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ABSTRACT

Large language models (LLMs) are increasingly applied in scientific research,
offering new capabilities for knowledge discovery and reasoning. In single-cell
biology, however, evaluation practices for both general and specialized LLMs re-
main inadequate: existing benchmarks are fragmented across tasks, adopt formats
such as multiple-choice classification that diverge from real-world usage, and rely
on metrics lacking interpretability and biological grounding. We present SC-
ARENA, a natural language evaluation framework tailored to single-cell foun-
dation models. SC-ARENA formalizes a virtual cell abstraction that unifies eval-
uation targets by representing both intrinsic attributes and gene-level interactions.
Within this paradigm, we define five natural language tasks (cell type annotation,
captioning, generation, perturbation prediction, and scientific QA) that probe core
reasoning capabilities in cellular biology. To overcome the limitations of brittle
string-matching metrics, we introduce knowledge-augmented evaluation, which
incorporates external ontologies, marker databases, and scientific literature to sup-
port biologically faithful and interpretable judgments. Experiments and analysis
across both general-purpose and domain-specialized LLMs demonstrate that (i)
under the Virtual Cell unified evaluation paradigm, current models achieve un-
even performance on biologically complex tasks, particularly those demanding
mechanistic or causal understanding; and (ii) our knowledge-augmented evalua-
tion framework ensures biological correctness, provides interpretable, evidence-
grounded rationales, and achieves high discriminative capacity, overcoming the
brittleness and opacity of conventional metrics. SC-Arena thus provides a unified
and interpretable framework for assessing LLMs in single-cell biology, pointing
toward the development of biology-aligned, generalizable foundation models.

1 INTRODUCTION

Large language models (LLMs) are increasingly being applied in biological research, enabling
knowledge extraction (Garcia et al., 2024), reasoning (Gong et al., 2023), and hypothesis generation
(Abdel-Rehim et al., 2025) in diverse modalities. In cellular biology, researchers are actively inves-
tigating how to leverage LLMs to integrate high-dimensional molecular data with mechanistic un-
derstanding, which is crucial for tasks such as cell type annotation (Wu & Tang, 2025), perturbation
analysis (Istrate et al., 2024), and mechanistic question-answering (Wang et al., 2024). Collectively,
these efforts reflect the aspiration to construct a virtual cell (Roohani et al., 2025), a computational
model that enables in silico analyses through simulations, thereby accelerating the scientific dis-
covery process. However, realizing this vision requires the development of fair and comprehensive
benchmarks that provide interpretable, task-grounded, and biologically faithful evaluations, capable
of accurately assessing LLMs’ ability to interpret biological signals and mimic single-cell behaviors
beyond generic NLP metrics.

Existing benchmarks for comprehensively evaluating LLMs’ ability to process heterogeneous
single-cell biological data remain limited. Most focus on narrow tasks (e.g., cell type annotation
(Yuan et al., 2024)) without assessing whether models acquire a holistic understanding of cellular
identity and dynamics. Broader scientific QA benchmarks, such as SciBench (Wang et al., 2023) and
PubMedQA (Jin et al., 2019), probe reasoning but remain domain-agnostic and fail to capture the
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demands of single-cell analysis. More recent efforts, such as CELLVERSE (Zhang et al., 2025) and
SOAR (Liu et al., 2024), extend evaluation to multi-omics tasks, yet still lack systematic coverage
of reasoning and generative capabilities. Consequently, a principled framework is still absent for de-
termining whether LLMs can operate reliably across heterogeneous biological tasks while faithfully
capturing biological attributes, dynamics, and reasoning.

Inspired by recent progress toward constructing virtual cells, which require models to account for
cellular states (i.e., attributes) and generate corresponding responses (i.e., actions) to environmental
cues, we introduce SC-ARENA, a benchmark that evaluates LLMs through the abstraction of a
Virtual Cell within an arena-style evaluation setting. This paradigm reconceptualizes evaluation as
a selection process: Can an LLM serve as a virtual cell by faithfully capturing biological attributes,
dynamics, and reasoning? Concretely, we define minimal requirements for a virtual cell and design
five representative natural language tasks: captioning, cell type annotation, cell generation, scientific
QA, and perturbation prediction that jointly probe static properties and dynamic behaviors. In these
tasks, unlike prior benchmarks that rely on constrained multiple-choice formats, we adopt open-
ended QA to better reflect practical use cases and capture reasoning depth. Regarding evaluation,
standard metrics such as accuracy or BLEU, widely used in previous works (Liu et al., 2024), cannot
capture these aspects. We therefore adopt LLM-as-a-judge (Gu et al., 2024) while mitigating bias
through a knowledge-augmented framework inspired by Eval-RAG Ryu et al. (2023) grounded in
external databases and ontologies, resulting in evaluations that are interpretable, reproducible, and
biologically faithful.

Experiments across multiple state-of-the-art LLMs demonstrate the utility of SC-ARENA. We find
that (i) models perform well on text-aligned tasks such as captioning but struggle on perturbation
prediction and mechanistic QA, revealing gaps in causal reasoning; (ii) knowledge-augmented eval-
uation correlates more strongly with expert judgments than string-based metrics; and (iii) even the
strongest general-purpose LLMs fail to consistently simulate the attributes and methods of the Vir-
tual Cell, underscoring the need for domain-specialized approaches. Our contributions are threefold:

Virtual Cell abstraction. We introduce the Virtual Cell as a unified evaluation object for single-cell
reasoning, inspired by object-oriented modeling. This abstraction jointly encodes cellular attributes
(identity, state) and actions (responses, interactions), enabling a principled and extensible framework
for evaluation. Starting from five representative tasks, SC-ARENA systematically probes both static
and dynamic aspects of cellular biology.

