

000 001 002 003 004 005 WHEN DO DISTANT DEPENDENCIES MATTER? DIAG- 006 NOSTICS FOR LONG-RANGE PROPAGATION IN GNNS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
19

Using this diagnostic, we show that GNNs implicitly operate in local and non-local regimes: some nodes behave as if decisions are locally controlled (high p_u), others as if non-local inputs dominate (low p_u). Importantly, the model’s performance co-varies with this sensitivity in a task-dependent manner: across benchmarks and backbones, the margin–sensitivity correlation is approximately linear, but its sign and magnitude vary with dataset and architecture. In some settings, reducing the one-hop share helps; in others, preserving locality is beneficial. This organization, along a single sensitivity axis, explains when long-range propagation aids or harms prediction (§3).

We then uncover a bridge to graph structure: the true sensitivity defined via the margin can be predicted from topology alone (§4.1). A sparse linear model (Lasso) on structural indicators widely used in structural rewiring (e.g., curvature and effective resistance) yields accurate, structure-only proxies for p_u at node and graph levels. This link connects structural accounts of over-squashing to model-level behavior and enables label-free estimation at test time.

Finally, we convert these insights into a minimal intervention at readout. We introduce FLAN (§4.2), a rewiring-free, lightweight long-range layer that conditions the classifier on the structure-predicted proxy \hat{p}_u . The layer applies a small translation and a one-parameter diagonal reweighting of the encoder representation, effectively letting the readout adapt across local vs. non-local regimes while keeping the encoder and topology unchanged. Empirically, this plug-in improves accuracy across GNN backbones and datasets (§5), offering a simple and time-efficient alternative to graph rewiring.

The main contributions of this paper are summarized as follows:

1. We introduce a task-aligned, Jacobian-based diagnostic of long-range sensitivity at node (p_u) and graph (ρ_G) scales.
2. We demonstrate that this diagnostic is accurately predicted from graph structure via a sparse structural model, linking structural bottlenecks to trained model sensitivity.
3. We provide cross-dataset/backbone evidence that margins vary monotonically along the sensitivity axis, with task-dependent sign.
4. Finally, we design FLAN, a rewiring-free, parameter-efficient conditioning layer that leverages the predicted sensitivity \hat{p}_u to improve performance without changing the graph or increasing depth.

Our study contributes to a unified understanding of over-squashing: structural features forecast a trained model’s long-range *sensitivity*; errors organize along this sensitivity axis; and an adaptive, low-capacity correction exploits this organization to deliver consistent gains (Arnaiz-Rodriguez & Errica, 2025; Bechler-Speicher et al., 2025).

Reproducibility. The source code to reproduce our experiments is available¹.

2 BACKGROUND AND RELATED WORK

We start by introducing notations used throughout this paper. Let $G = (V, E)$ be a simple, undirected, unweighted graph with node-feature matrix $\mathbf{H} \in \mathbb{R}^{|V| \times d}$. Let $\mathbf{A} \in \{0, 1\}^{|V| \times |V|}$ be its adjacency matrix, $\mathbf{D} = \text{diag}(d_u)_{u \in V}$ the degree matrix, $\mathbf{P} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ the transition matrix and the normalized Laplacian is $\mathbf{L}_{\text{norm}} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$. For $u \in V$, we denote its neighborhood by $\mathcal{N}(u) = \{v \in V : (u, v) \in E\}$.

Message passing in GNNs. GNNs are built upon the message passing mechanism, in which node representations are refined through local interactions (Gilmer et al., 2017). At each layer, a node aggregates information from its neighbors using a permutation-invariant function, followed by a learnable transformation. Formally, for a node $i \in \mathcal{V}$, its representation at layer $k + 1$ is defined as:

$$\mathbf{h}_i^{(k+1)} = \phi \left(\mathbf{h}_i^{(k)}, \bigoplus_{j \in \mathcal{N}(i)} \psi(\mathbf{h}_j^{(k)}) \right),$$

¹https://anonymous.4open.science/r/FLAN_ICLR_2026-3E65

108 where $\mathbf{h}_i^{(k)}$ denotes the representation of node i at layer k , ψ the message function, and ϕ the update
 109 function. The operator \bigoplus denotes a permutation-invariant aggregation function such as summation,
 110 mean, or maximum. This iterative procedure allows GNNs to integrate both feature and structural
 111 information from local neighborhoods. Message passing is effective when task-relevant information
 112 is local and can be aggregated within only a few hops, which is typically the case in homophilic
 113 graphs (Zhu et al., 2021). For long-range dependencies, communication across a distance d requires
 114 $\mathcal{O}(d)$ message-passing layers (Barceló et al., 2020). Increasing the depth in this way amplifies
 115 over-squashing (Di Giovanni et al., 2023; Akansha, 2025) and over-smoothing (Rusch et al., 2023;
 116 Giraldo et al., 2023).

117 **Over-squashing, long-range interactions, and graph rewiring.** Over-squashing occurs when in-
 118 formation from exponentially large neighborhoods must be compressed into fixed-size node em-
 119 beddings within a limited number of message-passing layers (Alon & Yahav, 2021; Topping et al.,
 120 2022). As the receptive field expands with depth, the aggregation function is forced to encode ever
 121 larger amounts of information into a bounded representation, creating a bottleneck that severely
 122 limits the ability of GNNs to capture long-range dependencies, particularly in graphs with sparse
 123 connectivity or complex topology.

124 Graph rewiring addresses over-squashing and long-range dependencies by modifying the input
 125 topology of a GNN, alleviating structural bottlenecks that hinder the propagation of information
 126 across distant nodes. Early work focuses on curvature-based rewiring, adding edges around regions
 127 with highly negative discrete curvature that indicate bottlenecks (Topping et al., 2022; Giraldo et al.,
 128 2023; Nguyen et al., 2023; Fesser & Weber, 2023). Because discrete curvature measures are inher-
 129 ently local (Forman, 2003; Ollivier, 2007; Samal et al., 2018), subsequent approaches have targeted
 130 more global signals, either increasing the spectral gap to improve connectivity and mixing (Banerjee
 131 et al., 2022; Karhadkar et al., 2023) or minimizing effective resistance, which models the difficulty
 132 of information transmission between node pairs (Black et al., 2023).

133 More recently, a complementary line of work incorporates node features into the rewiring tech-
 134 niques. For example, Delaunay-based rewiring reconstructs the graph by performing a Delaunay
 135 triangulation in feature space, thereby removing edges that exhibit extreme discrete curvature (At-
 136 tali et al., 2024a; 2025). Other approaches jointly modify the topology and the initial node features
 137 to maximize the spectral alignment between the feature signal and the structural information (Link-
 138 erhägner et al., 2025). Finally, intra-community rewiring guided by the cosine similarity of node fea-
 139 tures has been proposed to densify connections among similar nodes while preserving community-
 140 level structure (Rubio-Madrigal et al., 2025).

141 One can distinguish between different types of bottlenecks. Structural bottlenecks arise from the
 142 graph’s topology (narrow cuts, hubs, or low expansion) that restrict information flow regardless of
 143 the model. Computational bottlenecks stem from the message-passing computation itself: even on
 144 favorable graphs, signals and gradients from distant nodes attenuate through repeated local updates.
 145 Most existing metrics target structural limits; far fewer directly capture the computational one. The
 146 computational bottleneck is often studied via Jacobians : Topping et al. (2022); Di Giovanni et al.
 147 (2023) show that node-to-node sensitivity decays exponentially with graph distance, explaining the
 148 difficulty of propagating long-range information in GNNs.

149 3 GNN PERFORMANCE AND LONG-RANGE DEPENDENCIES

150 In this section, we extend the study of long-range effects and over-squashing by grounding the anal-
 151 ysis in the model’s Jacobian (Topping et al., 2022; Di Giovanni et al., 2023; Giovanni et al., 2024).
 152 Rather than focusing on pairwise dependencies between individual nodes, we directly quantify both
 153 the distance (in graph terms) and the amount of task-relevant information that a node’s representation
 154 can capture in a classification task. Concretely, we aggregate margin-aligned Jacobian sensitivities
 155 into a one-hop dominance measure, quantifying how much of the margin-relevant signal is cap-
 156 tured locally rather than over longer ranges. We then examine how this long-range signal relates
 157 to architectural performance. Importantly, instead of relying solely on accuracy, we evaluate with
 158 the classification margin, which provides a finer view of confidence and decision robustness. This
 159 margin-aligned perspective allows us to connect distance-structured sensitivity to accuracy gains of-
 160 fering a clear diagnostic of when and how architectures benefit from long-range information. Below,
 161 we elaborate on the different steps.

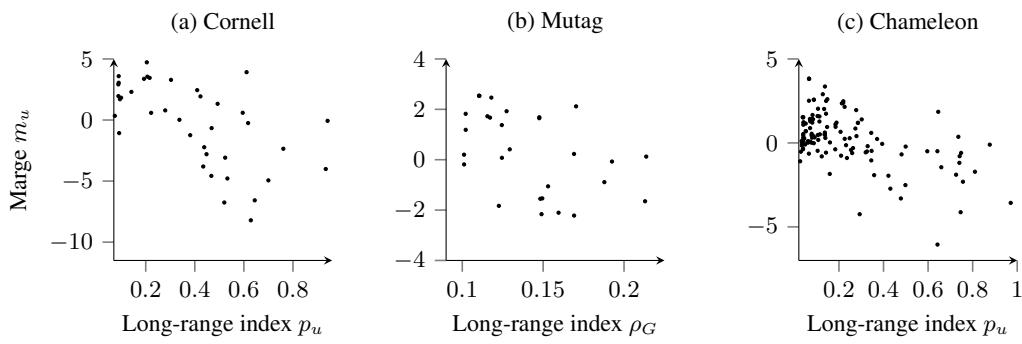


Figure 1: Correlation between classification margin and the long-range capture index $\bar{\rho}_u$: (a) CORNELL (node classification), (b) MUTAG (graph classification), (c) CHAMELEON (node classification). Higher $\bar{\rho}_u$ values (dominant 1-hop contribution) tend to coincide with smaller margins when long-range evidence is required.

Task-aware node margin. For node classification, let $\mathbf{z}_u \in \mathbb{R}^C$ be the logits predicted for node $u \in V$ with ground-truth label $y_u \in \{1, \dots, C\}$. The node-level margin is defined as

$$m_u = \mathbf{z}_u[y_u] - \max_{c \neq y_u} \mathbf{z}_u[c]. \quad (1)$$

The margin is directly aligned with the downstream task: $m_u > 0$ indicates correct classification; larger values reflect a larger separation from the closest competing class. For graph classification, we similarly define a graph-level margin m_G . Specifically, letting $\mathbf{z}_G \in \mathbb{R}^C$ denote pooled graph logits with label y_G , we set $m_G = \mathbf{z}_G[y_G] - \max_{c \neq y_G} \mathbf{z}_G[c]$.

