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ABSTRACT

Graph Neural Networks (GNNs) propagate information locally through message
passing. While local propagation is often sufficient for short-range tasks, per-
formance can degrade when distant interactions are required. In this paper, we
introduce a diagnostic metric that quantifies the role of long-range propagation.
The metric is derived from margin-aligned sensitivities, providing an interpretable
measure of the dominance of one-hop neighbors in margin-relevant influence. Us-
ing this diagnostic, we show that the need for long-range propagation is dataset-
and architecture-dependent, rather than universal. We further demonstrate that
this diagnostic metric is predictable from well-studied graph-theoretic measures,
aligning with the assumptions of rewiring-based approaches. Finally, we show
how the diagnostic can be leveraged during training: we design an additional layer
that selectively incorporates sensitivity to long-range dependencies and can be ap-
plied to any standard GNN backbone. Experiments on both node- and graph-level
benchmarks demonstrate consistent gains over rewiring-based methods, without
altering the original graph topology.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Goller & Kuchler, (1996} [Scarselli et al.l 2008; Bruna et al.,
2014) learn from relational structure by propagating and aggregating messages (Gilmer et al., 2017,
achieving strong performance across chemistry, social networks, recommendation, and spatiotem-
poral forecasting (Zhou et al., 2020; Duval et al.|[2023;|Sharma et al., [2024; Wu et al., 2022} |Castro-
Correa et al) [2024). When task-relevant evidence lies many hops away, however, performance
can degrade. A leading explanation is over-squashing (Alon & Yahav, 2021} [Topping et al., 2022}
Di Giovanni et al., 2023)): signals routed through sparse or bottlenecked regions are compressed into
fixed-size embeddings, diluting information.

Prior work analyzes over-squashing from two angles (Arnaiz-Rodriguez & Errical [2025). The struc-
tural view |Alon & Yahav| (2021)); Topping et al.[(2022) attributes failure to graph bottlenecks, e.g.,
negative curvature (Topping et al., [2022)), low effective resistance (Black et al.| 2023)), and small
spectral gaps (Karhadkar et al.,|2023) and typically intervenes by rewiring the graph structure (Attali
et al., 2024b; |Akanshal [2025). The other angle is the computational (i.e., model) bottlenecks per-
spective, where the limitation stems from message passing itself: finite-depth, locality aggregations
restrict the receptive field and progressively compress signals, so information from long-distance
nodes is hard to both reach and preserve (Di Giovanni et al. 2023} |Arnaiz-Rodriguez & Errica,
20235). These perspectives are complementary, yet it often remains unclear whether accuracy gains
after rewiring truly stem from alleviating over-squashing, or when increasing long-range influence
is desirable for the task at hand.

We take a task-aligned view and argue that dependence on long-range information is inherently task-
and node-specific. Rather than universally amplifying long-range influence, interventions should be
adaptive. To ground this claim, we introduce a margin-aligned, Jacobian-based sensitivity index
that quantifies, for a trained GNN, how a node’s (or graph’s) true classification margin responds
to one-hop versus multi-hop perturbations (. The resulting long-range capture index p,, € [0, 1]
(with graph-level aggregate p) is a bounded, interpretable “share-at-one-hop” measure that directly
traces computational limitations of message passing.
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Using this diagnostic, we show that GNNs implicitly operate in local and non-local regimes: some
nodes behave as if decisions are locally controlled (high p,,), others as if non-local inputs dominate
(low p,,). Importantly, the model’s performance co-varies with this sensitivity in a task-dependent
manner: across benchmarks and backbones, the margin—sensitivity correlation is approximately
linear, but its sign and magnitude vary with dataset and architecture. In some settings, reducing the
one-hop share helps; in others, preserving locality is beneficial. This organization, along a single
sensitivity axis, explains when long-range propagation aids or harms prediction (§3)).

We then uncover a bridge to graph structure: the true sensitivity defined via the margin can be
predicted from topology alone (§4.1)). A sparse linear model (Lasso) on structural indicators widely
used in structural rewiring (e.g., curvature and effective resistance) yields accurate, structure-only
proxies for p,, at node and graph levels. This link connects structural accounts of over-squashing to
model-level behavior and enables label-free estimation at test time.

Finally, we convert these insights into a minimal intervention at readout. We introduce FLAN
(§4.2), a rewiring-free, lightweight long-range layer that conditions the classifier on the structure-
predicted proxy p,. The layer applies a small translation and a one-parameter diagonal reweighting
of the encoder representation, effectively letting the readout adapt across local vs. non-local regimes
while keeping the encoder and topology unchanged. Empirically, this plug-in improves accuracy
across GNN backbones and datasets (§53), offering a simple and time-efficient alternative to graph
rewiring.

The main contributions of this paper are summarized as follows:

1. We introduce a task-aligned, Jacobian-based diagnostic of long-range sensitivity at node
(py) and graph (pg) scales.

2. We demonstrate that this diagnostic is accurately predicted from graph structure via a sparse
structural model, linking structural bottlenecks to trained model sensitivity.

3. We provide cross-dataset/backbone evidence that margins vary monotonically along the
sensitivity axis, with task-dependent sign.

4. Finally, we design FLAN, a rewiring-free, parameter-efficient conditioning layer that lever-
ages the predicted sensitivity p,, to improve performance without changing the graph or
increasing depth.

Our study contributes to a unified understanding of over-squashing: structural features forecast a
trained model’s long-range sensitivity; errors organize along this sensitivity axis; and an adaptive,
low-capacity correction exploits this organization to deliver consistent gains (Arnaiz-Rodriguez &
Errical 2025} Bechler-Speicher et al., 2025).

Reproducibility. The source code to reproduce our experiments is availabl

2 BACKGROUND AND RELATED WORK

We start by introducing notations used throughout this paper. Let G = (V, E be a simple, undirected,
unweighted graph with node-feature matrix H € RIVI*4, Let A € {0, 1}IVI*IVI be its adjacency
matrix, D = diag(d,).cy the degree matrix, P = D! A the transition matrix and the normalized
Laplacian is Lyorm = I — D™/2AD /2, For u € V, we denote its neighborhood by N '(u) =
{veV:(uv)eE}.

Message passing in GNNs. GNNs are built upon the message passing mechanism, in which node
representations are refined through local interactions (Gilmer et al.| [2017). At each layer, a node
aggregates information from its neighbors using a permutation-invariant function, followed by a
learnable transformation. Formally, for a node ¢ € V), its representation at layer k£ 4 1 is defined as:

k k k
b =6 (0", @ v@m) |,
JEN (1)

'https://anonymous.4open.science/r/FLAN_ICLR_2026-3E65
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where hgk) denotes the representation of node i at layer k, 1) the message function, and ¢ the update

function. The operator € denotes a permutation-invariant aggregation function such as summation,
mean, or maximum. This iterative procedure allows GNNss to integrate both feature and structural
information from local neighborhoods. Message passing is effective when task-relevant information
is local and can be aggregated within only a few hops, which is typically the case in homophilic
graphs (Zhu et al.,|2021). For long-range dependencies, communication across a distance d requires
O(d) message-passing layers (Barcel6 et al 2020). Increasing the depth in this way amplifies
over-squashing (D1 Giovanni et al.,|2023; |/Akansha, [2025)) and over-smoothing (Rusch et al.| 2023;
Giraldo et al., 2023)).