Natural language and knowledge-augmented evaluation. We reformulate single-cell bench-
marks into natural language QA tasks, moving beyond rigid classification or multiple-choice for-
mats to better reflect real-world usage. To ensure biological fidelity and interpretability, we design a
knowledge-augmented evaluation scheme that integrates ontologies, marker databases, and literature
evidence, providing domain-grounded scoring and explanatory rationales.

Comprehensive empirical study. We compare several popular general-purpose and single-cell
specialized LLMs under SC-ARENA. The results show a strong alignment between our knowledge-
augmented evaluator and expert judgments, while revealing systematic gaps, particularly in mecha-
nistic reasoning, that highlight directions for future biology-aligned foundation models.

2 RELATED WORK

2.1 SINGLE-CELL MODELING APPROACHES

The evolution of single-cell modeling has progressed from embedding-based architectures to natural
language–driven reasoning.

Early efforts applied Transformer architectures to large-scale single-cell RNA-seq corpora, encod-
ing expression profiles into latent embeddings for downstream tasks. Geneformer (Theodoris et al.,
2023) and scFoundation (Hao et al., 2024) trained transformer models from scratch on tens of mil-
lions of cells, whereas scBERT (Yang et al., 2022) and scGPT (Cui et al., 2024) adapted existing
NLP architectures—BERT and GPT-2, respectively—for robust cell type annotation and perturba-
tion prediction. CellFM (Zeng et al., 2025) further expanded model capacity, training 800M pa-
rameters on 100M cells to improve robustness and generalization. Beyond purely embedding-based
paradigms, hybrid approaches such as scGenePT (Istrate et al., 2024) and Cellllama (Choi et al.,
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Figure 1: Overview of the SC-ARENA framework.

2024) integrated textual biological knowledge, marking an early transition toward language-driven
modeling in single-cell research.

Building on the demonstrated effectiveness of general LLMs in cell annotation (e.g., GPTCell-
type (Hou & Ji, 2024)), recent studies have reformulated single-cell modeling directly in natural
language to enhance interpretability and reasoning. Cell2Sentence (Levine et al., 2024) and its
extension Cell2Sentence-scale (Rizvi et al., 2025) introduced the concept of “cell sentences,” con-
verting gene expression profiles into textual representations and thereby laying the foundation for
language-based modeling. More recent efforts, such as CellReasoner (Cao et al., 2025) and Cell-
o1 (Fang et al., 2025), further emphasize reasoning, incorporating mechanisms for structured infer-
ence in single-cell tasks.

2.2 SINGLE-CELL BENCHMARKS

Several scientific QA benchmarks have been developed to evaluate LLMs in biomedical and STEM
domains. General-purpose resources such as SciBench (Wang et al., 2023) and PubMedQA (Jin
et al., 2019) adopt natural language QA formats and provide broad coverage of biomedical reason-
ing. However, they remain largely agnostic to single-cell contexts and lack the mechanistic depth
required for cellular-level evaluation.

To enable more precise assessment in single-cell biology, specialized benchmarks have recently
emerged. CELLVERSE (Zhang et al., 2025) reformulates transcriptomic data into “cell sentences”
and introduces natural language QA, but its multiple-choice format constrains reasoning and does
not reflect real-world usage. Similarly, SOAR (Liu et al., 2024) evaluates cross-modality cell type
annotation but relies on BLEU and exact-match metrics, reducing complex reasoning to surface-
level lexical overlap and offering little interpretability.

3 THE SC-ARENA EVALUATION FRAMEWORK

These limitations motivate the design of SC-ARENA, which builds on the virtual cell abstraction
to unify evaluation targets and employs knowledge-grounded QA for interpretable and biologically
faithful assessment, as shown in Figure 1. The benchmark consists of three components: (i) fram-
ing the participant model as a virtual cell, (ii) constructing a formal examination comprising five
representative tasks, and (iii) applying our knowledge-augmented evaluation framework.

3.1 KNOWLEDGE CELL CLASS: DEFINING THE PARTICIPANT AS A Virtual Cell

To evaluate whether LLMs acquire biologically grounded knowledge rather than memorizing su-
perficial patterns, we introduce the notion of a Virtual Cell. A virtual cell serves as an abstraction
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of biological entities, defined as an instance of a Knowledge Cell class that encapsulates both
static attributes and dynamic methods, which are defined as below:

Attributes Attributes represent the intrinsic identity and state of a cell, capturing multimodal bi-
ological information: (i) Expression-based features derived from scRNA-seq profiles, encoded as
structured “cell sentences”(van Dijk et al., 2025), (ii) Text-based descriptions of morphology, func-
tion, localization, and role, curated from literature and databases, and (iii) Ontology-based hierar-
chical annotations from resources such as the Cell Ontology (CL).

Methods Methods represent the extrinsic dynamics of a cell, modeling its interactions with the
environment: (i) Cell → Environment processes, including cytokine secretion, signaling, antigen
presentation, and immune activation, and (ii) Environment → Cell responses, such as transcrip-
tional changes under perturbations (e.g., drug treatment or gene knockout).

Leveraging this abstraction, a model that coherently represents both attributes and methods qualifies
as a candidate Virtual Cell LLM, as it demonstrates the capacity to simulate both static identity and
dynamic behavior within a unified Knowledge Cell class. This design establishes a principled
evaluation unit that integrates heterogeneous tasks into a single framework.

