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Abstract

Exploring useful behavior is a keystone of reinforcement learning (RL). Existing
approaches to intrinsic motivation, following general principles such as information
gain, mostly uncover low-level interactions. In contrast, children’s play suggests
that they engage in semantically meaningful high-level behavior by imitating their
caregivers. To bridge this gap, we propose SEmaNtically Sensible ExploratIon
(SENSEI). SENSEI equips model-based RL agents with an intrinsic motivation
for semantically meaningful behavior. To do so, we distill a reward signal of
interestingness from annotations generated by large pre-trained Vision Language
Models (VLM). The agent learns to predict and pursuit these rewards using a world
model learned directly from image observations and low-level actions. We show
that in both robotic and video game-like simulations SENSEI manages to discover
a variety of meaningful behaviors. Furthermore, the developed world model later
enables the agent to quickly learn to solve downstream tasks. We believe SENSEI
provides a general framework for guiding agents from foundation model feedback,
a crucial research direction as openly available VLMs become more powerful.
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VLM: Image 1 is more interesting.
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VLM: Image 2 is more interesting.

Figure 1: SENSEI overview: (a) During pre-training we prompt a VLM to compare observations
(e.g. images) from an environment with respect to their interestingness. We distill this ranking into a
reward function (SENSEI), to guide the exploration of an embodied agent. (b) An exploring agent
not only receives observations (ot) and rewards (rt) from interactions with the environment but also
a semantic exploration reward (rsemt ) from SENSEI. (c) The agent learns a world model from its
experience to judge the interestingness (r̂semt ) of states without querying SENSEI.
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1 Introduction

Achieving intrinsically-motivated learning in artificial agents has been a long-standing dream, making
it possible to decouple agents’ learning from an experimenter manually designing tasks. Various
intrinsic reward definitions have been proposed, such as aiming for state space coverage (Bellemare
et al., 2016; Tang et al., 2017; Burda et al., 2019), novelty or retrospective surprise (Pathak et al., 2017;
Schmidhuber, 1991), or information gain of a world model (Pathak et al., 2019; Sekar et al., 2020;
Sancaktar et al., 2022). However, when learning from scratch agents face one fundamental problem:
just because something is novel or unseen does not necessarily mean that it contains useful information
(Dubey & Griffiths, 2017). Intrinsically-motivated exploration suffers from a chicken-or-egg problem:
how do you know something is useful before you have tried it and experienced its usefulness?

A potential solution in the age of Large Language Models (LLMs), is to use language as a cultural-
transmitter to inject “human notions of interestingness" (Zhang et al., 2023a) into RL agents’ explo-
ration. However, the most prominent works in this domain assume environments with text captioning
(Zhang et al., 2023b; Du et al., 2023), access to high-level actions (Zhang et al., 2023a; Du et al.,
2023) or exhaustive offline datasets (Klissarov et al., 2023). These assumptions are detached from
the reality of embodied agents, e.g. in robotics, with low-level control, where states are not captioned
by text but are instead unstructured, high-dimensional observations, e.g. images.

In this work we propose SEmaNtically Sensible ExploratIon (SENSEI), a framework for Vision
Language Models (VLM) guided exploration for model-based RL agents, illustrated in Fig. 1.
SENSEI starts with a short environment description and a dataset of observations (e.g. images)
collected through self-supervised exploration. A VLM is prompted to compare the observations
pairwise with respect to their “interestingness” and the resulting ranking is distilled into a reward
function. When the agent explores its environment, it receives semantically-grounded exploration
rewards from SENSEI. The agent learns to predict this exploration signal through its learned world
model and improves its exploration strategy based on these model-based predictions.

Our main contributions are as follows:
• We propose SENSEI, a framework for foundation model-guided exploration with world models.
• We show that SENSEI can explore rich, semantically meaningful behaviors with few prerequisites.
• We show how to reuse world models explored via SENSEI later for quickly learning to solve tasks

2 Method

We assume that SENSEI starts with a short description of the environment, a dataset of observations
Dinit ⊂ O collected from self-supervised exploration (Sekar et al., 2020; Sancaktar et al., 2022), and
access to a pre-trained VLM. Prior to task-free exploration, SENSEI distills a semantic exploration
reward function from VLM annotations (Sec. 2.1). During exploration, SENSEI learns a world model
(Sec. 2.2) and optimizes an exploration policy through model-based RL (Sec. 2.3).

2.1 Reward function distillation: MOTIFate your SENSEI
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Figure 2: Reward function distillation
We prompt GPT-4 to compare images
with respect to the interestingness to dis-
till a reward function Rγ .

First, SENSEI distills a semantically grounded intrinsic
reward function Rγ : O → R with learnable parameters γ
based on the preferences of a pretrained VLM. For this we
use an extension of VLM-MOTIF (Klissarov et al., 2023)
(see Fig. 2).

In a first phase of dataset annotation, we prompt the
VLM with an environment description and provide pairs
of observations from Dinit, asking the VLM which image
it considers to be more interesting. In a second reward
training phase, a reward function Rγ is derived from the
VLM preferences using preference-based RL (Wirth et al.,
2017). We use Rγ whenever the agent interacts with its
environment: the agent not only receives an observation
ot and reward rt after executing an action at, but also a
semantic exploration reward rsemt ← Rγ(ot) (see Fig. 1).
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2.2 World model: Let your SENSEI dream

We assume a model-based setting, i.e. the agent learns a world model from its interactions. Following
DreamerV3 (Hafner et al., 2023), we implement the world model as a Recurrent State Space Model
(RSSM) (Hafner et al., 2019).
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Figure 3: Learning an RSSM
world model from task-free ex-
ploration with SENSEI. For each
model state, the agent predicts two
intrinsic reward signals, i.e. epis-
temic uncertainty rdist and our dis-
tilled semantic reward r̂semt .

The RSSM encodes all interactions through two latent states,
a stochastic state zt and a deterministic memory ht and is
trained to learn reconstructions from its latent states. The RSSM
of DreamerV3 reconstructs images ot, episode continuations
ct, and rewards rt. For SENSEI, we additionally predict the
semantic exploration reward rsemt .

