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ABSTRACT

Graph Neural Networks (GNNs) propagate information locally through message
passing. While local propagation is often sufficient for short-range tasks, per-
formance can degrade when distant interactions are required. In this paper, we
introduce a diagnostic metric that quantifies the role of long-range propagation.
The metric is derived from margin-aligned sensitivities, providing an interpretable
measure of the dominance of one-hop neighbors in margin-relevant influence. Us-
ing this diagnostic, we show that the need for long-range propagation is dataset-
and architecture-dependent, rather than universal. We further demonstrate that
this diagnostic metric is predictable from well-studied graph-theoretic measures,
aligning with the assumptions of rewiring-based approaches. Finally, we show
how the diagnostic can be leveraged during training: we design an additional layer
that selectively incorporates sensitivity to long-range dependencies and can be ap-
plied to any standard GNN backbone. Experiments on both node- and graph-level
benchmarks demonstrate consistent gains over rewiring-based methods, without
altering the original graph topology.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Goller & Kuchler, 1996; Scarselli et al., 2008; Bruna et al.,
2014) learn from relational structure by propagating and aggregating messages (Gilmer et al., 2017),
achieving strong performance across chemistry, social networks, recommendation, and spatiotem-
poral forecasting (Zhou et al., 2020; Duval et al., 2023; Sharma et al., 2024; Wu et al., 2022; Castro-
Correa et al., 2024). When task-relevant evidence lies many hops away, however, performance
can degrade. A leading explanation is over-squashing (Alon & Yahav, 2021; Topping et al., 2022;
Di Giovanni et al., 2023): signals routed through sparse or bottlenecked regions are compressed into
fixed-size embeddings, diluting information.

Prior work analyzes over-squashing from two angles (Arnaiz-Rodriguez & Errica, 2025). The struc-
tural view Alon & Yahav (2021); Topping et al. (2022) attributes failure to graph bottlenecks, e.g.,
negative curvature (Topping et al., 2022), low effective resistance (Black et al., 2023), and small
spectral gaps (Karhadkar et al., 2023) and typically intervenes by rewiring the graph structure (Attali
et al., 2024b; Akansha, 2025). The other angle is the computational (i.e., model) bottlenecks per-
spective, where the limitation stems from message passing itself: finite-depth, locality aggregations
restrict the receptive field and progressively compress signals, so information from long-distance
nodes is hard to both reach and preserve (Di Giovanni et al., 2023; Arnaiz-Rodriguez & Errica,
2025). These perspectives are complementary, yet it often remains unclear whether accuracy gains
after rewiring truly stem from alleviating over-squashing, or when increasing long-range influence
is desirable for the task at hand.

We take a task-aligned view and argue that dependence on long-range information is inherently task-
and node-specific. Rather than universally amplifying long-range influence, interventions should be
adaptive. To ground this claim, we introduce a margin-aligned, Jacobian-based sensitivity index
that quantifies, for a trained GNN, how a node’s (or graph’s) true classification margin responds
to one-hop versus multi-hop perturbations (§3). The resulting long-range capture index pu ∈ [0, 1]
(with graph-level aggregate ρG) is a bounded, interpretable “share-at-one-hop” measure that directly
traces computational limitations of message passing.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Using this diagnostic, we show that GNNs implicitly operate in local and non-local regimes: some
nodes behave as if decisions are locally controlled (high pu), others as if non-local inputs dominate
(low pu). Importantly, the model’s performance co-varies with this sensitivity in a task-dependent
manner: across benchmarks and backbones, the margin–sensitivity correlation is approximately
linear, but its sign and magnitude vary with dataset and architecture. In some settings, reducing the
one-hop share helps; in others, preserving locality is beneficial. This organization, along a single
sensitivity axis, explains when long-range propagation aids or harms prediction (§3).

We then uncover a bridge to graph structure: the true sensitivity defined via the margin can be
predicted from topology alone (§4.1). A sparse linear model (Lasso) on structural indicators widely
used in structural rewiring (e.g., curvature and effective resistance) yields accurate, structure-only
proxies for pu at node and graph levels. This link connects structural accounts of over-squashing to
model-level behavior and enables label-free estimation at test time.

Finally, we convert these insights into a minimal intervention at readout. We introduce FLAN
(§4.2), a rewiring-free, lightweight long-range layer that conditions the classifier on the structure-
predicted proxy p̂u. The layer applies a small translation and a one-parameter diagonal reweighting
of the encoder representation, effectively letting the readout adapt across local vs. non-local regimes
while keeping the encoder and topology unchanged. Empirically, this plug-in improves accuracy
across GNN backbones and datasets (§5), offering a simple and time-efficient alternative to graph
rewiring.

The main contributions of this paper are summarized as follows:

1. We introduce a task-aligned, Jacobian-based diagnostic of long-range sensitivity at node
(pu) and graph (ρG) scales.

2. We demonstrate that this diagnostic is accurately predicted from graph structure via a sparse
structural model, linking structural bottlenecks to trained model sensitivity.

3. We provide cross-dataset/backbone evidence that margins vary monotonically along the
sensitivity axis, with task-dependent sign.

4. Finally, we design FLAN, a rewiring-free, parameter-efficient conditioning layer that lever-
ages the predicted sensitivity p̂u to improve performance without changing the graph or
increasing depth.

Our study contributes to a unified understanding of over-squashing: structural features forecast a
trained model’s long-range sensitivity; errors organize along this sensitivity axis; and an adaptive,
low-capacity correction exploits this organization to deliver consistent gains (Arnaiz-Rodriguez &
Errica, 2025; Bechler-Speicher et al., 2025).

Reproducibility. The source code to reproduce our experiments is available1.

2 BACKGROUND AND RELATED WORK

We start by introducing notations used throughout this paper. LetG = (V,E be a simple, undirected,
unweighted graph with node-feature matrix H ∈ R|V |×d. Let A ∈ {0, 1}|V |×|V | be its adjacency
matrix, D = diag(du)u∈V the degree matrix, P = D−1A the transition matrix and the normalized
Laplacian is Lnorm = I − D−1/2AD−1/2. For u ∈ V , we denote its neighborhood by N (u) =
{ v ∈ V : (u, v) ∈ E }.

Message passing in GNNs. GNNs are built upon the message passing mechanism, in which node
representations are refined through local interactions (Gilmer et al., 2017). At each layer, a node
aggregates information from its neighbors using a permutation-invariant function, followed by a
learnable transformation. Formally, for a node i ∈ V , its representation at layer k + 1 is defined as:

h
(k+1)
i = ϕ

h
(k)
i ,

⊕
j∈N (i)

ψ(h
(k)
j )

 ,

1https://anonymous.4open.science/r/FLAN_ICLR_2026-3E65
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where h(k)
i denotes the representation of node i at layer k, ψ the message function, and ϕ the update

function. The operator
⊕

denotes a permutation-invariant aggregation function such as summation,
mean, or maximum. This iterative procedure allows GNNs to integrate both feature and structural
information from local neighborhoods. Message passing is effective when task-relevant information
is local and can be aggregated within only a few hops, which is typically the case in homophilic
graphs (Zhu et al., 2021). For long-range dependencies, communication across a distance d requires
O(d) message-passing layers (Barceló et al., 2020). Increasing the depth in this way amplifies
over-squashing (Di Giovanni et al., 2023; Akansha, 2025) and over-smoothing (Rusch et al., 2023;
Giraldo et al., 2023).

