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Abstract

Advanced test-time computing strategies are essential for scaling reasoning models,
but their effectiveness is capped by the models’ poor self-evaluation. We propose
a pairwise Explanatory Verifier, trained via reinforcement learning (GRPO), that
produces calibrated confidence scores and associated natural language reasoning
for generated solutions. Our verifier improves the accuracy and efficiency of test-
time strategies like best-of-n and self-reflection. Crucially, it excels at identifying
challenging failure modes, such as when both candidate solutions are identically
incorrect, succeeding where standard methods like majority voting fail.

1 Introduction

Advanced test-time strategies like multi-path exploration are key to solving increasingly complex
problems [1H3]]. However, their effectiveness is capped by a core limitation in reasoning models.
These models struggle with reliable self-evaluation [4] and are often biased towards a narrow set
of approaches (Figure[d). This critical failure to discern correctness creates a bottleneck, prevent-
ing dynamic exploration of alternatives and hindering progress on scaling Al systems to address
challenging tasks.

To overcome this bottleneck, we introduce an Explanatory Verifier trained via Reinforcement Learn-
ing [S]] to provide both a calibrated judgment and a natural language rationale. Rather than assessing
solutions in isolation, our verifier takes motivation from prior work [6] to perform a more efficient re-
lational analysis on pairs of reasoning trajectories to identify subtle errors and judge their correctness.
This justified comparative judgment framework is designed to directly enhance common test-time
reasoning strategies like best-of-n sampling [[7] and self-reflection [8].

To our knowledge, this is the first work to systematically train and analyze a pairwise, explanatory
verifier to scale a complex reasoning system. Downstream evaluations on challenging benchmarks
demonstrate that the verifier significantly improves accuracy in best-of-N sampling and self-reflection
settings, often while using fewer computational resources. The foundation of this success is the
verifier’s robust calibration; our analysis reveals that it can reliably detect incorrect answers even in
ambiguous scenarios where both candidates are wrong or identically flawed. These are precisely the
cases where voting strategies fail. This reliability enables a more dynamic inference paradigm, where
computationally expensive exploration is reserved only for problems where verifier confidence is
low. Overall, our approach enables efficient scaling of reasoning models, providing a blueprint for
dynamic systems that can tackle increasingly complex tasks with proportional resource allocation.
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2 Explanatory Verifier Training

Problem Formulation We frame training the explanatory verifier as a reinforcement learning
problem. The goal is to learn a policy 7 that, given a problem instance consisting of a question ¢ and
two candidate responses (R4, Rp) [9]], generates a completion containing reasoning within <think>
tags and ratings V = (va,vg) € [0,10] in final answer. Ground-truth labels y = (y4,yg5) € 0,1
indicate correctness, but the continuous output scale allows the model to express uncertainty in its
judgments. Completion quality is measured by a reward function, R(c, z), which is defined as the
binary cross-entropy [[7] between the normalized ratings and labels (see Section[2.2)). The training
objective, optimized using Group Relative Policy Optimization (GRPO) [3]], is to find the optimal
policy 7* that maximizes the expected reward over the data distribution D:

7" = argmax B, p corn(p(a)) [R(C, T)]

2.1 Training Dataset

The foundation of our verifier is a curated dataset derived from Numina Math [[10], CodeForces, and
LeetCode [[11}12]]. For each problem, we generated multiple solution attempts with Qwen3-8B [13]]
to get correct and incorrect reasoning paths for training.

The base datasets contain many corner cases that are challenging for automated verification ap-
proaches. We implemented a rigorous curation process, detailed in Appendix [B] so that our data
contains only problems where automated verification is reliable to provide high-quality signal. We
removed any problems that: had open-ended responses such as proof-based questions; contained
multiple sub-questions and answers; were ambiguous or under-specified as determined by a strong
LLM-as-a-judge; or whose final answer evaluated to anything other than a single numeric expression.

Finally, our pairwise input format imposes a substantial constraint on context length. We remove
the content within <think> tags, and further filter out samples that exceed 6,144 input tokens. In the
end, we have 3,634 unique input tuples, (Q, R4, Rp), spanning 628 distinct questions, ), for math
dataset. We hold out 294 tuples for validation set.