Over-squashing, long-range interactions, and graph rewiring. Over-squashing occurs when in-
formation from exponentially large neighborhoods must be compressed into fixed-size node em-
beddings within a limited number of message-passing layers (Alon & Yahavl, [2021}; Topping et al.|
2022). As the receptive field expands with depth, the aggregation function is forced to encode ever
larger amounts of information into a bounded representation, creating a bottleneck that severely
limits the ability of GNNs to capture long-range dependencies, particularly in graphs with sparse
connectivity or complex topology.

Graph rewiring addresses over-squashing and long-range dependencies by modifying the input
topology of a GNN, alleviating structural bottlenecks that hinder the propagation of information
across distant nodes. Early work focuses on curvature-based rewiring, adding edges around regions
with highly negative discrete curvature that indicate bottlenecks (Topping et al.,[2022;|Giraldo et al.,
2023} [Nguyen et al., 2023} [Fesser & Weber, |2023). Because discrete curvature measures are inher-
ently local (Forman) 2003} |Ollivier, [2007} [Samal et al., 2018)), subsequent approaches have targeted
more global signals, either increasing the spectral gap to improve connectivity and mixing (Banerjee
et al.| 2022; [Karhadkar et al.l|2023)) or minimizing effective resistance, which models the difficulty
of information transmission between node pairs (Black et al.,|[2023)).

More recently, a complementary line of work incorporates node features into the rewiring tech-
niques. For example, Delaunay-based rewiring reconstructs the graph by performing a Delaunay
triangulation in feature space, thereby removing edges that exhibit extreme discrete curvature (At-
tali et al.| [2024a;2025)). Other approaches jointly modify the topology and the initial node features
to maximize the spectral alignment between the feature signal and the structural information (Link-
erhigner et al., 2025)). Finally, intra-community rewiring guided by the cosine similarity of node fea-
tures has been proposed to densify connections among similar nodes while preserving community-
level structure (Rubio-Madrigal et al., [2025).

One can distinguish between different types of bottlenecks. Structural bottlenecks arise from the
graph’s topology (narrow cuts, hubs, or low expansion) that restrict information flow regardless of
the model. Computational bottlenecks stem from the message-passing computation itself: even on
favorable graphs, signals and gradients from distant nodes attenuate through repeated local updates.
Most existing metrics target structural limits; far fewer directly capture the computational one. The
computational bottleneck is often studied via Jacobians : [Topping et al.| (2022); D1 Giovanni et al.
(2023) show that node-to-node sensitivity decays exponentially with graph distance, explaining the
difficulty of propagating long-range information in GNNs.

3  GNN PERFORMANCE AND LONG-RANGE DEPENDENCIES

In this section, we extend the study of long-range effects and over-squashing by grounding the anal-
ysis in the model’s Jacobian (Topping et al.,|2022; Di Giovanni et al.,[2023; |Giovanni et al., [2024).
Rather than focusing on pairwise dependencies between individual nodes, we directly quantify both
the distance (in graph terms) and the amount of task-relevant information that a node’s representation
can capture in a classification task. Concretely, we aggregate margin-aligned Jacobian sensitivities
into a one-hop dominance measure, quantifying how much of the margin-relevant signal is cap-
tured locally rather than over longer ranges. We then examine how this long-range signal relates
to architectural performance. Importantly, instead of relying solely on accuracy, we evaluate with
the classification margin, which provides a finer view of confidence and decision robustness. This
margin-aligned perspective allows us to connect distance-structured sensitivity to accuracy gains of-
fering a clear diagnostic of when and how architectures benefit from long-range information. Below,
we elaborate on the different steps.
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Figure 1: Correlation between classification margin and the long-range capture index p,,: (a) COR-
NELL (node classification), (b) MUTAG (graph classification), (¢c) CHAMELEON (node classifica-
tion). Higher p, values (dominant 1-hop contribution) tend to coincide with smaller margins when
long-range evidence is required.

Task-aware node margin. For node classification, let z,, € R be the logits predicted for node
u € V with ground-truth label y,, € {1,...,C}. The node-level margin is defined as

my = Zu[yu] - gléayxzu[c]- (1)

The margin is directly aligned with the downstream task: m,, > 0 indicates correct classification;
larger values reflect a larger separation from the closest competing class. For graph classification,
we similarly define a graph-level margin mq. Specifically, letting z; € R denote pooled graph
logits with label yq, we set mag = zg[ye] — maxezy, zacl.

Label-aware sensitivity. To attribute the classification margin to input features, we compute the
magnitude of the first-order effect:

omy,

oHY)
where s € V indexes a source node and g € {1,...,F'} a feature dimension. Intuitively, J¢',
measures how much the classification margin of node u changes in response to a small change in

. 2

U
8,9

feature g of source node s. For graph classification, we analogously define .J&, = |0mg/0H£.?g) I

5,9

Distance-binned aggregation. Having computed the label-aware sensitivities, we next aggregate
them according to graph distance from a reference node u:

Suglk) = > J,  k=0,12..., 3)

s:D(s,u)=k
with D(+, -) the number-of-hops on the input graph. This yields a distance-resolved profile of label-
aware influence; in message passing GNNs, contributions beyond the network depth are typically

negligible, but we retain the full histogram for completeness. For graph classification, we use the

same binning around u: ST (k) = 3" b (s )=k Ty

Long-range capture index. We quantify the fraction captured only by the one-hop neighborhood;
for a node u we define:
Su,g(1)

Pug = a0
7 Zk21 Su,g(k)

Normalizing by >, -, makes p,, 4 scale-invariant to global rescalings of gradients. For graph clas-

€ [0,1]. 4)

<G
sification, this is defined as p , := % € [0,1].
) k>1Pu,g(k

We obtain a node- and a graph-level score by averaging over features as follows:

Node-level index Graph-level index
1 & 1 5 u
w = = w ,]_ . 5 = ¢ 71 . 6
’ ngzlp’ge[o e e |V|FueVgZ:1”“’" st @
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Figure 2: Correlation (mean over 20 runs) between the classification margin and the long-range
capture index p,, for three backbones (GCN, GAT, GIN). Negative values indicate that performance
increases as the 1-hop share decreases, i.e., when long-range propagation becomes more informative.