Label-aware sensitivity. To attribute the classification margin to input features, we compute the magnitude of the first-order effect:

$$J_{s,g}^u := \left| \frac{\partial m_u}{\partial \mathbf{H}_{s,g}^{(0)}} \right|, \quad (2)$$

where $s \in V$ indexes a source node and $g \in \{1, \dots, F\}$ a feature dimension. Intuitively, $J_{s,g}^u$ measures how much the classification margin of node u changes in response to a small change in feature g of source node s . For graph classification, we analogously define $J_{s,g}^G := |\partial m_G / \partial \mathbf{H}_{s,g}^{(0)}|$.

Distance-binned aggregation. Having computed the label-aware sensitivities, we next aggregate them according to graph distance from a reference node u :

$$S_{u,g}(k) = \sum_{s: \mathbf{D}(s,u)=k} J_{s,g}^u, \quad k = 0, 1, 2, \dots, \quad (3)$$

with $\mathbf{D}(\cdot, \cdot)$ the number-of-hops on the input graph. This yields a distance-resolved profile of label-aware influence; in message passing GNNs, contributions beyond the network depth are typically negligible, but we retain the full histogram for completeness. For graph classification, we use the same binning around u : $S_{u,g}^G(k) := \sum_{s: \mathbf{D}(s,u)=k} J_{s,g}^G$.

Long-range capture index. We quantify the fraction captured only by the one-hop neighborhood; for a node u we define:

$$\rho_{u,g} = \frac{S_{u,g}(1)}{\sum_{k \geq 1} S_{u,g}(k)} \in [0, 1]. \quad (4)$$

Normalizing by $\sum_{k \geq 1}$ makes $\rho_{u,g}$ scale-invariant to global rescalings of gradients. For graph classification, this is defined as $\rho_{u,g}^G := \frac{S_{u,g}^G(1)}{\sum_{k \geq 1} S_{u,g}^G(k)} \in [0, 1]$.

We obtain a node- and a graph-level score by averaging over features as follows:

Node-level index

$$p_u = \frac{1}{F} \sum_{g=1}^F \rho_{u,g} \in [0, 1]. \quad (5)$$

Graph-level index

$$\rho_G = \frac{1}{|V|} \frac{1}{F} \sum_{u \in V} \sum_{g=1}^F \rho_{u,g}^G \in [0, 1]. \quad (6)$$

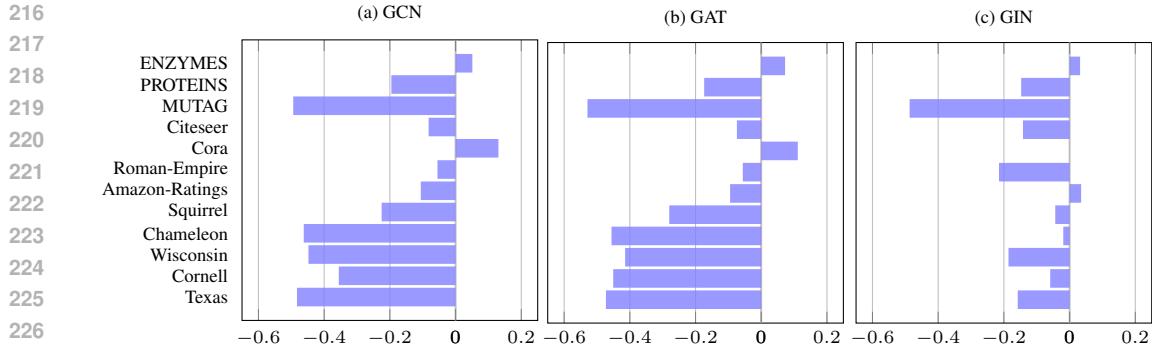


Figure 2: Correlation (mean over 20 runs) between the classification margin and the long-range capture index p_u for three backbones (GCN, GAT, GIN). Negative values indicate that performance increases as the 1-hop share decreases, i.e., when long-range propagation becomes more informative.

Larger p_u (and ρ_G) indicates that margin-relevant influence is disproportionately concentrated at distance 1, indicating limited long-range transmission to u . Equivalently, this long-range diagnostic index can be interpreted as a one-hop dominance score for node u : it summarizes how much of the margin-aligned sensitivity that reaches u is already captured in its immediate neighborhood as opposed to arriving from longer ranges. **Let us note here that, although the range measure proposed by Bamberger et al. (2025) also leverages Jacobian information, it is designed to be task-agnostic and quantifies how far Jacobian/Hessian influence can propagate. In contrast, our diagnostic is margin-aligned, indicating when distant information helps or hurts the decision boundary.**

How does the long-range capture index relate to the classification task? To analyze GNN’s behavior on a given graph dataset, we study the correlation between the classification margin m_u (Eq. (1)) and the long-range capture index (Eq. (5) and (6)). Figure 1 illustrates the trends on Chameleon, Cornell, and MUTAG. Figure 2 reports the mean correlation over 20 runs for GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), and GIN (Xu et al., 2019) across nine node and three graph classification datasets commonly used in graph rewiring experiments (Topping et al., 2022; Giraldo et al., 2023; Attali et al., 2024a; Karhadkar et al., 2023; Nguyen et al., 2023; Liang et al., 2025). Experimental details are provided in Appendix A.1.

Across datasets, the correlation between the classification margin and the long-range capture index is not universal but depends on both the dataset and the GNN backbone. On heterophilic graphs, GCN and GAT exhibit negative correlations, indicating that margins improve as reliance on one-hop information decreases, i.e., long-range capture helps. On homophilic graphs, the correlation is close to zero and slightly positive, indicating that one-hop information is more informative for the task than long-range information, which aligns with the structure of the graph. GCN and GAT exhibit broadly similar behavior on node classification datasets: their diffusion-based aggregation yields greater variability in the one-hop share p_u . In contrast, GIN operates in a distinct regime: its sum aggregation followed by an MLP favors local evidence, yielding larger and more tightly concentrated p_u and a reduced reliance on long-range contributions. **Our findings are not specific to 1-hop choice in Eq. (4): enlarging the “short-range” bin (e.g., to 1–2 or 1–3 hops) changes index magnitude but leaves its correlation with the margin m_u essentially unchanged (see Appendix A.2).**

4 FROM DIAGNOSTICS TO LONG-RANGE INTERVENTION

4.1 DECODING LONG-RANGE EFFECTS FROM GRAPH TOPOLOGY

To mitigate long-range dependencies, rewiring methods typically rely on structural measures. In this section, we ask whether topology alone can explain and predict the node-wise long-range capture index, i.e., whether the structural indicators used for rewiring recover p_u or ρ_G . To obtain an interpretable link between graph topology and our diagnostic index, we estimate a sparse linear relation whose coefficients identify the indicators that affect p_u (or ρ_G) along with the sign and magnitude of their effects. To this end, we use four measures that are widely used in graph rewiring methods.

Dataset	GCN	GAT	GIN
Texas	0.6377 ± 0.10	0.3859 ± 0.14	0.5127 ± 0.10
Cornell	0.7037 ± 0.15	0.5161 ± 0.18	0.5560 ± 0.11
Wisconsin	0.5653 ± 0.11	0.4269 ± 0.12	0.5453 ± 0.09
Chameleon	0.4270 ± 0.05	0.3509 ± 0.04	0.6769 ± 0.28
Squirrel	0.4349 ± 0.01	0.3258 ± 0.19	0.4349 ± 0.01
Amazon-Ratings	0.7897 ± 0.01	0.4000 ± 0.04	0.8055 ± 0.02
Roman-empire	0.6831 ± 0.03	0.6551 ± 0.03	0.4070 ± 0.04
Cora	0.3050 ± 0.02	0.3600 ± 0.02	0.2737 ± 0.03
Citeseer	0.3100 ± 0.03	0.3644 ± 0.04	0.3377 ± 0.04
MUTAG	0.9922 ± 0.00	0.9751 ± 0.03	0.9867 ± 0.01
PROTEINS	0.9560 ± 0.01	0.9564 ± 0.01	0.9531 ± 0.01
ENZYMES	0.7548 ± 0.13	0.7548 ± 0.13	0.7862 ± 0.09
IMDB	0.8340 ± 0.01	0.8349 ± 0.01	0.7567 ± 0.02

Table 1: R^2 mean on the test set of Lasso regression using structure indicators to predict the capture index across different backbones and datasets.

(i) PageRank (Page et al., 1999). PageRank is a random-walk centrality that highlights highly influential nodes. It is used in GNNs to guide rewiring or capacity allocation via higher-order diffusion (Klicpera et al., 2019), central virtual nodes (Qian et al., 2024; Southern et al., 2025), or node-wise capacity scaling (Choi et al., 2024). Formally, $\pi^\top = (1-\alpha) \mathbf{1}^\top / |V| + \alpha \pi^\top \mathbf{D}^{-1} \mathbf{A}$ with $\alpha \in (0, 1)$.

(ii) Forman–Ricci edge curvature (Samal et al., 2018). Edges with highly negative curvature typically coincide with structural bottlenecks that intensify over-squashing (Alon & Yahav, 2021; Topping et al., 2022), whereas edges with highly positive curvature promote intra-cluster propagation and can accentuate over-smoothing (Nguyen et al., 2023). These curvature signals motivate curvature-aware rewiring that targets bottlenecks to improve information flow (Topping et al., 2022; Giraldo et al., 2023; Nguyen et al., 2023; Fesser & Weber, 2023; Liu et al., 2023). For an edge $e = (u, v)$, we use the augmented Forman curvature $F(u, v) = 4 - (d_u + d_v) + 3 t_{uv}$, where t_{uv} is the number of triangles incident to (u, v) . Let $q_{0.1}$ and $q_{0.9}$ denote the 10th and 90th percentiles of $\{F(e)\}_{e \in E}$. To obtain node-level indicators, for each node u we count incident edges in the bottom and top deciles: $F_{10}(u) = |\{v \in N(u) : F(u, v) \leq q_{0.1}\}|$, $F_{90} = |\{v \in N(u) : F(u, v) \geq q_{0.9}\}|$. A large $b_{0.1}(u)$ signals exposure to strongly negative-curvature (bottleneck) edges, while a large $t_{0.9}(u)$ characterizes cohesive, intra-cluster ties.

