency domain. Aggregating the
time series in the time domain using CorMat yields the
following formal expression:

V = X (l)Wv (11)

FreqAttn(X (l)) =

Softmax(
Wq⊙X̃ (l)·(Wk⊙X̃ (l))T√

dk
)X (l)Wv

(12)

Here, Wv ∈ Rpl is a learnable parameter for computing
the value vector. By combining Equations (7) to (12), the
formal expression of the StackerBlock is given by:

StackerBlockl(X (l)) =
FreqAttn(SmoothLayerl(X (l)) + X (l)) + X (l) (13)

4

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

Table 1. Main Results. All results are based on input sequences of length 96 and are calculated as the average across four different
prediction lengths {96, 192, 336, 720}. The prediction performance is evaluated using MSE or MAE as metrics, where lower values
indicate closer alignment between the predicted and actual sequences. Complete experimental results are provided in Appendix D.1.

Models
TimeStacker

(ours)

SOFTS

(2024)

SparseTSF

(2024)

iTransformer

(2024)

TimeMixer

(2024)

SAMformer

(2024)

PatchTST

(2023)

Crossformer

(2023)

DLinear

(2023)

RLinear

(2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.433 0.423 0.449 0.442 0.441 0.425 0.454 0.447 0.447 0.440 0.444 0.432 0.469 0.454 0.529 0.522 0.456 0.452 0.446 0.434

ETTh2 0.368 0.390 0.373 0.400 0.421 0.438 0.383 0.407 0.364 0.395 0.383 0.401 0.387 0.407 0.942 0.684 0.559 0.515 0.374 0.398

ETTm1 0.381 0.381 0.393 0.403 0.425 0.401 0.407 0.410 0.381 0.395 0.415 0.407 0.387 0.400 0.513 0.496 0.403 0.407 0.414 0.407

ETTm2 0.274 0.316 0.287 0.330 0.297 0.331 0.288 0.332 0.275 0.323 0.285 0.327 0.281 0.326 0.757 0.610 0.350 0.401 0.286 0.327

Traffic 0.508 0.335 0.409 0.267 0.578 0.350 0.428 0.282 0.484 0.297 0.595 0.382 0.481 0.304 0.550 0.304 0.625 0.383 0.626 0.378

Electricity 0.194 0.275 0.174 0.264 0.222 0.289 0.178 0.270 0.182 0.272 0.217 0.295 0.205 0.290 0.244 0.334 0.212 0.300 0.219 0.298

Weather 0.243 0.264 0.255 0.278 0.290 0.302 0.258 0.278 0.240 0.271 0.264 0.285 0.259 0.348 0.259 0.315 0.265 0.317 0.272 0.291

Exchange 0.336 0.389 0.348 0.395 0.365 0.401 0.360 0.403 0.355 0.399 0.346 0.399 0.367 0.404 0.940 0.707 0.354 0.414 0.378 0.417

3.5. Theoretical Analysis

Definition 3.1. The statistical properties of non-stationary
signals (e.g., mean, variance, autocorrelation function)
change over time, and their frequency characteristics also
dynamically evolve with time. These can be expressed using
the Fourier series as follows:

x(t) = a0(t)+

∞∑
n=1

(an(t)cos (2πnf0t) + bn(t)sin (2πnf0t))

(14)

Let x(t) denote a non-stationary signal, where an(t) and
bn(t) are time-varying nonlinear functions that capture the
dynamic variations in the signal components. This implies
that the frequency content of a non-stationary signal varies
over time.

From a frequency-domain perspective, time series forecast-
ing fundamentally involves analyzing the latent frequency
characteristics within historical sequences to identify the
temporal variation patterns of their Fourier coefficients an(t)
and bn(t). These coefficients encode the amplitude and
phase information of the signal at specific frequencies, serv-
ing as key indicators of its time-varying properties in the
frequency domain. Therefore, capturing and modeling the
variation patterns of these coefficients can effectively re-
veal the periodicity and trends in time series, establishing a
robust foundation for accurate future forecasting.

Theorem 3.2. The time-frequency uncertainty principle
states that a signal cannot achieve arbitrarily high reso-
lution simultaneously in both the time and frequency do-
mains, reflecting the resolution limit of a signal in the time-
frequency domain. The mathematical expression is as fol-

lows:
∆t ·∆f ≥ 1

4π
(15)

Here ∆t denotes the standard deviation in the time domain,
while, and ∆f denotes the standard deviation in the fre-
quency domain. This reveals an inherent limitation in pre-
cisely measuring both the temporal location and frequency
components of a signal: achieving arbitrarily high time
and frequency resolution simultaneously is fundamentally
impossible.

To overcome this limitation, TimeStacker sequentially
stacks patches of varying sizes, from large to small, ef-
fectively reducing ∆f (frequency resolution) while progres-
sively enhancing time resolution. This approach enables the
model to capture the dynamic evolution of the spectrum over
time at multiple temporal resolutions, allowing it to focus
on both fine-grained local details and overarching global
trends.

Specifically, larger patches yield lower time resolution and
higher frequency resolution, enabling the model to capture
global periodicity and long-term trends within the signal.
Conversely, smaller patches yield higher time resolution,
allowing the model to accurately capture dynamic variations
in local signal components.

3.6. Complexity Analysis

The Inter-Patch Frequency-based Attention Module distin-
guishes itself from traditional self-attention mechanisms
primarily in the computation of Q and K. To facilitate ex-
planation, we use the calculation of Q as an example for
analyzing computational complexity.

Let the input for similarity computation be X ∈ Rk×p.

5

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

Table 2. Ablation Experiment Results. Ablation experiments were conducted on the FreqAttention module of TimeStacker, involving
replacement(REPLACE) and removal(W/O) operations based on traditional self-attention. MAE and MSE were used as evaluation
metrics, with all input sequence lengths set to 96.