Larger p,, (and p¢) indicates that margin-relevant influence is disproportionately concentrated at
distance 1, indicating limited long-range transmission to u. Equivalently, this long-range diagnostic
index can be interpreted as a one-hop dominance score for node w: it summarizes how much of
the margin-aligned sensitivity that reaches w is already captured in its immediate neighborhood as
opposed to arriving from longer ranges. Let us note here that, although the range measure proposed
by |Bamberger et al.| (2025) also leverages Jacobian information, it is designed to be task-agnostic
and quantifies how far Jacobian/Hessian influence can propagate. In contrast, our diagnostic is
margin-aligned, indicating when distant information helps or hurts the decision boundary.

How does the long-range capture index relate to the classification task? To analyze GNN’s be-
havior on a given graph dataset, we study the correlation between the classification margin m,, (Eq.
(1)) and the long-range capture index (Eq. (3) and (6))). Figure[T]illustrates the trends on Chameleon,
Cornell, and MUTAG. Figure [2]reports the mean correlation over 20 runs for GCN (Kipf & Welling]
2017), GAT (Velickovi¢ et al., 2018)), and GIN (Xu et al., 2019) across nine node and three graph
classification datasets commonly used in graph rewiring experiments (Topping et al., 2022} |Giraldo
et al., [2023; |Attali et al.| 2024aj Karhadkar et al., [2023; [Nguyen et al.| [2023 [Liang et al.| [2025).
Experimental details are provided in Appendix [A.T]

Across datasets, the correlation between the classification margin and the long-range capture index
is not universal but depends on both the dataset and the GNN backbone. On heterophilic graphs,
GCN and GAT exhibit negative correlations, indicating that margins improve as reliance on one-
hop information decreases, i.e., long-range capture helps. On homophilic graphs, the correlation
is close to zero and slightly positive, indicating that one-hop information is more informative for
the task than long-range information, which aligns with the structure of the graph. GCN and GAT
exhibit broadly similar behavior on node classification datasets: their diffusion-based aggregation
yields greater variability in the one-hop share p,,. In contrast, GIN operates in a distinct regime:
its sum aggregation followed by an MLP favors local evidence, yielding larger and more tightly
concentrated p,, and a reduced reliance on long-range contributions. Our findings are not specific to
1-hop choice in Eq. {@): enlarging the “short-range” bin (e.g., to 1-2 or 1-3 hops) changes index
magnitude but leaves its correlation with the margin m,, essentially unchanged (see Appendix[A-2).

4 FROM DIAGNOSTICS TO LONG-RANGE INTERVENTION

4.1 DECODING LONG-RANGE EFFECTS FROM GRAPH TOPOLOGY

To mitigate long-range dependencies, rewiring methods typically rely on structural measures. In this
section, we ask whether topology alone can explain and predict the node-wise long-range capture
index, i.e., whether the structural indicators used for rewiring recover p,, or pi. To obtain an inter-
pretable link between graph topology and our diagnostic index, we estimate a sparse linear relation
whose coefficients identify the indicators that affect p,, (or pg) along with the sign and magnitude
of their effects. To this end, we use four measures that are widely used in graph rewiring methods.
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Dataset GCN GAT GIN

Texas 0.6377i0,10 0.3859;{:0,14 0.5127:{:0,10
Cornell 0.7037i0,15 0.5161i0,18 0.5560i0411
‘Wisconsin 0.5653i0,11 0.4269:[:0,12 0.5453:{:0,09
Chameleon 0.427040.05 0.3509+0.04 0.6769+0.28
Squirrel 0.4349i0,01 0.3258i0,19 0.4349:{:0,01

Amazon-Ratings  0.789710.01  0.400010.04 0.805510.02
Roman—empire 0.6831i0,03 0.6551i0,03 0.4070:{:0,04

Cora 0.3050+0.02 0.3600+0.02 0.2737+0.03
Citeseer 0.3100+0.03 0.3644+0.04 0.3377+0.04
MUTAG 0.992210.00 0.975140.03 0.9867+0.01
PROTEINS 0.9560+0.01 0.956410.01 0.9531+0.01
ENZYMES 0.75480.13 0.7548410.13 0.7862+0.09
IMDB 0.8340+0.01 0.834940.01 0.75671+0.02

Table 1: R? mean on the test set of Lasso regression using structure indicators to predict the capture
index across different backbones and datasets.

(i) PageRank (Page et al.,|1999). PageRank is a random-walk centrality that highlights highly in-
fluential nodes. It is used in GNNs to guide rewiring or capacity allocation via higher-order diffusion
(Klicpera et al.,[2019), central virtual nodes (Qian et al.l 2024} |Southern et al.,2025)), or node-wise
capacity scaling (Choi et al.,2024). Formally, 7" = (1—a) 1" /[V|+a7 ' D~TA witha € (0,1).

(ii) Forman—Ricci edge curvature (Samal et al., 2018). Edges with highly negative curvature
typically coincide with structural bottlenecks that intensify over-squashing (Alon & Yahav, 2021}
Topping et al., 2022), whereas edges with highly positive curvature promote intra-cluster propaga-
tion and can accentuate over-smoothing (Nguyen et al.| 2023). These curvature signals motivate
curvature-aware rewiring that targets bottlenecks to improve information flow (Topping et al., 2022
Giraldo et al., 2023; Nguyen et al., [2023} |[Fesser & Weber, 2023} [Liu et al., 2023). For an edge
e = (u,v), we use the augmented Forman curvature F'(u,v) = 4 — (dy, + dyy) + 3Ty, Where £y, is
the number of triangles incident to (u, v). Let ¢g.1 and ¢g.9 denote the 10th and 90th percentiles of
{F(e)}cer. To obtain node-level indicators, for each node u we count incident edges in the bottom
and top deciles: Fig(u) = {v € N(u) : F(u,v) < qo1}|, Foo = [{v € N(u) : F(u,v) >
do.9}|. A large botg. 1(u) signals exposure to strongly negative-curvature (bottleneck) edges, while
a large t opg ¢ (u) characterizes cohesive, intra-cluster ties.

(iii) Mean commute time. Commute time quantifies the difficulty of long-range transmission, large
values highlight regions where propagation is inefficient and motivate rewiring to improve long
range connectivity (D1 Giovanni et al., 2023} |Black et al., 2023 Barbero et al.| 2024; [Sterner et al.,
2024; Zhuo et al.l 2025). Formally we define the mean commute time as C,,,, = 2 |E| Ry,,, where
R, 1s the effective resistance (Chandra et al.,|1989) between node v and v. For a node u the mean
commute time is defined as C'(u) = \Vl%l >_jev\ {u} Cuj- Large C(u) indicates costly long-range
access between u and the rest of the graph (Di Giovanni et al.| 2023)).

Finally, the node-level structural indicator is the aggregation of four measures:

S(u) = [C(u), m(u), Fio(u), Foo(u)] € R*.