3.2 MULTI-TASK BENCHMARK WITH FORMAL EXAMINATION

Building on this definition, SC-ARENA is designed as a multi-task benchmark that operationalizes
the evaluation of Virtual Cell LLMs across complementary perspectives. Each task probes a different
mapping between modalities or reasoning direction within the Knowledge Cell class, and the
tasks are defined as follows:

Cell Type Annotation (Expression → Ontology): Assign ontology-grounded labels to expression
profiles. Given a cell sentence, the LLM predicts the corresponding ontology-based cell type label.

Cell Captioning (Expression → Language): Generate natural language descriptions from cell
sentences. Given a cell sentence, the LLM produces a natural language description of the biological
state, testing interpretability and the verbalization of transcriptomic patterns.

Cell Generation (Ontology/Language → Expression): Synthesize plausible expression profiles
from cell type descriptions or ontology terms. Given a cell type name, the LLM generates a plausible
cell sentence, assessing its ability to produce molecular profiles consistent with semantic labels.

Perturbation Prediction (Environment → Cell): Predict expression changes induced by perturba-
tions given baseline profiles and perturbation signals. The evaluation requires the LLM to (i) predict
up- and down-regulated genes and (ii) generate the post-perturbation cell sentence.

Scientific QA (Cell → Environment): Answer mechanistic questions regarding cellular functions
and intercellular interactions. Questions are derived from scientific literature, requiring the LLM to
extract relevant knowledge from prior studies and provide evidence-based explanations.

Together, these tasks assess (i) bidirectional translation between molecular data and semantic de-
scriptions, and (ii) reasoning over causal interactions between cells and their environments. By
jointly covering static identity, dynamic behavior, and cross-modal reasoning, SC-ARENA provides
a holistic testbed for measuring whether LLMs achieve a biologically meaningful understanding of
cellular systems.

3.3 KNOWLEDGE-AUGMENTED EVALUATION

We found conventional NLP metrics (e.g., BLEU, ROUGE, BERTScore) fail to capture biological
fidelity in our preliminary experiments (see Appendix A.2 for details). To address this, we intro-
duce a knowledge-augmented LLM-as-a-judge framework, inspired by Eval-RAG (Ryu et al.,
2023), which improves judging reliability by conditioning evaluation on retrieved context. Unlike
conventional LLM-as-judge approaches (Gu et al., 2024) that rely only on the prompt and model out-
put, our evaluator explicitly integrates curated external resources, including Cell Ontology, UniProt,
Gene Ontology, CellMarker, and peer-reviewed literature. Grounding in these verifiable references
enables the evaluation to capture semantic coherence, penalize biologically implausible outputs, and
provide interpretable feedback.
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Table 1: Summary of benchmark datasets in SC-ARENA.

Task Data Source #Samples Format (Input → Output)

CTA CELLxGENE 608 cell sentence (expression) → ontology label (CL)

CC CELLxGENE 608 cell sentence (expression) → natural-language caption

CG CELLxGENE 608 Ontology/cell-type name → cell sentence (expression)

PP Norman; Adamson 138 Control & perturbed cell sentences + perturbation spec →
(i) up/down DEGs; (ii) post-perturbation cell sentence

SQA PubMed 254 Question → natural-language answer + evidence rationale

Formally, each evaluation instance is represented as

I = (q, r,K, g),

where q denotes the task prompt, r the model response, K the retrieved external knowledge, and g
the ground-truth answer. An evaluator LLM E maps this tuple to a score

s = E(I) ∈ [0, 100],

implemented as a discrete rating in [0, 5] linearly rescaled to [0, 100]. Conditioning on both K and
g allows the evaluator to accommodate linguistic variability, penalize factual errors against trusted
references, and assign partial credit to semantically related predictions, yielding more faithful and
interpretable evaluation than either string-matching metrics or ungrounded LLM-as-judge baselines.

4 EXPERIMENTS

4.1 BENCHMARK DATASET CONSTRUCTION

All benchmark data sets are derived from publicly available high-quality single-cell resources as
shown in Table 1. Each task probes a distinct dimension of biological reasoning.

The first three tasks—Cell Type Annotation (CTA), Cell Captioning (CC), and Cell Generation
(CG)—are constructed from a shared subset of 608 representative profiles sampled from the CZ
CELLxGENE Discover portal (Program et al., 2025). Each cell’s gene expression profile is con-
verted into a natural language “cell sentence,” providing a unified representation across tasks. This
design ensures consistency and comparability while establishing a closed-loop interplay among ex-
pression profiles, ontological labels, and natural language: models must identify cell identity, ver-
balize biological states, and generate plausible single-cell expression profiles.

Perturbation Prediction (PP) is compiled from two large-scale perturbation studies (Norman (Nor-
man et al., 2019), Adamson (Adamson et al., 2016)), covering 138 genetic interventions. For each
perturbation, we compute the mean expression profile of control (pre-perturbation) and perturbed
(post-perturbation) cells, convert both into “cell sentences,” and extract differentially expressed
genes (DEGs) as ground-truth up/down-regulated gene sets.

Finally, Scientific QA (SQA) is curated from 100 PubMed articles focused on human genes and
cellular biology, yielding 254 questions paired with reference answers and supporting evidence.
Each question targets mechanistic reasoning, cell–environment interactions, and single-cell biol-
ogy concepts, requiring application of the paper’s findings rather than simple recall. Following
semi-automatic pipelines such as EasyDataset (Miao et al., 2025), we streamline retrieval, question
generation, and evidence linking, enabling interpretable evaluation of functional and mechanistic
knowledge.

4.2 EXTERNAL KNOWLEDGE FOR EVALUATION

To ensure that evaluation reflects biological faithfulness rather than superficial lexical overlap, we
ground each task in curated external resources:
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Cell Type Annotation: We use hierarchical paths from the Cell Ontology (CL) (Diehl et al., 2016),
which define standardized taxonomies of cell identity. By situating predicted types within this ontol-
ogy, we can measure semantic similarity between model outputs and gold-standard labels, rewarding
predictions that are close in the hierarchy even if not exact matches.