We could base exploration exclusively on predicted semantic
interestingness r̂semt of states. However, we still want our agent
to go beyond the examples shown in the initial datasetDinit and
not get stuck in any local optima. Thus, we combine our new
reward signal with epistemic uncertainty, an effective objective
for model-based exploration (Sekar et al., 2020; Pathak et al.,
2017; Sancaktar et al., 2022). Following Plan2Explore (Sekar
et al., 2020), we train an ensemble of N models with weights
{θ1, . . . , θN} to predict the next stochastic latent states. We
quantify epistemic uncertainty as ensemble disagreement rdist ,
by computing the variance over the ensemble predictions:

Ensemble: ẑnt ∼ gθn(ẑ
n
t | ht, zt,at) (1) Ep. uncertainty: rdist =

1

J

J∑
j=1

Var(ẑnj,t), (2)

Thus, the model learns to predict two intrinsic rewards (r̂semt , rdist ) for a state-action-pair (Fig. 3).

2.3 Exploration policy: Go and Explore with SENSEI

We could use a weighted sum of the two intrinsic reward signals, e.g. rsemt + βrdist , as the overall
exploration reward rexplt . However, ideally the weighting β should depend on the situation. In
uninteresting states we want the agent to mostly optimize interestingness (via rsemt ). However, once
an interesting state is found, the agent should branch out and discover new behavior (via rdist ). This
follows the principle of Go-Explore (Ecoffet et al., 2021), where the agent should first go to an
important subgoal and explore from there. We implement this using an adaptive threshold parameter
β ∈ {βgo, βexplore}, where βexplore > βgo, whose value depends on the following switching criteria:

rexplt = r̂semt +

{
βexplorerdist , if r̂semt ≥ Qk(r̂

sem);

βgordist , otherwise.
(3)

Qk computes the estimated k−th quantile of r̂sem. Thus, until a certain level of r̂sem is reached,
exploration mainly favors interestingness. After exceeding this threshold, exploration more strongly
favors uncertainty maximization. We learn the exploration policy based on rexplt using DreamerV3.

3 Results

Our experiments set out to empirically evaluate the following questions:
1. Does the distilled reward function Rγ interesting behavior? (Sec. 3.1)
2. Can SENSEI discover semantically meaningful behavior during task-free exploration? (Sec. 3.2)
3. Is the explored world model suitable for learning to efficiently solve downstream tasks? (Sec. 3.3)
We use two very different types of environments: 1) Robodesk (Kannan et al., 2021): a multi-task
robotics RL benchmark (details in Suppl. C.1). 2) MiniHack (Samvelyan et al., 2021): a sandbox
to design RL tasks based on NetHack (Küttler et al., 2020). In MiniHack, we consider two tasks:
fetching a key to unlock a small room with an exit (KeyRoom-S15) or fetching a key to open a hidden
chest in a maze of rooms (KeyChest) (details in Suppl. C.2).
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Figure 4: Semantic exploration rewards for an example trajectory in Robodesk: We showcase
rewards from VLM-MOTIF distilled from GPT-4 annotations using Plan2Explore (P2X) data. The
reward trajectories peak at the "interesting" moments of exploration, in this example opening a
drawer.

We compare SENSEI to Plan2Explore (Sekar et al., 2020), the current state-of-the art in model-based
exploration with pixel-based observations. The initial datasets Dinit that we use for annotations with
VLMs come from task-free exploration with Plan2Explore in MiniHack and Robodesk.

3.1 Reward function of SENSEI

We illustrate how the distilled VLM-MOTIF reward function Rγ assigns semantic exploration rewards
rsemt for an exemplary sequence from Robodesk in Fig. 4. As the robot is opening the drawer, rsemt
also increases. More examples for VLM-MOTIF distilled from GPT-4 annotations in Robodesk and
MiniHack tasks can be found in Fig. 10.

3.2 Task-free exploration
Next, we compare task-free exploration (500k steps) of SENSEI (GPT-4, Plan2Explore data Dinit) to
Plan2Explore in two tasks of MiniHack. For task-relevant events, the mean number of interactions
are plotted in Fig. 5. SENSEI focuses more on semantically interesting interactions, e.g. picking up a
key, opening a locked door, or finding the chest with a key, than Plan2Explore. As a result, SENSEI
completes both tasks more frequently than Plan2Explore during task-free exploration, as evident by
the higher number of collected rewards. Results for SENSEI in Robodesk are shown in Fig. 11.
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(a) interactions and rewards in KeyRoom-S15
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(b) interactions and rewards in KeyChest

Figure 5: Interactions in MiniHack: We plot the mean number of interactions with task-relevant
objects and the environment reward (unknown to the agents) collected by SENSEI, Plan2Explore
(P2X) and pure VLM-MOTIF (SENSEI with no information gain, i.e. β = 0) for KeyRoom-S15 (a)
and KeyChest (b). Error bars show the standard deviation (10 seeds).
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Figure 6: Downstream task performance in MiniHack: We plot the mean of the episode score
obtained during evaluation for the MiniHack tasks (a) KeyRoom-S15 and (b) KeyChest, with world
models learned from SENSEI vs. Plan2Explore (P2X) exploration. We also show results for learning a
task policy from scratch with DreamerV3, and the model-free baseline PPO. Shaded areas depict the
standard deviation (10 seeds) and we apply smoothing over the score trajectories with window size 3.