Method W/O
FreqAttention

REPLACE
FreqAttention

W/O
Hadamard

REPLACE
Hadamard TimeStacker

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh1 96 0.388 0.395 0.386 0.395 0.384 0.393 0.381 0.393 0.379 0.385

192 0.436 0.420 0.431 0.424 0.435 0.425 0.431 0.424 0.429 0.416
336 0.476 0.444 0.472 0.445 0.472 0.444 0.474 0.447 0.459 0.436
720 0.480 0.471 0.474 0.469 0.466 0.464 0.476 0.468 0.464 0.455

ETTh2 96 0.288 0.338 0.296 0.343 0.292 0.338 0.293 0.342 0.280 0.327
192 0.398 0.397 0.389 0.396 0.390 0.399 0.393 0.394 0.373 0.385
336 0.418 0.426 0.416 0.424 0.419 0.426 0.414 0.423 0.407 0.416
720 0.418 0.437 0.419 0.437 0.420 0.439 0.418 0.436 0.412 0.431

Exchange 96 0.087 0.206 0.085 0.203 0.086 0.204 0.085 0.203 0.084 0.200
192 0.179 0.303 0.173 0.293 0.171 0.294 0.171 0.293 0.171 0.293
336 0.323 0.415 0.317 0.411 0.320 0.412 0.316 0.410 0.314 0.408
720 0.807 0.675 0.791 0.669 0.780 0.666 0.796 0.672 0.776 0.656

The computation of Q is detailed in Equations (8) and
(9). The computational complexity of the Fast Fourier
Transform (FFT) is O (kplog2p), while the complexity of
the Hadamard product is O

(
k
(⌊

p
2

⌋
+ 1

))
approximately

O
(
k p
2

)
. Substituting L = kp into the formulas, the com-

plexity of computing Q is derived as O
(
L
(
log2p+

1
2

))
,

which approximates to O (Llog2p). In comparison, the
computational complexity of traditional self-attention is
O
(
kp2

)
, which simplifies to O (Lp) . This demonstrates

that the proposed method significantly reduces complexity,
particularly for high-dimensional inputs, where its advan-
tages become especially evident.

This method leverages the frequency characteristics of sig-
nals to alleviate the performance bottlenecks in traditional
self-attention models, which are caused by high computa-
tional complexity in the time domain. This optimization
provides a more efficient computational pathway for time
series forecasting, maintaining the model’s predictive accu-
racy and robustness.

4. Experiments
In this section, extensive experiments and analyses are con-
ducted on real-world datasets from various domains, encom-
passing both long-term and short-term forecasting tasks, to
comprehensively evaluate the performance and computa-
tional efficiency of TimeStacker.

4.1. Experimental Setup

Dataset. To evaluate the performance of TimeStacker, ex-
periments were conducted on multiple widely used real-
world datasets, following a processing approach similar to

iTransformer(Liu et al., 2023). These datasets span vari-
ous domains, including energy, transportation, and weather.
Specifically, the datasets used in the experiments include
ETT (comprising four subsets: ETTh1, ETTh2, ETTm1,
and ETTm2), Weather, Traffic, Electricity, and Exchange.
Each dataset was divided into training, validation, and test
sets in a 6:2:2 ratio. For more details on the datasets, refer
to Appendix A.

Implementation Details. TimeStacker employs Mean Ab-
solute Error (MAE) as the loss function and utilizes Adam
as the optimizer. The learning rate is set to 1× 10−3 , the
weight decay to 1 × 10−3, and ϵ to 1 × 10−8. The first
and second moment decay rates are set to 0.9 and 0.999,
respectively. All experiments were implemented using Py-
Torch 2.0(Paszke et al., 2019) and conducted on an NVIDIA
RTX 4080 GPU with 16GB of memory. Detailed parameter
settings can be found in Appendix B.2.

4.2. Experimental Results

Baseline. We compared TimeStacker with state-of-the-art
and representative models proposed in the past two years
to evaluate its effectiveness. The main baselines include:
(1) Transformer-based models such as Pathformer(Chen
et al., 2024), SAMformer(Ilbert et al.), PatchTST(Nie et al.,
2022), and Crossformer(Zhang & Yan, 2023); (2) Linear-
layer-based models such as SparseTSF(Lin et al., 2024),
SOFTS(Han et al., 2024a), TimeMixer(Wang et al., 2024a),
DLinear(Zeng et al., 2023), and RLinear(Li et al., 2023).

Main Results. Table 1 presents the time series forecast-
ing results. Red highlights the best performance, while
blue with underlining indicates the second-best performance.
Lower Mean Squared Error (MSE) and MAE values cor-

6

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

Figure 4. Impact of Look-Back Lengths. All models use look-back window lengths of 96, 192, 336, and 720, with MSE serving as the
evaluation metric. The results are calculated as the average across four different prediction lengths {96, 192, 336, 720}, to assess the
performance of different models under varying look-back lengths.

Table 3. The impact of different look-back window lengths on
model prediction performance. The look-back window lengths are
{96, 192, 336, 720}, and the prediction lengths are {96, 192, 336,
720}. The evaluation metric is MSE.

Method 96 192 336 720
MSE MSE MSE MSE

ETTh1 96 0.379 0.370 0.362 0.364
192 0.429 0.424 0.401 0.399
336 0.459 0.448 0.428 0.42
720 0.464 0.447 0.432 0.427

ETTh2 96 0.280 0.283 0.270 0.267
192 0.373 0.366 0.348 0.336
336 0.407 0.397 0.362 0.354
720 0.412 0.409 0.399 0.389

Exchange 96 0.084 0.084 0.085 0.085
192 0.171 0.173 0.174 0.171
336 0.314 0.317 0.320 0.321
720 0.776 0.756 0.792 0.772

respond to higher predictive accuracy. Compared to other
models, TimeStacker demonstrates superior performance
across multiple datasets (ETTh1∼ETTm2, Weather, Ex-
change). Notably, in comparison with iTransformer, TimeS-
tacker achieves significant improvements. For example,
on the ETTm1 dataset, MAE is reduced by 7.07%; on the
Weather dataset, MAE is reduced by 5.04%; and on the
Exchange dataset, MSE is reduced by 6.67%. These results
clearly demonstrate that TimeStacker not only excels in time
series forecasting accuracy but also exhibits strong gener-
alization capabilities. In particular, in critical application
domains such as energy, weather, and finance, TimeStacker
showcases broad applicability and practical utility.

4.3. Model Analysis

Ablation Study. A series of ablation experiments were
conducted to evaluate the core components of TimeStacker,
namely the FreqAttention module. These experiments in-

volved replacement (REPLACE) and removal (W/O) opera-
tions, as outlined below:

• W/O FreqAttention: Removed the FreqAttention mod-
ule from TimeStacker.

• REPLACE FreqAttention: Replaced the FreqAttention
module in TimeStacker with traditional Self-Attention.

• W/O Hadamard: Removed the Hadamard product op-
eration from the FreqAttention module.

• REPLACE Hadamard: Replaced the Hadamard prod-
uct operation in the FreqAttention module with a linear
transformation.

As shown in Table 2, incorporating frequency information
into similarity computation significantly enhances the ac-
curacy of time series forecasting compared to traditional
self-attention methods. Introducing the Hadamard prod-
uct in the computation of Q and K further reveals hidden
pattern features within the sequence. The proposed Fre-
qAttention exhibits a distinct advantage in capturing time
series dynamics, confirming its effectiveness in modeling
the complex characteristics of dynamic signals.