Over-squashing, long-range interactions, and graph rewiring. Over-squashing occurs when in-
formation from exponentially large neighborhoods must be compressed into fixed-size node em-
beddings within a limited number of message-passing layers (Alon & Yahav, 2021; Topping et al.,
2022). As the receptive field expands with depth, the aggregation function is forced to encode ever
larger amounts of information into a bounded representation, creating a bottleneck that severely
limits the ability of GNNs to capture long-range dependencies, particularly in graphs with sparse
connectivity or complex topology.

Graph rewiring addresses over-squashing and long-range dependencies by modifying the input
topology of a GNN, alleviating structural bottlenecks that hinder the propagation of information
across distant nodes. Early work focuses on curvature-based rewiring, adding edges around regions
with highly negative discrete curvature that indicate bottlenecks (Topping et al., 2022; Giraldo et al.,
2023; Nguyen et al., 2023; Fesser & Weber, 2023). Because discrete curvature measures are inher-
ently local (Forman, 2003; Ollivier, 2007; Samal et al., 2018), subsequent approaches have targeted
more global signals, either increasing the spectral gap to improve connectivity and mixing (Banerjee
et al., 2022; Karhadkar et al., 2023) or minimizing effective resistance, which models the difficulty
of information transmission between node pairs (Black et al., 2023).

More recently, a complementary line of work incorporates node features into the rewiring tech-
niques. For example, Delaunay-based rewiring reconstructs the graph by performing a Delaunay
triangulation in feature space, thereby removing edges that exhibit extreme discrete curvature (At-
tali et al., 2024a; 2025). Other approaches jointly modify the topology and the initial node features
to maximize the spectral alignment between the feature signal and the structural information (Link-
erhägner et al., 2025). Finally, intra-community rewiring guided by the cosine similarity of node fea-
tures has been proposed to densify connections among similar nodes while preserving community-
level structure (Rubio-Madrigal et al., 2025).

One can distinguish between different types of bottlenecks. Structural bottlenecks arise from the
graph’s topology (narrow cuts, hubs, or low expansion) that restrict information flow regardless of
the model. Computational bottlenecks stem from the message-passing computation itself: even on
favorable graphs, signals and gradients from distant nodes attenuate through repeated local updates.
Most existing metrics target structural limits; far fewer directly capture the computational one. The
computational bottleneck is often studied via Jacobians : Topping et al. (2022); Di Giovanni et al.
(2023) show that node-to-node sensitivity decays exponentially with graph distance, explaining the
difficulty of propagating long-range information in GNNs.

3 GNN PERFORMANCE AND LONG-RANGE DEPENDENCIES

In this section, we extend the study of long-range effects and over-squashing by grounding the anal-
ysis in the model’s Jacobian (Topping et al., 2022; Di Giovanni et al., 2023; Giovanni et al., 2024).
Rather than focusing on pairwise dependencies between individual nodes, we directly quantify both
the distance (in graph terms) and the amount of task-relevant information that a node’s representation
can capture in a classification task. Concretely, we aggregate margin-aligned Jacobian sensitivities
into a one-hop dominance measure, quantifying how much of the margin-relevant signal is cap-
tured locally rather than over longer ranges. We then examine how this long-range signal relates
to architectural performance. Importantly, instead of relying solely on accuracy, we evaluate with
the classification margin, which provides a finer view of confidence and decision robustness. This
margin-aligned perspective allows us to connect distance-structured sensitivity to accuracy gains of-
fering a clear diagnostic of when and how architectures benefit from long-range information. Below,
we elaborate on the different steps.

3
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Figure 1: Correlation between classification margin and the long-range capture index ρ̄u: (a) COR-
NELL (node classification), (b) MUTAG (graph classification), (c) CHAMELEON (node classifica-
tion). Higher ρ̄u values (dominant 1-hop contribution) tend to coincide with smaller margins when
long-range evidence is required.

Task-aware node margin. For node classification, let zu ∈ RC be the logits predicted for node
u ∈ V with ground-truth label yu ∈ {1, . . . , C}. The node-level margin is defined as

mu = zu[yu] − max
c̸=yu

zu[c]. (1)

The margin is directly aligned with the downstream task: mu > 0 indicates correct classification;
larger values reflect a larger separation from the closest competing class. For graph classification,
we similarly define a graph-level margin mG. Specifically, letting zG ∈ RC denote pooled graph
logits with label yG, we set mG = zG[yG]−maxc̸=yG

zG[c].

Label-aware sensitivity. To attribute the classification margin to input features, we compute the
magnitude of the first-order effect:

Ju
s,g :=

∣∣∣ ∂mu

∂H
(0)
s,g

∣∣∣, (2)

where s ∈ V indexes a source node and g ∈ {1, . . . , F} a feature dimension. Intuitively, Ju
s,g

measures how much the classification margin of node u changes in response to a small change in
feature g of source node s. For graph classification, we analogously define JG

s,g :=
∣∣∂mG/∂H

(0)
s,g

∣∣.
Distance-binned aggregation. Having computed the label-aware sensitivities, we next aggregate
them according to graph distance from a reference node u:

Su,g(k) =
∑

s:D(s,u)=k

Ju
s,g, k = 0, 1, 2, . . . , (3)

with D(·, ·) the number-of-hops on the input graph. This yields a distance-resolved profile of label-
aware influence; in message passing GNNs, contributions beyond the network depth are typically
negligible, but we retain the full histogram for completeness. For graph classification, we use the
same binning around u: SG

u,g(k) :=
∑

s:D(s,u)=k J
G
s,g .

Long-range capture index. We quantify the fraction captured only by the one-hop neighborhood;
for a node u we define:

ρu,g =
Su,g(1)∑
k≥1 Su,g(k)

∈ [0, 1]. (4)

Normalizing by
∑

k≥1 makes ρu,g scale-invariant to global rescalings of gradients. For graph clas-

sification, this is defined as ρGu,g :=
SG
u,g(1)∑

k≥1 SG
u,g(k)

∈ [0, 1].

We obtain a node- and a graph-level score by averaging over features as follows:

Node-level index

pu =
1

F

F∑
g=1

ρu,g ∈ [0, 1]. (5)

Graph-level index

ρG =
1

|V |F
∑
u∈V

F∑
g=1

ρGu,g ∈ [0, 1]. (6)

4
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Figure 2: Correlation (mean over 20 runs) between the classification margin and the long-range
capture index ρu for three backbones (GCN, GAT, GIN). Negative values indicate that performance
increases as the 1-hop share decreases, i.e., when long-range propagation becomes more informative.

Larger pu (and ρG) indicates that margin-relevant influence is disproportionately concentrated at
distance 1, indicating limited long-range transmission to u. Equivalently, this long-range diagnostic
index can be interpreted as a one-hop dominance score for node u: it summarizes how much of
the margin-aligned sensitivity that reaches u is already captured in its immediate neighborhood as
opposed to arriving from longer ranges. Let us note here that, although the range measure proposed
by Bamberger et al. (2025) also leverages Jacobian information, it is designed to be task-agnostic
and quantifies how far Jacobian/Hessian influence can propagate. In contrast, our diagnostic is
margin-aligned, indicating when distant information helps or hurts the decision boundary.