Is information gain crucial for SENSEI? We showcase results for exploration with pure semantic
reward rsemt , corresponding to SENSEI without information gain reward rdist (β = 0). In this ablation,
we emphasize the crucial role of the information gain objective. Optimizing only for the semantic
reward rsemt can cause the agent to get stuck in local optima and hinder its exploration around those
optima. Let’s for instance look at the KeyRoom task: the agent with pure VLM-MOTIF rewards
picks up the key many times throughout exploration as this also corresponds to a fairly high semantic
reward. However, it fails to explore the room well enough after picking up the key to find and open
the door and get to the exit, as reflected in the interaction metrics shown in Fig. 5.
3.3 Downstream task solving
We compare the world models learned from Plan2Explore to the world models of SENSEI in
MiniHack by running DreamerV3 (Hafner et al., 2023) and training a new task-based policy from the
imagined rollouts of the world models. As shown in Fig. 6, a previously explored world model from
SENSEI allows the agent to learn to solve the task faster than all other baselines. As SENSEI allocates
more resources to exploring the relevant dynamics in the environment compared to Plan2Explore,
e.g. opening the chest more frequently instead of just being near the chest, a more versatile world
model is learned that aids policy optimization. Compared to learning a task policy from scratch
with DreamerV3, we observe an improvement from task-free exploration with Plan2Explore only
in KeyRoom-S15. The model-free baseline PPO shows the first successes in the tasks early during
training but on average takes longer to learn to reliably solve the task. In KeyRoom, for example, PPO
takes more than 20M steps to consistently solve the task across all random seeds (full PPO curves
in Supp. Fig. 12). Thus, in this task SENSEI outperforms PPO by roughly two orders of magnitude.

4 Discussion
We have introduced SENSEI, a framework for guiding the intrinsically motivated exploration of
model-based agents through foundation models without assuming access to expert data, high-level
actions, or perfect environment captions. We demonstrate that SENSEI discovers more semantically
meaningful interactions, such as applying a key to open a chest, when exploring the video game-like
environments of MiniHack as well as in Robodesk compared to pure information gain-oriented
exploration. We showcase how learning a versatile world model with SENSEI enables the agent to
quickly learn to solve downstream tasks in the MiniHack KeyRoom-S15 and KeyChest.
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Supplementary Material for:
SENSEI: Semantic Exploration Guided by Foundation Models to

Learn Versatile World Models

A SENSEI: Implementation Details

A.1 World model

RSSM We base our RSSM implementation on DreamerV3 (Hafner et al., 2023). For MiniHack we
use the small model size setting with roughly 18M parameters (ht dimensions: 512, CNN multiplier:
32, dense hidden units: 512, MLP layers: 2). For the more complicated Robodesk environment, we
use the medium model size with around 37M parameters (ht dimensions: 1024, CNN multiplier:
48, dense hidden units: 640, MLP layers: 3). By default, when the input observation ot is only an
image, it is en- and decoded through CNNs. For MiniHack, we have an additional inventory flag that
is processed by a separate MLP, as is customary for the Dreamer line of work when dealing with
multimodal inputs (Wu et al., 2023). The MLP decoder outputs a Bernoulli distribution from which
we sample the decoded inventory flag.

Reward predictors To handle rewards of widely varying magnitudes, DreamerV3 uses twohot
codes predicted in symlog space when predicting rewards (Hafner et al., 2023). We use the same setup
for all reward prediction heads, i.e., for extrinsic rewards rit for task i or the semantic exploration
reward rsemt . During task-free exploration, the gradients from reward predictions are stopped to not
further affect world model training. We do this to keep the world model somewhat task-agnostic to
later reuse it for multiple tasks. Similarly, to avoid overfitting to the exploration regime, we also stop
the gradients from the semantic reward prediction heads.

Plan2Explore Both our Plan2Explore baseline as well as our ensemble predictors (Eq. 1) are based
on the re-implementation on top of DreamerV3. The most notable difference is that in original
Plan2Explore the ensemble is trained to predict image encodings (Sekar et al., 2020), whereas the
new version is trained to predict stochastic states zt. Recent re-implementations (Hafner, 2021;
Hafner et al., 2022; Gumbsch et al., 2024) also used Plan2Explore with ensemble disagreement over
zt as a baseline and verified a strong exploration performance.

Quantile estimation We update our estimate of the quantile Qk(r̂
sem) whenever we train the

exploration policy. For this, we compute the k-th quantile of r̂semt in each training batch (16× 16).
We keep an exponential moving average over these estimates with a smoothing factor of α = 0.99.

Reward weighting In practice, we compute exploration rewards (Eq. 3) using two reward factors
for each loss term

rexplt =

{
αexplorer̂semt + βexplorerdist , if r̂semt ≥ Qk(r̂

sem);

αgor̂semt + βgordist , otherwise.
(4)

i.e. α to scale r̂semt and β to scale rdist . When training the value function with DreamerV3, the scale
of the reward sources are normalized. To compute this normalization for the exploration policy we
use αexplore and βexplore of the high percentile region of interestingness (≥ Qk).

A.2 Semantic Reward Distillation: VLM-MOTIF

For the semantic reward function Rψ : O → R, we use a 2D-convolutional neural network to encode
the images. We use 3 convolutional layers, where we progressively increase the number of channels
to num_channels_max = 64. The output then gets downsampled via max pooling before going
into a two-layer MLP with hidden dimensions 256 & 512 and outputting the scalar reward value.
Additionally, in MiniHack we include inventory information via a separate multi-layer perceptron
(MLP) head, consisting of 2 layers with 512 hidden units. The extracted features are concatenated
with the image features and get further processed by the output MLP. The training hyperparameters
for all Rψ can be found in Suppl. B.
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A.3 Design Choice: Semantic Reward Predictions

World models typically encode and predict dynamics fully in a self-learned latent state (Ha &
Schmidhuber, 2018; Hafner et al., 2023; Hansen et al., 2024). Thus, for a world model to predict
rsemt at any point in time t, we need a mapping from latent states to semantic rewards. We chose
to directly predict r̂semt using a reward prediction head of the RSSM. Another option would be to
decode the latent state to images and use those as inputs for MOTIF. However, we believe this has
several disadvantages: 1) Decoding latent states to images is a computationally costly step that would
significantly decrease our SENSEI’s computational efficiency. 2) We would use an indirect target (the
image) instead of the direct target (r̂semt ) for training the semantic reward predictions. There would
be no gradient to correct somewhat reasonable image predictions that lead to inconsistent reward
predictions at a given state. 3) The image predictions of the RSSM can contain artifacts, blurriness
or hallucinations. Since MOTIF is only trained on real images from the simulation, we will likely
encounter out-of-distribution errors.

B Hyperparameters

We provide the hyperparameters used for the world model, exploration policy, VLM-MOTIF annota-
tions & reward model training as well as the environment-specific settings.