Impact of Look-Back Lengths. In general, longer look-
back windows provide more information about the sequence,
allowing the model to capture sequence features more com-
prehensively. However, longer sequences may also intro-
duce additional noise, potentially affecting prediction accu-
racy. To examine the impact of look-back window length
on model performance, experiments were conducted using
varying window lengths of {96, 192, 336, 720}.

The detailed results, presented in Table 3, indicate that pre-
diction accuracy on the Exchange dataset remained largely
unchanged regardless of window length. In contrast, for
the ETTh1 and ETTh2 datasets, accuracy significantly im-
proved as the look-back window length increased. These

7

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

findings suggest that TimeStacker effectively utilizes the
additional sequence information from longer windows to
enhance forecasting performance.

Additionally, our model was compared with SOFT,
TimeMixer, iTransformer, and SAMformer. As illustrated
in Figure 4, the results demonstrate the superior ability of
TimeStacker in capturing sequence features. Further details
can be found in Appendix D.2.

Figure 5. Performance Comparison of Models. All models were
evaluated on the ETTh1 dataset using an experimental setup with a
look-back length of 96, a prediction length of 720, and a batch size
of 128. The final evaluation results were obtained by averaging
the outcomes of five independent trials. The evaluation metrics
included memory usage during runtime, execution time, and MSE.

Model Effectiveness. In Section 3.6, the computational
complexity of the core module in TimeStacker was derived
as O (Llog2p). To provide a more comprehensive evalu-
ation of the model’s efficiency, additional analyses were
conducted on memory usage and training time. The ETTh1
dataset was used for this evaluation, with all models config-
ured to a look-back length of 96, a prediction length of 720,
and a batch size of 128. The results were averaged over five
independent trials.

As illustrated in Figure 5, the models with the lowest mem-
ory usage were SparseTSF and DLinear, each consuming
only 13.7 MB, while the fastest model was RLinear, with
an iteration time of just 59 ms. In comparison, TimeStacker
required 24.9 MB of memory and had an iteration time of
115 ms, while achieving the lowest MSE among all models.
Clearly, TimeStacker demonstrates strong predictive perfor-
mance and computational efficiency, achieving the lowest
prediction error while maintaining relatively low memory
consumption and runtime.

5. Conclusion, Limitation, and Future Works
Conclusion. This paper introduces the TimeStacker frame-
work, which leverages the frequency variations of non-
stationary signals over time. By employing a unique stack-

ing mechanism and balancing modeling between the time
and frequency domains, TimeStacker effectively captures
the complex characteristics of non-stationary time series.
To further enhance the stacking mechanism and fully uti-
lize frequency information, a frequency-based self-attention
module was designed. This module not only mitigates the
impact of spectral leakage but also enhances feature repre-
sentation by comprehensively modeling both frequency and
time domain information.

Additionally, extensive experiments were conducted on vari-
ous real-world datasets. The results demonstrate that TimeS-
tacker effectively extracts the dynamic characteristics of
non-stationary time series and achieves a comprehensive
feature representation. Performance analysis further reveals
that this approach delivers high prediction accuracy while
significantly reducing computational complexity, highlight-
ing its potential for applications in resource-constrained
scenarios.

Limitation and Future Work. While TimeStacker effec-
tively captures time series features, comparative experi-
ments indicate a slight decline in predictive performance
as the number of variables in the time series increases. To
investigate this phenomenon, additional experiments were
conducted (in Appendix D.5) by varying the number of vari-
ables and testing the model on the Traffic and Electricity
datasets. The results suggest that the model may encounter
performance bottlenecks when handling multivariate time
series.

Therefore, future work will focus on optimizing multi-
channel prediction strategies by designing additional mod-
ules to enhance TimeStacker’s performance on multivariate
time series tasks.

Acknowledgements
This study is supported by the Young Scientists Fund of
the National Natural Science Foundation of China(Grant
No.62306094), Independent Research Exploration Projects
of Songjiang Laboratory(Grant No.SL20230203), Project
supported by the Special Funds of the National Natural
Science Foundation of China(Grant No. 32441112).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

8

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

References
Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M.

Time series analysis: forecasting and control. John Wiley
& Sons, 2015.

Čepulionis, P. and Lukoševičiūtė, K. Electrocardiogram
time series forecasting and optimization using ant colony
optimization algorithm. Mathematical Models in Engi-
neering, 2(1):69–77, 2016.

Challu, C., Olivares, K. G., Oreshkin, B. N., Ramirez, F. G.,
Canseco, M. M., and Dubrawski, A. Nhits: Neural hier-
archical interpolation for time series forecasting. 37(6):
6989–6997, 2023.

Chen, P., Zhang, Y., Cheng, Y., Shu, Y., Wang, Y., Wen, Q.,
Yang, B., and Guo, C. Pathformer: Multi-scale transform-
ers with adaptive pathways for time series forecasting.
arXiv preprint arXiv:2402.05956, 2024.

Cheng, D., Yang, F., Xiang, S., and Liu, J. Financial time
series forecasting with multi-modality graph neural net-
work. Pattern Recognition, 121:108218, 2022.

Chou, J.-S. and Tran, D.-S. Forecasting energy consumption
time series using machine learning techniques based on
usage patterns of residential householders. Energy, 165:
709–726, 2018.

Cohen, L. Time-frequency analysis, volume 778. Prentice
Hall PTR New Jersey, 1995.

Cox, D. R. The theory of stochastic processes. Routledge,
2017.

De Livera, A. M., Hyndman, R. J., and Snyder, R. D. Fore-
casting time series with complex seasonal patterns using
exponential smoothing. Journal of the American statisti-
cal association, 106(496):1513–1527, 2011.

Dubey, A. K., Kumar, A., Garcı́a-Dı́az, V., Sharma, A. K.,
and Kanhaiya, K. Study and analysis of sarima and
lstm in forecasting time series data. Sustainable Energy
Technologies and Assessments, 47:101474, 2021.

Han, L., Chen, X.-Y., Ye, H.-J., and Zhan, D.-C. Softs:
Efficient multivariate time series forecasting with series-
core fusion. arXiv preprint arXiv:2404.14197, 2024a.

Han, L., Ye, H.-J., and Zhan, D.-C. The capacity and robust-
ness trade-off: Revisiting the channel independent strat-
egy for multivariate time series forecasting. IEEE Trans-
actions on Knowledge and Data Engineering, 2024b.