Cell Captioning: For evaluating natural language descriptions, we incorporate official definitions
of target and ancestral cell types from CL. These definitions provide reference descriptions of mor-
phology, function, and localization, enabling assessment of whether generated captions capture the
essential biological attributes and avoid omissions.

Cell Generation: We validate generated cell sentences against cell-type-specific marker genes cu-
rated in the CellMarker database (Zhang et al., 2019). Marker genes act as widely accepted gold
standards for distinguishing cell identities, making them an ideal reference for judging whether syn-
thetic profiles preserve biological distinctiveness.

Perturbation Prediction: To assess the plausibility of predicted differentially expressed
genes (DEGs), we integrate functional annotations from NCBI (O’Leary et al., 2016),
UniProt (UniProt Consortium, 2018), and the Gene Ontology (GO) (Carbon et al., 2021). These
resources capture gene-level functions, pathways, and interactions, allowing us to verify whether
predicted perturbation responses align with known biological mechanisms.

Scientific QA: For factual verification, we extract supporting abstracts and key excerpts from the
original PubMed articles used to construct the questions. This provides ground-truth context for
checking whether model answers are both scientifically accurate and evidence-supported.

4.3 EXPERIMENT SETUP

We evaluate both general-purpose and domain-specialized large language models (LLMs) on SC-
ARENA. For general-purpose models, we focus on the widely used Qwen family across both major
versions and scales, including Qwen2.5 (Yang et al., 2024) and Qwen3 (Yang et al., 2025), to ex-
amine the effect of model iteration and capacity on single-cell reasoning. Beyond Qwen, we include
GPT-4o as a strong general baseline, and two reasoning-optimized systems: DeepSeek-R1 (Guo
et al., 2025) and Kimi-K2 (Team et al., 2025). For domain-specialized models, we primarily assess
C2S-Scale (van Dijk et al., 2025) in three publicly released variants: (i) a 410M cell-type predic-
tion model, (ii) a cell-generation model, and (iii) a 1B pretrained checkpoint. We also evaluate
scGenePT (Istrate et al., 2024) in two fine-tuned variants and the scGPT (Cui et al., 2024) model
reproduced and released by the scGenePT authors. Finally, we include Cell-O1 (Fang et al., 2025) as
a representative reasoning-oriented vertical model. All domain-specific checkpoints are evaluated
on the tasks for their corresponding fine-tuned versions to ensure fairness and comparability.

Each benchmark instance is first standardized into a unified cell sentence format. For general-
purpose LLMs, we then convert the instance into a natural language query using task-specific prompt
templates (see Appendix A.5). Domain-specialized models follow their published inference proto-
cols (e.g., tokenization and input schema), and their outputs are post-processed into the same re-
sponse format for consistency. All generated responses are automatically scored by GPT-4o-mini,
which serves as the evaluator across tasks. For each task, the evaluator receives the query, the model
output, the ground-truth reference, and curated external knowledge, along with a task-specific rubric
(see Appendix A.3). The scoring process follows the knowledge-augmented judging scheme in-
troduced in Sec. 3.3, producing normalized percentage scores that are averaged across instances to
yield task-level performance.

4.4 BENCHMARKING RESULTS

Overall Performance. As shown in Table 2, no system reaches the level of a reliable “virtual cell.”
Even the best-performing general models, Kimi-K2 (277.2) and DeepSeek-R1 (276.7), fall short of
a normalized passing threshold (5*60). This highlights both the inherent difficulty of single-cell
reasoning and the considerable headroom for improvement.

Effect of Model Scale and Iteration. Scaling and iteration bring consistent gains. Within the Qwen
family, performance rises from 202.6 (Qwen2.5-7B) to 262.7 (Qwen3-235B), a nearly 60-point
improvement. Iterative upgrades also matter: Qwen3 models outperform Qwen2.5 at comparable
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Table 2: Performance of different models across five tasks (with Total Score). Bold = 1st place in
column, Underline = 2nd place in column. Non-numeric entries ( —) are excluded from ranking.

Model CTA CG CC PP SQA Total
General-purpose Models
Qwen2.5-7B 12.61 45.98 51.05 28.84 64.09 202.57
Qwen2.5-14B 25.89 51.74 56.05 34.78 66.37 236.06
Qwen2.5-32B 26.78 50.95 55.46 36.23 66.77 238.06
Qwen3-8B 21.45 50.53 57.20 37.39 72.83 254.45
Qwen3-14B 29.17 15.50 60.88 32.89 72.20 210.64
Qwen3-32B 31.35 55.39 62.69 37.54 65.03 252.00
Qwen3-235B 37.47 52.76 62.03 35.94 74.48 262.68
GPT-4o 36.29 59.70 63.02 37.24 67.56 263.81
DeepSeek-R1 40.81 62.24 66.51 36.23 70.87 276.66
Kimi-K2 40.00 63.04 67.89 37.10 69.13 277.16
Domain-specialized Models
C2S-Pythia-410m(cell-type-prediction) 47.34 — — — — —
C2S-Pythia-410m(cell-generation) — 20.30 — — — —
C2S-Scale-Pythia-1b-pt 41.68 18.55 — — — —
Cell-o1 34.11 — — — — —
ScGPT — — — 21.55 — —
ScGenePT(NCBI+UniProt) — — — 24.13 — —
ScGenePT(GO-all) — — — 26.03 — —

scales, and frontier systems like GPT-4o (263.8) and Kimi-K2 (277.2) surpass earlier baselines.
However, no model is uniformly strong, Kimi-K2 excels in generation (63.0) and captioning (67.9),
while Qwen3-32B narrowly leads in perturbation prediction (37.5). Scaling enhances fluency and
coverage but does not resolve mechanistic reasoning. A task-level visualization using radar plots,
along with further analysis, is provided in Appendix A.4.1.