Name Value
Robodesk KeyRoom KeyChest

World Model
RSSM size M S S
Ensemble size N 8 8 8
Train ratio 512 512 512

Exploration policy
Quantile 0.75 - 0.85 -0.75 - 0.80 0.90 0.90
αexplore 0.1 - 0.1 - 0.05 - 0.01 0.3 0.25
βexplore 1 - 1 - 1 - 1 1 1
αgo 1 - 1 - 1 - 1 1 1
βgo 0 - 0 - 0 - 0 0.1 0.05

Annotations for MOTIF
VLM GPT-4 turbo (right) & GPT-4 omni (left) GPT-4 omni GPT-4 omni
Temperature 0.2 0.2 0.2
Dataset size 200K 100K 100K
Image res. 224×224 80×80 80×80
MOTIF Training
Batch size 32 - 64 - 32 - 32 32 32
Learning rate 10−5 - 10−5- 3×10−5 - 3×10−5 10−4 10−4

Weight decay 10−5 - 0 - 0 - 0 10−5 10−4

Environment
Action repeat 2 1 1
Episode length 250 600 800
Steps of exploration 1M 500K 500k

For the exploration policy in Robodesk we use different values for the four different variants tested.
The values listed here stand for, from left to right: GPT-4 with Plan2Explore data using two camera
angles for VLM annotations, GPT-4 with Plan2Explore data using only the right camera angle for
annotations, Oracle with Plan2Explore data, and Oracle with CEE-US data (corresponding to a more
interaction-rich exploration dataset for Dinit). The VLM-MOTIF training hyperparameters are also
listed in the same order.
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(a) Default observations (b) Our observations

Figure 7: Robodesk environment. We modify the default top-down camera view (a) to a side view
with less occlusion (b).

Image resolution For the world model we use 64× 64 images for all environments. However, for
the GPT annotations we use higher resolution images, as shown in the table. Inside the environment
step function, the rendering is performed at these higher resolutions, and this image is input to the
semantic reward function Rψ. The image is then scaled down to 64× 64 as part of the observation
that the RSSM is trained on.

Baselines We run DreamerV3 with the same world model setup as SENSEI and Plan2Explore. We
use an open source PPO (Schulman et al., 2017) implementation of Hafner (2024)2 optimized to work
well across multiple environments with a fixed set of hyperparameters (details in Hafner et al., 2023,
supplementary material). We build our RND (Burda et al., 2019) implementation on top of PPO. For
the predictor and target network we use a ResNet with 3 convolutional layers followed by 5 dense
layers. We only use the intrinsic reward to train a PPO agent. Intrinsic rewards are normalized as
outlined in Burda et al. (2019). While Burda et al. (2019) also normalize input observations through a
running statistics, we found that using LayerNorm at the input layer leads to slightly more interactions
in Robodesk.

C Environment Details

C.1 Robodesk

Robodesk (Kannan et al., 2021) is a multi-task RL benchmark in which a robot can interact with
various objects on a desk. We use an episode length of 250 time steps.

Observations Robodesk uses only an image observation, depicting the current scene, which we
scale down (64× 64 pixels). However, we found that the default top-down view often had occlusions
and was hard to interpret from a single image (Fig. 7a). Thus, we used a different camera angle
showing the robot from one side (Fig. 7b). With this view objects and the drawer were rarely occluded;
however, lights that turn on from button presses were not as visible anymore.

Actions The continuous 5-dimensional actions control the movement of the end effector. We use
an action repeat of 2 to speed up the simulation. Thus, 1M steps of exploration correspond to 2M
actions in the environment.

Interaction metrics We track how often the robot interacted with different objects to quantify
the behavior during exploration by tracking the velocity of joints and object positions. For buttons,
sliding cabinet, or drawer, we check if the joint position changes more than a fixed value (0.02). For
all other objects, we check if any of their x-y-z velocities exceed a threshold (0.02).

2https://github.com/danijar/embodied, version v1.2
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(a) KeyRoom-S15 (b) KeyChest (c) egocentric view

Figure 8: MiniHack : We consider two tasks KeyRoom-S15 (a) and KeyChest (b). The agent
receives an egocentric view of the environment as its observation (c).

Tasks We use the sparse reward versions of all the tasks available in the environment. For some
tasks, we add easier versions. All tasks describe interactions with one or multiple objects:
• Buttons: Pushing the red (push_red), blue (push_blue), or green (push_green) button.
• Sliding cabinet: Opening the sliding cabinet fully (open_slide).
• Drawer: Opening the drawer fully or opening it slightly (open_drawer_light). We introduced

the latter task.
• Upright Block: Lifting the upright block (lift_upright_block), pushing it off the table

(upright_block_off_table) or putting it into the shelf (upright_block_in shelf).
• Flat Block: Lifting the flat block (lift_flat_block), pushing it off the ta-

ble (flat_block_off_table), into the bin (flat_block_in_bin), or into the shelf
(flat_block_in_shelf).

• Both blocks: Stacking both blocks (stack).
• Ball: Lifting the ball (lift_ball), dropping it into the bin (ball_in_bin) or putting it into the

shelf (ball_in_shelf).

C.2 MiniHack

Observations In MiniHack multiple observation and action spaces are possible. We use egocentric,
pixel-based observations centered on the agent (±2 grids, example in Fig. 8c). In addition to that,
we provide the agent’s inventory. By default, in MiniHack the inventory is given as an array of
strings (UTF8 encoded), and different player characters have different starting equipment based on
the character classes of NetHack. We simplify this by providing only a binary flag that indicates if the
agent has picked up a new item. This is sufficient for the problems we consider, in which maximally
one new item can be collected and starting equipment cannot be used.

Environments Here we detail the environments we tackle:

In the benchmark KeyRoom-S15 problem (Fig. 8a), the agent needs to fetch a key in a large room
(15× 15 grids) to enter a smaller room and find a staircase to exit the dungeon. We use the default
action space but enable autopickup and therefore remove the PICKUP action. We use an episode
length of 600 time steps, which is 1.5 times longer than the default episode length.