Sparse linear model for long-range capture index. Let S € RY*% stack s(u) over nodes. We
fit a sparse linear predictor of the task-aligned index p,, or pg:

(Bo.B) € argmin =—— 3 (pu—Fo—S18)° + AlBll, )

Bo,B 2|Itrain| WETerain
with A chosen by K -fold cross-validation on training nodes. We report the test R2(p,,, p,,) in Table
Can structure alone predict the long-range capture index? On graph classification, the

structure-only proxy closely matches the model-derived p,. For node classification, the alignment
is strongest on heterophilous datasets and attenuates on homophilous ones, where one-hop evidence
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Figure 3: Lasso node indicators influencing the long-range capture index.

dominates. These trends hold across GCN, GAT, and GIN, indicating robustness to the backbone.
They further confirm that p,, and p,, are largely topology-driven, reflecting the same structural sig-
nals that rewiring methods leverage. To improve interpretability, we complement Table[T] with two
additional baselines based on node degree (S(u) = [mindeg(u), mean deg(u), max deg(u)]), as
well as a random baseline obtained by shuffling the targets. As shown in Appendix[A.2](Table , such
local degree statistics are not sufficient to predict the model-derived long-range index p,,, whereas
the structural measures used in graph rewiring methods achieve substantially higher test R?.

Analysis of the Lasso coefficients. Figure [3|reports the Lasso coefficients on three datasets. The
coefficients vary across datasets, indicating that different structural indicators modulate the long-
range capture index. For instance, a lower mean commute time corresponds to a slight increase in
Py, on Cornell, whereas it correlates negatively with p on ENZYMES. We also observe that higher
PageRank, i.e., greater centrality, typically coincides with a high p,,, suggesting that highly central
nodes struggle to capture long-range information; their capacity concentrates on strong one-hop
signals and thereby reduces the contribution of distant nodes, in line with |Choi et al.| (2024).

Topological bottlenecks and long-range propagation. For some datasets we observe that in-
cidence to highly negative Forman—curvature edges is negatively associated with p,,. While such
edges are often labeled as bottlenecks, negatively curved edges can also act as bridges linking dis-
tinct communities: being incident to one effectively grants a node access to many distant neighbors,
which lowers p,,. This result corroborates the observation of |Arnaiz-Rodriguez & Errical (2025)) that
not all bottlenecks are harmful to long-range dependence; some enable controlled long-range reach.

Can structural properties predict the true classification margin? We replaced the sparse linear
model of (7) used to predict the long-range index p,, from our four node-level structural indicators
with an otherwise identical Lasso that instead regresses the true node margin m,, from the same
features. On held-out nodes across datasets and backbones, this topology-only regression of m,,
yielded very low R?(= 0), in contrast to the substantially higher R? obtained when predicting
pu. This outcome is consistent with our framework: m,, is jointly determined by labels, node
features, and the learned encoder, and its association with long-range effects even changes sign
across datasets, whereas p,, isolates a one-hop-dominance property that is largely structural and thus
predictable from these indicators. In short, topology helps locate where long-range pressure exists,
but it cannot by itself reconstruct how confident the model is in a class decision.

4.2 FLAN: A REWIRING-FREE LONG-RANGE LAYER

Our analysis shows that node margins vary systematically with p,, (§3); and that p,, is predictable
from structure alone (§4.1). A single global linear head must therefore compromise across local vs.
non-local regimes. We propose a topology-preserving readout adjustment whose per-node intensity
is driven by the measurable diagnostic p,, without changing the graph or increasing depth (main
results and ablation in §3)).

Setup. Let &g be a frozen GNN encoder with L layers and let h&L) = Pg(-)y € R? be the
embedding of node (or graph) u. Let p,, € [0, 1] denote the long-range capture index in ; we
estimate it using the sparse linear model of (7)) over structural indicators, yielding p,, € [0, 1].
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FLAN Layer. We attach a gating map gs : RY x R — R? with parameters ¢ = (w,, wg),
W, wg € R¢:

Z, = as(wv f)u) @th) + wg P, ®)
where o (+) is an elementwise sigmoid and ® is the Hadamard product. The classifier is linear,

logits(u) = Wz, + b, W e RE*? b e RC. 9)

During training, we optimize (¢, W, b) with cross-entropy; 6 is kept fixed. Intuitively, FLAN uses

the diagnostic signal p,, to apply a per-node rescaling of th)

and a per-node bias shift in logit space.
Geometric view. The additive term wgp,, implements a p-dependent translation of the decision
boundary (a family of parallel hyperplanes indexed by p). The multiplicative term os(w,p,) ©

th) implements a p-dependent reweighting of coordinates, effectively tilting the separator. The

sensitivity index compresses long-range demand into a single axis that is highly predictive of where
the baseline fails. Because the dominant error varies monotonically with p,,, this rank-1 translation
plus diagonal reweighting is a minimal intervention that corrects the under-performing p regime.

5 EXPERIMENTS

To evaluate the effect of the proposed FLAN layer, we evaluate it on node classification tasks span-
ning both homophilic graphs (Sen et al.,|2008) and heterophilic graphs (Rozemberczki et al., 2021}
Tang et al., 2009), as well as on graph classification benchmarks (Morris et al.l 2020). The latter
are widely adopted in the evaluation of rewiring methods, since their structures are tightly coupled
to the downstream task and require the propagation of long-range dependencies (Karhadkar et al.,
2023). Additional results on long-range benchmark datasets are provided in the Appendix [B].

Baseline models. We compare FLAN to seven state-of-the-art rewiring techniques: the
curvature-based methods SDRF (Topping et al.,|[2022) and BORF (Nguyen et al.,|2023)); the spec-
tral rewiring method FoSR (Karhadkar et al.| 2023)); the resistance-based approach GTR (Black
et al., 2023); LASER (Barbero et al., 2024) a Random Walk Rewiring Based method; DR (Attali
et al. [2024a) leverages node features to perform Delaunay triangulation-based rewiring; GOKU
(Liang et al., |2025)), two-stage densify—then-sparsify rewiring that preserves spectral properties and
improves long-range information flow.

Experimental setup. We follow the evaluation protocol of (Liang et al.,|2025): GNN hyperparam-
eters are fixed across methods (learning rate 1e—3, hidden dimension 64, 4 layers), while rewiring
hyperparameters are tuned per method. Baseline results are reported from (Liang et al., |2025).

Results. Table 2] reports the results of and graph classification tasks across different GNN back-
bones. Overall, without altering the input topology, FLAN improves backbone GNN performance
by more than 12% on average, and it outperforms recent rewiring baselines. On graph classification,
it outperforms all rewiring methods with both GCN and GIN backbones; this is consistent with the
higher and more stable R? of the structure-only proxy for P, which makes the scalar conditioning
particularly effective at the graph level. On node classification, the FLAN layer is competitive but
not always state-of-the-art on small heterophilic datasets, where the correlation between margin and
pu (and the corresponding R?) exhibits high variance, making gains less stable. We also observe
benefits on homophilous datasets, where one-hop evidence dominates and the layer acts conserva-
tively rather than over-correcting. Figure ] shows that the gains arise not from added capacity, but
from the long-range signal encoded by the predicted long-range index.

