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Abstract

Testing practices within the machine learning (ML) community have centered
around assessing a learned model’s predictive performance measured against a test
dataset, often drawn from the same distribution as the training dataset. While recent
work on robustness and fairness testing within the ML community has pointed
to the importance of testing against distributional shifts, these efforts also focus
on estimating the likelihood of the model making an error against a reference
dataset/distribution. We argue that this view of testing actively discourages re-
searchers and developers from looking into other sources of robustness failures,
for instance corner cases which may have severe undesirable impacts. We draw
parallels with decades of work within software engineering testing focused on
assessing a software system against various stress conditions, including corner
cases, as opposed to solely focusing on average-case behaviour. Finally, we put
forth a set of recommendations to broaden the view of machine learning testing to
a rigorous practice.

1 Introduction

In Machine Learning (ML), testing often refers to the evaluation of a trained model on an unseen
held-out test dataset, often expected to follow the same distribution as the training data. While such
an evaluation shows the researcher (and the consumer of the research) how well the training algorithm
captures phenomena of interest from the training data, and generalizes to unseen data from the same
distribution, it does not provide any guarantees around a model’s behavior when it is deployed in
practice [5]. In other words, such testing is meant to empirically evaluate the efficacy of certain
sources of data, training algorithms, feature(s), or representational choices, rather than to estimate the
utility and harms of the system when deployed on real world data [5, 32].

Prior work addresses this shortcoming in testing by evaluating the performance of models across
domains [15, 33], introducing domain adaptation techniques [8], measuring performance under
distribution shift [27], or collecting datasets that reflect target domain distributions or characteristics
[7, 16, 14]. However, these efforts tie testing an ML model to testing against a dataset with a
distribution that matches a target domain [3]. We argue that such distribution-driven testing implicitly
makes assumptions about the costs of failures which often underestimate the importance and severity
of failures in the tail of the distribution. However, it is often the “black swan” events in the tail of the
distribution that lead to nonlinearities in behavior that result in unsafe outcomes (e.g., the meltdown
security vulnerability in hardware [20, 17]). Even an ML system with 99% accuracy may have severe
vulnerabilities that are masked within the 1% error rate. Furthermore, traditional ML testing does not

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



account for the different severities of harms different errors cause in deployment, or whether they
affect different subgroups of people at different rates [2].

In this paper, we provide a broad account of the various such methodological shortcomings in data
distribution driven machine learning testing. We then draw on testing practices from other mature
engineering disciplines and provide a set of comprehensive recommendations towards rigorous ML
testing, along the conditions to test for, the processes that guide this testing process, and the artefacts
that can be a step towards ML system reliability.

2 Methodological Shortcomings in ML Model Testing

Historically, testing of AI systems was not exclusively statistical in nature [18]. For instance, [12] lays
out how one might construct test sets for evaluating specific aspects of a Natural Language Processing
(NLP) system by using both a randomly sampled dataset to evaluate the conceptual competence of
the system, and a dataset of instances containing different linguistic variations of the same sentence
conveying the same meaning, as a way to evaluate the linguistic competence of the NLP system. The
switch from such a broad view of what evaluation means, to a singular focus on statistical evaluations
based on held-out test sets is arguably a side effect of the overwhelming success of statistical NLP
in the 90s. From a system reliability perspective, the goal of model testing should ideally include
considerations such as a) robustness to distribution shifts, b) distributions of errors, and c) severities
of those errors. These factors are often overlooked, or relegated to optional, auxiliary testing efforts
in much of ML research and development. In this section, we outline six core shortcomings that
results from the common practices within machine learning testing. These six shortcomings are not
meant to be mutually exclusive categories; rather, each building on the ones discussed prior to them.

Treating all examples as equal: The dominant paradigm of measuring model accuracy on an unseen
i.i.d. dataset drawn from the same distribution as the training data mitigates against the pitfalls of over-
fitting during learning. However it also makes two critical assumptions which reduce the diagnostic
power of the testing. Firstly, in weighting all data points in the test set equally, the measurement
is most sensitive to failures in model performance on the head of the distribution—and conversely
least sensitive to failures in model performance on the tail. For example, if an image understanding
model is evaluated on a dataset in which humans appear in only a small fraction of images then those
images, and the errors the model makes on images with humans, will be given little weight in the
evaluation. Secondly, the comparison of predictions (i.e., model outputs) with expectations ignores
any available context. Notably, it ignores features of the model inputs. For example, the evaluation of
an image analysis model for detecting stop signs would ignore the important factor of whether there
are also pedestrians or cyclists in the image.