Task-wise Differences. Performance varies sharply across tasks. Captioning (up to 67.9 with Kimi-
K2) and scientific QA (74.5 with Qwen3-235B) reach the 60–70 range, while cell type annotation
lags around 40 (best: DeepSeek-R1 at 40.8) and perturbation prediction remains below 38 (best:
Qwen3-32B at 37.5). This asymmetry reflects the “fluent but not faithful” gap: models generate
coherent text yet struggle with ontological precision and causal inference. A radar plot providing a
task-level visualization of these disparities is shown in Appendix A.3.

Domain-Specific vs. General Models. Domain-specialized systems show complementary
strengths. C2S-Pythia (410M, cell-type prediction) reaches 47.3 on annotation, outperforming even
GPT-4o (36.3) and Qwen3-235B (37.5), despite being orders of magnitude smaller. By contrast, sc-
GenePT variants achieve only 21–26 on perturbation prediction, far below general-purpose leaders,
illustrating that specialization is highly task-dependent and not uniformly beneficial.

5 ANALYSIS

5.1 BIOLOGICAL CORRECTNESS: ONTOLOGY-GROUNDED VALIDATION VIA CELL TYPE
ANNOTATION

To assess whether the knowledge-augmented evaluator assigns biologically coherent scores, we an-
alyze the task of cell type annotation, which naturally leverages the hierarchical structure of the Cell
Ontology (CL). For each prediction, both the predicted and reference cell types are mapped to CL
identifiers via the Ontology Lookup Service (OLS). We then compute their shortest-path distance di
within the CL hierarchy, using it as a proxy for biological relatedness.

We quantify alignment between evaluator scores and ontology distance by computing the Spearman
rank correlation (Spearman, 1904; Kendall, 1970) between the evaluator’s score si and the negative
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(a) The data points aggregated across all
models in the CTA task.

Step 1: 
• The predictions partially match the ground truth but include unverified down-regulated genes 

(e.g., FTH1, ARPC1B), raising concerns about reliability.

Step2:
• The predicted up- and down-regulated genes (e.g., CD63, RPS28) are biologically plausible in the 

context of CRISPRi perturbation, and the direct target DNAJC19 is correctly predicted as down-
regulated.

Step3:
• The model captures the core set of regulated genes but lacks precision in annotating the 

functional roles—particularly for significantly down-regulated genes.

Step4:
• Existing biological knowledge supports that DNAJC19 knockdown triggers mitochondrial stress and 

related pathways (external knowledge), indirectly validating the predicted expression changes. 
Conclusion:
• While biologically plausible overall, the predictions contain inaccuracies—especially over-

predicting down-regulated genes—resulting in a moderate evaluation score of 3.

Overall consistency 
with the ground truth

Case： "cell_type": "K562",
"condition": "DNAJC19+ctrl"

Rational：

Biological plausibility 
of up/down-regulated 
genes

Qualitative 
resemblance of cell 
sentences

Support from 
external knowledge

Conclusion

(b) Example of scoring responses, produced by the evaluator us-
ing external knowledge in the PP task.

Figure 2: (a) Relationship between prediction score and ontology distance (Spearman ρ = 0.6212,
p <0.001); (b) Example scoring responses using external knowledge.

ontological distance −di, as shown in Figure 2a. The correlation is strongly positive (ρ = 0.6212,
p < 0.001), indicating that predictions closer to the ground-truth type in the ontology consistently
receive higher scores. This demonstrates that SC-ARENA’s scoring scheme faithfully aligns with
biological hierarchy, capturing semantic biological coherence.

5.2 INTERPRETABILITY: STRUCTURED, KNOWLEDGE-GROUNDED RATIONALES

A central advantage of SC-ARENA’s natural language–based design is its transparent and inter-
pretable evaluation: each score is accompanied by structured rationales grounded in biological
knowledge, rather than presented as an opaque number.

As shown in Figure 2b, in the perturbation prediction task the evaluator LLM generates biologically
informed explanations that explicitly connect its scoring decisions to domain knowledge—covering
gene function (e.g., VIM in stress response) and perturbation mechanism (e.g., ARID1A in chromatin
remodeling).

This design transforms evaluation from a black-box judgment into an auditable and instructive pro-
cess: it reveals why predictions succeed or fail, and turns evaluation into a teaching signal for it-
erative model refinement. It highlights that SC-ARENA not only measures performance but also
explains it, enabling systematic error analysis and distinctive interpretability.

5.3 DISCRIMINATIVE CAPACITY: DISTINGUISHING BIOLOGICALLY MEANINGFUL
PREDICTIONS

Beyond correctness and interpretability, an effective evaluation framework must also demonstrate
discriminative capacity: the ability to distinguish models and outputs according to their biological
plausibility. Traditional NLP metrics fall short in this regard.

For each task, we computed the similarity between model outputs and ground-truth references using
several widely adopted NLP metrics, including BERTScore (Zhang et al., 2020), BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), and METEOR (Banerjee & Lavie, 2005), with detailed results
provided in Appendix A.2. However, the results reveal clear limitations: the scores are either uni-
formly close across models, offering little discriminative power, or near zero, failing to capture
meaningful differences in biological reasoning quality.