Time comparison. In Appendix [T4 we compare FLAN’s preprocessing runtime against
graph-rewiring baselines. The reported times include (i) Jacobian—margin evaluation, (ii) com-
putation of structural indicators, and (iii) Lasso fitting for pg. On average, our method is 10'—102 x
faster than curvature-based rewiring (Topping et al.l 2022} Nguyen et al.| 2023)), spectral-gap-based
rewiring (Karhadkar et al.l 2023)), and resistance-based rewiring (GTR) (Black et al.,|2023)).

Ablation studies. To confirm that improvements are diagnostic-driven, Figure f] compares p-
conditioning to shuffled p (permuted across graphs) and to a margin-conditioned scalar. Only FLAN
yields significant gains over the backbone GCN, supporting that the benefits arise from the structure-
predicted index rather than added capacity or margin tuning. In Appendix|C| we further analyze the
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(a) Node classification (Backbone: GCN)
Method Cora Citeseer Texas Cornell  Wisconsin  Chameleon

None 86.7i0,3 723i05 44.2i1,5 41~5i1.8 44-6i144 59-2i0.6
SDRF 86.3+0.3 72.610.3 439+16 422415 46.2419 59.440.5
FOSR 85.9103 723103 46.0112 402111 483113 59.310.6
BORF  87.540.2 73.8402 494418 50.841.1 50.340.9 61.540.4
DR 78.4i1,2 69.5i1,6 67.8i25 57.8i1A9 62.8i241 58.6i0,8
GTR 87.3104 724103 459119 50.8116 46.7115 57.6+0.8
LASER 86.941.1 72.6406 4594206 42.7426 46.04256 43.541.0
GOKU 86.8403 73.6402 724422 694127 688114 632404

FLAN 88.34109 75.6+105 55.6430 51.9431 54.5409 65.140.6

(b) Graph classification (Backbone: GCN on the left; GIN on the right)
Backbone: GCN Backbone: GIN
ENZYMES IMDB MUTAG PROTEINS \ ENZYMES IMDB MUTAG PROTEINS

None 27.1i1_ﬁ 49.5i1_0 70.3i2.1 71.4i1_0 33~5i1.3 67.7i1.4 76.1i3.1 69~5i1.4
SDRF 26.141.1 49.140.9 70.542.1 Tl.4408 324413 694414 795426 7144038
FOSR 274411 49.6408 75.6+1.7 72.310.9 28.8+41.0 70.6+1.3 74.8415 73.7+0.8
BORF 247410  50.1109 75.8119  71.0tos 314115 705113 782116 719413
DR - 47.040.7 80.1418 722408 - 64.840.8 T4.5428  74.3+0.8
GTR 274411 495410 789418 724410 28.4+18 701412 785435  T73.3+0.0
LASER 27.6i1_3 50.3i1_3 78.8i1_6 71~8i1.6 35.3i1_3 68-6i1_2 76.1i2.4 72~1i0.7
GOKU 27.641.2 49.840.7 81.0420 71.9+0.8 33.841.2 713109 784425 73.941.0

FLAN 33.8:18 54.8+16 812425 743117 ‘ 358419 72.0+13 81.3i27 742417

Table 2: Performance (%) on node and graph benchmarks. Best is in bold, second best underlined

ENZYMES IMDB-Binary MUTAG PROTEINS
Baseline {77 =277 |- Baseline 7] S 7 =
Random {771 22222 - Random {72277 A I
Margin {72777 I N - Margin {72772/ = 7 I
FLAN -tz |- i) FLAN [Z2222222222 | i) |
26 28 30 32 34 48 50 52 54 70 75 80 71 72 73 74

Figure 4: FLAN test accuracy vs. random shuffled  and a graph-level margin scalar, using a GCN backbone.

mechanism by quantifying both the intervention magnitude (e.g., |z — h(™)||) and the resulting
change in task margin in the graph classification task. Graphs with a higher long-range index pg
receive stronger corrections from FLAN and achieve larger margin gains, showing that the layer
adapts its intervention to the diagnostic’s estimate of long-range demand and concentrates changes
where they are most needed.

6 CONCLUSION

We reframed over-squashing as an task- and node-specific phenomenon. We (i) defined a margin-
aligned sensitivity index for trained GNNSs, (ii) showed it is predicted from topology via a sparse lin-
ear model, and (iii) found that margins co-vary with this sensitivity with dataset/backbone-dependent
sign. Leveraging these findings, we introduced FLAN, a lightweight, rewiring-free readout layer
that conditions on a structure-predicted proxy, improving accuracy without changing the graph. Our
results open promising directions, including targeted rewiring at high-sensitivity nodes. In future
work, we will study how this diagnostic can guide and complement graph rewiring methods.
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REPRODUCIBILITY STATEMENT

An anonymized code repository is linked at the end of the Introduction. All datasets, preprocessing
steps, fixed splits, hyperparameters, and training/evaluation scripts are specified in the main text and
in Appendix [A.1] enabling full reproduction of our results.
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A APPENDIX

A.1 EXPERIMENTAL SETUP FOR THE LONG-RANGE CAPTURE INDEX

We report here the GNN hyperparameters used to study the correlation between the long-range cap-
ture index p,, and the task-aware classification margin across node and graph-level benchmarks in
section [3] Our choices follow common evaluation protocols for rewiring methods with standard
GNN backbones for both node classification (Pei et al., [2020; Attali et al., 2024a) and graph clas-
sification (Errica) [2023}; [Deac et al.} 2022} [Karhadkar et al., 2023}, [Wilson et al.,[2024; [Liang et al.}

2025)).

Node classification. We use two layers, dropout 0.5, learning rate 0.005, and early stopping with
a patience of 100 epochs. Hidden dimensions are 32 for Texas, Wisconsin, and Cornell; 48 for
Squirrel and Chameleon; and 16 for Cora and Citeseer. We adopt a fixed split with 60% of nodes
for training, 20% for validation, and 20% for testing.

Graph classification. We use 4 layers, dropout 0.5, learning rate 0.001, hidden dimension 64, and
early stopping with a patience of 100 epochs. Datasets are split into 80% training, 10% validation,
and 10% testing.

For large graphs, we control the cost of computing the long-range index by using a random sample
Jacobian estimation, as done in [Bamberger et al.| (2025)), which makes the diagnostic scalable and
stable in practice.

A.2 ADDITIONAL ANALYSIS FOR CORRELATION BEHAVIOR

Correlation with deeper GNN. To assess the robustness of the correlation between the node
margin m,, and the long-range capture index p,, with respect to model depth, we repeat the analysis
using deeper 4-layer GCN, GAT, and GIN backbones. Across all datasets and architectures, the
correlation values remain consistent with those obtained using shallower models, indicating that the
phenomenon is stable under increased depth.