How does the long-range capture index relate to the classification task? To analyze GNN’s be-
havior on a given graph dataset, we study the correlation between the classification margin mu (Eq.
(1)) and the long-range capture index (Eq. (5) and (6)). Figure 1 illustrates the trends on Chameleon,
Cornell, and MUTAG. Figure 2 reports the mean correlation over 20 runs for GCN (Kipf & Welling,
2017), GAT (Veličković et al., 2018), and GIN (Xu et al., 2019) across nine node and three graph
classification datasets commonly used in graph rewiring experiments (Topping et al., 2022; Giraldo
et al., 2023; Attali et al., 2024a; Karhadkar et al., 2023; Nguyen et al., 2023; Liang et al., 2025).
Experimental details are provided in Appendix A.1.

Across datasets, the correlation between the classification margin and the long-range capture index
is not universal but depends on both the dataset and the GNN backbone. On heterophilic graphs,
GCN and GAT exhibit negative correlations, indicating that margins improve as reliance on one-
hop information decreases, i.e., long-range capture helps. On homophilic graphs, the correlation
is close to zero and slightly positive, indicating that one-hop information is more informative for
the task than long-range information, which aligns with the structure of the graph. GCN and GAT
exhibit broadly similar behavior on node classification datasets: their diffusion-based aggregation
yields greater variability in the one-hop share pu. In contrast, GIN operates in a distinct regime:
its sum aggregation followed by an MLP favors local evidence, yielding larger and more tightly
concentrated pu and a reduced reliance on long-range contributions. Our findings are not specific to
1-hop choice in Eq. (4): enlarging the “short-range” bin (e.g., to 1–2 or 1–3 hops) changes index
magnitude but leaves its correlation with the margin mu essentially unchanged (see Appendix A.2).

4 FROM DIAGNOSTICS TO LONG-RANGE INTERVENTION

4.1 DECODING LONG-RANGE EFFECTS FROM GRAPH TOPOLOGY

To mitigate long-range dependencies, rewiring methods typically rely on structural measures. In this
section, we ask whether topology alone can explain and predict the node-wise long-range capture
index, i.e., whether the structural indicators used for rewiring recover pu or ρG. To obtain an inter-
pretable link between graph topology and our diagnostic index, we estimate a sparse linear relation
whose coefficients identify the indicators that affect pu (or ρG) along with the sign and magnitude
of their effects. To this end, we use four measures that are widely used in graph rewiring methods.

5
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Dataset GCN GAT GIN

Texas 0.6377±0.10 0.3859±0.14 0.5127±0.10

Cornell 0.7037±0.15 0.5161±0.18 0.5560±0.11

Wisconsin 0.5653±0.11 0.4269±0.12 0.5453±0.09

Chameleon 0.4270±0.05 0.3509±0.04 0.6769±0.28

Squirrel 0.4349±0.01 0.3258±0.19 0.4349±0.01

Amazon-Ratings 0.7897±0.01 0.4000±0.04 0.8055±0.02

Roman-empire 0.6831±0.03 0.6551±0.03 0.4070±0.04

Cora 0.3050±0.02 0.3600±0.02 0.2737±0.03

Citeseer 0.3100±0.03 0.3644±0.04 0.3377±0.04

MUTAG 0.9922±0.00 0.9751±0.03 0.9867±0.01

PROTEINS 0.9560±0.01 0.9564±0.01 0.9531±0.01

ENZYMES 0.7548±0.13 0.7548±0.13 0.7862±0.09

IMDB 0.8340±0.01 0.8349±0.01 0.7567±0.02

Table 1: R2 mean on the test set of Lasso regression using structure indicators to predict the capture
index across different backbones and datasets.

(i) PageRank (Page et al., 1999). PageRank is a random-walk centrality that highlights highly in-
fluential nodes. It is used in GNNs to guide rewiring or capacity allocation via higher-order diffusion
(Klicpera et al., 2019), central virtual nodes (Qian et al., 2024; Southern et al., 2025), or node-wise
capacity scaling (Choi et al., 2024). Formally, π⊤ = (1−α)1⊤/|V |+απ⊤D−1A with α ∈ (0, 1).

(ii) Forman–Ricci edge curvature (Samal et al., 2018). Edges with highly negative curvature
typically coincide with structural bottlenecks that intensify over-squashing (Alon & Yahav, 2021;
Topping et al., 2022), whereas edges with highly positive curvature promote intra-cluster propaga-
tion and can accentuate over-smoothing (Nguyen et al., 2023). These curvature signals motivate
curvature-aware rewiring that targets bottlenecks to improve information flow (Topping et al., 2022;
Giraldo et al., 2023; Nguyen et al., 2023; Fesser & Weber, 2023; Liu et al., 2023). For an edge
e = (u, v), we use the augmented Forman curvature F (u, v) = 4− (du + dv) + 3 tuv , where tuv is
the number of triangles incident to (u, v). Let q0.1 and q0.9 denote the 10th and 90th percentiles of
{F (e)}e∈E . To obtain node-level indicators, for each node u we count incident edges in the bottom
and top deciles: F10(u) = |{v ∈ N(u) : F (u, v) ≤ q0.1}|, F90 = |{v ∈ N(u) : F (u, v) ≥
q0.9}|. A large bot0.1(u) signals exposure to strongly negative-curvature (bottleneck) edges, while
a large top0.9(u) characterizes cohesive, intra-cluster ties.

(iii) Mean commute time. Commute time quantifies the difficulty of long-range transmission, large
values highlight regions where propagation is inefficient and motivate rewiring to improve long
range connectivity (Di Giovanni et al., 2023; Black et al., 2023; Barbero et al., 2024; Sterner et al.,
2024; Zhuo et al., 2025). Formally we define the mean commute time as Cuv = 2 |E|Ruv , where
Ruv is the effective resistance (Chandra et al., 1989) between node u and v. For a node u the mean
commute time is defined as C(u) = 1

|V |−1

∑
j∈V \{u} Cuj . Large C(u) indicates costly long-range

access between u and the rest of the graph (Di Giovanni et al., 2023).

Finally, the node-level structural indicator is the aggregation of four measures:

S(u) =
[
C(u), π(u), F10(u), F90(u)

]
∈ R4.

Sparse linear model for long-range capture index. Let S ∈ RN×4 stack s(u) over nodes. We
fit a sparse linear predictor of the task-aligned index pu or ρG:

(β̂0, β̂) ∈ argmin
β0,β

1

2|Itrain|
∑

u∈Itrain

(
pu − β0 − S⊤

u β
)2

+ λ∥β∥1, (7)

with λ chosen byK-fold cross-validation on training nodes. We report the testR2(p̂u, pu) in Table 1.