In contrast, SC-ARENA achieves fine-grained discrimination by integrating structured rationales
with domain knowledge to evaluate prediction plausibility and relative model strength. For example,
in the cell type annotation task, SC-ARENA leverages cell ontology as external knowledge to
capture differences in prediction depth. As shown in Appendix A.4.2, larger models tend to generate
deeper, more specific cell type predictions, which align with their overall benchmark performance,
enhancing the framework’s discriminative power.
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6 DISCUSSION

6.1 BRIDGING THE GAP: FROM FLUENT TO FAITHFUL BIOLOGICAL LANGUAGE MODELS

Our results in SC-ARENA reveal a clear dissociation between linguistic fluency and biological faith-
fulness in current LLMs. As shown in Table 2, general-purpose models consistently outperform
domain-specialized ones on open-ended generation tasks such as Cell Captioning, demonstrating
strong surface-level fluency. However, this advantage vanishes on tasks requiring ontological pre-
cision or causal accuracy: in Cell Type Annotation, most general models are outperformed by spe-
cialized counterparts, and performance on Perturbation Prediction remains universally poor across
all models. Together, these findings expose a systemic “fluent but not faithful” gap: models may
speak biology convincingly, yet fail to reason with the precision, hierarchy, and causality that define
biological understanding.

Future work should address both modeling and evaluation. On the modeling side, pretraining on
structured resources such as ontologies, pathways, and perturbation datasets could help encode bi-
ological logic rather than mere vocabulary. On the evaluation side, benchmarks should (1) assess
appropriateness of granularity rather than exact phrase matching, (2) require auditable rationales
verifiable against knowledge bases, and (3) stay synchronized with evolving biological knowledge
through integration with dynamic knowledge graphs. Together, these steps can shift models from
merely speaking biology fluently to truly reasoning in biology, grounded in mechanism and evi-
dence.

6.2 SCORING RELIABILITY: ON THE CORRECTNESS OF LLM-AS-A-JUDGE

The second dimension concerns the reliability of scoring. Our knowledge-augmented LLM judge
demonstrates measurable alignment with biological hierarchy: in the cell type annotation task, eval-
uator scores show a strong positive correlation with ontology distance, and the generated rationales
explicitly reference domain knowledge such as gene functions and perturbation mechanisms. This
demonstrates that the judge not only distinguishes biologically closer from more distant predictions
but also grounds its decisions in interpretable reasoning, moving evaluation from opaque numbers
to auditable explanations. Such capacity is critical for systematic error analysis, allowing evaluation
to reveal not just what a model gets wrong, but also why.

Despite these strengths, the judge inherits the probabilistic nature of LLMs and thus exhibits limita-
tions. Future improvements could mitigate these weaknesses in several ways: ensembling multiple
judges to reduce variance across single models; calibrating against expert-annotated rationale sets to
ensure that rationales reflect causal biological truth rather than spurious correlations; and integrat-
ing live biological knowledge bases such as GO, CL, and CellMarker so that scoring criteria evolve
alongside scientific progress. Taken together, these advances could transform LLM-as-a-judge from
a promising scaffold into a verifiable instrument for scientific evaluation.

7 CONCLUSION

In this work, we present SC-ARENA, a natural language evaluation framework designed to assess
the capabilities of foundation models on key single-cell biology tasks. By constructing a virtual cell
abstraction and designing five representative tasks, including cell-type annotation, gene perturbation
reasoning, and biological QA, we enable interpretable and task-grounded evaluation of LLMs in
the biological domain. To enhance both precision and insight, we introduce knowledge-augmented
metrics that leverage external databases to evaluate model outputs beyond surface correctness. Our
experimental results reveal that current LLMs show promising yet uneven performance across tasks,
and that knowledge grounding significantly improves evaluation reliability and interoperability. SC-
ARENA provides not only a diagnostic tool for biological LLMs but also a new perspective on how
natural language evaluation can be aligned with domain-specific reasoning. We hope this framework
lays the groundwork for future efforts in building and benchmarking trustworthy, biology-aligned
large language models.

9
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ETHICS STATEMENT

All data used in this work are derived from publicly available, open-source datasets, and thus raise
no concerns regarding biomedical ethics or data licensing, as mentioned in the Section 4. We ac-
knowledge that LLM-as-judge evaluation may still carry inherent biases in the discussion section.
Our contribution aims to mitigate such issues by explicitly grounding evaluation in external biolog-
ical knowledge, providing a more objective framework and laying the foundation for more reliable
and ethically sound evaluation practices in the future.

REPRODUCIBILITY STATEMENT

Our experimental setup, including model selections, data preprocessing, prompt templates, inference
protocols, and evaluation procedures, is fully described in Section 4.3 of the main text. Additional
implementation details and evaluation protocols are provided in Appendix A.3. All benchmark
datasets are constructed from publicly available resources as outlined in Section 4 and Table 1,
ensuring full reproducibility of our results.
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A APPENDIX

A.1 THE USAGE OF THE LLM

In this paper, we only use LLM to polish the content to improve grammar and expression.

A.2 THE DETAILS OF OTHER EVALUATION METRICS

Traditional NLP evaluation metrics, such as BERTScore, BLEU, ROUGE, and METEOR, are
widely used for assessing model outputs. However, when applied to biological and domain-specific
tasks, these metrics exhibit significant limitations. For instance, BERTScore often assigns nearly
identical scores to outputs from different models, effectively collapsing biologically distinct pre-
dictions into similar numerical values. This is evident in Table 3, where models like Qwen3-8B,
Qwen3-32B, and GPT-4o achieve comparable BERTScore values despite notable differences in the
biological accuracy of their predictions.