(iii) Mean commute time. Commute time quantifies the difficulty of long-range transmission, large values highlight regions where propagation is inefficient and motivate rewiring to improve long range connectivity (Di Giovanni et al., 2023; Black et al., 2023; Barbero et al., 2024; Sterner et al., 2024; Zhuo et al., 2025). Formally we define the mean commute time as $C_{uv} = 2|E|R_{uv}$, where R_{uv} is the effective resistance (Chandra et al., 1989) between node u and v . For a node u the mean commute time is defined as $\bar{C}(u) = \frac{1}{|V|-1} \sum_{j \in V \setminus \{u\}} C_{uj}$. Large $\bar{C}(u)$ indicates costly long-range access between u and the rest of the graph (Di Giovanni et al., 2023).

Finally, the node-level structural indicator is the aggregation of four measures:

$$\mathbf{S}(u) = [\bar{C}(u), \pi(u), F_{10}(u), F_{90}(u)] \in \mathbb{R}^4.$$

Sparse linear model for long-range capture index. Let $\mathbf{S} \in \mathbb{R}^{N \times 4}$ stack $\mathbf{s}(u)$ over nodes. We fit a sparse linear predictor of the task-aligned index p_u or ρ_G :

$$(\hat{\beta}_0, \hat{\beta}) \in \arg \min_{\beta_0, \beta} \frac{1}{2|\mathcal{I}_{\text{train}}|} \sum_{u \in \mathcal{I}_{\text{train}}} (p_u - \beta_0 - \mathbf{S}_u^\top \beta)^2 + \lambda \|\beta\|_1, \quad (7)$$

with λ chosen by K -fold cross-validation on training nodes. We report the test $R^2(\hat{p}_u, p_u)$ in Table 1.

Can structure alone predict the long-range capture index? On graph classification, the structure-only proxy closely matches the model-derived p_u . For node classification, the alignment is strongest on heterophilous datasets and attenuates on homophilous ones, where one-hop evidence

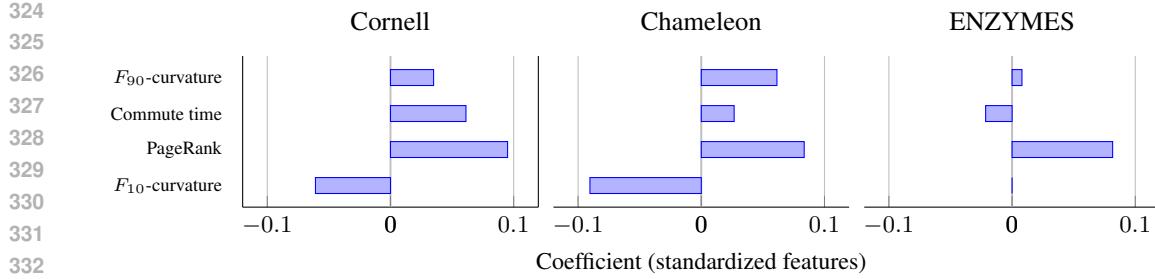


Figure 3: Lasso node indicators influencing the long-range capture index.

dominates. These trends hold across GCN, GAT, and GIN, indicating robustness to the backbone. They further confirm that p_u and ρ_u are largely topology-driven, reflecting the same structural signals that rewiring methods leverage. To improve interpretability, we complement Table 1 with two additional baselines based on node degree ($\mathbf{S}(u) = [\min \deg(u), \text{mean } \deg(u), \max \deg(u)]$), as well as a random baseline obtained by shuffling the targets. As shown in Appendix A.2 (Table , such local degree statistics are not sufficient to predict the model-derived long-range index p_u , whereas the structural measures used in graph rewiring methods achieve substantially higher test R^2 .

Analysis of the Lasso coefficients. Figure 3 reports the Lasso coefficients on three datasets. The coefficients vary across datasets, indicating that different structural indicators modulate the long-range capture index. For instance, a lower mean commute time corresponds to a slight increase in p_u on Cornell, whereas it correlates negatively with ρ_G on ENZYMES. We also observe that higher PageRank, i.e., greater centrality, typically coincides with a high p_u , suggesting that highly central nodes struggle to capture long-range information; their capacity concentrates on strong one-hop signals and thereby reduces the contribution of distant nodes, in line with Choi et al. (2024).

Topological bottlenecks and long-range propagation. For some datasets we observe that incidence to highly negative Forman–curvature edges is negatively associated with p_u . While such edges are often labeled as bottlenecks, negatively curved edges can also act as bridges linking distinct communities: being incident to one effectively grants a node access to many distant neighbors, which lowers p_u . This result corroborates the observation of Arnaiz-Rodriguez & Errica (2025) that not all bottlenecks are harmful to long-range dependence; some enable controlled long-range reach.

Can structural properties predict the true classification margin? We replaced the sparse linear model of (7) used to predict the long-range index p_u from our four node-level structural indicators with an otherwise identical Lasso that instead regresses the true node margin m_u from the same features. On held-out nodes across datasets and backbones, this topology-only regression of m_u yielded very low R^2 (≈ 0), in contrast to the substantially higher R^2 obtained when predicting p_u . This outcome is consistent with our framework: m_u is jointly determined by labels, node features, and the learned encoder, and its association with long-range effects even changes sign across datasets, whereas p_u isolates a one-hop-dominance property that is largely structural and thus predictable from these indicators. In short, topology helps locate where long-range pressure exists, but it cannot by itself reconstruct how confident the model is in a class decision.

4.2 FLAN: A REWIRING-FREE LONG-RANGE LAYER

Our analysis shows that node margins vary systematically with p_u (§3); and that p_u is predictable from structure alone (§4.1). A single global linear head must therefore compromise across local vs. non-local regimes. We propose a topology-preserving readout adjustment whose per-node intensity is driven by the measurable diagnostic \hat{p}_u , without changing the graph or increasing depth (main results and ablation in §5).

Setup. Let Φ_θ be a frozen GNN encoder with L layers and let $\mathbf{h}_u^{(L)} = \Phi_\theta(\cdot)_u \in \mathbb{R}^d$ be the embedding of node (or graph) u . Let $p_u \in [0, 1]$ denote the long-range capture index in (5); we estimate it using the sparse linear model of (7) over structural indicators, yielding $\hat{p}_u \in [0, 1]$.

378 **FLAN Layer.** We attach a gating map $g_\phi : \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}^d$ with parameters $\phi = (\mathbf{w}_\gamma, \mathbf{w}_\beta)$,
 379 $\mathbf{w}_\gamma, \mathbf{w}_\beta \in \mathbb{R}^d$:

$$\mathbf{z}_u = \sigma_s(\mathbf{w}_\gamma \hat{p}_u) \odot \mathbf{h}_u^{(L)} + \mathbf{w}_\beta \hat{p}_u, \quad (8)$$

380 where $\sigma_s(\cdot)$ is an elementwise sigmoid and \odot is the Hadamard product. The classifier is linear,
 381

$$\text{logits}(u) = \mathbf{W}\mathbf{z}_u + b, \quad \mathbf{W} \in \mathbb{R}^{C \times d}, \mathbf{b} \in \mathbb{R}^C. \quad (9)$$

382 During training, we optimize $(\phi, \mathbf{W}, \mathbf{b})$ with cross-entropy; θ is kept fixed. Intuitively, FLAN uses
 383 the diagnostic signal \hat{p}_u to apply a per-node rescaling of $\mathbf{h}_u^{(L)}$ and a per-node bias shift in logit space.
 384

385 **Geometric view.** The additive term $\mathbf{w}_\beta \hat{p}_u$ implements a p -dependent *translation* of the decision
 386 boundary (a family of parallel hyperplanes indexed by \hat{p}). The multiplicative term $\sigma_s(\mathbf{w}_\gamma \hat{p}_u) \odot$
 387 $\mathbf{h}_u^{(L)}$ implements a p -dependent *reweighting* of coordinates, effectively tilting the separator. The
 388 sensitivity index compresses long-range demand into a single axis that is highly predictive of where
 389 the baseline fails. Because the dominant error varies monotonically with p_u , this rank-1 translation
 390 plus diagonal reweighting is a minimal intervention that corrects the under-performing p regime.
 391

392 5 EXPERIMENTS

393 To evaluate the effect of the proposed FLAN layer, we evaluate it on node classification tasks spanning
 394 both homophilic graphs (Sen et al., 2008) and heterophilic graphs (Rozemberczki et al., 2021;
 395 Tang et al., 2009), as well as on graph classification benchmarks (Morris et al., 2020). The latter
 396 are widely adopted in the evaluation of rewiring methods, since their structures are tightly coupled
 397 to the downstream task and require the propagation of long-range dependencies (Karhadkar et al.,
 398 2023). **Additional results on long-range benchmark datasets are provided in the Appendix B .**

399 **Baseline models.** We compare FLAN to seven state-of-the-art rewiring techniques: the
 400 curvature-based methods SDRF (Topping et al., 2022) and BORF (Nguyen et al., 2023); the spec-
 401 tral rewiring method FoSR (Karhadkar et al., 2023); the resistance-based approach GTR (Black
 402 et al., 2023); LASER (Barbero et al., 2024) a Random Walk Rewiring Based method; DR (Attali
 403 et al., 2024a) leverages node features to perform Delaunay triangulation-based rewiring; GOKU
 404 (Liang et al., 2025), two-stage densify–then-sparsify rewiring that preserves spectral properties and
 405 improves long-range information flow.

406 **Experimental setup.** We follow the evaluation protocol of (Liang et al., 2025): GNN hyperparam-
 407 eters are fixed across methods (learning rate $1e-3$, hidden dimension 64, 4 layers), while rewiring
 408 hyperparameters are tuned per method. Baseline results are reported from (Liang et al., 2025).

409 **Results.** Table 2 reports the results of and graph classification tasks across different GNN back-
 410 bones. Overall, without altering the input topology, FLAN improves backbone GNN performance
 411 by more than 12% on average, and it outperforms recent rewiring baselines. On graph classifica-
 412 tion, it outperforms all rewiring methods with both GCN and GIN backbones; this is consistent with the
 413 higher and more stable R^2 of the structure-only proxy for \hat{p}_G , which makes the scalar conditioning
 414 particularly effective at the graph level. On node classification, the FLAN layer is competitive but
 415 not always state-of-the-art on small heterophilic datasets, where the correlation between margin and
 416 p_u (and the corresponding R^2) exhibits high variance, making gains less stable. We also observe
 417 benefits on homophilous datasets, where one-hop evidence dominates and the layer acts conserva-
 418 tively rather than over-correcting. Figure 4 shows that the gains arise not from added capacity, but
 419 from the long-range signal encoded by the predicted long-range index.