Ilbert, R., Odonnat, A., Feofanov, V., Virmaux, A., Paolo,
G., Palpanas, T., and Redko, I. Samformer: Unlocking the
potential of transformers in time series forecasting with

sharpness-aware minimization and channel-wise atten-
tion. In Forty-first International Conference on Machine
Learning.

Kim, T., Kim, J., Tae, Y., Park, C., Choi, J.-H., and Choo, J.
Reversible instance normalization for accurate time-series
forecasting against distribution shift. In International
Conference on Learning Representations, 2021.

Lee, Y.-S. and Tong, L.-I. Forecasting time series using a
methodology based on autoregressive integrated moving
average and genetic programming. Knowledge-Based
Systems, 24(1):66–72, 2011.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-
X., and Yan, X. Enhancing the locality and breaking the
memory bottleneck of transformer on time series forecast-
ing. Advances in neural information processing systems,
32, 2019.

Li, Z., Qi, S., Li, Y., and Xu, Z. Revisiting long-term time
series forecasting: An investigation on linear mapping.
arXiv preprint arXiv:2305.10721, 2023.

Lin, S., Lin, W., Wu, W., Chen, H., and Yang, J. Sparsetsf:
Modeling long-term time series forecasting with 1k pa-
rameters. arXiv preprint arXiv:2405.00946, 2024.

Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma, L.,
and Long, M. itransformer: Inverted transformers are
effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J. A
time series is worth 64 words: Long-term forecasting with
transformers. arXiv preprint arXiv:2211.14730, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Sagheer, A. and Kotb, M. Time series forecasting of
petroleum production using deep lstm recurrent networks.
Neurocomputing, 323:203–213, 2019.

Sezer, O. B., Gudelek, M. U., and Ozbayoglu, A. M. Fi-
nancial time series forecasting with deep learning: A
systematic literature review: 2005–2019. Applied soft
computing, 90:106181, 2020.

Wang, S., Wu, H., Shi, X., Hu, T., Luo, H., Ma, L., Zhang,
J. Y., and Zhou, J. Timemixer: Decomposable multi-
scale mixing for time series forecasting. arXiv preprint
arXiv:2405.14616, 2024a.

9

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

Wang, Y., Wu, H., Dong, J., Liu, Y., Long, M., and Wang, J.
Deep time series models: A comprehensive survey and
benchmark. arXiv preprint arXiv:2407.13278, 2024b.

Wu, H., Zhou, H., Long, M., and Wang, J. Interpretable
weather forecasting for worldwide stations with a unified
deep model. Nature Machine Intelligence, 5(6):602–611,
2023.

Zeng, A., Chen, M., Zhang, L., and Xu, Q. Are transformers
effective for time series forecasting? In Proceedings of
the AAAI conference on artificial intelligence, volume 37,
pp. 11121–11128, 2023.

Zhang, Y. and Yan, J. Crossformer: Transformer utilizing
cross-dimension dependency for multivariate time series
forecasting. In The eleventh international conference on
learning representations, 2023.

Zhou, K., Wang, W., Huang, L., and Liu, B. Comparative
study on the time series forecasting of web traffic based
on statistical model and generative adversarial model.
Knowledge-Based Systems, 213:106467, 2021.

Zhou, T., Ma, Z., Wen, Q., Sun, L., Yao, T., Yin, W., Jin,
R., et al. Film: Frequency improved legendre memory
model for long-term time series forecasting. Advances in
neural information processing systems, 35:12677–12690,
2022a.

Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., and Jin,
R. Fedformer: Frequency enhanced decomposed trans-
former for long-term series forecasting. pp. 27268–27286,
2022b.

10

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

A. DATASET DESCRIPTION
Time series forecasting experiments were conducted on widely used real-world datasets (details provided in Table 4). The
datasets are described as follows:

• ETT Dataset: Comprising two hourly datasets (ETTh) and two 15-minute datasets (ETTm), this dataset includes load
features of seven oil and electricity transformers recorded from July 2016 to July 2018.

• Traffic Dataset: This dataset contains hourly road occupancy rates recorded by sensors on San Francisco freeways from
2015 to 2016.

• Electricity Dataset: Recording hourly electricity consumption for 321 customers, this dataset spans the period from
2012 to 2014.

• Weather Dataset: Comprising 21 weather indicators, including air temperature and humidity, this dataset was recorded
every 10 minutes throughout 2020.

• Exchange-rate Dataset: This dataset contains daily exchange rates for eight countries, collected from 1990 to 2016.

Table 4. Variates denotes the number of variables in each dataset, Dataset Size denotes the number of time points in the dataset, Frequency
denotes the sampling frequency of the dataset, and Information denotes the category information of the dataset.

Dataset ETTh1 ETTh2 ETTm1 ETTm2 Traffic Electricity Weather Exchange-rate
Variates 7 7 7 7 862 321 21 8

Dataset Size 14,307 14,307 57,507 57,507 17,451 26,211 52,603 7,207
Frequency Hourly Hourly 15min 15min Hourly Hourly 10min Daily

Information Electricity Electricity Electricity Electricity Transportation Electricity Weather Economy

B. IMPLEMENT DETAILS
B.1. TimeStacker

The complete algorithmic process of TimeStacker is outlined as follows. It takes the time series x as input and generates the
corresponding prediction x̃.

Algorithm 1 TimeStacker
Input: Historical look-back window xt−T+1:t ∈ RT , Patch size list P = {p1, p2, . . . , pL}
Output: Forecasting horizon

∼
xt+1:t+H ∈ RH ,

−
x = Normalize(x) /* Normalizer the input sequence with mean and variance */
for pi in P do

−
x = SmoothLayer(

−
x) /* Apply conv1d with kernel size of pi */

−
x = Reshape(

−
x, (pi, T/pi))

−
x = FreqAttention(

−
x) /* Aggregate different patches */

end for
−
x = Reshape(

−
x, T)

∼
x = Denormalize(predictor(

−
x)) /* Apply linear layer for prediction */

B.2. Model Configuration

TimeStacker primarily consists of multiple Stacker Blocks, with the number of blocks determined by the Patchlist parameter.
The number of elements in Patchlist defines the depth of TimeStacker, while the size of each element determines the
observation window for the corresponding block. Given the varying sampling frequencies and physical characteristics of
different datasets, customized configurations are adopted for each dataset. Detailed information is provided in Table 5.

11

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

Table 5. Model Configuration.
DataSet ETTh1 ETTh2 ETTm1 ETTm2 Traffic Electricity Weather Exchange

Patch Size List (96,48,32,24,16,12) (96,48,32,24,16,12) (48,32,24,16) (48,32,24,16) (96,48,32,16,12) (96,48,24,12) (96,48,32,24,12) (96,48,24)

C. EXPERIMENT DETAILS
C.1. Metric Details

To comprehensively evaluate model performance across different datasets, Mean Absolute Error (MAE) and Mean Squared
Error (MSE) were selected as evaluation metrics. These metrics assess prediction accuracy from different perspectives,
offering a comprehensive and intuitive basis for model comparison.