KeyChest is a novel environment designed by us, based on KeyCorridorS4R3 from MiniGrid
(Chevalier-Boisvert et al., 2024) (see Fig. 8b). The agent starts in a corridor randomly connected to
different rooms. A key is hidden in one room and a chest in another room. The goal is to open the
chest with the key in the inventory. Object positions are randomized. The action space for this task
contains 5 discrete actions for moving the agent in 4 cardinal directions (UP, RIGHT, DOWN, LEFT)
and an OPEN-action to open a chest when standing next to it with a key in the inventory. We enable
auto-pickup, so no additional action is needed to pick up the key when stepping on it. We use an
episode length of 800 time steps.
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Rewards All environments use a sparse reward of rt = 1, which the agent only receives upon
accomplishing the task. A small punishment (rt = −0.01) is given, when the agent performs an
action that does not alter the screen.

Image remapping Empirically, we found that GPT-4 may encounter problems if we provide
the image observations as is. For example, when using the default character in the KeyRoom-S15
environment (Rogue), GPT-4 sometimes throws content violation errors. We suspect that this is
due to the character wearing a helmet with horns, which could be mistaken for demonic or satanic
imagery. Thus, we pre-processed the images before returning them from the environment. We
render all characters as the Tourists, a friendly looking character with a Hawaiian shirt and straw hat.
Furthermore, GPT-4 sometimes mistakes entrance staircases for exit staircases. Since the entrance
staircases serve no particular purpose and are not different from the regular floor, we remap all
entrance staircases to floors.

C.3 VLM prompting

We prompt the VLM with somewhat general descriptions of the environments that we consider. Here
we provide the full prompts for all environments.

C.3.1 Robodesk

In Robodesk, for each query, we provide two observation images (resolution 224 × 224) with the
following prompt:

Here are two images in a simulated environment with a robot in front
of a desk. Your task is to pick between these images based on how
interesting they are. Which image is more interesting in terms of
the showcased behavior? For context following points would constitute
interestingness: (1) The robot is currently holding an object in its
gripper. (2) The robot is pushing an object around or pushing a button
or opening the drawer or interacting with entities on the desk. (3)
Objects on the desk are in an interesting configuration: e.g. a
stack. Being far away from the desk with the robot arm retracted or
just stretching your arm without interactions, is a sign the image is
not interesting. Answer in maximum one word: 0 for image 1, 1 for
image 2, 2 for both images and 3 if you have no clue.

Figure 9: Left camera
observation in Robodesk
that is used only during
the annotation stage with
GPT-4.

Due to occlusions, we annotate the same pair from the initial dataset
Dinit with the same prompt using images from two camera angles: right
(Fig. 7b) and left (Fig. 9). A pair is deemed valid only if the GPT-4
response is the same across both camera angles, otherwise the pair and
the annotation are removed from the dataset. The VLM-MOTIF training
as well as the world model training are still executed using only the right
camera image, such that during free play with SENSEI we only rely on
the right camera images as input.

In Robodesk, we use GPT-4 Turbo (gpt-4-turbo-2024-04-09) for the
right camera annotations and GPT-4 omni (gpt-4o-2024-05-13) for
the left camera annotations. To cap the dataset size of pairs at 200K and
still make sure that we got contrastive pairs of interesting vs. uninteresting
behaviors, we pre-filtered the pairs using our Oracle of interestingness
for the Plan2Explore dataset. We believe that in future work this step can be omitted by simply
generating more random pairs and expanding the dataset size. After the two-angle image annotation,
we use the subset of the dataset where both left and right camera annotations agree. This corresponds
to 139409 pairs from the original 200K dataset, or 69.7% of it.
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C.3.2 Robodesk: Zero-Knowledge General Prompt

To demonstrate the generality of SENSEI, we also test a version with a general prompt (SENSEI
GENERAL), using a multi-turn strategy for getting the annotations for a pair of images. This version
of the prompt does not contain any external environment specific knowledge. First, we show a picture
from the robotic environment, and ask the VLM (gpt-4o-2024-05-13) to describe what it sees in
the scene using the following prompt:

I will show you an image from a simulated environment. Describe the
environment to me and what you deem the agent and then explain what
types of behavior / observations would be useful and interesting for the
agent to explore in this setting?

We obtain the following response from GPT:

The image depicts a simulated environment featuring a robotic arm
interacting with a table that has various objects on it. The objects
include buttons of different colors, a red ball, a green cube, and a
blue rectangular block. The setting appears to be designed for testing
robotic manipulation and interaction with objects.
Agent: The robotic arm is the agent in this environment. It is likely
programmed to interact with the objects on the table, possibly for tasks
involving sorting, stacking, or pressing buttons.
Useful and Interesting Behaviors/Observations: 1. Object Manipulation:
- Grasping and moving objects like the ball, cube, and block. - Testing
different grips and force applications to handle objects of various
shapes and weights. 2. Button Interaction: - Pressing buttons to
observe effects, such as changes in the environment or triggering
specific actions. - Learning which buttons correspond to which
actions or outcomes. 3. Spatial Awareness: - Navigating the arm
around the table without knocking over objects. - Understanding the
spatial relationship between objects for tasks like stacking. 4.
Task Learning: - Completing specific tasks like sorting objects by
color or shape. - Learning sequences of actions to achieve complex
goals. 5. Feedback and Adaptation: - Using sensory feedback to adjust
actions in real-time. - Adapting to changes in the environment, such as
objects being moved or removed. 6. Exploration and Experimentation: -
Experimenting with different strategies for interacting with objects.
- Exploring the effects of different actions on the environment.
These behaviors would help the agent develop skills in manipulation,
decision-making, and adaptive learning, which are crucial for more
complex real-world applications.

Next, we show the pair of images that we would like GPT-4 to annotate with the following prompt:

Now I will show you two images. Based on your answer, choose which one
of these images is more interesting in terms of the showcased behavior?
Answer in maximum one word: 0 for image 1, 1 for image 2, 2 for both
images and 3 if you have no clue.

We obtain the final annotation for the pair as the answer to this last prompt.