420 **Time comparison.** In Appendix 14, we compare FLAN’s preprocessing runtime against
 421 graph-rewiring baselines. The reported times include (i) Jacobian–margin evaluation, (ii) com-
 422 putation of structural indicators, and (iii) Lasso fitting for \hat{p}_G . On average, our method is 10^1 – 10^3 ×
 423 faster than curvature-based rewiring (Topping et al., 2022; Nguyen et al., 2023), spectral-gap-based
 424 rewiring (Karhadkar et al., 2023), and resistance-based rewiring (GTR) (Black et al., 2023).

425 **Ablation studies.** To confirm that improvements are diagnostic-driven, Figure 4 compares \hat{p}
 426 conditioning to shuffled \hat{p} (permuted across graphs) and to a margin-conditioned scalar. Only FLAN
 427 yields significant gains over the backbone GCN, supporting that the benefits arise from the structure-
 428 predicted index rather than added capacity or margin tuning. **In Appendix C, we further analyze the**

432

433

434

(a) Node classification (Backbone: GCN)

Method	Cora	Citeseer	Texas	Cornell	Wisconsin	Chameleon
None	86.7 ± 0.3	72.3 ± 0.3	44.2 ± 1.5	41.5 ± 1.8	44.6 ± 1.4	59.2 ± 0.6
SDRF	86.3 ± 0.3	72.6 ± 0.3	43.9 ± 1.6	42.2 ± 1.5	46.2 ± 1.2	59.4 ± 0.5
FOSR	85.9 ± 0.3	72.3 ± 0.3	46.0 ± 1.2	40.2 ± 1.1	48.3 ± 1.3	59.3 ± 0.6
BORF	87.5 ± 0.2	$\underline{73.8 \pm 0.2}$	49.4 ± 1.8	50.8 ± 1.1	50.3 ± 0.9	61.5 ± 0.4
DR	78.4 ± 1.2	69.5 ± 1.6	$\underline{67.8 \pm 2.5}$	$\underline{57.8 \pm 1.9}$	62.8 ± 2.1	58.6 ± 0.8
GTR	87.3 ± 0.4	72.4 ± 0.3	45.9 ± 1.9	50.8 ± 1.6	46.7 ± 1.5	57.6 ± 0.8
LASER	86.9 ± 1.1	72.6 ± 0.6	45.9 ± 2.6	42.7 ± 2.6	46.0 ± 2.6	43.5 ± 1.0
GOKU	86.8 ± 0.3	73.6 ± 0.2	$\underline{72.4 \pm 2.2}$	$\underline{69.4 \pm 2.1}$	$\underline{68.8 \pm 1.4}$	63.2 ± 0.4
FLAN	88.3 ± 0.9	75.6 ± 0.5	55.6 ± 3.0	51.9 ± 3.1	54.5 ± 2.9	65.1 ± 0.6

442

443

(b) Graph classification (Backbone: GCN on the left; GIN on the right)

	Backbone: GCN				Backbone: GIN			
	ENZYMES	IMDB	MUTAG	PROTEINS	ENZYMES	IMDB	MUTAG	PROTEINS
None	27.1 ± 1.6	49.5 ± 1.0	70.3 ± 2.1	71.4 ± 1.0	33.5 ± 1.3	67.7 ± 1.4	76.1 ± 3.1	69.5 ± 1.4
SDRF	26.1 ± 1.1	49.1 ± 0.9	70.5 ± 2.1	71.4 ± 0.8	32.4 ± 1.3	69.4 ± 1.4	79.5 ± 2.6	71.4 ± 0.8
FOSR	27.4 ± 1.1	49.6 ± 0.8	75.6 ± 1.7	72.3 ± 0.9	28.8 ± 1.0	70.6 ± 1.3	74.8 ± 1.5	73.7 ± 0.8
BORF	24.7 ± 1.0	50.1 ± 0.9	75.8 ± 1.9	71.0 ± 0.8	31.4 ± 1.5	70.5 ± 1.3	78.2 ± 1.6	71.9 ± 1.3
DR	—	47.0 ± 0.7	80.1 ± 1.8	72.2 ± 0.8	—	64.8 ± 0.8	74.5 ± 2.8	74.3 ± 0.8
GTR	27.4 ± 1.1	49.5 ± 1.0	78.9 ± 1.8	72.4 ± 1.2	28.4 ± 1.8	70.1 ± 1.2	78.5 ± 3.5	73.3 ± 0.9
LASER	27.6 ± 1.3	50.3 ± 1.3	78.8 ± 1.6	71.8 ± 1.6	35.3 ± 1.3	68.6 ± 1.2	76.1 ± 2.4	72.1 ± 0.7
GOKU	27.6 ± 1.2	49.8 ± 0.7	81.0 ± 2.0	71.9 ± 0.8	33.8 ± 1.2	71.3 ± 0.9	78.4 ± 2.5	73.9 ± 1.0
FLAN	33.8 ± 1.8	54.8 ± 1.6	81.2 ± 2.5	74.3 ± 1.7	35.8 ± 1.9	72.0 ± 1.3	81.3 ± 2.7	74.2 ± 1.7

455

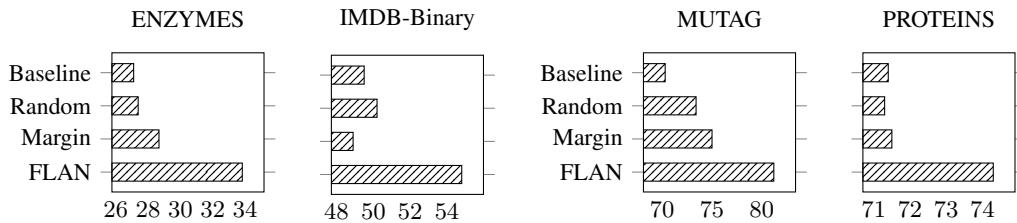
456

Table 2: Performance (%) on node and graph benchmarks. Best is in **bold**, second best underlined

457

458

459



466

467

Figure 4: FLAN test accuracy vs. random shuffled \hat{p} and a graph-level margin scalar, using a GCN backbone.

468

469

470

mechanism by quantifying both the intervention magnitude (e.g., $\|\mathbf{z} - \mathbf{h}^{(L)}\|$) and the resulting change in task margin in the graph classification task. Graphs with a higher long-range index ρ_G receive stronger corrections from FLAN and achieve larger margin gains, showing that the layer adapts its intervention to the diagnostic’s estimate of long-range demand and concentrates changes where they are most needed.

475

476

477

6 CONCLUSION

478

479

480

We reframed over-squashing as an task- and node-specific phenomenon. We (i) defined a margin-aligned sensitivity index for trained GNNs, (ii) showed it is predicted from topology via a sparse linear model, and (iii) found that margins co-vary with this sensitivity with dataset/backbone-dependent sign. Leveraging these findings, we introduced FLAN, a lightweight, rewiring-free readout layer that conditions on a structure-predicted proxy, improving accuracy without changing the graph. Our results open promising directions, including targeted rewiring at high-sensitivity nodes. In future work, we will study how this diagnostic can guide and complement graph rewiring methods.

486 REPRODUCIBILITY STATEMENT
487488 An anonymized code repository is linked at the end of the Introduction. All datasets, preprocessing
489 steps, fixed splits, hyperparameters, and training/evaluation scripts are specified in the main text and
490 in Appendix A.1, enabling full reproduction of our results.

491

492 REFERENCES
493494 Singh Akansha. Over-squashing in graph neural networks: A comprehensive survey. *Neurocomputing*-
495 pp. 130389, 2025.496 Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
497 In *International Conference on Learning Representations*, 2021.

498

499 Adrian Arnaiz-Rodriguez and Federico Errica. Oversmoothing,” oversquashing”, heterophily, long-
500 range, and more: Demystifying common beliefs in graph machine learning. *arXiv preprint*
501 *arXiv:2505.15547*, 2025.502 Hugo Attali, Davide Buscaldi, and Nathalie Pernelle. Delaunay graph: Addressing over-squashing
503 and over-smoothing using delaunay triangulation. In *Forty-first International Conference on Ma-*
504 *chine Learning*, 2024a. URL <https://openreview.net/forum?id=uyhjKoaIQa>.

505

506 Hugo Attali, Davide Buscaldi, and Nathalie Pernelle. Rewiring techniques to mitigate oversquashing
507 and oversmoothing in gnns: A survey. *arXiv preprint arXiv:2411.17429*, 2024b.508 Hugo Attali, Thomas Papastergiou, Nathalie Pernelle, and Fragkiskos D. Malliaros. Dynamic
509 triangulation-based graph rewiring for graph neural networks. In *ACM International Conference*
510 *on Information and Knowledge Management, CIKM*, 2025.

511

512 Jacob Bamberger, Benjamin Gutteridge, Scott le Roux, Michael M Bronstein, and Xiaowen
513 Dong. On measuring long-range interactions in graph neural networks. *arXiv preprint*
514 *arXiv:2506.05971*, 2025.515 Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar. Over-
516 squashing in gnns through the lens of information contraction and graph expansion. In *2022 58th*
517 *Annual Allerton Conference on Communication, Control, and Computing (Allerton)*, pp. 1–8.
518 IEEE, 2022.

519

520 Federico Barbero, Ameya Velingker, Amin Saberi, Michael M. Bronstein, and Francesco Di
521 Giovanni. Locality-aware graph rewiring in GNNs. In *The Twelfth International Confer-*
522 *ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=4Ua4hKiAJX>.

523

524 Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo Silva.
525 The logical expressiveness of graph neural networks. In *8th International Conference on Learning*
526 *Representations (ICLR 2020)*, 2020.

527

528 Maya Bechler-Speicher, Ben Finkelshtein, Fabrizio Frasca, Luis Müller, Jan Tönshoff, Antoine Sir-
529 audin, Viktor Zaverkin, Michael M Bronstein, Mathias Niepert, Bryan Perozzi, et al. Position:
530 Graph learning will lose relevance due to poor benchmarks. *arXiv preprint arXiv:2502.14546*,
2025.

531

532 Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
533 gnns through the lens of effective resistance. In *International Conference on Machine Learning*,
534 pp. 2528–2547. PMLR, 2023.

535

536 Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
537 connected networks on graphs. In *ICLR*, 2014.

538

539 Jhon A. Castro-Correia, Jhony H. Giraldo, Mohsen Badiey, and Fragkiskos D. Malliaros. Gegen-
bauer graph neural networks for time-varying signal reconstruction. *IEEE Transactions on Neural*
Networks and Learning Systems, 35(9):11734–11745, 2024.

540 Ashok K Chandra, Prabhakar Raghavan, Walter L Ruzzo, and Roman Smolensky. The electrical
 541 resistance of a graph captures its commute and cover times. In *Proceedings of the twenty-first*
 542 *annual ACM symposium on Theory of computing*, pp. 574–586, 1989.