Dataset GCN: p») GAT: p(V) GIN: p(M)

Chameleon —0.3841 4 0.0526  —0.3465 £ 0.0633 —0.1707 £ 0.1272
Squirrel —0.3099 4+ 0.0644  —0.2205 + 0.0800 —0.2617 £ 0.1006
Texas —0.5350 4 0.1086  —0.3248 +0.1353  —0.3929 =+ 0.1465
Cornell —0.4430 £0.1024 —0.3680 £ 0.1467 —0.1322 + 0.1826
Wisconsin —0.4696 4+ 0.1147  —0.3045 + 0.0842 —0.0676 + 0.1424
Cora 0.1910 £0.0396  0.1595 4 0.0431  0.1372 4 0.0303
Citeseer —0.0063 +0.0466  0.0190 £ 0.0316  0.0176 = 0.0279

Amazon-Ratings —0.1799 £ 0.0531 —0.0850 £ 0.0645 —0.1408 £ 0.0565
Roman-Empire —0.1811 £0.0590 —0.0342 £0.0609 —0.2034 + 0.0857

Table 3: Correlation between the predictive margin m,, and the long-range capture index p, for
deeper (4-layer) GCN, GAT, and GIN backbones. The stability across architectures and datasets
shows that the correlation behavior is robust to network depth.

Limits of local signal for predicting p,,. To further contextualize the results of the correlation in
Table 1, we complement our analysis with two simple reference baselines that help clarify how much
information about the model derived long-range index p,, can be captured from local graph structure
alone. Specifically, we evaluate (i) a degree-only predictor using the minimum, mean, and maximum
degree of each node, and (ii) a random baseline obtained by shuffling the target values. As shown in
Tables @] and B} structural measures commonly used in graph rewiring methods achieve consistently
high test R? across datasets, indicating that they capture the topological factors most aligned with the
long-range index p,,. In contrast, degree-only predictors perform poorly, and the random baseline
yields strongly negative R?, confirming that simple local degree statistics are insufficient to explain
the model’s long-range sensitivity.
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Dataset Structural Degree-only Random

MUTAG 0.9900 £ 0.0057  0.2028 +0.1478  —1.5234 £ 0.3083
PROTEINS 0.9395+0.0150  0.1444 +£0.0884  —1.0524 £+ 0.2995
ENZYMES 0.8721 £0.0411  0.0754 £0.0556  —0.6743 £ 0.3158
Cornell 0.6745 £ 0.0463 —0.0060 £ 0.0097 —1.0397 £0.1161
Texas 0.5546 £0.0474 —0.7710 +1.4327  —0.9665 £ 0.4239
Wisconsin 0.4530 +0.0644 —0.0581 +0.0664 —1.1481 4+ 0.2667

Roman-Empire
Amazon-Ratings

0.5196 + 0.0713
0.7054 + 0.0511

—0.0101 £ 0.0345
0.0875 £ 0.0597

—1.2238 £ 0.4580
—0.9520 £ 0.1935

Table 4: GCN — Test R? for structural predictors, degree-only baselines, and random baselines.

Dataset Structural Degree-only Random

MUTAG 0.9835+£0.0096  0.2402 +£0.1531  —1.5975 £ 0.3761
PROTEINS 0.8587£0.1441  0.1300 £0.0999  —1.0031 £ 0.3505
ENZYMES 0.8659 £ 0.0420  0.0727 £0.0553  —0.6485 £ 0.3047
Cornell 0.7046 £0.0629 —0.0283 £0.0701 —0.7808 £ 0.1697
Texas 0.6786 £0.0823  0.0141 +£0.0283  —1.2849 £ 0.2970
Wisconsin 0.6137£0.0339 —0.0097 £0.0224 —0.7972 £ 0.6848

Roman-Empire

0.3947 £ 0.0741
0.6945 £ 0.0505

—0.0016 £ 0.0309
0.0747 £ 0.0571

—1.1918 £ 0.3741
—0.9480 4 0.1695

Amazon-Ratings

Table 5: GIN — Test R? for structural predictors, degree-only baselines, and random baselines.

Discussion on the choice of hop cutoffs. While alternative choices for the boundary between
short- and long-range interactions are possible, our results do not depend on selecting the distance-1
bin as the short-range component. In practice, redefining the cutoff for example using distances
(1,2) or (1,2,3) as the short-range part changes the absolute values of the index but leaves its
correlation with the margin m,, essentially unchanged. This stability arises because the relative
ordering of nodes according to their distance-binned sensitivity distribution Sfﬁ) is highly consistent
across hop definitions. Thus, although our operational cutoff aligns with the locality of one-step
message passing, the empirical relationship between long-range sensitivity and predictive margin is
robust to how the hops are grouped.

For illustration, Table [f] reports the correlations obtained with a GCN backbone on several graph-
classification datasets.

Model & Dataset Hop Range ~ Mean Std

GCN — MUTAG 1{}_“2’12‘;? vy
GCN — PROTEINS 1;12‘;‘;2‘;1! 201676 00420
GCN — ENZYMES ‘f_‘;’ph?j;‘sy T0Tas0 01000
GIN — MUTAG - ‘,“;phﬁglsy T0a 01093
GIN — PROTEINS 1;‘_‘;";‘;‘;? 0105t 00070
GIN — ENZYMES Tj‘;"hg‘;l! oo 01731

Table 6: Correlation between predictive margin m,, and long-range sensitivity index under different
hop definitions.

Note that although the absolute magnitude of the long-range index varies across hop definitions
(e.g., on MUTAG we obtain approximately pE,,D ~ 0.17, p,,<,,1‘2) ~ 0.34, and pg,z,s) ~ 0.49), the

correlation with the margin remains stable.
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Dataset structural properties. To make the structural differences across datasets explicit, we
report in Table[7](node-level benchmarks) and Table[8](graph-level benchmarks) a detailed summary
of key graph statistics, grouped by dataset family (homophilic vs. heterophilic) and by task type
(node- vs. graph-level, including long-range benchmarks). These statistics help contextualize the
long-range regime studied in our work, by linking each dataset’s topology to the expected locality
or non-locality of message passing.

Dataset #Nodes #Edges d Std(d) max(d) Diam. H
Cora 2.7k 5.3k 3.9 52 168 19 0381
Citeseer 3.3k 4.6k 2.7 3.4 99 28 0.74
Texas 183 295 322 7.81 104 8 0.11
Wisconsin 251 466 3.71 7.95 122 8 020
Cornell 183 280  3.06 7.01 94 8 0.13
Chameleon 2.3k 314k 27.60 46.43 732 11 0.24
Squirrel 5.2k 198k 7633  161.46 1905 10 022
Roman Empire 22.7k 32.9k 291 1.03 14 6824  0.05
Amazon-Ratings 24k 93k 7.60 6.00 132 46  0.38

Table 7: Node-level datasets: basic structural statistics. d, Std(d), and max(d) denote mean, stan-
dard deviation, and maximum node degree; Diam. is the (graph) diameter; H denotes homophily.