MAE:

MAE =
1

L

L∑
l=1

∣∣∣xi −
∼
xi

∣∣∣ (16)

MSE:

MSE =
1

L

L∑
l=1

(
xi −

∼
xi

)2

(17)

Here, xi ,
∼
xi ∈ RC×L denote the ground truth and predicted values, respectively, where L represents the number of time

points, and C is the number of channels. The MSE primarily emphasizes the squared differences between predicted and
actual values, thereby amplifying the impact of larger errors. This makes MSE particularly sensitive to outliers and suitable
for evaluating the model’s ability to capture global trends. On the other hand, the MAE directly computes the average
absolute differences between predicted and actual values. It focuses on assessing the model’s overall control of error
magnitude in practical applications and is less affected by outliers.

C.2. Baseline

Representative methods from the past two years in time series forecasting were selected as baseline approaches to com-
prehensively evaluate the performance of the proposed model. A detailed introduction to these methods is provided
below:

DLinear: Utilizes a simple yet effective single-layer linear model to capture temporal relationships between input and
output sequences.

Crossformer: Segments multivariate time series data along each dimension, embeds them into feature vectors, and employs
a two-stage attention mechanism to efficiently capture both intra- and inter-series dependencies.

PatchTST: Splits time series data into subsequence-level patches to extract local semantics, adopting a channel-independent
strategy where each channel shares the same embedding and Transformer weights across all sequences.

RLinear: Uses linear mapping to model periodic features in multivariate time series, demonstrating robustness across
different periods as input length increases.

SAMformer: Enhances the model’s generalization ability by leveraging sharpness-aware optimization techniques.

TimeMixer: Addresses complex temporal variations in time series forecasting through a multi-scale mixing perspective,
improving complementary predictions from multi-scale sequences by decoupling variations.

iTransformer: Reverses the Transformer structure by encoding each individual series as variable tokens without modifying
any existing modules.

SparseTSF: Simplifies the forecasting task by decoupling the periodicity and trend of time series data using cross-period
sparse prediction techniques.

SOFTS: Introduces a novel centralized structure to transfer information across channels, addressing the limitations of

12

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

channel-independent approaches in leveraging inter-channel correlations and mitigating robustness challenges in channel-
dependent methods.

C.3. Experiment details

TimeStacker adopts MAE as the loss function and uses Adam as the optimizer, with a learning rate set to 1× 10−3, weight
decay set to 1× 10−3, and epsilon set to 1× 10−8. The first-order and second-order moments are configured as 0.9 and
0.999, respectively. All experiments are implemented in PyTorch 2.0 and executed on an NVIDIA RTX 4080 GPU with
16GB of memory.

In the experiments, the same dataset processing approach as TimeMixer was followed, ensuring that datasets were divided
into training, validation, and test sets in a strict temporal sequence with a 6:2:2 ratio to prevent data leakage. The look-back
window length was fixed at 96, and the forecasting horizons were set to {96,192,336,720}.

D. FULL RESULTS
D.1. Complete Experimental Result

The complete experimental results are presented in Table 12. Experiments were conducted on six widely used real-world
datasets spanning domains such as energy, traffic, and weather to comprehensively validate the effectiveness of the proposed
method. To further assess model performance, comparisons were made against several representative models in the field.

The results demonstrate that the proposed method achieves outstanding performance across multiple datasets, consistently
surpassing most baseline models in both predictive accuracy and computational efficiency. Notably, the method exhibits
significant advantages in handling complex non-stationary time series, effectively capturing both global trends and local
details within the signals. These findings further underscore the generalizability and robustness of the approach, offering an
efficient and accurate solution for time series forecasting tasks.

The results of the mean and standard deviation of MSE and MAE for multiple runs of all datasets are shown in Table 6.

Table 6. Mean/Standard deviation for MSE and MAE across multiple runs.

DataSet ETTh1 ETTh2 ETTm1 ETTm2 Traffic Electricity Weather Exchange

MSE 0.433/0.00145 0.368/0.00091 0.381/0.00119 0.274/0.00061 0.508/0.00052 0.194/0.00056 0.243/0.00092 0.336/0.00101

MAE 0.423/0.00167 0.390/0.00057 0.381/0.00052 0.316/0.00042 0.335/0.00087 0.275/0.00077 0.264/0.00042 0.389/0.00137

D.2. Impact of Look-Back Lengths

The impact of look-back length on model performance was examined, with detailed experimental results presented in
Table 11. Prediction experiments were conducted using look-back lengths of {96, 192, 336, 720}, and the results were
compared against SOFT, TimeMixer, iTransformer, and SAMformer. The results demonstrate that as the look-back length
increases, the predictive accuracy of TimeStacker improves significantly. Compared to other models, TimeStacker effectively
utilizes the extended sequence information, resulting in a substantial enhancement in prediction performance. This outcome
validates the advantages and robustness of the proposed method in time series modeling.

D.3. Impact of Patch Size List

To demonstrate how TimeStacker adapts to various non-stationary signals, we configured the parameter Patch Size List
and conducted experiments on the ETTm1 dataset. The results are shown in Table 7. These results indicate that employing
various window combinations can more effectively capture the underlying dynamic patterns of the sequence, thereby
improving prediction performance.

D.4. Complexity Analysis

To enable a more in-depth analysis of the model’s computational complexity, the input length was increased to evaluate its
temporal and spatial complexity (GPU Memory (MB) / Training Time (ms/iter)). The experimental results are shown in

13

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

Table 7. Impact of different patch size list.
Patch Size List [16, 16, 16, 16] [16, 16, 16, 24] [16, 16, 16, 32] [16, 16, 16, 48] [16, 16, 24, 32] [16, 16, 24, 48] [16, 24, 32, 48]

MSE 0.465 0.468 0.468 0.465 0.463 0.463 0.460
MAE 0.433 0.439 0.436 0.431 0.431 0.430 0.428

Table 8. Complexity Analysis(GPU Memory(MB)/Training Time(ms/iter)).

Input Length Timestacker SparseTSF TimeMixer DLinear PatchTST Crossformer

192 28.8/134 15.6/108 518.3/180 13.6/45 145.8/87.8 5214/238
384 29.3/133 16.1/112 875.4/193 16.7/49 334.7/90.1 5734/273
768 34.3/137 20.6/115 1763/202 23.2/99 830.0/93.3 6814/342
1536 59.2/137 28.7/127 3744/282 34.8/108 2404/137 9016/1007
3072 110.7/134 44.1/131 7376/462 59.1/108 7832/1315 12470/3121

Table 8.