543 Jeongwhan Choi, Sumin Park, Hyowon Wi, Sung-Bae Cho, and Noseong Park. Panda: Expanded
 544 width-aware message passing beyond rewiring. *arXiv preprint arXiv:2406.03671*, 2024.

545 Andreea Deac, Marc Lackenby, and Petar Veličković. Expander graph propagation. In *Learning on*
 546 *Graphs Conference*, pp. 38–1. PMLR, 2022.

547 Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
 548 Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
 549 and topology. In *ICML*, pp. 7865–7885. PMLR, 2023.

550 Alexandre Duval, Victor Schmidt, Alex Hernández-García, Santiago Miret, Fragkiskos D.
 551 Malliaros, Yoshua Bengio, and David Rolnick. FAENet: Frame averaging equivariant GNN for
 552 materials modeling. In *International Conference on Machine Learning, ICML*, 2023.

553 Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
 554 Luu, and Dominique Beaini. Long range graph benchmark. *Advances in Neural Information*
 555 *Processing Systems*, 35:22326–22340, 2022.

556 Federico Errica. On class distributions induced by nearest neighbor graphs for node classification
 557 of tabular data. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.

558 Lukas Fesser and Melanie Weber. Mitigating over-smoothing and over-squashing using augmenta-
 559 tions of forman-ricci curvature. In *The Second Learning on Graphs Conference*, 2023.

560 Robin Forman. Bochner’s method for cell complexes and combinatorial ricci curvature. 2003.

561 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 562 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 563 1263–1272. PMLR, 2017.

564 Francesco Di Giovanni, T. Konstantin Rusch, Michael Bronstein, Andreea Deac, Marc Lack-
 565 enby, Siddhartha Mishra, and Petar Veličković. How does over-squashing affect the power
 566 of GNNs? *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 567 <https://openreview.net/forum?id=KJR0QvRWNs>.

568 Jhony H Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D. Malliaros. On the
 569 trade-off between over-smoothing and over-squashing in deep graph neural networks. In *ACM In-*
 570 *ternational Conference on Information and Knowledge Management, CIKM*, pp. 566–576, 2023.

571 Christoph Goller and Andreas Kuchler. Learning task-dependent distributed representations by
 572 backpropagation through structure. In *Proceedings of International Conference on Neural Net-*
 573 *works (ICNN’96)*, volume 1, pp. 347–352. IEEE, 1996.

574 Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring
 575 for addressing oversquashing in gnns. In *International Conference on Learning Representations,*
 576 ICLR, 2023.

577 Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
 578 works. In *Proceedings of the International Conference on Learning Representations*, ICLR, 2017.

579 Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learn-
 580 ing. In *Advances in neural information processing systems*, NeurIPS, 2019.

581 Langzhang Liang, Fanchen Bu, Zixing Song, Zenglin Xu, Shirui Pan, and Kijung Shin. Mitigating
 582 over-squashing in graph neural networks by spectrum-preserving sparsification. In *Forty-second*
 583 *International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=NiMu23k0Ym>.

584 Jonas Linkerhögner, Cheng Shi, and Ivan Dokmanić. Joint graph rewiring and feature denoising
 585 via spectral resonance. In *The Thirteenth International Conference on Learning Representations*,
 586 2025. URL <https://openreview.net/forum?id=zBbZ2vdLzH>.

594 Yang Liu, Chuan Zhou, Shirui Pan, Jia Wu, Zhao Li, Hongyang Chen, and Peng Zhang. Curvdrop:
 595 A ricci curvature based approach to prevent graph neural networks from over-smoothing and
 596 over-squashing. In *Proceedings of the ACM Web Conference 2023*, pp. 221–230, 2023.

597

598 Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 599 Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. *arXiv preprint*
 600 *arXiv:2007.08663*, 2020.

601 Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
 602 Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In *International
 603 Conference on Machine Learning*, pp. 25956–25979. PMLR, 2023.

604 Yann Ollivier. Ricci curvature of metric spaces. *Comptes Rendus Mathematique*, 345(11):643–646,
 605 2007.

606 Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
 607 Bringing order to the web. Technical report, Stanford InfoLab, 1999.

608

609 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
 610 graph convolutional networks. In *Advances in neural information processing systems*, ICLR,
 611 2020.

612

613 Chendi Qian, Andrei Manolache, Christopher Morris, and Mathias Niepert. Probabilistic graph
 614 rewiring via virtual nodes. *Advances in Neural Information Processing Systems*, 37:28359–28392,
 615 2024.

616 Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. *Journal
 617 of Complex Networks*, 9(2):cnab014, 2021.

618

619 Celia Rubio-Madrigal, Adarsh Jamadandi, and Rebekka Burkholz. Gnn getting comfy: Community
 620 and feature similarity guided rewiring. *arXiv preprint arXiv:2502.04891*, 2025.

621

622 T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
 623 graph neural networks. *arXiv preprint arXiv:2303.10993*, 2023.

624

625 Areejit Samal, RP Sreejith, Jiao Gu, Shiping Liu, Emil Saucan, and Jürgen Jost. Comparative
 626 analysis of two discretizations of ricci curvature for complex networks. *Scientific reports*, 8(1):
 627 8650, 2018.

628

629 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
 630 The graph neural network model, 2008.

631

632 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 633 Collective classification in network data. *AI magazine*, 29(3):93–93, 2008.

634

635 Kartik Sharma, Yeon-Chang Lee, Sivagami Nambi, Aditya Salian, Shlok Shah, Sang-Wook Kim,
 636 and Srijan Kumar. A survey of graph neural networks for social recommender systems. *ACM
 637 Computing Surveys*, 56(10):1–34, 2024.

638

639 Joshua Southern, Francesco Di Giovanni, Michael M. Bronstein, and Johannes F. Lutzeyer. Under-
 640 standing virtual nodes: Oversquashing and node heterogeneity. In *The Thirteenth International
 641 Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=NmcOAwRyH5>.

642

643 Igor Sterner, Shiye Su, and Petar Veličković. Commute-time-optimised graphs for gnn. *arXiv
 644 preprint arXiv:2407.08762*, 2024.

645

646 Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks.
 647 In *Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and
 648 data mining*, pp. 807–816, 2009.

649

650 Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassess-
 651 ing the long-range graph benchmark. *Transactions on Machine Learning Research*, 2024. ISSN
 652 2835-8856. URL <https://openreview.net/forum?id=Nm0WX86sKv>.

648 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
649 Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. *Proceedings*
650 *of the International Conference on Learning Representations*, 2022.

651

652 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
653 Bengio. Graph Attention Networks. ICLR, 2018.

654

655 JJ Wilson, Maya Bechler-Speicher, and Petar Veličković. Cayley graph propagation. *arXiv preprint*
656 *arXiv:2410.03424*, 2024.

657

658 Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. *ACM Computing Surveys*, 55(5):1–37, 2022.

659

660 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
661 networks? In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

662

663 Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
664 Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
665 tions. *AI open*, 2020.

666

667 Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai
668 Koutra. Graph neural networks with heterophily. In *Proceedings of the AAAI conference on*
669 *artificial intelligence*, volume 35, pp. 11168–11176, 2021.

670

671 Wei Zhuo, Han Yu, Guang Tan, and Xiaoxiao Li. Commute graph neural networks. In *Forty-second*
672 *International Conference on Machine Learning*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=29Leye9511)
673 *forum?id=29Leye9511*.

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703 A APPENDIX704
705 A.1 EXPERIMENTAL SETUP FOR THE LONG-RANGE CAPTURE INDEX706
707 We report here the GNN hyperparameters used to study the correlation between the long-range cap-
708 ture index p_u and the task-aware classification margin across node and graph-level benchmarks in
709 section 3. Our choices follow common evaluation protocols for rewiring methods with standard
710 GNN backbones for both node classification (Pei et al., 2020; Attali et al., 2024a) and graph clas-
711 sification (Errica, 2023; Deac et al., 2022; Karhadkar et al., 2023; Wilson et al., 2024; Liang et al.,
712 2025).713
714 **Node classification.** We use two layers, dropout 0.5, learning rate 0.005, and early stopping with
715 a patience of 100 epochs. Hidden dimensions are 32 for Texas, Wisconsin, and Cornell; 48 for
716 Squirrel and Chameleon; and 16 for Cora and Citeseer. We adopt a fixed split with 60% of nodes
717 for training, 20% for validation, and 20% for testing.718
719 **Graph classification.** We use 4 layers, dropout 0.5, learning rate 0.001, hidden dimension 64, and
720 early stopping with a patience of 100 epochs. Datasets are split into 80% training, 10% validation,
721 and 10% testing.722
723 For large graphs, we control the cost of computing the long-range index by using a random sample
724 Jacobian estimation, as done in Bamberger et al. (2025), which makes the diagnostic scalable and
725 stable in practice.726
727 A.2 ADDITIONAL ANALYSIS FOR CORRELATION BEHAVIOR728
729 **Correlation with deeper GNN.** To assess the robustness of the correlation between the node
730 margin m_u and the long-range capture index p_u with respect to model depth, we repeat the analysis
731 using deeper 4-layer GCN, GAT, and GIN backbones. Across all datasets and architectures, the
732 correlation values remain consistent with those obtained using shallower models, indicating that the
733 phenomenon is stable under increased depth.

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 Dataset	732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 GCN: $\rho^{(1)}$	732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 GAT: $\rho^{(1)}$	732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 GIN: $\rho^{(1)}$
Chameleon	-0.3841 ± 0.0526	-0.3465 ± 0.0633	-0.1707 ± 0.1272
Squirrel	-0.3099 ± 0.0644	-0.2205 ± 0.0800	-0.2617 ± 0.1006
Texas	-0.5350 ± 0.1086	-0.3248 ± 0.1353	-0.3929 ± 0.1465
Cornell	-0.4430 ± 0.1024	-0.3680 ± 0.1467	-0.1322 ± 0.1826
Wisconsin	-0.4696 ± 0.1147	-0.3045 ± 0.0842	-0.0676 ± 0.1424
Cora	0.1910 ± 0.0396	0.1595 ± 0.0431	0.1372 ± 0.0303
Citeseer	-0.0063 ± 0.0466	0.0190 ± 0.0316	0.0176 ± 0.0279
Amazon-Ratings	-0.1799 ± 0.0531	-0.0850 ± 0.0645	-0.1408 ± 0.0565
Roman-Empire	-0.1811 ± 0.0590	-0.0342 ± 0.0609	-0.2034 ± 0.0857

747
748 Table 3: Correlation between the predictive margin m_u and the long-range capture index p_u for
749 deeper (4-layer) GCN, GAT, and GIN backbones. The stability across architectures and datasets
750 shows that the correlation behavior is robust to network depth.751
752 **Limits of local signal for predicting p_u .** To further contextualize the results of the correlation in
753 Table 1, we complement our analysis with two simple reference baselines that help clarify how much
754 information about the model derived long-range index p_u can be captured from local graph structure
755 alone. Specifically, we evaluate (i) a degree-only predictor using the minimum, mean, and maximum
756 degree of each node, and (ii) a random baseline obtained by shuffling the target values. As shown in
757 Tables 4 and 5, structural measures commonly used in graph rewiring methods achieve consistently
758 high test R^2 across datasets, indicating that they capture the topological factors most aligned with the
759 long-range index p_u . In contrast, degree-only predictors perform poorly, and the random baseline
760 yields strongly negative R^2 , confirming that simple local degree statistics are insufficient to explain
761 the model’s long-range sensitivity.