Can structure alone predict the long-range capture index? On graph classification, the
structure-only proxy closely matches the model-derived pu. For node classification, the alignment
is strongest on heterophilous datasets and attenuates on homophilous ones, where one-hop evidence

6
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Figure 3: Lasso node indicators influencing the long-range capture index.

dominates. These trends hold across GCN, GAT, and GIN, indicating robustness to the backbone.
They further confirm that pu and ρu are largely topology-driven, reflecting the same structural sig-
nals that rewiring methods leverage. To improve interpretability, we complement Table 1 with two
additional baselines based on node degree (S(u) = [min deg(u), mean deg(u), maxdeg(u)]), as
well as a random baseline obtained by shuffling the targets. As shown in Appendix A.2 (Table , such
local degree statistics are not sufficient to predict the model-derived long-range index pu, whereas
the structural measures used in graph rewiring methods achieve substantially higher test R2.

Analysis of the Lasso coefficients. Figure 3 reports the Lasso coefficients on three datasets. The
coefficients vary across datasets, indicating that different structural indicators modulate the long-
range capture index. For instance, a lower mean commute time corresponds to a slight increase in
pu on Cornell, whereas it correlates negatively with ρG on ENZYMES. We also observe that higher
PageRank, i.e., greater centrality, typically coincides with a high pu, suggesting that highly central
nodes struggle to capture long-range information; their capacity concentrates on strong one-hop
signals and thereby reduces the contribution of distant nodes, in line with Choi et al. (2024).

Topological bottlenecks and long-range propagation. For some datasets we observe that in-
cidence to highly negative Forman–curvature edges is negatively associated with pu. While such
edges are often labeled as bottlenecks, negatively curved edges can also act as bridges linking dis-
tinct communities: being incident to one effectively grants a node access to many distant neighbors,
which lowers pu. This result corroborates the observation of Arnaiz-Rodriguez & Errica (2025) that
not all bottlenecks are harmful to long-range dependence; some enable controlled long-range reach.

Can structural properties predict the true classification margin? We replaced the sparse linear
model of (7) used to predict the long-range index pu from our four node-level structural indicators
with an otherwise identical Lasso that instead regresses the true node margin mu from the same
features. On held-out nodes across datasets and backbones, this topology-only regression of mu

yielded very low R2(≈ 0), in contrast to the substantially higher R2 obtained when predicting
pu. This outcome is consistent with our framework: mu is jointly determined by labels, node
features, and the learned encoder, and its association with long-range effects even changes sign
across datasets, whereas pu isolates a one-hop-dominance property that is largely structural and thus
predictable from these indicators. In short, topology helps locate where long-range pressure exists,
but it cannot by itself reconstruct how confident the model is in a class decision.

4.2 FLAN: A REWIRING-FREE LONG-RANGE LAYER

Our analysis shows that node margins vary systematically with pu (§3); and that pu is predictable
from structure alone (§4.1). A single global linear head must therefore compromise across local vs.
non-local regimes. We propose a topology-preserving readout adjustment whose per-node intensity
is driven by the measurable diagnostic p̂u, without changing the graph or increasing depth (main
results and ablation in §5).

Setup. Let Φθ be a frozen GNN encoder with L layers and let h(L)
u = Φθ(·)u ∈ Rd be the

embedding of node (or graph) u. Let pu ∈ [0, 1] denote the long-range capture index in (5); we
estimate it using the sparse linear model of (7) over structural indicators, yielding p̂u ∈ [0, 1].
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FLAN Layer. We attach a gating map gϕ : Rd × R → Rd with parameters ϕ = (wγ ,wβ),
wγ ,wβ ∈ Rd:

zu = σs
(
wγ p̂u

)
⊙ h(L)

u + wβ p̂u, (8)

where σs(·) is an elementwise sigmoid and ⊙ is the Hadamard product. The classifier is linear,

logits(u) = Wzu + b, W ∈ RC×d, b ∈ RC . (9)

During training, we optimize (ϕ,W,b) with cross-entropy; θ is kept fixed. Intuitively, FLAN uses
the diagnostic signal p̂u to apply a per-node rescaling of h(L)

u and a per-node bias shift in logit space.

Geometric view. The additive term wβ p̂u implements a p-dependent translation of the decision
boundary (a family of parallel hyperplanes indexed by p̂). The multiplicative term σs(wγ p̂u) ⊙
h
(L)
u implements a p-dependent reweighting of coordinates, effectively tilting the separator. The

sensitivity index compresses long-range demand into a single axis that is highly predictive of where
the baseline fails. Because the dominant error varies monotonically with pu, this rank-1 translation
plus diagonal reweighting is a minimal intervention that corrects the under-performing p regime.

5 EXPERIMENTS

To evaluate the effect of the proposed FLAN layer, we evaluate it on node classification tasks span-
ning both homophilic graphs (Sen et al., 2008) and heterophilic graphs (Rozemberczki et al., 2021;
Tang et al., 2009), as well as on graph classification benchmarks (Morris et al., 2020). The latter
are widely adopted in the evaluation of rewiring methods, since their structures are tightly coupled
to the downstream task and require the propagation of long-range dependencies (Karhadkar et al.,
2023). Additional results on long-range benchmark datasets are provided in the Appendix B .

Baseline models. We compare FLAN to seven state-of-the-art rewiring techniques: the
curvature-based methods SDRF (Topping et al., 2022) and BORF (Nguyen et al., 2023); the spec-
tral rewiring method FoSR (Karhadkar et al., 2023); the resistance-based approach GTR (Black
et al., 2023); LASER (Barbero et al., 2024) a Random Walk Rewiring Based method; DR (Attali
et al., 2024a) leverages node features to perform Delaunay triangulation-based rewiring; GOKU
(Liang et al., 2025), two-stage densify–then-sparsify rewiring that preserves spectral properties and
improves long-range information flow.

Experimental setup. We follow the evaluation protocol of (Liang et al., 2025): GNN hyperparam-
eters are fixed across methods (learning rate 1e−3, hidden dimension 64, 4 layers), while rewiring
hyperparameters are tuned per method. Baseline results are reported from (Liang et al., 2025).

Results. Table 2 reports the results of and graph classification tasks across different GNN back-
bones. Overall, without altering the input topology, FLAN improves backbone GNN performance
by more than 12% on average, and it outperforms recent rewiring baselines. On graph classification,
it outperforms all rewiring methods with both GCN and GIN backbones; this is consistent with the
higher and more stable R2 of the structure-only proxy for p̂G, which makes the scalar conditioning
particularly effective at the graph level. On node classification, the FLAN layer is competitive but
not always state-of-the-art on small heterophilic datasets, where the correlation between margin and
pu (and the corresponding R2) exhibits high variance, making gains less stable. We also observe
benefits on homophilous datasets, where one-hop evidence dominates and the layer acts conserva-
tively rather than over-correcting. Figure 4 shows that the gains arise not from added capacity, but
from the long-range signal encoded by the predicted long-range index.

Time comparison. In Appendix 14, we compare FLAN’s preprocessing runtime against
graph–rewiring baselines. The reported times include (i) Jacobian–margin evaluation, (ii) com-
putation of structural indicators, and (iii) Lasso fitting for p̂G. On average, our method is 101–103×
faster than curvature-based rewiring (Topping et al., 2022; Nguyen et al., 2023), spectral-gap-based
rewiring (Karhadkar et al., 2023), and resistance-based rewiring (GTR) (Black et al., 2023).