Treating all failures as equal: Suppose a computer vision system misidentifies a person as an animal.
This is a significantly different type of error than, say, misidentifying a cat for a dog. The dominant
ML testing paradigm fails to account for the fact that not all errors are qualitatively equal, and thus
ignores dignitary and other harms. This simplification reduces the labour and other efficiency costs
involved in doing contextualized evaluations of classes of errors. We similarly see these economic
imperatives at play in the focus of much of the work on (un)fairness in NLP being focused on gender
bias specifically—compared to other axes of biases—because gender-labeled datasets are relatively
easier to assemble [2]. Similarly, most of the testing efforts outlined above treat models in isolation,
considering just the inputs and outputs of the model, whereas, it is important to consider how the
model integrates into the environment where it will be introduced, accounting for delayed impacts
and feedback loops [21].

Overlooking corner cases: As outlined above, the traditional ML testing often focuses on average-
case behaviour of the model. Each data point in a test set can be viewed as an individual test, and
whether or not the data point, or test, passes or fails makes up part of the accuracy, which is then
reported as a metric for system performance. However, this approach often does not look into which
data points are failing the test, or whether there is a pattern there. Often times the errors correspond to
the edge cases that are a minority, while the performance metric focuses on the head of the distribution.
Recent work pointing to fairness and robustness failures has prompted work on teasing apart the
evaluation set, and associating a subset of that set with a behavior one wants to test for. For instance,
disaggregated fairness evaluation [23] is essentially about performing the test on subsets of the data
that have a certain feature held constant. Similarly, robustness testing often involves examining the
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tail distribution for certain edge cases–things like natural adversarial examples [25, 15], or typos for
NLP [29]. In other words, defining metrics for fairness and robustness can in essence be thought of
as adding specific attention to sections of the tail distribution.

Lack of an integrated process: It is important to note that recent research has begun inquiries into
ML testing for the edge cases. For instance, fairness testing or disaggregated testing [2, 23] separately
assesses model performance against data pertaining to different subgroups of people; counterfactual
testing [19] such as perturbation sensitivity analysis [26] assesses model behaviour in response to
small controlled changes in the input, similar to unit testing. Approaches such as the fairness gym
[6] or system dynamics based simulations [21] can be thought of as instances of integration testing
in simulated environments. However, these efforts largely continue to be disconnected efforts with
those specific robustness goals, rather than being integrated into a unified or standard process of ML
development, even for critical production systems.

Lack of artifacts for transparency: One of the consequences of not having integrated processes
around comprehensive testing in ML is that there is no standard mechanism to communicate which
tests have been performed on the ML model, and which ones of them succeeded vs. failed. While
frameworks such as model cards [23] provide a great transparency mechanism, most implemented
model cards in practice reports largely on traditional held-out testing results, and sometimes disaggre-
gated fairness evaluation. Lack of such standardized mechanisms to communicate the test results of a
comprehensive suite of test cases puts the end users and stakeholders at a disadvantage.

3 Towards More Comprehensive Testing in ML

Establishing guarantees of an ML model’s behaviour in real-world contexts should become a core
criteria for its adoption in real-world application scenarios. In this section, we put forth a set of
recommendations towards rigorous testing practices that can provide strong, reliable, and transparent
guarantees for ML system reliability. Our recommendations pertain to practices along three layers:
what conditions are tested for, what processes guide the testing, and what artifacts communicate the
test results to the model consumers. These recommendations are not meant as a set of concrete steps
for practitioners, rather a set of considerations that should shape the steps towards comprehensive
testing that is appropriate for the application context. We draw inspiration from mature testing
practices in different engineering disciplines, especially software engineering, as well as testing-
oriented engineering paradigms such as test-driven development. Our recommendations are aimed at
applications where guarantees on real-world performance and reliability are crucial; however, these
recommendations are also relevant in research scenarios in high-stakes domains, such as health care.