Dataset	Structural	Degree-only	Random
MUTAG	0.9900 ± 0.0057	0.2028 ± 0.1478	-1.5234 ± 0.3083
PROTEINS	0.9395 ± 0.0150	0.1444 ± 0.0884	-1.0524 ± 0.2995
ENZYMES	0.8721 ± 0.0411	0.0754 ± 0.0556	-0.6743 ± 0.3158
Cornell	0.6745 ± 0.0463	-0.0060 ± 0.0097	-1.0397 ± 0.1161
Texas	0.5546 ± 0.0474	-0.7710 ± 1.4327	-0.9665 ± 0.4239
Wisconsin	0.4530 ± 0.0644	-0.0581 ± 0.0664	-1.1481 ± 0.2667
Roman-Empire	0.5196 ± 0.0713	-0.0101 ± 0.0345	-1.2238 ± 0.4580
Amazon-Ratings	0.7054 ± 0.0511	0.0875 ± 0.0597	-0.9520 ± 0.1935

Table 4: **GCN** — Test R^2 for structural predictors, degree-only baselines, and random baselines.

Dataset	Structural	Degree-only	Random
MUTAG	0.9835 ± 0.0096	0.2402 ± 0.1531	-1.5975 ± 0.3761
PROTEINS	0.8587 ± 0.1441	0.1300 ± 0.0999	-1.0031 ± 0.3505
ENZYMES	0.8659 ± 0.0420	0.0727 ± 0.0553	-0.6485 ± 0.3047
Cornell	0.7046 ± 0.0629	-0.0283 ± 0.0701	-0.7808 ± 0.1697
Texas	0.6786 ± 0.0823	0.0141 ± 0.0283	-1.2849 ± 0.2970
Wisconsin	0.6137 ± 0.0339	-0.0097 ± 0.0224	-0.7972 ± 0.6848
Roman-Empire	0.3947 ± 0.0741	-0.0016 ± 0.0309	-1.1918 ± 0.3741
Amazon-Ratings	0.6945 ± 0.0505	0.0747 ± 0.0571	-0.9480 ± 0.1695

Table 5: **GIN** — Test R^2 for structural predictors, degree-only baselines, and random baselines.

Discussion on the choice of hop cutoffs. While alternative choices for the boundary between short- and long-range interactions are possible, our results do not depend on selecting the distance-1 bin as the short-range component. In practice, redefining the cutoff for example using distances (1, 2) or (1, 2, 3) as the short-range part changes the absolute values of the index but leaves its correlation with the margin m_u essentially unchanged. This stability arises because the relative ordering of nodes according to their distance-binned sensitivity distribution $S_u^{(k)}$ is highly consistent across hop definitions. Thus, although our operational cutoff aligns with the locality of one-step message passing, the empirical relationship between long-range sensitivity and predictive margin is robust to how the hops are grouped.

For illustration, Table 6 reports the correlations obtained with a GCN backbone on several graph-classification datasets.

Model & Dataset	Hop Range	Mean	Std
GCN — MUTAG	1-hop only	-0.4918	0.0876
	1–2 hops	-0.4440	0.0710
GCN — PROTEINS	1-hop only	-0.1809	0.0550
	1–2 hops	-0.1676	0.0420
GCN — ENZYMES	1-hop only	-0.2216	0.1715
	1–2 hops	-0.1559	0.1990
GIN — MUTAG	1-hop only	-0.4963	0.0968
	1–2 hops	-0.4328	0.1033
GIN — PROTEINS	1-hop only	-0.1479	0.0649
	1–2 hops	-0.1134	0.0579
GIN — ENZYMES	1-hop only	-0.2303	0.1824
	1–2 hops	-0.0638	0.1731

Table 6: Correlation between predictive margin m_u and long-range sensitivity index under different hop definitions.

Note that although the absolute magnitude of the long-range index varies across hop definitions (e.g., on MUTAG we obtain approximately $\rho_u^{(1)} \approx 0.17$, $\rho_u^{(1,2)} \approx 0.34$, and $\rho_u^{(1,2,3)} \approx 0.49$), the correlation with the margin remains stable.

810
 811 **Dataset structural properties.** To make the structural differences across datasets explicit, we
 812 report in Table 7 (node-level benchmarks) and Table 8 (graph-level benchmarks) a detailed summary
 813 of key graph statistics, grouped by dataset family (homophilic vs. heterophilic) and by task type
 814 (node- vs. graph-level, including long-range benchmarks). These statistics help contextualize the
 815 long-range regime studied in our work, by linking each dataset’s topology to the expected locality
 816 or non-locality of message passing.

Dataset	#Nodes	#Edges	\bar{d}	Std(d)	max(d)	Diam.	H
Cora	2.7k	5.3k	3.9	5.2	168	19	0.81
Citeseer	3.3k	4.6k	2.7	3.4	99	28	0.74
Texas	183	295	3.22	7.81	104	8	0.11
Wisconsin	251	466	3.71	7.95	122	8	0.20
Cornell	183	280	3.06	7.01	94	8	0.13
Chameleon	2.3k	31.4k	27.60	46.43	732	11	0.24
Squirrel	5.2k	198k	76.33	161.46	1905	10	0.22
Roman Empire	22.7k	32.9k	2.91	1.03	14	6824	0.05
Amazon-Ratings	24k	93k	7.60	6.00	132	46	0.38

827 Table 7: Node-level datasets: basic structural statistics. \bar{d} , $Std(d)$, and $max(d)$ denote mean, stan-
 828 dard deviation, and maximum node degree; Diam. is the (graph) diameter; H denotes homophily.

Dataset	#Graphs	#Nodes (\pm)	#Edges (\pm)	\bar{d}	Std(d)	max(d)	Diam.
MUTAG	188	17.9 (± 4.6)	19.8 (± 5.7)	2.2	0.7	3.0	8.2
PROTEINS	1113	39.1 (± 45.8)	72.8 (± 84.6)	3.7	0.9	5.8	11.6
ENZYMES	600	32.6 (± 15.3)	62.1 (± 25.5)	3.9	1.0	6.1	10.9
REDDIT	2000	429.6 (± 554.1)	497.8 (± 623.0)	2.3	8.9	217.4	9.7
IMDB	1000	19.8 (± 10.1)	96.5 (± 105.6)	8.9	2.8	18.8	1.9
Peptides-func	10873	151.5 (± 84.1)	154.3 (± 86.0)	2.0	0.8	3.0	57.1
Peptides-struct	10873	151.5 (± 84.1)	154.3 (± 86.0)	2.0	0.8	3.0	57.1

839 Table 8: Graph-level datasets: average structural statistics across graphs (mean \pm standard deviation). \bar{d} , $Std(d)$, and $max(d)$ denote mean, standard deviation, and maximum node degree; Diam. 840 denotes the average graph diameter.

843 B ADDITIONAL EXPERIMENTS ON LONG-RANGE BENCHMARKS

844 We extend our analysis to the Long-Range Graph Benchmark (LRGB) (Dwivedi et al., 2022), in-
 845 cluding Peptides-struct, Peptides-func, and the synthetic Tree-Neighbors-Match dataset (Alon &
 846 Yahav, 2021). Because these datasets include regression and multi-label prediction tasks, the notion
 847 of margin must generalize beyond standard multi-class classification so that larger values con-
 848 sistently denote better predictions.

849 **Margin for Peptides-struct.** Since regression targets are standardized (zero mean, unit variance),
 850 we define:

$$851 m_G = -\log \left(\frac{1}{T} \sum_{t=1}^T |\hat{y}_t - y_t| \right), \quad m_G \in (-\infty, 0].$$

852 where T denotes the number of prediction targets

853 **Margin for Peptides-func (multi-label classification).** For logits z_t and binary labels $y_t \in \{0, 1\}$:

$$854 m_G = \frac{1}{T} \sum_{t=1}^T (2y_t - 1) z_t.$$

855 The margin increases when the logits confidently align with the ground-truth labels, and decreases
 856 when the predictions contradict them.

Using these definitions, we compute the correlation between the long-range capture index p_u and the graph-level margin m_G . As shown in Table 9, Peptides-struct and Peptides-func both exhibit positive correlations, indicating that better predictions are associated with a larger one-hop share. This suggests that, despite being part of a long-range benchmark, these tasks are effectively dominated by local interactions, consistent with prior work Bamberger et al. (2025).

Dataset	GCN	GIN
Tree-Neighbors-Match	-0.2964 ± 0.0535	-0.1806 ± 0.0686
Peptides-struct	0.3163 ± 0.0395	0.3343 ± 0.0329
Peptides-func	0.6963 ± 0.0488	0.5463 ± 0.0612

Table 9: Correlation between the long-range capture index p_u and the margin m_G on long-range benchmarks.

We also evaluate FLAN on Peptides-struct and Peptides-func using the experimental protocol of Nguyen et al. (2023); Wilson et al. (2024), and include two baselines: PANDA Choi et al. (2024), a rewiring-free method and a virtual-node augmentation. Despite the local nature of the tasks, FLAN improves performance across both datasets. Since graphs with lower long-range sensitivity achieve higher margins, adjusting embeddings according to their predicted structural index p_G reinforces the region of representation space most aligned with task-specific signals.