In this experiment, the environment description is generated using the first prompt only once. For
subsequent annotations, the initial question-answer pair is included in GPT-4’s context window as
history. In the second turn, the new image pair is presented using the final prompt. This approach is
more cost-efficient, as in-context tokens are less expensive than generated ones, and time-efficient, as
generating the full environment description sequentially requires more processing time. With this
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multi-turn strategy, annotating each image pair costs approximately $0.004, compared to $0.002 per
annotation with the single-turn prompt.

C.3.3 MiniHack

For MiniHack we provide two observation images (resolution 80× 80) and the inventory. For the
inventory, we only consider items that were picked up and not items in the agent’s starting equipment3.
We provide the inventory as text descriptions. The different options are shown in purple.

Your task is to help play the video game MiniHack. MiniHack is a
roguelike game where an agent needs to navigate through rooms and
escape a dungeon. For succeeding in the game, finding items, collecting
items and exploring new rooms is crucial. Images are egocentric around
the agent, who is standing on a dotted blue floor. Your task is to
pick between two game states, composed of images and an inventory
descriptions, based on how interesting and useful they are.
Is there any difference between the first and second game state in
terms of how interesting it is? The images depict the current view.
{The first agent has a key named The Master Key of Thievery in their
inventory., The second agent has a key named The Master Key of Thievery
in their inventory., Both agents have a key named The Master Key
of Thievery in their inventory., Both agents have no items in their
inventory.}‚
Think it through and then answer in maximum one word: 0 if the first
state is more interesting, 1 if the second state is more interesting, 2
if both states are interesting and 3 if nothing is interesting or you
are very unsure.

For MiniHack we use GPT-4 omni (gpt-4o-2024-05-13).

C.4 Oracle for Interestingness

In Robodesk, we also use an Oracle of interestingness to annotate the pairs as an ablation (see
Suppl. D.4). Our goal here is to showcase an upper-bound of performance on SENSEI without the
noisiness of VLMs. For the Oracle, we deem a state interesting if: (1) any one of the entities are
in motion (here only for the ball we make an exception that the ball should be in motion with the
end effector close to it as the ball in the environment is unimpeded by friction), (2) if the drawer is
opened, (3) if the drawer/sliding cabinet is not yet in motion, but the end effector is very close to their
handles, (4) if the upright and flat blocks are not yet in motion but the end effector is very close to
them (almost touching), (5) if the stacking task is solved. With these statements, we essentially cover
the range of tasks defined in the Robodesk environment, as they are shown in Fig. 15.

D Extended Results

D.1 Distilled Motif visualized

We illustrate how the distilled VLM-MOTIF reward function Rγ assigns semantic exploration rewards
rsemt for exemplary sequences from Robodesk and MiniHack, as shown in Fig. 10. For Robodesk,
we see that as the robot is interacting with objects, rsemt also increases for the examples of opening
the drawer and interacting with the blocks.

In the Minihack environments, we clearly see jumps in reward rsemt for significant events. Frames 2
& 3 in KeyRoom-S15 and KeyChest respectively, are right before the key is picked up. Later, rsemt
increases further once the agent is at the door or chest with a key (Frame 3 in KeyRoom-S15 and
Frames 4&5 in KeyChest).

3The starting equipment is taken from the NetHack game and irrelevant and inaccesible in our tasks.
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(b) semantic exploration reward
Figure 10: Semantic exploration rewards for example trajectories: From top to bottom we show
example trajectories for Minihack KeyRoom-S15 and KeyChest (see Fig. 8 for map views) and two
Robodesk episodes. We showcase rewards from VLM-MOTIF distilled from GPT-4 annotations using
Plan2Explore (P2X) data. The reward trajectories peak at the “interesting” moments of exploration,
such as opening a drawer in Robodesk or picking up the key in MiniHack.

D.2 Robodesk: Task-free Exploration

We analyze exploration in the challenging visual control suite of Robodesk. Here we compare 1M
steps of exploration in SENSEI with Plan2Explore and Random Network Distillation (RND, Burda
et al., 2019), a strong model-free exploration approach that uses prediction errors of random image
embeddings as intrinsic rewards to maximize state space coverage.

For Robodesk, in order to deal with occlusions, we use images from two camera angles for GPT
annotations. We only keep the GPT annotation if the ranking for both agree. The world model and
the distilled VLM-MOTIF network use only the right camera image, as in Plan2Explore or RND
(see Suppl. C.3.1 for more details). Fig. 11 plots the mean number of object interactions during
exploration for the two methods. On average, SENSEI interacts more with most available objects than
the baselines. As a result, in a majority of tasks SENSEI receives more task rewards during exploration
than Plan2Explore or RND (shown in Suppl. D.5). Qualitatively, we observe that Plan2Explore
mostly performs arm stretches4, whereas RND mostly moves the arm around in the center of the
screen, occasionally hitting objects or buttons. Thus, our semantic exploration reward seems to lead
to more meaningful behavior than pure epistemic uncertainty-based exploration, even in a low-level
motor control robotic environment.

Is an environment description by a human expert necessary for SENSEI? We investigate
whether SENSEI relies on the external environment description provided by us, and compare against

4Interestingly, this can still lead to solving tasks during exploration. For example, stretching the arm against
the sliding cabinet can close it, and stretching the arm toward the upright block can push it off the table.
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Figure 11: Interactions in Robodesk: We plot the mean over the number of interactions with any
object during 1M steps of exploration for SENSEI (with an environment description provided by
us), a more general variant of SENSEI with a VLM-generated environment description (SENSEI
GENERAL), Plan2Explore (P2X), and Random Network Distillation (RND). Error bars show the
standard deviation (3 seeds).
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Figure 12: PPO performance in MiniHack: We plot the mean episode score obtained by PPO
during evaluation for the MiniHack tasks KeyRoom-S15 (a) and KeyChest (b). Shaded areas depict
the standard deviation (5 seeds). We apply smoothing over the score trajectories with window size 20.

a version of SENSEI using a more general prompting strategy (SENSEI GENERAL). During data
annotation, SENSEI GENERAL first prompts the VLM for an environment description given an image
of the simulation and uses this context to annotate the dataset of preferences (details in Suppl. C.3.2).
As shown in Fig. 11, SENSEI GENERAL interacts roughly as often with the relevant objects as SENSEI,
outperforming both exploration baselines Plan2Explore and RND in terms of overall number of
object interactions. Thus, injecting external expert knowledge about the environment to the prompts
is not needed to train SENSEI and this step can be fully automated by a VLM. This further cements
the generality of our approach.