3.1 Conditions that are tested for

As outlined in Section 2, current ML testing predominantly focuses on measuring average case
behaviour of models, in isolated test environments, to statistically establish superiority of the data
and/or algorithms used to build the models. This averaging is done in at least three ways, each of
which reduces the informativeness of the test results: i) all data points are weighted equally, ii) all
contexts are treated as equal, and iii) all error types are weighted equally. We argue that in real-world
applications, one must shift the focus to an engineering-motivated goal of ensuring that the model
will work as desired in the contexts it will be deployed in. While testing against a target distribution
is an effort in this direction, it does not address all the shortcomings. In software testing, for instance,
unit testing is a step used to isolate and examine a small piece of code against potential failure modes
(or test cases) that are designed by the developer/tester who knows the expected behaviour of that
module. What could unit testing look like in the case of ML testing? Recent research on designing
test sets that focus on failure cases close to natural data distribution [15], introducing adversarial
examples for robustness [25, 11], and behavioral testing of NLP models [29] can all be considered as
instances of unit testing. Similarly, it is important to test for emergent failure modes when different
component ML models are integrated as a part of a larger system, since the compounding of errors
may follow patterns undetectable during isolated testing [21]. In addition, failure cases are not all
similar and from the same priority. For example misclassifying a can on the street can be an edge case
of a self-driving car, but its severity is not as great as misclassifying a pedestrian and traffic sign in
the same scenario. These two examples are not of the same severity and shouldn’t be treated as such.

3



Recommendations:

• Consider going beyond the average case behavior of the system, and design test cases that
cover corner cases of interest specific to the task.

• Consider the context in which the system will be deployed and assign the severity of failing
the tests, in order to prioritize testing and subsequent fixes.

• Consider test cases that account for the societal disparities across different subgroups and
how failures might impact different subgroups in different rates.

• Make sure that test cases are also designed for scenarios where the ML model is integrated
with other ML and non-ML components.

3.2 Processes that guide the testing

In the traditional software development process, testing takes up significant amount of time, resources,
and effort [13]. Even moderate-sized software projects takes up hundreds of person-hours dedicated to
writing test cases — conditions to test for and pass/fail criteria, implementing them, and meticulously
documenting the results of those tests. In fact, software testing is considered an art [24] requiring its
own technical and non-technical skills [31, 22], and entire career paths are built around testing [4].
Test-driven development, often associated with agile software engineering frameworks, is a practice
which integrates testing considerations in all parts of the development process [1, 10]. These processes
rely on a deep understanding of the software requirements as well as user behavior modeling, in
order to anticipate failure modes during deployment, as well as continued expansion of the test suite.
In contrast, ML testing is often relegated to a small portion of the ML development process, and
predominantly focuses on a static snapshot of data to provide performance guarantees. Despite the
growing research into fairness and robustness failures in ML models, these efforts are often relegated
to auxiliary steps that are not fully integrated into a typical ML development process. Furthermore,
identifying failure modes in a deployed ML system is not always straightforward; it require a deep
understanding of the societal ecosystems surrounding ML interventions [30].

Recommendations:

• Consider anticipating, planning for, and integrating testing in all stages of development
process, research problem ideation, the setting of objectives, and system implementation.

• Consider building a practice around documenting desirable behaviours of the ML system as
test cases, and how to bring diverse perspectives into designing this test suite.

• Consider participatory approaches (e.g., [21]) to ensure that the test suite accounts for the
societal contexts and the embedded values within which the ML system will be deployed.

3.3 Artifacts that document the test results

Recent work has pointed to the importance of standard frameworks for transparency [9, 23] and
accountability [28] in ML based interventions. While transparency artifacts such as datasheets for
datasets [9] and model cards [23] are frameworks derived from practices in other mature domains
such as hardware documentation practices or food nutrition labeling, these frameworks currently
do not provide a way to communicate comprehensive test results. As [13] points out, software
testing produces a number of artifacts including execution traces, test results, as well as test coverage
information. In addition to increased transparency, such information serves also as a way to iteratively
build new test cases for newer versions of the software. ML transparency mechanisms should ideally
be expanded to include such comprehensive test artifacts.

Recommendations:

• Consider expanding ML transparency mechanisms such as model cards [23] to include a
more comprehensive set of test results.

• Consider documenting the processes that went into building the set of test cases, so that the
consumer of the ML system has a better understanding of its reliability.

• Consider documenting internal/external auditing practices (e.g., [28]) for both for model
outputs and processes.
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4 Conclusion

In this paper, we presented an overview of methodological shortcomings in traditional ML model
testing. While we recognize the importance of testing against distribution shift, we argue in favor of
going beyond the sole focus on distribution driven testing, and take into consideration edge cases and
severity of failures while assessing an ML model’s performance. We draw inspiration from decades
of work within software engineering testing practices, focused on assessing a software system against
various stress conditions, measuring severity of failure cases and assessing test priorities. Based
on this, we recommend a comprehensive set of considerations around the conditions to test for, the
process that guide the testing, and the artifacts produced as the result of the testing process.
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