Model	Peptides-func (AP \uparrow)	Peptides-struct (MAE \downarrow)
GCN	0.5029 ± 0.0058	0.3587 ± 0.0006
+ SDRF	0.5041 ± 0.0026	0.3559 ± 0.0010
+ FoSR	0.4534 ± 0.0090	0.3003 ± 0.0007
+ EGP	0.4972 ± 0.0023	0.3001 ± 0.0013
+ CGP	0.5106 ± 0.0014	0.2931 ± 0.0006
+ VN	0.5022 ± 0.0014	0.3241 ± 0.0016
+ PANDA	0.5188 ± 0.0022	0.3098 ± 0.0011
+ FLAN	0.5479 ± 0.0041	0.2724 ± 0.0019
GIN	0.5124 ± 0.0055	0.3544 ± 0.0014
+ SDRF	0.5122 ± 0.0061	0.3515 ± 0.0011
+ FoSR	0.4584 ± 0.0079	0.3008 ± 0.0014
+ EGP	0.4926 ± 0.007	0.3034 ± 0.0027
+ VN	0.5137 ± 0.0060	0.3197 ± 0.0021
+ CGP	0.5159 ± 0.0059	0.2910 ± 0.0011
+ PANDA	0.5214 ± 0.0068	0.3003 ± 0.0019
+ FLAN	0.5375 ± 0.0041	0.2886 ± 0.0021

Table 10: FLAN compared to rewiring and virtual-node baselines on Peptides-func and Peptides-struct.

Additional LRGB evaluation details Following the tuning recommendations of Tönshoff et al. (2024), we additionally evaluate our approach under a more exhaustive hyperparameter search for the GCN backbone. Concretely, we vary (i) the use of Batch Normalization (on/off) and (ii) the prediction head, replacing the linear classifier with an MLP of depth $d \in \{1, 2, 3\}$, while using a base learning rate $lr = 10^{-3}$ together with a learning-rate schedule. The corresponding results are reported in Table 11, and show that FLAN consistently improves the tuned GCN baseline.

Note that to control the computational cost of our long-range index on large graphs, we use a random-sample Jacobian estimator, following Bamberger et al. (2025). This approximation makes the diagnostic scalable and stable in practice.

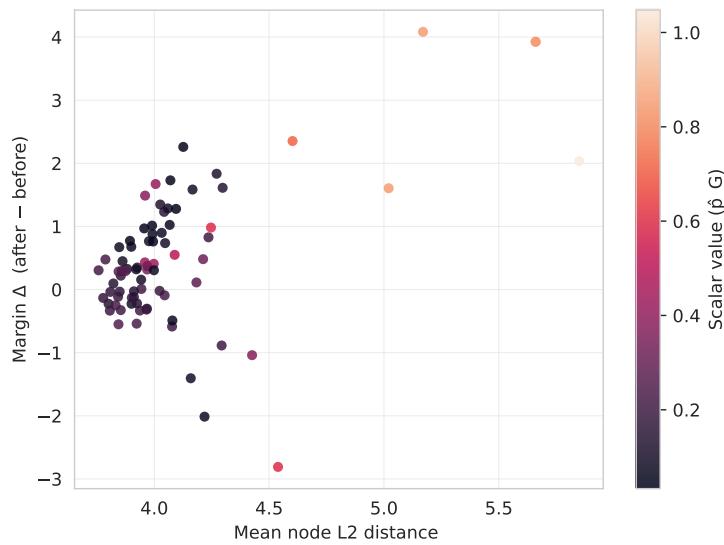
Beyond accuracy, our method remains computationally lightweight, depending on the dataset and the considered Graph Transformer variants, we obtain near state-of-the-art performance while reducing the overall runtime by approximately 45% to 95%.

918
 919 Table 11: LRGB results on Peptides-func (AP \uparrow) and Peptides-struct (MAE \downarrow). **Ours** are mean \pm
 920 std over 4 runs; other methods are reported numbers from Tönshoff et al. (2024). Best baseline per
 921 dataset is in **bold**.

Group	Method	Peptides-func AP \uparrow	Peptides-struct MAE \downarrow
MPNNs	GCN (ours)	0.6655 ± 0.0039	0.2558 ± 0.0024
	DIGL+MPNN+LapPE	0.6830 ± 0.0026	0.2616 ± 0.0018
Multi-hop GNNs	MixHop-GCN+LapPE	0.6843 ± 0.0049	0.2614 ± 0.0023
	DRew-GCN+LapPE	0.7150 ± 0.0044	0.2536 ± 0.0015
	Transformer+LapPE	0.6326 ± 0.0126	0.2529 ± 0.0016
Graph Transformers	SAN+LapPE	0.6384 ± 0.0121	0.2683 ± 0.0043
	GraphGPS+LapPE	0.6535 ± 0.0041	0.2500 ± 0.0005
	GPS	0.6534 ± 0.0091	0.2509 ± 0.0014
	CRAWL	0.7074 ± 0.0032	0.2506 ± 0.0022
	GRIT	0.6988 ± 0.0082	0.2460 ± 0.0012
	Graph ViT	0.6942 ± 0.0075	0.2449 ± 0.0016
	G-MLPMixer	0.6921 ± 0.0054	0.2475 ± 0.0015
Ours	GCN + FLAN	0.6868 ± 0.0040	0.2450 ± 0.0026

C FLAN’S EFFECT ON LONG-RANGE SENSITIVITY

941 In this section, we visualize how graph embeddings change under FLAN as a function of the graph-
 942 level long-range index ρ_G . Across datasets (Figures 10, 6, and 7), we observe a clear trend: graphs
 943 with higher ρ_G undergo stronger embedding shifts and achieve larger margin gains. This pattern
 944 indicates that FLAN does not apply a uniform correction but adapts the intensity of its intervention
 945 to the diagnostic’s estimate of long-range demand. Importantly, the largest modifications oc-
 946 cur precisely for graphs where local evidence dominates and long-range contributions are under-
 947 represented, confirming that the diagnostic successfully identifies the regimes where intervention is
 948 most beneficial.



967 Figure 5: Analysis of FLAN adjustments on PROTEINS: the Euclidean distance $\|z - h^{(L)}\|$ (dif-
 968 ference between the embedding with FLAN, z , and the backbone embedding without FLAN, $h^{(L)}$)
 969 and the margin gain are plotted against the long-range index ρ_G , showing larger adjustments and
 970 stronger improvements as ρ_G increases.

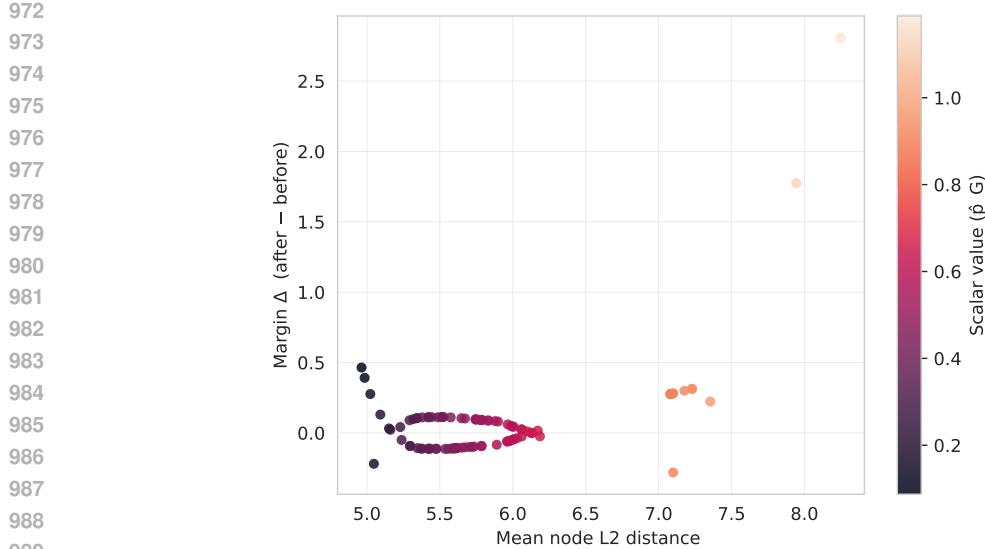


Figure 6: Analysis of FLAN adjustments on IMDB-Binary: the Euclidean distance $\|\mathbf{z} - \mathbf{h}^{(L)}\|$ (difference between the embedding with FLAN, \mathbf{z} , and the backbone embedding without FLAN, $\mathbf{h}^{(L)}$) and the margin gain are plotted against the long-range index ρ_G , showing larger adjustments and stronger improvements as ρ_G increases.

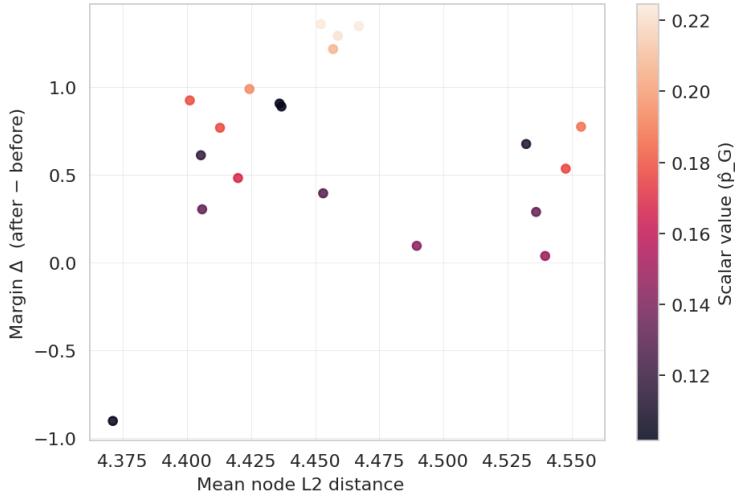


Figure 7: Analysis of FLAN adjustments on MUTAG: the Euclidean distance $\|\mathbf{z} - \mathbf{h}^{(L)}\|$ (difference between the embedding with FLAN, \mathbf{z} , and the backbone embedding without FLAN, $\mathbf{h}^{(L)}$) and the margin gain are plotted against the long-range index ρ_G , showing larger adjustments and stronger improvements as ρ_G increases.

To show that FLAN focuses on the graphs that are most sensitive to long-range degradation, we examine how the margin improvement varies across different values of the long-range index ρ_G . As shown in Table 12, the performance gains are concentrated on the graphs with the highest ρ_G , i.e., those whose structure is most affected by long-range dependencies. This indicates that our method specifically benefits the graphs for which message passing is most challenged by long-range effects. The table quantifies this behavior by reporting how the margin improvement Δm increases when restricting evaluation to the top 50%, 25%, and 10% most long-range-sensitive graphs.

Dataset	Backbone	Δm (all)	Δm (Top50%)	Δm (Top25%)	Δm (Top10%)
MUTAG	GCN	+0.3944	+0.1027	+0.1101	+0.0921
	GIN	+0.1617	+0.0428	+0.1091	+0.1547
ENZYMES	GCN	+0.2675	+0.2424	+0.4382	+0.9524
	GIN	+0.0526	-0.0081	+0.3468	+0.4252
PROTEINS	GCN	+0.0842	+0.1217	+0.4729	+1.1336
	GIN	+0.1917	+0.1790	+0.4149	+0.8718
IMDB	GCN	+0.0180	+0.0580	+0.0854	+0.1258
	GIN	+0.4964	+0.8223	+1.5778	+2.4207

Table 12: Margin improvement Δm across the full dataset and on subsets of graphs with the highest long-range index p_G .