D.3 Minihack: Extended Results

Figure 12 shows the full trajectory of evalutation scores for Proximal Policy Optimization (PPO,
Schulman et al. 2017) in Minihack when trained until convergence. While PPO manages to learn to
solve all tasks, it can be much less sample efficient than the model-based agents we evaluated (see
Fig. 6), especially in KeyRoom-S15. Here SENSEI outperforms PPO in terms of sample efficiency in
one to two orders of magnitude.
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Figure 13: Interactions in Robodesk: We plot the mean over the number of interactions with objects
in the environment during exploration for different versions of SENSEI (Oracle vs. VLM, CEE-US
(Sancaktar et al., 2022) vs. Plan2Explore to create the data to label Dinit) and Plan2Explore. We also
ablate SENSEI using only the right camera angle for VLM annotations on the Plan2Explore dataset.
Error bars show the standard deviation (3 seeds).

D.4 Robodesk: SENSEI Ablations

In Robodesk, we compare different versions of SENSEI in order to analyze the effect of the VLM
and the initial exploration data on SENSEI performance (Fig. 13). First, we showcase SENSEI results
when annotating the initial exploration dataset from Plan2Explore with only the right camera images.
In this case, we use the whole 200K pairs in the dataset, without any pruning. In another ablation,
we replace the VLM (GPT-4) with a hand-crafted Oracle (see Suppl. C.4 for how the oracle is
computed) for annotating the pairs. After the oracle annotations, we distill these preferences into
VLM-MOTIF for SENSEI, following the same procedure as before. Furthermore, we compare two
initial datasets Dinit of self-supervised exploration collected either by CEE-US (Sancaktar et al.,
2022) or by Plan2Explore for the oracle SENSEI versions. CEE-US uses vector-based position of
entities for information-gain-based exploration, in comparison to Plan2Explore, which works on the
pixel-level. Due to the privileged inputs, Dinit

CEE−US contains more complex interactions. We compare
1M steps of exploration with the four versions of SENSEI and Plan2Explore.

On average, all versions of SENSEI interact more with the objects than Plan2Explore and our semantic
exploration reward seems to lead to more object interactions than pure epistemic uncertainty-based
exploration. SENSEI with Oracle for both the Plan2Explore and especially the CEE-US initial datasets
show the most object interactions. We believe this further showcases that the VLM provides a much
noisier signal of interestingness, making it harder to optimize for.

The initial exploration dataset Dinit influences with which objects SENSEI interacts. Qualitatively,
we observe Plan2Explore performing mostly arm stretches. Interestingly, this can still lead to solving
tasks during exploration. For example, stretching the arm against the sliding cabinet can close it,
and stretching the arm toward the upright block can push it off the table. As a result, SENSEI with
Plan2Explore Oracle focuses mainly on the sliding cabinet and the upright block, reinforcing the
existing trends in the initial dataset from which VLM-MOTIF is distilled.

For CEE-US data, Oracle SENSEI interacts more with the other objects, such as the ball and the flat
block, as well as the drawer. The difference between the Oracle annotator SENSEI versions with
CEE-US vs. Plan2Explore data showcases that there is still a lot to be gained from a richer initial
dataset for SENSEI, which could be obtained via multiple rounds of SENSEI exploration.

If a VLM annotates images instead of the Oracle, SENSEI shows similar behavioral trends, but
overall less object interactions, such that neither of the GPT-4 annotations on the Plan2Explore data
completely match the performance of the oracle annotator.

Finally, when we compare the performance for SENSEI using GPT-4 annotations with two-angle
camera images vs. only the right camera angle image, we see that the two-angle version performs
better in terms of drawer interactions. This is expected since the drawer is more clearly visible in the
left camera view. However, as the ball and blocks are mainly initialized on the right side of the table,
the pure right camera angle SENSEI generates more interactions with these objects during exploration.
Another factor here is that for the right camera angle we retain all 200K pairs for VLM-MOTIF
distillation, whereas we only keep ca. 70% of the pairs in the case of SENSEI using both cameras for
annotation.
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D.5 Robodesk: Rewards
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Figure 14: Collected rewards
for open_drawer_light dur-
ing exploration with SENSEI,
P2X, and RND (3 seeds).

In addition to interaction metrics, we count the number of times task
rewards are collected during exploration. We observe that for the ma-
jority of tasks SENSEI solves more tasks in the environment during
play compared to Plan2Explore. Note that for the open_slide task
you need to open the slide fully in one direction, which is achieved in
abundance in Plan2Explore runs by simply stretching the arm. The
full interaction metrics of exploring how the slide moves left-right
is not necessarily reflected in the task rewards, as can be seen in
comparison to Fig. 11. Similar arguments also apply for opening
the drawer fully vs. opening and closing the drawer more dynam-
ically. Additionally as the bin is not really visible in our camera
angle, solving in_bin tasks are more due to the objects that go off
the table landing by chance in the bin for all methods, such that
higher statistics for off_table rewards also lead to higher in_bin
rewards.

D.6 Robodesk: VLM-MOTIF with General Prompt

In this section, we investigate the distilled reward function when using a general prompting strategy
(SENSEI GENERAL, see Suppl. C.3.2). As shown in Fig. 16, the semantic reward rsem

t for the general
prompt seems to show a high positive correlation or qualitatively matches with the VLM-MOTIF
distilled using the specialized prompt in Robodesk (see Suppl. C.3.1). Thus, we manage to distill a
reward function that peaks at interesting moments of exploration without injecting any environment
specific knowledge into the prompt.