Ablation studies. To confirm that improvements are diagnostic-driven, Figure 4 compares p̂-
conditioning to shuffled p̂ (permuted across graphs) and to a margin-conditioned scalar. Only FLAN
yields significant gains over the backbone GCN, supporting that the benefits arise from the structure-
predicted index rather than added capacity or margin tuning. In Appendix C, we further analyze the

8
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(a) Node classification (Backbone: GCN)

Method Cora Citeseer Texas Cornell Wisconsin Chameleon

None 86.7±0.3 72.3±0.3 44.2±1.5 41.5±1.8 44.6±1.4 59.2±0.6

SDRF 86.3±0.3 72.6±0.3 43.9±1.6 42.2±1.5 46.2±1.2 59.4±0.5

FOSR 85.9±0.3 72.3±0.3 46.0±1.2 40.2±1.1 48.3±1.3 59.3±0.6

BORF 87.5±0.2 73.8±0.2 49.4±1.8 50.8±1.1 50.3±0.9 61.5±0.4

DR 78.4±1.2 69.5±1.6 67.8±2.5 57.8±1.9 62.8±2.1 58.6±0.8

GTR 87.3±0.4 72.4±0.3 45.9±1.9 50.8±1.6 46.7±1.5 57.6±0.8

LASER 86.9±1.1 72.6±0.6 45.9±2.6 42.7±2.6 46.0±2.6 43.5±1.0

GOKU 86.8±0.3 73.6±0.2 72.4±2.2 69.4±2.1 68.8±1.4 63.2±0.4

FLAN 88.3±0.9 75.6±0.5 55.6±3.0 51.9±3.1 54.5±2.9 65.1±0.6

(b) Graph classification (Backbone: GCN on the left; GIN on the right)

Backbone: GCN Backbone: GIN

ENZYMES IMDB MUTAG PROTEINS ENZYMES IMDB MUTAG PROTEINS

None 27.1±1.6 49.5±1.0 70.3±2.1 71.4±1.0 33.5±1.3 67.7±1.4 76.1±3.1 69.5±1.4

SDRF 26.1±1.1 49.1±0.9 70.5±2.1 71.4±0.8 32.4±1.3 69.4±1.4 79.5±2.6 71.4±0.8

FOSR 27.4±1.1 49.6±0.8 75.6±1.7 72.3±0.9 28.8±1.0 70.6±1.3 74.8±1.5 73.7±0.8

BORF 24.7±1.0 50.1±0.9 75.8±1.9 71.0±0.8 31.4±1.5 70.5±1.3 78.2±1.6 71.9±1.3

DR – 47.0±0.7 80.1±1.8 72.2±0.8 – 64.8±0.8 74.5±2.8 74.3±0.8

GTR 27.4±1.1 49.5±1.0 78.9±1.8 72.4±1.2 28.4±1.8 70.1±1.2 78.5±3.5 73.3±0.9

LASER 27.6±1.3 50.3±1.3 78.8±1.6 71.8±1.6 35.3±1.3 68.6±1.2 76.1±2.4 72.1±0.7

GOKU 27.6±1.2 49.8±0.7 81.0±2.0 71.9±0.8 33.8±1.2 71.3±0.9 78.4±2.5 73.9±1.0

FLAN 33.8±1.8 54.8±1.6 81.2±2.5 74.3±1.7 35.8±1.9 72.0±1.3 81.3±2.7 74.2±1.7

Table 2: Performance (%) on node and graph benchmarks. Best is in bold, second best underlined

26 28 30 32 34

FLAN
Margin

Random
Baseline

ENZYMES

48 50 52 54

IMDB-Binary

70 75 80

FLAN
Margin

Random
Baseline

MUTAG

71 72 73 74

PROTEINS

Figure 4: FLAN test accuracy vs. random shuffled p̂ and a graph-level margin scalar, using a GCN backbone.

mechanism by quantifying both the intervention magnitude (e.g., ∥z − h(L)∥) and the resulting
change in task margin in the graph classification task. Graphs with a higher long-range index ρG
receive stronger corrections from FLAN and achieve larger margin gains, showing that the layer
adapts its intervention to the diagnostic’s estimate of long-range demand and concentrates changes
where they are most needed.

6 CONCLUSION

We reframed over-squashing as an task- and node-specific phenomenon. We (i) defined a margin-
aligned sensitivity index for trained GNNs, (ii) showed it is predicted from topology via a sparse lin-
ear model, and (iii) found that margins co-vary with this sensitivity with dataset/backbone-dependent
sign. Leveraging these findings, we introduced FLAN, a lightweight, rewiring-free readout layer
that conditions on a structure-predicted proxy, improving accuracy without changing the graph. Our
results open promising directions, including targeted rewiring at high-sensitivity nodes. In future
work, we will study how this diagnostic can guide and complement graph rewiring methods.
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REPRODUCIBILITY STATEMENT

An anonymized code repository is linked at the end of the Introduction. All datasets, preprocessing
steps, fixed splits, hyperparameters, and training/evaluation scripts are specified in the main text and
in Appendix A.1, enabling full reproduction of our results.
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Graphs Conference, pp. 38–1. PMLR, 2022.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In ICML, pp. 7865–7885. PMLR, 2023.

Alexandre Duval, Victor Schmidt, Alex Hernández-Garcı́a, Santiago Miret, Fragkiskos D.
Malliaros, Yoshua Bengio, and David Rolnick. FAENet: Frame averaging equivariant GNN for
materials modeling. In International Conference on Machine Learning, ICML, 2023.
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A APPENDIX

A.1 EXPERIMENTAL SETUP FOR THE LONG-RANGE CAPTURE INDEX

We report here the GNN hyperparameters used to study the correlation between the long-range cap-
ture index pu and the task-aware classification margin across node and graph-level benchmarks in
section 3. Our choices follow common evaluation protocols for rewiring methods with standard
GNN backbones for both node classification (Pei et al., 2020; Attali et al., 2024a) and graph clas-
sification (Errica, 2023; Deac et al., 2022; Karhadkar et al., 2023; Wilson et al., 2024; Liang et al.,
2025).

Node classification. We use two layers, dropout 0.5, learning rate 0.005, and early stopping with
a patience of 100 epochs. Hidden dimensions are 32 for Texas, Wisconsin, and Cornell; 48 for
Squirrel and Chameleon; and 16 for Cora and Citeseer. We adopt a fixed split with 60% of nodes
for training, 20% for validation, and 20% for testing.

Graph classification. We use 4 layers, dropout 0.5, learning rate 0.001, hidden dimension 64, and
early stopping with a patience of 100 epochs. Datasets are split into 80% training, 10% validation,
and 10% testing.

For large graphs, we control the cost of computing the long-range index by using a random sample
Jacobian estimation, as done in Bamberger et al. (2025), which makes the diagnostic scalable and
stable in practice.