Dataset #Graphs #Nodes (£) #Edges (+) d Std(d) max(d) Diam.
MUTAG 188 17.9 (£4.6) 19.8 (£5.7) 2.2 0.7 3.0 8.2
PROTEINS 1113 39.1 (£45.8) 72.8 (£84.6) 3.7 0.9 5.8 11.6
ENZYMES 600 32.6 (£15.3) 62.1 (£25.5) 3.9 1.0 6.1 10.9
REDDIT 2000 429.6 (£554.1) 497.8 (+£623.0) 2.3 8.9 217.4 9.7
IMDB 1000 19.8 (£10.1) 96.5 (£105.6) 8.9 2.8 18.8 1.9
Peptides-func 10873 151.5 (£84.1) 154.3 (£86.0) 2.0 0.8 3.0 57.1
Peptides-struct 10873 151.5 (£84.1) 154.3 (£86.0) 2.0 0.8 3.0 57.1

Table 8: Graph-level datasets: average structural statistics across graphs (mean + standard devia-
tion). d, Std(d), and max(d) denote mean, standard deviation, and maximum node degree; Diam.
denotes the average graph diameter.

B ADDITIONAL EXPERIMENTS ON LONG-RANGE BENCHMARKS

We extend our analysis to the Long-Range Graph Benchmark (LRGB) (Dwivedi et all, [2022), in-
cluding Peptides-struct, Peptides-func, and the synthetic Tree-Neighbors-Match dataset
[202T). Because these datasets include regression and multi-label prediction tasks, the notion
of margin must generalize beyond standard multi-class classification so that larger values consis-
tently denote better predictions.

Margin for Peptides-struct. Since regression targets are standardized (zero mean, unit variance),

we define:
1z
meg = — log (T ;_1 |9 — yt|> ) mg € (—00,0].

where T denotes the number of prediction targets

Margin for Peptides-func (multi-label classification). For logits z; and binary labels y, € {0, 1}:

T
1
me =5 ;(Qyt —1) 2.

The margin increases when the logits confidently align with the ground-truth labels, and decreases
when the predictions contradict them.
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Using these definitions, we compute the correlation between the long-range capture index p,, and the
graph-level margin m¢. As shown in Table ] Peptides-struct and Peptides-func both exhibit posi-
tive correlations, indicating that better predictions are associated with a larger one-hop share. This
suggests that, despite being part of a long-range benchmark, these tasks are effectively dominated
by local interactions, consistent with prior work [Bamberger et al.|(2025]).

GCN GIN

—0.2964 £ 0.0535 —0.1806 £ 0.0686
0.3163 £ 0.0395 0.3343 £ 0.0329
0.6963 + 0.0488 0.5463 + 0.0612

Dataset

Tree-Neighbors-Match
Peptides-struct
Peptides-func

Table 9: Correlation between the long-range capture index p,, and the margin m¢ on long-range
benchmarks.

We also evaluate FLAN on Peptides-struct and Peptides-func using the expermental protocol of
Nguyen et al](2023));[Wilson et al|(2024), and include two baselines: PANDA [Choti et al](2024), a
rewiring-free method and a virtual-node augmentation. Despite the local nature of the tasks, FLAN
improves performance across both datasets. Since graphs with lower long-range sensitivity achieve
higher margins, adjusting embeddings according to their predicted structural index pg reinforces the
region of representation space most aligned with task-specific signals.

Model Peptides-func (AP 1) Peptides-struct (MAE |)
GCN 0.5029 + 0.0058 0.3587 + 0.0006
+ SDRF 0.5041 + 0.0026 0.3559 4+ 0.0010
+ FoSR 0.4534 + 0.0090 0.3003 + 0.0007
+ EGP 0.4972 + 0.0023 0.3001 4+ 0.0013
+ CGP 0.5106 + 0.0014 0.2931 4+ 0.0006
+ VN 0.5022 + 0.0014 0.3241 +0.0016
+ PANDA 0.5188 + 0.0022 0.3098 + 0.0011
+ FLAN 0.5479 + 0.0041 0.2724 + 0.0019
GIN 0.5124 + 0.0055 0.3544 + 0.0014
+ SDRF 0.5122 4+ 0.0061 0.3515 4+ 0.0011
+ FoSR 0.4584 + 0.0079 0.3008 + 0.0014
+ EGP 0.4926 + 0.007 0.3034 + 0.0027
+ VN 0.5137 + 0.0060 0.3197 4+ 0.0021
+ CGP 0.5159 + 0.0059 0.2910 + 0.0011
+ PANDA 0.5214 + 0.0068 0.3003 +0.0019
+ FLAN 0.5375 + 0.0041 0.2886 + 0.0021

Table 10: FLAN compared to rewiring and virtual-node baselines on Peptides-func and Peptides-
struct.

Additional LRGB evaluation details Following the tuning recommendations of

, we additionally evaluate our approach under a more exhaustive hyperparameter search for
the GCN backbone. Concretely, we vary (i) the use of Batch Normalization (on/off) and (ii) the
prediction head, replacing the linear classifier with an MLP of depth d € {1, 2,3}, while using a
base learning rate Ir = 103 together with a learning-rate schedule. The corresponding results are
reported in Table[TT] and show that FLAN consistently improves the tuned GCN baseline.

Note that to control the computational cost of our long-range index on large graphs, we use a
random-sample Jacobian estimator, following [Bamberger et al| (2025)). This approximation makes
the diagnostic scalable and stable in practice.

Beyond accuracy, our method remains computationally lightweight,depending on the dataset and the
considered Graph Transformer variants, we obtain near state-of-the-art performance while reducing
the overall runtime by approximately 45% to 95%.
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Table 11: LRGB results on Peptides-func (AP 1) and Peptides-struct (MAE |). Ours are mean +
std over 4 runs; other methods are reported numbers from [TonshofT et al.| (2024). Best baseline per
dataset is in bold.