D.5. Additional Experiments

To investigate the impact of the number of variables on model performance, we selected the Traffic and Electricity datasets,
where our model performed less effectively, and conducted comparative experiments with existing models including SOFTS,
iTransformer, and TimeMixer. These experiments focused specifically on single-variable time series forecasting tasks.

The results not only revealed the differences in how various models handle single-channel time series but also provided a
clearer understanding of how the number of variables affects model performance. Under single-channel conditions, our
model demonstrated a stronger ability to capture the dynamic changes of individual sequences, whereas certain other models
appeared to rely on correlations between multiple channels to enhance predictive accuracy. Furthermore, these findings offer
valuable insights for optimizing model design, such as exploring strategies to balance feature modeling capabilities between
single-channel and multi-channel sequences.This series of experiments helps to clarify the applicability of different models
across various datasets and variable scales, offering more targeted solutions for time series forecasting tasks.

To comprehensively evaluate the performance of the proposed model, it was also compared with the representative
multiresolution method, N-HiTS, and the representative frequency-based methods, FEDformer and FiLM, on the ETTm2,
Electricity, Traffic, and Weather datasets. The experimental results are shown in Table 9.

Table 9. Additional Comparative Experiments(MSE/MAE).
Input Length Timestacker N-HiTS FEDformer FiLM

ETTm2 0.274/0.316 0.279/0.330 0.305/0.349 0.287/0.329
Electricity 0.194/0.275 0.186/0.287 0.214/0.327 0.223/0.302

Traffic 0.508/0.335 0.452/0.311 0.610/0.376 0.637/0.384
Weather 0.243/0.264 0.249/0.274 0.309/0.360 0.271/0.291

E. SHOW CASE
A visualization of TimeStacker’s prediction results was conducted across all datasets. As illustrated in Figure 6, in the
96-to-96 forecasting task, TimeStacker exhibited consistent performance across different datasets, clearly demonstrating its
superior predictive capability.

To further highlight the capability of TimeStacker in capturing non-stationary signals, synthetic signals exhibiting nonlinear
frequency variations over time were generated and evaluated alongside an MLP as a baseline. As illustrated in Figure 7, it
can be observed that TimeStacker successfully captures high-frequency components, though slight phase misalignment is
observed, whereas MLP-based models struggle to adapt to rapidly changing frequencies.

14

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

Table 10. Additional Experiments. All results are based on input sequences of length 96 and are calculated as the average across four
different prediction lengths {96, 192, 336, 720}.

Models TimeStacker SOFTS SparseTSF iTransformer TimeMixer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic 96 0.167 0.235 0.165 0.227 0.281 0.326 0.170 0.232 0.166 0.223
192 0.157 0.223 0.158 0.223 0.236 0.282 0.158 0.22 0.157 0.230
336 0.151 0.223 0.158 0.226 0.223 0.272 0.155 0.216 0.154 0.230
720 0.169 0.242 0.174 0.244 0.242 0.292 0.182 0.254 0.171 0.242

AVG 0.161 0.231 0.164 0.230 0.246 0.293 0.166 0.231 0.162 0.231
Electricity 96 0.296 0.384 0.292 0.381 0.477 0.504 0.299 0.4 0.297 0.391

192 0.304 0.392 0.301 0.389 0.457 0.493 0.299 0.391 0.314 0.401
336 0.364 0.42 0.365 0.418 0.489 0.512 0.362 0.426 0.367 0.431
720 0.425 0.473 0.427 0.473 0.501 0.517 0.426 0.477 0.424 0.46

AVG 0.347 0.417 0.346 0.415 0.481 0.507 0.347 0.424 0.351 0.421

Table 11. Impact of Look-Back Lengths. The backtracking window lengths were set to {96, 192, 336, 720}, and the prediction lengths
were set to {96, 192, 336, 720}. The evaluation metrics used were MSE and MAE. The best performance of the model is highlighted in
red.

DataSet Exchange ETTh1 ETTh2

Look-Back Lengths 96 192 336 720 96 192 336 720 96 192 336 720

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.082 0.199 0.090 0.210 0.089 0.211 0.120 0.251 0.375 0.400 0.378 0.389 0.370 0.393 0.366 0.391 0.289 0.341 0.286 0.338 0.276 0.334 0.339 0.387

192 0.177 0.297 0.181 0.303 0.178 0.301 0.173 0.299 0.429 0.421 0.428 0.420 0.414 0.415 0.411 0.424 0.372 0.392 0.367 0.388 0.347 0.382 0.387 0.410

TimeMixer 336 0.324 0.408 0.329 0.418 0.323 0.416 0.335 0.420 0.484 0.458 0.463 0.464 0.432 0.427 0.434 0.440 0.386 0.414 0.394 0.413 0.365 0.401 0.374 0.408

720 0.837 0.691 0.817 0.679 0.887 0.699 0.904 0.741 0.498 0.482 0.465 0.462 0.447 0.455 0.450 0.472 0.412 0.434 0.413 0.436 0.405 0.434 0.410 0.443

AVG 0.355 0.399 0.354 0.403 0.369 0.407 0.383 0.428 0.447 0.440 0.434 0.434 0.416 0.423 0.415 0.432 0.365 0.395 0.365 0.394 0.348 0.388 0.378 0.412

96 0.084 0.201 0.088 0.209 0.088 0.211 0.102 0.233 0.381 0.399 0.385 0.405 0.390 0.406 0.393 0.417 0.297 0.347 0.302 0.349 0.293 0.354 0.312 0.313

192 0.172 0.294 0.181 0.303 0.190 0.315 0.183 0.309 0.435 0.431 0.431 0.432 0.428 0.432 0.429 0.438 0.373 0.394 0.387 0.407 0.383 0.407 0.386 0.415

SOFTS 336 0.324 0.412 0.314 0.413 0.339 0.430 0.377 0.454 0.480 0.452 0.451 0.442 0.439 0.443 0.457 0.458 0.410 0.426 0.399 0.419 0.385 0.416 0.404 0.424

720 0.811 0.672 0.732 0.645 0.815 0.690 0.845 0.701 0.499 0.488 0.444 0.460 0.450 0.468 0.463 0.477 0.411 0.433 0.427 0.444 0.435 0.454 0.429 0.455

AVG 0.348 0.395 0.329 0.393 0.358 0.413 0.377 0.424 0.449 0.443 0.428 0.435 0.427 0.437 0.436 0.448 0.373 0.400 0.379 0.405 0.374 0.408 0.383 0.402