2.2 Reward Shaping

We train the verifier to produce ratings on a continuous scale from O to 10, where 0 indicates high
confidence that the response is incorrect and 10 indicates high confidence that it is correct. A key
challenge in our training was incentivizing the verifier to use the full [0, 10] rating scale despite a
binary ground-truth signal (y € 0, 1). Mean squared error often pushes predictions to the extremes,
so we designed a reward based on a variant of binary cross-entropy to encourage calibrated outputs.
First, we normalize the model’s raw rating for a given response, v € [0, 10], to a probability-like value
p = v/10 and then clamp it to [0.1, 0.9] to ensure training stability and prevent the logarithm from
producing excessively large or infinite values: p = 0.1 + 0.8 - p = 0.1 4+ 0.08 - v. This transformed
value p is then used to calculate a reward based on binary cross-entropy. For a completion ¢ with
responses A and B, reward is calculated as the sum of the rewards for each individual judgment:

Raphaped (¢, ) = [yalog(pa) + (1 —ya)log(l —pa)] + [yplog(pr) + (1 — yp)log(l — pB)]

Reward for response A Reward for response B

In this formulation, while clamping ensures numerical stability, the logarithmic formulation penalizes
confident errors sharply and allows nuanced predictions without excessive penalty.

2.3 Implementation Details

We use GRPO [5] to train QWEN3-8B, following the VeRL implementatiorﬂ in a multi-stage manner
on math and coding datasets [14]. The learning rate was 1 x 10~ with a 10-step linear warmup, KL
coefficient 0.001, and rollouts with temperature and top_p set to 1.0. Training is strictly on-policy,
with one gradient step per rollout group. In Stage 1, we train on a math-only dataset with a maximum
sequence length (MSL) of 8,192, generating 16 rollouts per prompt with a global batch size of 256.
We use dynamic filtering to discard rollouts with no variance. Stage 1 proceeds for 240 steps. In
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Stage 2, training is extended with a curated coding dataset combined with a subset of math. We
observe truncated responses, entropy collapse, and verifier ratings concentrated around the midpoint
(score ~ b), suggesting the model was struggling with problem difficulty within the given token
budget. To mitigate these issues, MSL is increased to 16,384, global batch size to 512, an entropy
coefficient of 0.001 is introduced, and high-difficulty problems (difficulty > 0.8) are filtered using
pass@k. Stage 2 continues for 120 steps.

3 Evaluating the Explanatory Verifier: Ability to discern, Downstream
Performance, and Emergent Capabilities

We comprehensively evaluate our Explanatory Verifier on (i) its judgment accuracy, (ii) its enhance-
ment of downstream reasoning tasks, and (iii) its emergent generative skills.

3.1 Benchmarking the Verifier’s Ability to Discern

This section quantifies the judgment accuracy of Explanatory Verifier, benchmarking it against the
self-evaluation capability of the baseline reasoning model. The results, summarized in Figure [I]
demonstrate a significant improvement in the model’s discerning abilities throughout its training.

Improvements in Discernment Figure |I| (Left) shows that, on a held-out validation set, the model
progressively improves at evaluating correctness across all judgment scenarios, including identifying
the better response and recognizing when both are incorrect. Initially (step 0), performance is highly
skewed towards giving a high score to everything, but training develops reliable judgment in all
settings. Of particular interest is the model’s ability to identify when both inputs are incorrect.

Verifier Response Calibration Figure[T] (Right) shows that the verifier’s ratings become signif-
icantly more calibrated and consistent, beyond accuracy. This trend towards higher precision and
lower variance holds true across problems of varying difficulty levels (grouped by pass @k bins).
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Figure 1: (Left) Training progression of the verifier’s accuracy, broken down by the ground-truth
(GT) configuration of the input pair. (Right) A comparison of the trained verifier (RL) against the
baseline on generations from AIME 2024. The RL-trained verifier exhibits a much larger separation
in ratings between correct and incorrect responses and shows lower variance in its predictions.

Refer to Appendix [C|for more analysis on the underlying behavior of the verifier. Owing to these
properties, we observe improvements when leveraging the verifier in test-time scaling, as discussed
next. All results are reported using greedy decoding.

3.2 Improving Token Efficiency in Best-of-N Sampling

We evaluate the verifier as a retry mechanism during inference-time scaling. As shown in Figure[2] the
verifier achieves higher accuracy at lower values of & compared to self-consistency, and comparable
accuracy at higher k, while requiring 1-3x fewer tokens. Here, k is the maximum number of
candidate answers per task. In self-consistency, the final answer is chosen by majority vote over k
generations. In verifier-based approach, two candidates are scored first; additional generations are
produced only if both are deemed incorrect, continuing until a correct answer is found or k is reached.