A.2 ADDITIONAL ANALYSIS FOR CORRELATION BEHAVIOR

Correlation with deeper GNN. To assess the robustness of the correlation between the node
margin mu and the long-range capture index ρu with respect to model depth, we repeat the analysis
using deeper 4-layer GCN, GAT, and GIN backbones. Across all datasets and architectures, the
correlation values remain consistent with those obtained using shallower models, indicating that the
phenomenon is stable under increased depth.

Dataset GCN: ρ(1) GAT: ρ(1) GIN: ρ(1)

Chameleon −0.3841± 0.0526 −0.3465± 0.0633 −0.1707± 0.1272
Squirrel −0.3099± 0.0644 −0.2205± 0.0800 −0.2617± 0.1006
Texas −0.5350± 0.1086 −0.3248± 0.1353 −0.3929± 0.1465
Cornell −0.4430± 0.1024 −0.3680± 0.1467 −0.1322± 0.1826
Wisconsin −0.4696± 0.1147 −0.3045± 0.0842 −0.0676± 0.1424
Cora 0.1910± 0.0396 0.1595± 0.0431 0.1372± 0.0303
Citeseer −0.0063± 0.0466 0.0190± 0.0316 0.0176± 0.0279
Amazon-Ratings −0.1799± 0.0531 −0.0850± 0.0645 −0.1408± 0.0565
Roman-Empire −0.1811± 0.0590 −0.0342± 0.0609 −0.2034± 0.0857

Table 3: Correlation between the predictive margin mu and the long-range capture index ρu for
deeper (4-layer) GCN, GAT, and GIN backbones. The stability across architectures and datasets
shows that the correlation behavior is robust to network depth.

Limits of local signal for predicting pu. To further contextualize the results of the correlation in
Table 1, we complement our analysis with two simple reference baselines that help clarify how much
information about the model derived long-range index pu can be captured from local graph structure
alone. Specifically, we evaluate (i) a degree-only predictor using the minimum, mean, and maximum
degree of each node, and (ii) a random baseline obtained by shuffling the target values. As shown in
Tables 4 and 5, structural measures commonly used in graph rewiring methods achieve consistently
high testR2 across datasets, indicating that they capture the topological factors most aligned with the
long-range index pu. In contrast, degree-only predictors perform poorly, and the random baseline
yields strongly negative R2, confirming that simple local degree statistics are insufficient to explain
the model’s long-range sensitivity.
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Dataset Structural Degree-only Random

MUTAG 0.9900± 0.0057 0.2028± 0.1478 −1.5234± 0.3083
PROTEINS 0.9395± 0.0150 0.1444± 0.0884 −1.0524± 0.2995
ENZYMES 0.8721± 0.0411 0.0754± 0.0556 −0.6743± 0.3158
Cornell 0.6745± 0.0463 −0.0060± 0.0097 −1.0397± 0.1161
Texas 0.5546± 0.0474 −0.7710± 1.4327 −0.9665± 0.4239
Wisconsin 0.4530± 0.0644 −0.0581± 0.0664 −1.1481± 0.2667
Roman-Empire 0.5196± 0.0713 −0.0101± 0.0345 −1.2238± 0.4580
Amazon-Ratings 0.7054± 0.0511 0.0875± 0.0597 −0.9520± 0.1935

Table 4: GCN — Test R2 for structural predictors, degree-only baselines, and random baselines.

Dataset Structural Degree-only Random

MUTAG 0.9835± 0.0096 0.2402± 0.1531 −1.5975± 0.3761
PROTEINS 0.8587± 0.1441 0.1300± 0.0999 −1.0031± 0.3505
ENZYMES 0.8659± 0.0420 0.0727± 0.0553 −0.6485± 0.3047
Cornell 0.7046± 0.0629 −0.0283± 0.0701 −0.7808± 0.1697
Texas 0.6786± 0.0823 0.0141± 0.0283 −1.2849± 0.2970
Wisconsin 0.6137± 0.0339 −0.0097± 0.0224 −0.7972± 0.6848
Roman-Empire 0.3947± 0.0741 −0.0016± 0.0309 −1.1918± 0.3741
Amazon-Ratings 0.6945± 0.0505 0.0747± 0.0571 −0.9480± 0.1695

Table 5: GIN — Test R2 for structural predictors, degree-only baselines, and random baselines.

Discussion on the choice of hop cutoffs. While alternative choices for the boundary between
short- and long-range interactions are possible, our results do not depend on selecting the distance-1
bin as the short-range component. In practice, redefining the cutoff for example using distances
(1, 2) or (1, 2, 3) as the short-range part changes the absolute values of the index but leaves its
correlation with the margin mu essentially unchanged. This stability arises because the relative
ordering of nodes according to their distance-binned sensitivity distribution S

(k)
u is highly consistent

across hop definitions. Thus, although our operational cutoff aligns with the locality of one-step
message passing, the empirical relationship between long-range sensitivity and predictive margin is
robust to how the hops are grouped.

For illustration, Table 6 reports the correlations obtained with a GCN backbone on several graph-
classification datasets.

Model & Dataset Hop Range Mean Std

GCN — MUTAG 1-hop only −0.4918 0.0876
1–2 hops −0.4440 0.0710

GCN — PROTEINS 1-hop only −0.1809 0.0550
1–2 hops −0.1676 0.0420

GCN — ENZYMES 1-hop only −0.2216 0.1715
1–2 hops −0.1559 0.1990

GIN — MUTAG 1-hop only −0.4963 0.0968
1–2 hops −0.4328 0.1033

GIN — PROTEINS 1-hop only −0.1479 0.0649
1–2 hops −0.1134 0.0579

GIN — ENZYMES 1-hop only −0.2303 0.1824
1–2 hops −0.0638 0.1731

Table 6: Correlation between predictive margin mu and long-range sensitivity index under different
hop definitions.

Note that although the absolute magnitude of the long-range index varies across hop definitions
(e.g., on MUTAG we obtain approximately ρ(1)u ≈ 0.17, ρ(1,2)u ≈ 0.34, and ρ(1,2,3)u ≈ 0.49), the
correlation with the margin remains stable.
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Dataset structural properties. To make the structural differences across datasets explicit, we
report in Table 7 (node-level benchmarks) and Table 8 (graph-level benchmarks) a detailed summary
of key graph statistics, grouped by dataset family (homophilic vs. heterophilic) and by task type
(node- vs. graph-level, including long-range benchmarks). These statistics help contextualize the
long-range regime studied in our work, by linking each dataset’s topology to the expected locality
or non-locality of message passing.

Dataset #Nodes #Edges d Std(d) max(d) Diam. H

Cora 2.7k 5.3k 3.9 5.2 168 19 0.81
Citeseer 3.3k 4.6k 2.7 3.4 99 28 0.74
Texas 183 295 3.22 7.81 104 8 0.11
Wisconsin 251 466 3.71 7.95 122 8 0.20
Cornell 183 280 3.06 7.01 94 8 0.13
Chameleon 2.3k 31.4k 27.60 46.43 732 11 0.24
Squirrel 5.2k 198k 76.33 161.46 1905 10 0.22
Roman Empire 22.7k 32.9k 2.91 1.03 14 6824 0.05
Amazon-Ratings 24k 93k 7.60 6.00 132 46 0.38

Table 7: Node-level datasets: basic structural statistics. d, Std(d), and max(d) denote mean, stan-
dard deviation, and maximum node degree; Diam. is the (graph) diameter; H denotes homophily.