96 0.086 0.206 0.090 0.211 0.096 0.220 0.109 0.237 0.386 0.405 0.387 0.402 0.394 0.407 0.390 0.413 0.297 0.349 0.298 0.347 0.296 0.352 0.309 0.370

192 0.177 0.299 0.193 0.316 0.192 0.319 0.193 0.319 0.441 0.436 0.446 0.429 0.444 0.433 0.418 0.431 0.380 0.400 0.383 0.399 0.389 0.405 0.390 0.415

iTransformer 336 0.331 0.417 0.345 0.433 0.373 0.453 0.377 0.456 0.487 0.458 0.459 0.439 0.446 0.445 0.441 0.449 0.428 0.432 0.396 0.418 0.396 0.416 0.403 0.431

720 0.847 0.691 0.757 0.657 0.694 0.645 0.796 0.683 0.503 0.491 0.464 0.468 0.467 0.463 0.489 0.490 0.427 0.445 0.422 0.441 0.426 0.447 0.450 0.465

AVG 0.360 0.403 0.346 0.404 0.339 0.409 0.369 0.424 0.454 0.448 0.439 0.435 0.438 0.437 0.435 0.446 0.383 0.407 0.375 0.401 0.377 0.405 0.388 0.420

96 0.088 0.209 0.093 0.212 0.098 0.221 0.122 0.254 0.383 0.392 0.388 0.402 0.385 0.403 0.389 0.412 0.289 0.338 0.347 0.293 0.283 0.345 0.279 0.346

192 0.176 0.299 0.186 0.307 0.196 0.318 0.229 0.339 0.438 0.423 0.438 0.429 0.419 0.424 0.425 0.436 0.401 0.398 0.382 0.401 0.36 0.397 0.36 0.396

SAMformer 336 0.322 0.414 0.333 0.42 0.347 0.431 0.385 0.452 0.475 0.445 0.461 0.442 0.451 0.446 0.456 0.455 0.419 0.428 0.395 0.421 0.364 0.406 0.365 0.409

720 0.799 0.673 0.804 0.678 0.856 0.701 0.957 0.741 0.478 0.468 0.464 0.469 0.454 0.468 0.467 0.482 0.421 0.44 0.415 0.441 0.405 0.438 0.4 0.439

AVG 0.346 0.399 0.354 0.404 0.374 0.418 0.423 0.447 0.444 0.432 0.438 0.436 0.427 0.435 0.434 0.446 0.383 0.401 0.385 0.389 0.353 0.397 0.351 0.398

96 0.084 0.200 0.084 0.201 0.085 0.204 0.085 0.205 0.379 0.385 0.37 0.384 0.362 0.383 0.364 0.383 0.28 0.327 0.283 0.332 0.27 0.333 0.267 0.331

192 0.171 0.293 0.173 0.293 0.174 0.294 0.171 0.293 0.429 0.416 0.424 0.414 0.401 0.409 0.399 0.418 0.373 0.385 0.366 0.386 0.348 0.383 0.336 0.374

TimeStacker 336 0.314 0.408 0.317 0.411 0.32 0.413 0.321 0.408 0.459 0.436 0.448 0.429 0.428 0.427 0.42 0.428 0.407 0.416 0.397 0.413 0.362 0.397 0.354 0.396

720 0.776 0.656 0.756 0.644 0.792 0.658 0.772 0.656 0.464 0.455 0.447 0.453 0.432 0.45 0.427 0.447 0.412 0.431 0.409 0.428 0.399 0.428 0.389 0.426

AVG 0.336 0.389 0.333 0.387 0.343 0.392 0.337 0.391 0.433 0.423 0.422 0.420 0.406 0.417 0.403 0.419 0.368 0.390 0.364 0.390 0.345 0.385 0.337 0.382

15

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

Table 12. Complete Experimental Result. All results are based on input sequences of length 96 and are calculated as the average across
four different prediction lengths {96, 192, 336, 720}.

Models
TimeStacker

(ours)

SOFTS

(2024)

SparseTSF

(2024)

iTransformer

(2024)

TimeMixer

(2024)

SAMformer

(2024)

PatchTST

(2023)

Crossformer

(2023)

DLinear

(2023)

RLinear

(2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.379 0.385 0.381 0.399 0.388 0.387 0.386 0.405 0.375 0.400 0.383 0.392 0.414 0.419 0.423 0.448 0.386 0.400 0.386 0.395

ETTh1 192 0.429 0.416 0.435 0.431 0.438 0.417 0.441 0.436 0.429 0.421 0.438 0.423 0.460 0.445 0.471 0.474 0.437 0.432 0.437 0.424

336 0.459 0.436 0.480 0.452 0.469 0.438 0.487 0.458 0.484 0.458 0.475 0.445 0.501 0.466 0.570 0.546 0.481 0.459 0.479 0.446

720 0.464 0.455 0.499 0.488 0.468 0.457 0.503 0.491 0.498 0.482 0.478 0.468 0.500 0.488 0.653 0.621 0.519 0.516 0.481 0.470

AVG 0.433 0.423 0.449 0.442 0.441 0.425 0.454 0.447 0.447 0.440 0.444 0.432 0.469 0.454 0.529 0.522 0.456 0.452 0.446 0.434

96 0.280 0.327 0.297 0.347 0.304 0.346 0.297 0.349 0.289 0.341 0.289 0.338 0.302 0.348 0.745 0.584 0.333 0.387 0.288 0.338

ETTh2 192 0.373 0.385 0.373 0.394 0.409 0.403 0.380 0.400 0.372 0.392 0.401 0.398 0.388 0.400 0.877 0.656 0.477 0.476 0.374 0.390

336 0.407 0.416 0.410 0.426 0.426 0.430 0.428 0.432 0.386 0.414 0.419 0.428 0.426 0.433 1.043 0.731 0.594 0.541 0.415 0.426

720 0.412 0.431 0.411 0.433 0.421 0.438 0.427 0.445 0.412 0.434 0.421 0.440 0.431 0.446 1.104 0.763 0.831 0.657 0.420 0.440

AVG 0.368 0.390 0.373 0.400 0.421 0.438 0.383 0.407 0.364 0.395 0.383 0.401 0.387 0.407 0.942 0.684 0.559 0.515 0.374 0.398

96 0.311 0.337 0.325 0.361 0.366 0.369 0.334 0.368 0.320 0.357 0.352 0.374 0.329 0.367 0.404 0.426 0.345 0.372 0.355 0.376