Group Method Peptides-func AP 1  Peptides-struct MAE |
MPNNs GCN (ours) 0.6655 £ 0.0039 0.2558 + 0.0024
DIGL+MPNN+LapPE  0.6830 £ 0.0026 0.2616 £ 0.0018

Multi-hop GNNs

MixHop-GCN+LapPE
DRew-GCN+LapPE

0.6843 £ 0.0049

0.7150 + 0.0044

0.2614 + 0.0023
0.2536 + 0.0015

Transformer+LapPE 0.6326 + 0.0126 0.2529 £+ 0.0016
SAN+LapPE 0.6384 + 0.0121 0.2683 £ 0.0043
GraphGPS+LapPE 0.6535 £ 0.0041 0.2500 =+ 0.0005
Graph Transformers ~ GPS 0.6534 £ 0.0091 0.2509 + 0.0014
CRAWL 0.7074 + 0.0032 0.2506 + 0.0022
GRIT 0.6988 + 0.0082 0.2460 £ 0.0012
Graph ViT 0.6942 + 0.0075 0.2449 + 0.0016
G-MLPMixer 0.6921 +£ 0.0054 0.2475 £ 0.0015
Ours GCN + FLAN 0.6868 + 0.0040 0.2450 + 0.0026

C FLAN’S EFFECT ON LONG-RANGE SENSITIVITY

In this section, we visualize how graph embeddings change under FLAN as a function of the graph-
level long-range index p¢. Across datasets (Figures [I0} [6] and [7), we observe a clear trend: graphs
with higher pc undergo stronger embedding shifts and achieve larger margin gains. This pattern
indicates that FLAN does not apply a uniform correction but adapts the intensity of its interven-
tion to the diagnostic’s estimate of long-range demand. Importantly, the largest modifications oc-
cur precisely for graphs where local evidence dominates and long-range contributions are under-
represented, confirming that the diagnostic successfully identifies the regimes where intervention is
most beneficial.
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Figure 5: Analysis of FLAN adjustments on PROTEINS: the Euclidean distance ||z — h()|| (dif-
ference between the embedding with FLAN, z, and the backbone embedding without FLAN, h(L))
and the margin gain are plotted against the long-range index pg, showing larger adjustments and
stronger improvements as pg increases.
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Figure 6: Analysis of FLAN adjustments on IMDB-Binary: the Euclidean distance ||z — h(®) ||
(difference between the embedding with FLAN, z, and the backbone embedding without FLAN,

h()) and the margin gain are plotted against the long-range index p¢, showing larger adjustments
and stronger improvements as pg increases.
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Figure 7: Analysis of FLAN adjustments on MUTAG: the Euclidean distance ||z —h(") || (difference
between the embedding with FLAN, z, and the backbone embedding without FLAN, h(L)) and the
margin gain are plotted against the long-range index p¢, showing larger adjustments and stronger
improvements as pg increases.

To show that FLAN focuses on the graphs that are most sensitive to long-range degradation, we
examine how the margin improvement varies across different values of the long-range index pg. As
shown in Table [T2} the performance gains are concentrated on the graphs with the highest pg, i.e.,
those whose structure is most affected by long-range dependencies. This indicates that our method
specifically benefits the graphs for which message passing is most challenged by long-range effects.
The table quantifies this behavior by reporting how the margin improvement Am increases when
restricting evaluation to the top 50%, 25%, and 10% most long-range-sensitive graphs.

19



Under review as a conference paper at ICLR 2026

Dataset Backbone Am (all) Am (Top50%) Am (Top25%) Am (Topl0%)
MUTAG GCN +0.3944 +0.1027 +0.1101 +0.0921
GIN +0.1617 +0.0428 +0.1091 +0.1547
ENZYMES GCN +0.2675 +0.2424 +0.4382 +0.9524
GIN +0.0526 -0.0081 +0.3468 +0.4252
PROTEINS GCN +0.0842 +0.1217 +0.4729 +1.1336
GIN +0.1917 +0.1790 +0.4149 +0.8718
IMDB GCN +0.0180 +0.0580 +0.0854 +0.1258
GIN +0.4964 +0.8223 +1.5778 +2.4207

Table 12: Margin improvement Am across the full dataset and on subsets of graphs with the highest
long-range index pc¢.

To further validate that the gains come from conditioning on long-range sensitivity rather than from
the estimation procedure, we include an ablation where FLAN is given access to the true backbone-
derived pe (denoted FLANx). As shown in Table@ the improvements obtained with FLANx are
nearly identical to those obtained with the predicted index, confirming that the diagnostic quantity
is responsible for the performance gains.

Backbone Method ENZYMES IMDB MUTAG PROTEINS

GCN FLAN 338+18 548+16 812£25 743+17
FLANx  347+17 551+15 81618 745%21

GIN FLAN 35819 720+13 813+£27 742417
FLANx 363+15 729+18 81.1+20 745+23

Table 13: Comparison between FLAN and FLAN«, where the latter uses the true long-range index
pc computed from Jacobian sensitivities.

Sensitivity Capture and FLAN-Accuracy Gains In this section, we present (i) the cumulative
sensitivity capture profile pi(}"”’k) as a function of the hop radius & (blue, left axis), averaged over
graphs with a +1 standard-deviation, and (ii) the corresponding test-accuracy gain A(k) of FLAN

over the baseline (orange, right axis), reported in percentage points. Figures ?? report results aver-

aged over 10 random runs. When p&l"'"’m saturates quickly (i.e., approaches 1 for small k), it indi-

cates that the margin-aligned sensitivity mass is predominantly concentrated at short range (typically
IMDB-Binary). Conversely, slow saturation implies that a substantial fraction of this sensitivity is
distributed over more distant hops, reflecting stronger long-range dependencies (e.g., PROTEINS or
ENZYMES). The curve A(k) indicates the scale k at which the signal p¢ is most informative for
FLAN: a peak at small k& suggests that the most discriminative information lies at local to mid-range
neighborhoods, whereas a decline at larger k is typically consistent with saturation of p(1:%).
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MUTAG: cumulative sensitivity capture
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Figure 8: Cumulative sensitivity capture pul"”’k) (blue, mean+std) and FLAN gain A(k) in points
(orange) vs. hop radius. on MUTAG dataset.

IMDB-BINARY: cumulative sensitivity capture
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Figure 9: Cumulative sensitivity capture pS}""’k) (blue, mean+std) and FLAN gain A(k) in points
(orange) vs. hop radius. on IMDB dataset.

D TIME COMPARISON

Table[[4]reports the average preprocessing time per graph; for FLAN we report the end-to-end cost
of producing the conditioning scalar p (Jacobian—margin evaluation + structural indicators + Lasso
fit), to match the per-graph preprocessing measured for rewiring baselines.

FLAN’s preprocessing cost stays in the millisecond range per graph and is comparable to graph
expanders such as EGP/CGP, while being 10'-10%x faster than heavier rewiring methods (e.g.,
BOREF, SDRF/FoSR, and GTR).
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Figure 10: Cumulative sensitivity capture pq(,,l""’k) (blue, mean=+std) and FLAN gain A(k) in points

ENZYMES: cumulative sensitivity capture
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Model IMDB-Binary MUTAG ENZYMES PROTEINS
SDRF 5.13257 0.669701 1.71482 3.02873
FoSR 4.54634 4.71567 4.56855 5.04358
BORF 465.408 53.7069 179.573 351.173
GTR 3.39839 1.54127 2.87399 6.49714
PANDA 0.789759 0.246243 0.278594 0.248043
EGP 0.0185697 0.00446963  0.0163198  0.0393348
CGP 0.0211341 0.00438905  0.0166841  0.0348585
FLAN 0.017668 0.013909 0.016429 0.027119

Table 14: Comparison of the preprocessing time to construct each graph rewiring method compared

to our FLAN method (in seconds per graph). Table taken from|[Wilson et al|(2024).
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