Dataset #Graphs #Nodes (±) #Edges (±) d Std(d) max(d) Diam.

MUTAG 188 17.9 (±4.6) 19.8 (±5.7) 2.2 0.7 3.0 8.2
PROTEINS 1113 39.1 (±45.8) 72.8 (±84.6) 3.7 0.9 5.8 11.6
ENZYMES 600 32.6 (±15.3) 62.1 (±25.5) 3.9 1.0 6.1 10.9
REDDIT 2000 429.6 (±554.1) 497.8 (±623.0) 2.3 8.9 217.4 9.7
IMDB 1000 19.8 (±10.1) 96.5 (±105.6) 8.9 2.8 18.8 1.9
Peptides-func 10873 151.5 (±84.1) 154.3 (±86.0) 2.0 0.8 3.0 57.1
Peptides-struct 10873 151.5 (±84.1) 154.3 (±86.0) 2.0 0.8 3.0 57.1

Table 8: Graph-level datasets: average structural statistics across graphs (mean ± standard devia-
tion). d, Std(d), and max(d) denote mean, standard deviation, and maximum node degree; Diam.
denotes the average graph diameter.

B ADDITIONAL EXPERIMENTS ON LONG-RANGE BENCHMARKS

We extend our analysis to the Long-Range Graph Benchmark (LRGB) (Dwivedi et al., 2022), in-
cluding Peptides-struct, Peptides-func, and the synthetic Tree-Neighbors-Match dataset (Alon &
Yahav, 2021). Because these datasets include regression and multi-label prediction tasks, the notion
of margin must generalize beyond standard multi-class classification so that larger values consis-
tently denote better predictions.

Margin for Peptides-struct. Since regression targets are standardized (zero mean, unit variance),
we define:

mG = − log

(
1

T

T∑
t=1

|ŷt − yt|

)
, mG ∈ (−∞, 0].

where T denotes the number of prediction targets

Margin for Peptides-func (multi-label classification). For logits zt and binary labels yt ∈ {0, 1}:

mG =
1

T

T∑
t=1

(2yt − 1) zt.

The margin increases when the logits confidently align with the ground-truth labels, and decreases
when the predictions contradict them.
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Using these definitions, we compute the correlation between the long-range capture index pu and the
graph-level margin mG. As shown in Table 9, Peptides-struct and Peptides-func both exhibit posi-
tive correlations, indicating that better predictions are associated with a larger one-hop share. This
suggests that, despite being part of a long-range benchmark, these tasks are effectively dominated
by local interactions, consistent with prior work Bamberger et al. (2025).

Dataset GCN GIN

Tree-Neighbors-Match −0.2964± 0.0535 −0.1806± 0.0686
Peptides-struct 0.3163± 0.0395 0.3343± 0.0329
Peptides-func 0.6963± 0.0488 0.5463± 0.0612

Table 9: Correlation between the long-range capture index pu and the margin mG on long-range
benchmarks.

We also evaluate FLAN on Peptides-struct and Peptides-func using the expermental protocol of
Nguyen et al. (2023); Wilson et al. (2024), and include two baselines: PANDA Choi et al. (2024), a
rewiring-free method and a virtual-node augmentation. Despite the local nature of the tasks, FLAN
improves performance across both datasets. Since graphs with lower long-range sensitivity achieve
higher margins, adjusting embeddings according to their predicted structural index pG reinforces the
region of representation space most aligned with task-specific signals.

Model Peptides-func (AP ↑) Peptides-struct (MAE ↓)

GCN 0.5029± 0.0058 0.3587± 0.0006
+ SDRF 0.5041± 0.0026 0.3559± 0.0010
+ FoSR 0.4534± 0.0090 0.3003± 0.0007
+ EGP 0.4972± 0.0023 0.3001± 0.0013
+ CGP 0.5106± 0.0014 0.2931± 0.0006
+ VN 0.5022± 0.0014 0.3241± 0.0016
+ PANDA 0.5188± 0.0022 0.3098± 0.0011
+ FLAN 0.5479± 0.0041 0.2724± 0.0019

GIN 0.5124± 0.0055 0.3544± 0.0014
+ SDRF 0.5122± 0.0061 0.3515± 0.0011
+ FoSR 0.4584± 0.0079 0.3008± 0.0014
+ EGP 0.4926± 0.007 0.3034± 0.0027
+ VN 0.5137± 0.0060 0.3197± 0.0021
+ CGP 0.5159± 0.0059 0.2910± 0.0011
+ PANDA 0.5214± 0.0068 0.3003± 0.0019
+ FLAN 0.5375± 0.0041 0.2886± 0.0021

Table 10: FLAN compared to rewiring and virtual-node baselines on Peptides-func and Peptides-
struct.

Additional LRGB evaluation details Following the tuning recommendations of Tönshoff et al.
(2024), we additionally evaluate our approach under a more exhaustive hyperparameter search for
the GCN backbone. Concretely, we vary (i) the use of Batch Normalization (on/off) and (ii) the
prediction head, replacing the linear classifier with an MLP of depth d ∈ {1, 2, 3}, while using a
base learning rate lr = 10−3 together with a learning-rate schedule. The corresponding results are
reported in Table 11, and show that FLAN consistently improves the tuned GCN baseline.

Note that to control the computational cost of our long-range index on large graphs, we use a
random-sample Jacobian estimator, following Bamberger et al. (2025). This approximation makes
the diagnostic scalable and stable in practice.

Beyond accuracy, our method remains computationally lightweight,depending on the dataset and the
considered Graph Transformer variants, we obtain near state-of-the-art performance while reducing
the overall runtime by approximately 45% to 95%.
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Table 11: LRGB results on Peptides-func (AP ↑) and Peptides-struct (MAE ↓). Ours are mean ±
std over 4 runs; other methods are reported numbers from Tönshoff et al. (2024). Best baseline per
dataset is in bold.