Although trained on QWEN3-8B outputs, the 8B verifier effectively evaluates larger models. For
example, on AIME 2025, incorporating the verifier with Qwen3-32B generations achieves 0.77
accuracy while using only 75% of the tokens compared to self-consistency.
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Figure 2: Across different values of k, the trained verifier consistently achieves higher accuracy
than Qwen3-8B and provides a significant boost to the performance over self-consistency at lower k.
Importantly, it requires substantially fewer tokens than self-consistency demonstrating both efficiency
and stable performance across scales.

3.3 Improving Self-Reflection with Verifier-Guided Feedback

Beyond judging correctness, the verifier’s natural language reasoning provides valuable feedback
for iterative self-reflection (Table[I)). We generate two candidate answers with QWEN3-8B, score
them with the verifier, and produce a final answer guided by its reasoning. This approach improves
accuracy by up to 6 percentage points on AIME 2024 and 2025 compared to generating an answer
using simple consistency check. Notably, gains are larger when using GPT-OSS-20B to generate
final answer, likely due to its stronger instruction-following and reasoning. Beyond math, verifier
feedback also boosts coding performance, demonstrating early applicability to this growing domain.

Table 1: Accuracy of models with and without feedback from a verifier.

Model AIME 2024 AIME 2025 LCB v6 (01/01 - 08/01)
W/o Verifier W/ Verifier \ W/o Verifier W/ Verifier \ W/o Verifier W/ Verifier
Qwen3-8B 0.77 0.77 0.67 0.68 0.39 0.44
GPT-20B 0.77 0.80 0.65 0.71 0.49 0.49
Qwen3-32B 0.77 0.76 0.67 0.69 — -

3.4 Emergent Generative Capabilities of the Verifier

A particularly promising finding is the emergent generative capability of the Explanatory Verifier.
In a single-shot generation comparison against the baseline model, the verifier achieves statistically
similar pass@1 accuracy (Table[2). This indicates that the intensive training for critical evaluation
does not degrade, and possibly even enhances, the model’s core reasoning abilities. This result
paves the way for a new training paradigm that co-optimizes reasoning models for generating diverse
solutions while accurately verifying their correctness, making them better suited for test-time scaling.

Table 2: Performance on AIME 2024 and 2025 at n_repeat = 15

Benchmark Qwen3-8B Verifier

AIME 2024 0.77 0.78
AIME 2025 0.66 0.68




4 Conclusion And Future Work

In this work, we demonstrated that test-time strategies can be significantly enhanced by using an
Explanatory Verifier, trained with reinforcement learning, to overcome the core self-evaluation
bottleneck of reasoning models. This approach opens promising avenues for future research, from
training verifiers for test-time strategies using natural language feedback to the holistic co-design of
integrated generator-verifier models. Ultimately, our work is a foundational step towards the next
generation of Al systems: efficient, agentic systems where multi-faceted models can autonomously
tackle problems of increasing complexity.
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A Related Work

A.1 RLVR

Reinforcement learning with verifiable feedback(RLVR) has emerged as a commonly used paradigm
for aligning LLMs with task-specific goals such as problem-solving or code-generation. It 15, [15]
can be seen as a simplified form of bootstrapping LM reasoning [[16] or a simpler form of RL with
execution feedback [17], in which one uses answer matching or constraint verification as a binary
signal to train large language models. RLVR allows an LLM to learn to reason better, especially in
verifiable domains such as mathematics and programming.

A.2  Scaling Test-Time Compute

Test-time compute scaling improves the performance of language models by allocating additional
inference budget combining strategies such as search and voting. These approaches increase the
diversity of candidate answers and, when combined with majority voting or verifier models, allow
systems to reason for longer and arrive at more accurate solutions. This paradigm enables smaller
open models to match or even surpass larger ones, as demonstrated in OpenAI’s ol [18]. Test-time
scaling also integrates naturally with RLVR, since stronger verifiers directly improve inference-time
selection [[19-21]].

Verifiers [22] play a central role in these scaling-test time strategies, guiding inference and post-
training optimization with scalable, generalizable supervision signals. However, as sample sizes
grow, the effectiveness of verifier-guided approaches can decline [23]] due to misranking and pruning
errors, particularly on challenging or out-of-distribution tasks, highlighting the need for improved
calibration and hybrid candidate selection for robust scaling [23} [24]].

A.3 Efficient Verifiers

Several recent approaches explicitly target efficiency of the verifier used in RLVR, Chen et al. [25]]
introduces a small verifier (0.5B—3B params) that rivals closed source models like GPT-40 in answer
equivalence detection across 10+ LLMs and datasets. Building on this, Xu et al. [26] reduces
false negatives in rule-based verification by training a compact LLM verifier on false negatives and
positives, enabling more accurate reward estimates while maintaining computational efficiency when
used in tandem with rule-based methods like Cui et al. [27]. Other methods improve data efficiency
by training on feedback-rich rationales or by co-training verifiers with generators in reinforcement
learning frameworks [20, 27]]. Our verifier extends on this work by demonstrating that small yet
robust RL verifiers can deliver high calibration and accuracy while reducing computational cost.