D.7 Robodesk: Baselines

We present two new baselines in Robodesk: RND trained with PPO and pure VLM-MOTIF, and
analyze the interaction metrics in Fig. 17. On average, SENSEI interacts more with most available
objects than the baselines. RND mostly moves the arm around in the center of the screen, occasionally
hitting objects or mostly buttons. It is important to note that the robot arm in Robodesk is mostly
initialized close to the buttons. Pure VLM-MOTIF is an ablation of SENSEI without any information
gain objective. Here, we see the importance of the information gain reward to ensure diverse
exploration. Unlike SENSEI, we see that VLM-MOTIF interacts with specific entities: mostly the
buttons, the drawer and the flat block. The lack of interaction with the cabinet, the upright block and
the ball are expected as these entities are spatially further away from the robot initialization pose.
Once high semantic rewards are found in the vicinity by interacting with the drawer and buttons,
there is no incentive for pure VLM-MOTIF to explore further. On the other hand SENSEI aims to
discover interesting and yet novel behaviors, ensuring better coverage across the different useful
behaviors in the environment.

D.8 Robodesk: SENSEI without Dynamic Scaling and Analyzing Hyperparameter Sensitivity

In this section, we ablate the dynamic scaling of the semantic reward rsemt and the information
gain reward rdist terms in SENSEI. In SENSEI, we adjust the weight of these two terms based on
whether rsemt has reached the high percentile region of interestingness (rsemt ≥ Qk), as per equation
Eq. 4. In this ablation, we instead use a linear combination with fixed weights α and β, such that the
exploration reward is given by:

rexplt = αrsemt + βrdist . (5)

We present the results in Fig. 18 for 6 different sets of fixed weights. First of all, we observe that none
of the fixed scale settings outperform SENSEI nor do they consistently perform as well as SENSEI.
Second of all, we see that the exploration behavior is very sensitive to the choice of the weights α
and β. For larger α values, the behavior collapses to mostly interacting with the drawer, buttons and
the flat block, with larger fluctuations. This mode is very similar to the case of pure VLM-MOTIF
presented in Fig. 17.
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Figure 15: Robodesk environment rewards: We plot the mean number of sparse rewards (successful
task completions) discovered during 1M steps of task-free exploration for all tasks for Plan2Explore,
SENSEI, pure VLM-MOTIF, and the RND baseline.

Next, we test the hyperparameter sensitivity of SENSEI with dynamic scaling of the reward weights.
We see in Fig. 19, that across all 4 hyperparameter configurations, SENSEI is better or at least on
par with Plan2Explore, and we don’t observe any behavior collapse as in the fixed scale setting. We
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(b) semantic exploration reward
Figure 16: Semantic exploration rewards for example trajectories with VLM-MOTIF using
general vs. specialized prompts: For five example Robodesk episodes, we showcase VLM-MOTIF
semantic rewards distilled from GPT-4 annotations using a prompt specialized to the environment
vs. a general prompt using multi-turn annotations using the same dataset (data from Plan2Explore
runs). The reward trajectories for both the general and specialized prompts peak at the “interesting”
moments of exploration, such as opening a drawer or pushing the blocks. With zero external
knowledge injection, the general prompt version of VLM-MOTIF is highly correlated with its
specialized prompt counterpart.

argue that although the dynamic scaling introduces additional hyperparameters, the overall behavior
is much more robust and less dependent on hyperparameter tuning.

Table 1: Hyperparameter configurations for SENSEI presented in the main experiments and the 3
other configurations that are shown in Fig. 19.

SENSEI SENSEI HP1 SENSEI HP2 SENSEI HP3

Quantile 0.75 0.80 0.85 0.75
αexplore 0.1 0.01 0.1 0.05
βexplore 1 1 1 1
αgo 1 1 1 1
βgo 0 0 0 0
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Figure 17: Interactions in Robodesk: We plot the mean over the number of interactions with any
object during 1M steps of exploration for SENSEI, Plan2Explore (P2X), pure VLM-MOTIF and
Random Network Distillation (RND) trained with a PPO policy, as a model-free exploration baseline.
Error bars show the standard deviation (3 seeds).

D.9 Computation

SENSEI has 3 phases: (1) annotation of data pairs (offline), (2) reward model, i.e. VLM-MOTIF,
training (offline), (3) online RL training with environment interactions (DreamerV3). All experiments
were performed on an internal compute cluster.

Dataset Annotation The annotation of data pairs is done using the OpenAI API, such that a
single CPU is sufficient. For instance for Robodesk with a dataset size of 200K pairs, we par-
allelized this over 200 CPUs, where we annotated 1K pairs each, which took approximately 40
minutes. Note that annotations are fully offline and do not affect the runtime of SENSEI itself.
Each annotation using the single-turn strategy cost $0.002 with gpt-4o-2024-05-13 and $0.004
with gpt-4-turbo-2024-04-09. The multi-turn prompting for the zero-knowledge Robodesk
annotations also cost $0.004 per pair with gpt-4o-2024-05-13.

Reward Model Training After annotating the dataset, we train the VLM-MOTIF network using
a single GPU for 50 epochs. Using e.g. Tesla V100-SXM2-32GB, this took 20min. We ran a grid
search over different hyperparameters for VLM-MOTIF training (batch size, learning rate, weight
decay, network size), testing for a total of 18 different combinations, and we chose the reward model
with the best validation loss to use in SENSEI runs.

Online Model-based RL Training SENSEI is built on top of DreamerV3, just like our main
baseline Plan2Explore. On a NVIDIA A100-SXM4-80GB, SENSEI runs at ca. 7.5Hz, Plan2Explore
runs at ca. 10Hz and pure VLM-MOTIF runs at ca. 8.7Hz.
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Figure 18: Comparing Interactions in Robodesk between SENSEI and Fixed Scaling of Rewards:
We plot the mean over the number of interactions with any object during 1M steps of exploration for
SENSEI and Plan2Explore (P2X) and an ablation of SENSEI, where we do not dynamically adjust
the weight of the reward terms based on the current semantic reward. For this ablation, reward
is computed as rexplt = αrsemt + βrdist with fixed weights α and β. Error bars show the standard
deviation (3 seeds).
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Figure 19: Comparing Interactions in Robodesk for SENSEI with different hyperparameters:
We plot the mean over the number of interactions with any object during 1M steps of exploration for
SENSEI (winner hyperparameter configuration) and Plan2Explore (P2X) and SENSEI with different
hyperparameters as specified in Table 1. Error bars show the standard deviation (3 seeds).
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