To further validate that the gains come from conditioning on long-range sensitivity rather than from the estimation procedure, we include an ablation where FLAN is given access to the *true* backbone-derived p_G (denoted FLAN \star). As shown in Table 13, the improvements obtained with FLAN \star are nearly identical to those obtained with the predicted index, confirming that the diagnostic quantity is responsible for the performance gains.

Backbone	Method	ENZYMES	IMDB	MUTAG	PROTEINS
GCN	FLAN	33.8 ± 1.8	54.8 ± 1.6	81.2 ± 2.5	74.3 ± 1.7
	FLAN \star	34.7 ± 1.7	55.1 ± 1.5	81.6 ± 1.8	74.5 ± 2.1
GIN	FLAN	35.8 ± 1.9	72.0 ± 1.3	81.3 ± 2.7	74.2 ± 1.7
	FLAN \star	36.3 ± 1.5	72.9 ± 1.8	81.1 ± 2.0	74.5 ± 2.3

Table 13: Comparison between FLAN and FLAN \star , where the latter uses the true long-range index p_G computed from Jacobian sensitivities.

Sensitivity Capture and FLAN-Accuracy Gains In this section, we present (i) the cumulative sensitivity capture profile $\rho_u^{(1, \dots, k)}$ as a function of the hop radius k (blue, left axis), averaged over graphs with a ± 1 standard deviation, and (ii) the corresponding test-accuracy gain $\Delta(k)$ of FLAN over the baseline (orange, right axis), reported in percentage points. Figures ?? report results averaged over 10 random runs. When $\rho_u^{(1, \dots, k)}$ saturates quickly (i.e., approaches 1 for small k), it indicates that the margin-aligned sensitivity mass is predominantly concentrated at short range (typically IMDB-Binary). Conversely, slow saturation implies that a substantial fraction of this sensitivity is distributed over more distant hops, reflecting stronger long-range dependencies (e.g., PROTEINS or ENZYMES). The curve $\Delta(k)$ indicates the scale k at which the signal \hat{p}_G is most informative for FLAN: a peak at small k suggests that the most discriminative information lies at local to mid-range neighborhoods, whereas a decline at larger k is typically consistent with saturation of $\rho^{(1, \dots, k)}$.

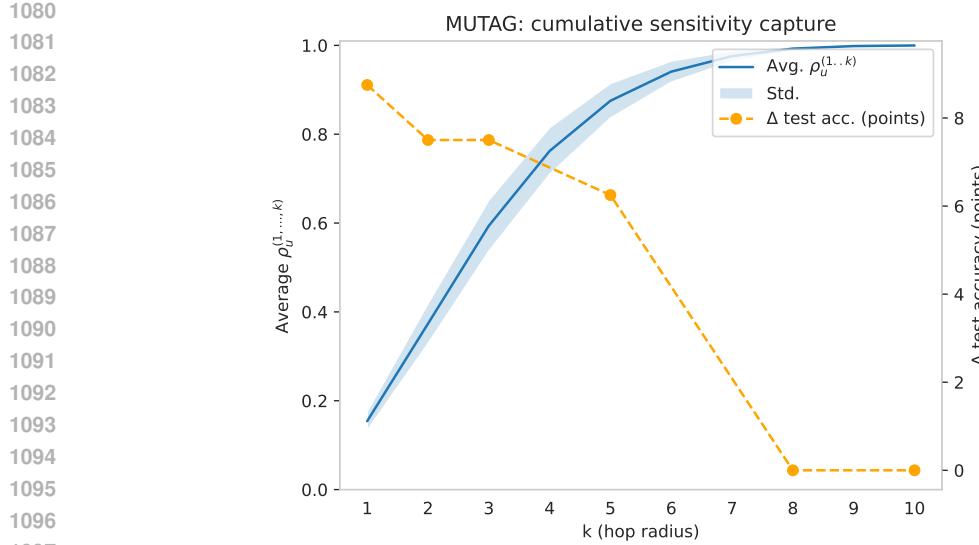


Figure 8: Cumulative sensitivity capture $\rho_u^{(1,\dots,k)}$ (blue, mean \pm std) and FLAN gain $\Delta(k)$ in points (orange) vs. hop radius. on MUTAG dataset.

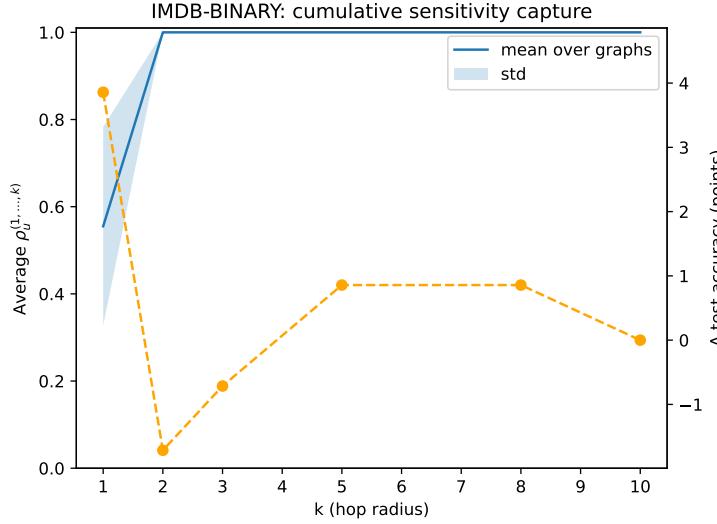


Figure 9: Cumulative sensitivity capture $\rho_u^{(1,\dots,k)}$ (blue, mean \pm std) and FLAN gain $\Delta(k)$ in points (orange) vs. hop radius. on IMDB dataset.

D TIME COMPARISON

Table 14 reports the average preprocessing time per graph; for FLAN we report the end-to-end cost of producing the conditioning scalar \hat{p}_G (Jacobian–margin evaluation + structural indicators + Lasso fit), to match the per-graph preprocessing measured for rewiring baselines.

FLAN’s preprocessing cost stays in the millisecond range per graph and is comparable to graph expanders such as EGP/CGP, while being 10^1 – 10^3 × faster than heavier rewiring methods (e.g., BÖRF, SDRF/FoSR, and GTR).

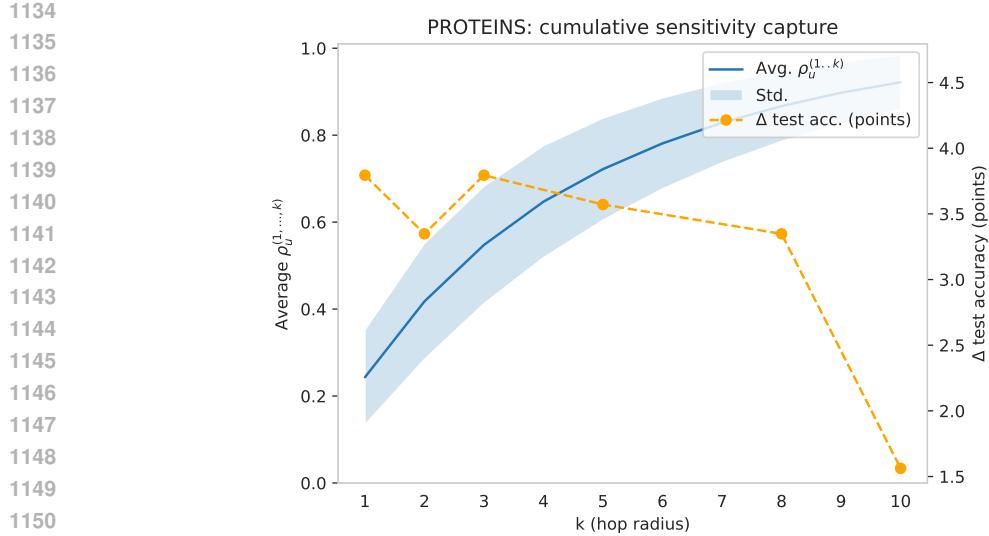


Figure 10: Cumulative sensitivity capture $\rho_u^{(1,\dots,k)}$ (blue, mean \pm std) and FLAN gain $\Delta(k)$ in points (orange) vs. hop radius. on PROTEINS dataset.

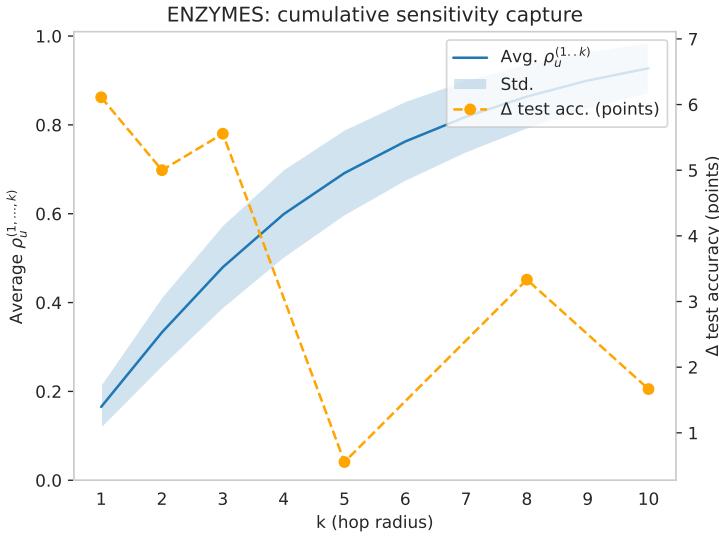


Figure 11: Cumulative sensitivity capture $\rho_u^{(1,\dots,k)}$ (blue, mean \pm std) and FLAN gain $\Delta(k)$ in points (orange) vs. hop radius. on ENZYMEs dataset.

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Model	IMDB-Binary	MUTAG	ENZYMEs	PROTEINS
SDRF	5.13257	0.669701	1.71482	3.02873
FoSR	4.54634	4.71567	4.56855	5.04358
BORF	465.408	53.7069	179.573	351.173
GTR	3.39839	1.54127	2.87399	6.49714
PANDA	0.789759	0.246243	0.278594	0.248043
EGP	0.0185697	0.00446963	0.0163198	0.0393348
CGP	0.0211341	0.00438905	0.0166841	0.0348585
FLAN	0.017668	0.013909	0.016429	0.027119

Table 14: Comparison of the preprocessing time to construct each graph rewiring method compared to our FLAN method (in seconds per graph). Table taken from Wilson et al. (2024).