Lexical overlap–based metrics, including BLEU and ROUGE, are equally problematic in this con-
text. A model output such as “CD8 T cell, NK cell, B cell” can receive a high BLEU or ROUGE
score against a gold label like “T cell” simply due to shared vocabulary, even though it is biologi-
cally incorrect. This can be observed in the perturbation task (Table 6), where BLEU-1 values are
relatively high for several models, yet more detailed n-gram metrics (BLEU-2, ROUGE-2) remain
low, reflecting partial but misleading lexical overlap rather than true biological fidelity.

METEOR, which accounts for synonymy and paraphrasing, provides slightly better differentiation,
but it still lacks grounding in domain-specific knowledge and fails to penalize mechanistically im-
plausible predictions. Across tasks such as cell type prediction, captioning, generation, perturbation,
and ScienceQA (Tables 3–7), we consistently observe that high scores on these metrics do not nec-
essarily correspond to biologically accurate or meaningful outputs. For example, DeepSeek-R1
often achieves the highest BLEU or METEOR scores in science QA and perturbation tasks, yet
other models with slightly lower scores may produce more precise or mechanistically consistent
predictions.

In summary, while these metrics provide a rough estimate of linguistic similarity, they are insuffi-
cient for evaluating the biological faithfulness of model outputs. Our observations underscore the
need for specialized evaluation approaches that integrate domain knowledge and mechanistic con-
straints, rather than relying solely on traditional NLP metrics.
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Table 3: Performance comparison of different models across traditional metrics in cell type annota-
tion.

Model BERTScore BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 ROUGE-L METEOR
Qwen2.5-7B 80.20 0.24 0.02 0.12 0.02 0.12 0.07
Qwen2.5-14B 83.45 0.68 0.10 0.22 0.05 0.22 0.13
Qwen2.5-32B 82.93 0.94 0.08 0.23 0.04 0.23 0.07
Qwen3-8B 80.98 0.07 0.01 0.17 0.04 0.17 0.09
Qwen3-14B 80.86 18.38 4.54 0.21 0.06 0.21 0.12
Qwen3-32B 84.18 22.22 7.09 0.23 0.07 0.23 0.16
Qwen3-235B 83.47 11.52 3.04 0.29 0.10 0.29 0.18
Kimi-K2 84.91 31.60 10.91 0.30 0.10 0.29 0.16
GPT-4o 84.11 11.49 2.15 0.28 0.09 0.28 0.12
DeepSeek-R1 85.08 41.55 19.55 0.30 0.10 0.30 0.19

Table 4: Performance comparison of different models across traditional metrics in cell captioning.

Model BERTScore BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 ROUGE-L METEOR
Qwen2.5-7B 81.72 7.25 0.74 0.12 0.01 0.09 0.16
Qwen2.5-14B 82.29 8.44 0.89 0.13 0.01 0.09 0.17
Qwen2.5-32B 82.22 7.59 0.88 0.12 0.01 0.09 0.17
Qwen3-8B 82.16 3.49 0.32 0.12 0.01 0.09 0.15
Qwen3-14B 81.91 8.73 0.82 0.13 0.01 0.09 0.16
Qwen3-32B 81.87 8.07 0.73 0.13 0.01 0.09 0.16
Qwen3-235B 82.10 8.44 0.90 0.13 0.01 0.09 0.17
Kimi-K2 81.47 8.50 0.93 0.13 0.02 0.09 0.16
GPT-4o 82.72 8.39 0.88 0.12 0.01 0.09 0.18
DeepSeek-R1 82.18 8.77 1.04 0.13 0.02 0.10 0.18

Table 5: Performance comparison of different models across traditional metrics in cell generation.

Model BERTScore BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 ROUGE-L METEOR
Qwen2.5-7B 75.17 0.12 0.00 0.00 0.00 0.00 0.00
Qwen2.5-14B 77.01 0.36 0.00 0.01 0.00 0.01 0.00
Qwen2.5-32B 77.28 0.72 0.00 0.02 0.00 0.01 0.01
Qwen3-8B 75.17 0.08 0.00 0.00 0.00 0.00 0.00
Qwen3-14B 71.69 0.30 0.00 0.00 0.00 0.00 0.00
Qwen3-32B 77.27 0.33 0.00 0.01 0.00 0.01 0.01
Qwen3-235B 77.65 1.18 0.00 0.03 0.00 0.01 0.02
Kimi-K2 79.24 1.91 0.00 0.04 0.00 0.02 0.02
GPT-4o 77.98 0.77 0.00 0.02 0.00 0.01 0.01
DeepSeek-R1 79.60 2.67 0.00 0.06 0.00 0.02 0.03

Table 6: Performance comparison of different models across traditional metrics in perturbation pre-
diction.

Model BERTScore BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 ROUGE-L METEOR
Qwen2.5-7B 87.40 88.39 29.92 0.56 0.08 0.21 0.34
Qwen2.5-14B 90.39 90.95 23.45 0.77 0.11 0.28 0.45
Qwen2.5-32B 90.92 91.99 22.01 0.83 0.12 0.30 0.48
Qwen3-8B 85.71 88.84 27.27 0.51 0.09 0.21 0.30
Qwen3-14B 88.19 86.11 24.98 0.62 0.10 0.24 0.37
Qwen3-32B 89.06 91.19 27.01 0.65 0.11 0.26 0.37
Qwen3-235B 89.20 90.19 25.55 0.70 0.10 0.26 0.42
Kimi-K2 90.74 91.40 22.56 0.81 0.11 0.29 0.49
GPT-4o 90.50 91.53 18.26 0.84 0.12 0.30 0.48
DeepSeek-R1 90.94 91.36 18.01 0.89 0.12 0.30 0.51
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Table 7: Performance comparison of different models across traditional metrics in ScienceQA.