Group Method Peptides-func AP ↑ Peptides-struct MAE ↓

MPNNs GCN (ours) 0.6655± 0.0039 0.2558± 0.0024

Multi-hop GNNs
DIGL+MPNN+LapPE 0.6830± 0.0026 0.2616± 0.0018

MixHop-GCN+LapPE 0.6843± 0.0049 0.2614± 0.0023

DRew-GCN+LapPE 0.7150± 0.0044 0.2536± 0.0015

Graph Transformers

Transformer+LapPE 0.6326± 0.0126 0.2529± 0.0016

SAN+LapPE 0.6384± 0.0121 0.2683± 0.0043

GraphGPS+LapPE 0.6535± 0.0041 0.2500± 0.0005

GPS 0.6534± 0.0091 0.2509± 0.0014

CRAWL 0.7074± 0.0032 0.2506± 0.0022

GRIT 0.6988± 0.0082 0.2460± 0.0012

Graph ViT 0.6942± 0.0075 0.2449± 0.0016

G-MLPMixer 0.6921± 0.0054 0.2475± 0.0015

Ours GCN + FLAN 0.6868± 0.0040 0.2450± 0.0026

C FLAN’S EFFECT ON LONG-RANGE SENSITIVITY

In this section, we visualize how graph embeddings change under FLAN as a function of the graph-
level long-range index ρG. Across datasets (Figures 10, 6, and 7), we observe a clear trend: graphs
with higher ρG undergo stronger embedding shifts and achieve larger margin gains. This pattern
indicates that FLAN does not apply a uniform correction but adapts the intensity of its interven-
tion to the diagnostic’s estimate of long-range demand. Importantly, the largest modifications oc-
cur precisely for graphs where local evidence dominates and long-range contributions are under-
represented, confirming that the diagnostic successfully identifies the regimes where intervention is
most beneficial.
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Figure 5: Analysis of FLAN adjustments on PROTEINS: the Euclidean distance ∥z − h(L)∥ (dif-
ference between the embedding with FLAN, z, and the backbone embedding without FLAN, h(L))
and the margin gain are plotted against the long-range index ρG, showing larger adjustments and
stronger improvements as ρG increases.
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Figure 6: Analysis of FLAN adjustments on IMDB-Binary: the Euclidean distance ∥z − h(L)∥
(difference between the embedding with FLAN, z, and the backbone embedding without FLAN,
h(L)) and the margin gain are plotted against the long-range index ρG, showing larger adjustments
and stronger improvements as ρG increases.

Figure 7: Analysis of FLAN adjustments on MUTAG: the Euclidean distance ∥z−h(L)∥ (difference
between the embedding with FLAN, z, and the backbone embedding without FLAN, h(L)) and the
margin gain are plotted against the long-range index ρG, showing larger adjustments and stronger
improvements as ρG increases.

To show that FLAN focuses on the graphs that are most sensitive to long-range degradation, we
examine how the margin improvement varies across different values of the long-range index pG. As
shown in Table 12, the performance gains are concentrated on the graphs with the highest pG, i.e.,
those whose structure is most affected by long-range dependencies. This indicates that our method
specifically benefits the graphs for which message passing is most challenged by long-range effects.
The table quantifies this behavior by reporting how the margin improvement ∆m increases when
restricting evaluation to the top 50%, 25%, and 10% most long-range-sensitive graphs.
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Dataset Backbone ∆m (all) ∆m (Top50%) ∆m (Top25%) ∆m (Top10%)

MUTAG GCN +0.3944 +0.1027 +0.1101 +0.0921
GIN +0.1617 +0.0428 +0.1091 +0.1547

ENZYMES GCN +0.2675 +0.2424 +0.4382 +0.9524
GIN +0.0526 -0.0081 +0.3468 +0.4252

PROTEINS GCN +0.0842 +0.1217 +0.4729 +1.1336
GIN +0.1917 +0.1790 +0.4149 +0.8718

IMDB GCN +0.0180 +0.0580 +0.0854 +0.1258
GIN +0.4964 +0.8223 +1.5778 +2.4207

Table 12: Margin improvement ∆m across the full dataset and on subsets of graphs with the highest
long-range index pG.

To further validate that the gains come from conditioning on long-range sensitivity rather than from
the estimation procedure, we include an ablation where FLAN is given access to the true backbone-
derived pG (denoted FLAN⋆). As shown in Table 13, the improvements obtained with FLAN⋆ are
nearly identical to those obtained with the predicted index, confirming that the diagnostic quantity
is responsible for the performance gains.

Backbone Method ENZYMES IMDB MUTAG PROTEINS

GCN FLAN 33.8 ± 1.8 54.8 ± 1.6 81.2 ± 2.5 74.3 ± 1.7
FLAN⋆ 34.7 ± 1.7 55.1 ± 1.5 81.6 ± 1.8 74.5 ± 2.1

GIN FLAN 35.8 ± 1.9 72.0 ± 1.3 81.3 ± 2.7 74.2 ± 1.7
FLAN⋆ 36.3 ± 1.5 72.9 ± 1.8 81.1 ± 2.0 74.5 ± 2.3

Table 13: Comparison between FLAN and FLAN⋆, where the latter uses the true long-range index
pG computed from Jacobian sensitivities.

Sensitivity Capture and FLAN-Accuracy Gains In this section, we present (i) the cumulative
sensitivity capture profile ρ(1,...,k)u as a function of the hop radius k (blue, left axis), averaged over
graphs with a ±1 standard-deviation, and (ii) the corresponding test-accuracy gain ∆(k) of FLAN
over the baseline (orange, right axis), reported in percentage points. Figures ?? report results aver-
aged over 10 random runs. When ρ(1,...,k)u saturates quickly (i.e., approaches 1 for small k), it indi-
cates that the margin-aligned sensitivity mass is predominantly concentrated at short range (typically
IMDB-Binary). Conversely, slow saturation implies that a substantial fraction of this sensitivity is
distributed over more distant hops, reflecting stronger long-range dependencies (e.g., PROTEINS or
ENZYMES). The curve ∆(k) indicates the scale k at which the signal p̂G is most informative for
FLAN: a peak at small k suggests that the most discriminative information lies at local to mid-range
neighborhoods, whereas a decline at larger k is typically consistent with saturation of ρ(1,...,k).
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Figure 8: Cumulative sensitivity capture ρ(1,...,k)u (blue, mean±std) and FLAN gain ∆(k) in points
(orange) vs. hop radius. on MUTAG dataset.
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Figure 9: Cumulative sensitivity capture ρ(1,...,k)u (blue, mean±std) and FLAN gain ∆(k) in points
(orange) vs. hop radius. on IMDB dataset.

D TIME COMPARISON

Table 14 reports the average preprocessing time per graph; for FLAN we report the end-to-end cost
of producing the conditioning scalar p̂G (Jacobian–margin evaluation + structural indicators + Lasso
fit), to match the per-graph preprocessing measured for rewiring baselines.

FLAN’s preprocessing cost stays in the millisecond range per graph and is comparable to graph
expanders such as EGP/CGP, while being 101–103× faster than heavier rewiring methods (e.g.,
BORF, SDRF/FoSR, and GTR).
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Figure 10: Cumulative sensitivity capture ρ(1,...,k)u (blue, mean±std) and FLAN gain ∆(k) in points
(orange) vs. hop radius. on PROTEINS dataset.
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Figure 11: Cumulative sensitivity capture ρ(1,...,k)u (blue, mean±std) and FLAN gain ∆(k) in points
(orange) vs. hop radius. on ENZYMES dataset.

Model IMDB-Binary MUTAG ENZYMES PROTEINS

SDRF 5.13257 0.669701 1.71482 3.02873
FoSR 4.54634 4.71567 4.56855 5.04358
BORF 465.408 53.7069 179.573 351.173
GTR 3.39839 1.54127 2.87399 6.49714
PANDA 0.789759 0.246243 0.278594 0.248043
EGP 0.0185697 0.00446963 0.0163198 0.0393348
CGP 0.0211341 0.00438905 0.0166841 0.0348585

FLAN 0.017668 0.013909 0.016429 0.027119

Table 14: Comparison of the preprocessing time to construct each graph rewiring method compared
to our FLAN method (in seconds per graph). Table taken from Wilson et al. (2024).
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