B Dataset Preparation

LLM Response Generation We use the Curator package from Bespoke Labs for high-throughput
generation of LLM responses to these questions, by sending asynchronous inference requests [28]] to
an online inference server from vLLM [29]. This combination of tools handles continuous batching
and kernel optimizations to maximize GPU utilization.

Initial dataset selection Our dataset is prepared starting with the math and coding subsets from the
Skywork-OR1-RL-Data dataset [30, 31]], particularly the subsets sourced from NuminaMath [[10],
TACO [11]] and LeetCode [12]].
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Existing Dataset and Software Issues Though these datasets are meant to be easily verifiable, we
still find issues in the data when trying to check correctness. The Math-Verify package by default
returns False when there is an internal error in the correctness check, rather than exposing the error.
This is misleading, as a False correctness check should indicate that the model had a valid response
that was different than a valid ground-truth. Instead we find that some of the errors are because Math-
Verify cannot handle certain forms of equations found in the dataset. We adjusted the implementation
to account for this and removed examples that created errors.

NuminaMath is also a noisy dataset, as it is created through optical character recognition (OCR) on
pdf files of heterogeneous formats at scale. We refer to the Skywork Open Reasoner Technical Report
for full details of their initial filtering, but it generally involved heuristics to remove proof-based and
other open-ended questions; removed questions with 0% or 100% success-rate from a moderate-sized
model; and deduplicated questions based on embedding similarity. They also perform LLM-as-a-
judge quality assessment of questions with LLama-3.3-70B-Instruct and Qwen2.5-72B-Instruct, with
16 samples per model, and retain only questions with >9 positive judgments on a binary scale.

Additional Filtering Contributions To further increase the quality of correctness signal provided
to our verifier, we perform additional filtering. We eliminate questions that have multiple answers,
as the comparison becomes more challenging. We remove questions that have answers in multiple
choice format (such as A, B, C or D), as we find that the dataset is inconsistent where the question
asks for the multiple choice letter, but contains as ground-truth the option text from that choice, and
vice-versa. We finally use sympy [32] to parse the ground-truth answer and determine if the answer
evaluates to a single number. This checks that there are no free symbols or undefined functions; floats
and similar are retained.

The coding datasets are cleaner, and we simply use the Skywork version which checked that all test
cases pass in the original solutions, and remove samples with empty, incomplete, or corrupted test
cases.

Final Verification Methods For final math correctness checking, we use the Math-Verify package
[33], where the ground-truth answer is formatted into a latex environment before parsing, and extract
response from within \boxed{} delimiters for comparison (we request the use of \boxed{} in the
prompt). For code, we execute the test cases from the dataset on the generated code in a sandbox
environment [28]]. All test cases must pass for a code sample to be deemed correct.

C Calibrated Ratings

As illustrated in Figure|3| the ratings produced by the trained verifier exhibit strong alignment with
calibrated confidence estimates. The left panel reports results from the baseline QWEN3-8B model,
where ratings are overwhelmingly concentrated at the maximum value of 10, largely independent of
response correctness. The reference black line denotes the expected proportion of correct responses
for a perfectly calibrated verifier, whereas the red line reflects empirical accuracy within each rating
bucket. The flat red line at approximately 50% demonstrates that the baseline model offers little
discriminatory power across rating levels. By contrast, the right panel shows the trained verifier,
which distributes ratings more broadly across the scale and, crucially, yields accuracy curves (red
line) that track much more closely with the calibration reference (black line). This indicates that
training substantially improves the reliability and interpretability of verifier scores as confidence
measures.
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Figure 3: Left: baseline QWEN3-8B, where ratings are skewed toward 10 and show little correlation
with correctness. Right: trained verifier, which produces a broader spread of ratings and improved
calibration, with accuracy (red) aligning more closely with the ideal (black).

D Repeated Incorrect answers
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Figure 4: Model Bias Analysis This figure illustrates the response diversity of QWEN3-8B over 16
generation attempts on problems of varying difficulty. For moderately complex problems (pass @k
> 5), the model produces mostly correct solutions or diverse incorrect solutions (Y-axis count). In
stark contrast, when faced with a difficult problem that yields no correct answers (pass@ 16 == 0),
the model repeatedly generates the same incorrect solution, demonstrating a collapse into a narrow,
biased failure mode.
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