ETTm1 192 0.364 0.367 0.375 0.389 0.404 0.387 0.377 0.391 0.361 0.381 0.392 0.392 0.367 0.385 0.450 0.451 0.380 0.389 0.391 0.392

336 0.389 0.391 0.405 0.412 0.432 0.406 0.426 0.420 0.390 0.404 0.425 0.413 0.399 0.410 0.532 0.515 0.413 0.413 0.424 0.415

720 0.460 0.428 0.466 0.447 0.496 0.442 0.491 0.459 0.454 0.441 0.49 0.449 0.454 0.439 0.666 0.589 0.474 0.453 0.487 0.450

AVG 0.381 0.381 0.393 0.403 0.425 0.401 0.407 0.410 0.381 0.395 0.415 0.407 0.387 0.400 0.513 0.496 0.403 0.407 0.414 0.407

96 0.171 0.250 0.180 0.261 0.198 0.272 0.180 0.264 0.175 0.258 0.181 0.264 0.175 0.259 0.287 0.366 0.193 0.292 0.182 0.265

ETTm2 192 0.235 0.292 0.246 0.306 0.259 0.308 0.250 0.309 0.237 0.299 0.245 0.305 0.241 0.302 0.414 0.492 0.284 0.362 0.246 0.304

336 0.293 0.329 0.319 0.352 0.315 0.343 0.311 0.348 0.298 0.340 0.305 0.341 0.305 0.343 0.597 0.542 0.369 0.427 0.307 0.342

720 0.395 0.391 0.405 0.401 0.416 0.399 0.412 0.407 0.391 0.396 0.409 0.398 0.402 0400 1.730 1.042 0.554 0.522 0.407 0.398

AVG 0.274 0.316 0.287 0.330 0.297 0.331 0.288 0.332 0.275 0.323 0.285 0.327 0.281 0.326 0.757 0.610 0.350 0.401 0.286 0.327

96 0.496 0.331 0.376 0.251 0.559 0.335 0.395 0.268 0.462 0.285 0.552 0.367 0.462 0.295 0.522 0.290 0.650 0.396 0.649 0.389

Traffic 192 0.491 0.331 0.398 0.261 0.567 0.346 0.417 0.276 0.473 0.296 0.569 0.368 0.466 0.296 0.530 0.293 0.598 0.370 0.601 0.366

336 0.505 0.334 0.415 0.269 0.575 0.349 0.433 0.283 0.498 0.296 0.586 0.376 0.482 0.304 0.558 0.305 0.605 0.373 0.609 0.369

720 0.541 0.343 0.447 0.287 0.609 0.368 0.467 0.302 0.506 0.313 0.63 0.401 0.514 0.322 0.589 0.328 0.645 0.394 0.647 0.387

AVG 0.508 0.335 0.409 0.267 0.578 0.350 0.428 0.282 0.484 0.297 0.595 0.382 0.481 0.304 0.550 0.304 0.625 0.383 0.626 0.378

96 0.168 0.251 0.143 0.233 0.202 0.261 0.148 0.240 0.153 0.247 0.199 0.277 0.181 0.270 0.219 0.314 0.197 0.282 0.201 0.281

Electricity 192 0.176 0.262 0.158 0.248 0.207 0.277 0.162 0.253 0.166 0.256 0.199 0.279 0.188 0.284 0.231 0.322 0.196 0.285 0.201 0.283

336 0.195 0.278 0.178 0.269 0.219 0.292 0.178 0.269 0.185 0.277 0.214 0.294 0.204 0.293 0.246 0.337 0.209 0.301 0.215 0.298

720 0.235 0.310 0.218 0.305 0.261 0.324 0.225 0.317 0.225 0.310 0.257 0.328 0.246 0.324 0.280 0.363 0.245 0.333 0.257 0.331

AVG 0.194 0.275 0.174 0.264 0.222 0.289 0.178 0.270 0.182 0.272 0.217 0.295 0.205 0.290 0.244 0.334 0.212 0.300 0.219 0.298

96 0.161 0.198 0.166 0.208 0.213 0.250 0.174 0.214 0.163 0.209 0.193 0.205 0.177 0.218 0.158 0.230 0.196 0.255 0.192 0.232

Weather 192 0.207 0.241 0.217 0.253 0.259 0.282 0.221 0.254 0.208 0.250 0.242 0.274 0.225 0.259 0.206 0.277 0.237 0.296 0.240 0.271

336 0.261 0.281 0.282 0.300 0.308 0.315 0.278 0.296 0.251 0.287 0.284 0.309 0.278 0.297 0.272 0.335 0.283 0.335 0.292 0.307

720 0.343 0.334 0.356 0.351 0.380 0.361 0.358 0.347 0.339 0.341 0.358 0.351 0.354 0.348 0.398 0.418 0.345 0.381 0.364 0.353

AVG 0.243 0.264 0.255 0.278 0.290 0.302 0.258 0.278 0.240 0.271 0.264 0.285 0.259 0.348 0.259 0.315 0.265 0.317 0.272 0.291

96 0.084 0.200 0.084 0.201 0.093 0.217 0.086 0.206 0.082 0.199 0.088 0.209 0.088 0.205 0.256 0.367 0.088 0.218 0.093 0.217

Exchange 192 0.171 0.293 0.172 0.294 0.179 0.304 0.177 0.299 0.177 0.297 0.176 0.299 0.176 0.299 0.470 0.509 0.176 0.315 0.184 0.307

336 0.314 0.406 0.324 0.412 0.319 0.410 0.331 0.417 0.324 0.408 0.322 0.414 0.301 0.397 1.268 0.883 0.313 0.427 0.351 0.432

720 0.776 0.656 0.811 0.672 0.823 0.683 0.847 0.691 0.837 0.691 0.799 0.673 0.901 0.714 1.767 1.068 0.839 0.695 0.886 0.714

AVG 0.336 0.389 0.348 0.395 0.365 0.401 0.360 0.403 0.355 0.399 0.346 0.399 0.367 0.404 0.940 0.707 0.354 0.414 0.378 0.417

1st Count 15 26 11 10 0 0 0 0 13 4 0 0 2 1 2 0 0 0 0 0

16

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

(a) ETTh1 (b) ETTh2 (c) ETTm1

(d) ETTm2 (e) Exchange (f) Electricity

(g) Traffic (h) Weather

Figure 6. Visualization of forecasting results on the real-world dataset with look-back window length L = 96 and prediction length
H = 96

17

TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

(a) TimeStcker

(b) MLP

Figure 7. Visualization of results on synthetic data. Non-stationary signals with time-varying frequencies were used for training and
testing. (a) presents the visualization produced by TimeStacker, while (b) presents the visualization produced by the MLP.

18