Model BERTScore BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 ROUGE-L METEOR
Qwen2.5-7B 88.51 43.22 14.10 0.38 0.13 0.23 0.25
Qwen2.5-14B 88.91 48.02 16.20 0.40 0.15 0.25 0.27
Qwen2.5-32B 89.04 52.43 17.42 0.40 0.15 0.25 0.26
Qwen3-8B 87.81 29.20 9.08 0.39 0.13 0.22 0.31
Qwen3-14B 85.46 32.65 9.73 0.39 0.12 0.22 0.30
Qwen3-32B 74.81 30.46 8.70 0.33 0.10 0.18 0.26
Qwen3-235B 87.55 29.86 8.66 0.39 0.12 0.22 0.30
Kimi-K2 86.83 38.53 8.33 0.31 0.08 0.19 0.19
GPT-4o 89.24 53.73 18.48 0.40 0.15 0.25 0.26
DeepSeek-R1 87.49 34.05 8.85 0.36 0.10 0.21 0.26

A.3 EXPERIMENTAL DETAILS

We evaluate a diverse set of both general-purpose and domain-specialized large language models
(LLMs) to assess their performance across our single-cell biology benchmark suite. Our evaluation
covers a range of publicly available foundation models, including DeepSeek-R1 (Guo et al., 2025),
GPT-4o, Kimi-K2 (Team et al., 2025), and the Qwen series models, particularly Qwen2.5 (Yang
et al., 2024) and Qwen3 (Yang et al., 2025). This selection spans a spectrum of model scales and
architectures, allowing us to examine performance differences attributable to model capacity and
pretraining strategies.

In addition, we include four LLMs that have been fine-tuned specifically for single-cell genomics:
scGPT (Cui et al., 2024), scGenePT (Istrate et al., 2024), C2S-Scale (van Dijk et al., 2025), and
Cell-O1 (Fang et al., 2025). The scGPT model used in our evaluation was obtained from the version
publicly released by the scGenePT authors; this model was fine-tuned on a perturbation dataset by
the scGenePT team to produce the version used in our experiments.

Our evaluation proceeds in two stages: answer generation and automated scoring. Cell genes in
each instance are first standardized into a unified cell sentence format. For general-purpose LLMs,
each benchmark instance is reformulated as a natural language question using task-specific prompt
templates (see Appendix for full prompt designs). The model receives this formatted input and
generates a free-text response. For domain-specialized models, inputs are preprocessed according
to each model’s published inference protocol (e.g., tokenization and input schema), and outputs are
post-processed into a unified response format compatible with our evaluation framework.

We employ GPT-4o-mini as the automated evaluator for all tasks. For each task, a task-specific eval-
uation prompt is carefully designed. The evaluator is provided with the input question, the model-
generated response, the ground-truth answer, relevant external knowledge, and the task-specific scor-
ing rubric (see Appendix for details). Based on this information, the evaluator assigns a score on a
[0, 5] scale. To facilitate cross-task comparison, these raw scores are normalized by dividing by 5,
yielding a percentage score. The final task-level performance is obtained by averaging the normal-
ized scores across all instances within the task.

To ensure the robustness of our results, each model was evaluated twice independently on every
task. We confirmed that the discrepancy between repeated runs did not exceed 2 percentage points
in accuracy, thereby validating the stability of our evaluation.

A.4 ADDITIONAL RESLUT ANALYSIS

A.4.1 ADDITIONAL RESULT ANALYSIS WITH RADAR PLOTS

Task-level Visualization of Scaling Effects. While the main text highlights numerical improve-
ments from scaling and iteration, Radar plots provide a complementary, task-level perspective. Fig-
ure 3 compares representative general-purpose models across the five SC-ARENA tasks. The visu-
alization confirms the aggregate trend reported in Table 2 — larger and newer models consistently
expand the coverage of capabilities — but also exposes uneven gains across tasks. For instance,
Kimi-K2 achieves a pronounced lead in captioning and generation, whereas Qwen3-32B performs
comparatively better in perturbation prediction. These contrasts underscore that model scaling im-
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proves overall fluency and reasoning breadth, yet does not fully overcome the challenge of mecha-
nistic prediction.

Heterogeneity Across Tasks. The radar plots further reveal that gains from scaling are not uni-
formly distributed. Open-ended tasks (captioning, scientific QA) show the steepest improvements,
whereas deterministic tasks (cell type annotation, perturbation prediction) remain relatively con-
strained. This echoes the “fluent but not faithful” gap emphasized in the main discussion, illustrat-
ing how visualization helps to highlight task-specific limitations that may be obscured in aggregate
scores.

Implications for Model Development. By making task asymmetries visible, radar plots empha-
size the importance of fine-grained evaluation beyond single total scores. They suggest that future
progress may require not only scaling and iteration, but also targeted approaches that explicitly
address mechanistic reasoning in biology.

Figure 3: Radar-plot comparison of representative general-purpose models across the five SC-
ARENA tasks: cell type annotation, perturbation prediction, cell generation, cell captioning, and
scientific QA. The visualization highlights the uneven distribution of gains: while models such as
Kimi-K2 and DeepSeek-R1 excel in captioning and generation, Qwen3-32B performs comparatively
better in perturbation prediction. The radar plot provides a task-level perspective that complements
aggregate scores and illustrates persistent challenges in mechanistic reasoning.

A.4.2 DISCRIMINATIVE CAPACITY VIA ONTOLOGY PATH LENGTH TO ROOT.

To further validate the discriminative capacity of SC-ARENA, we examined the distribution of ontol-
ogy path length to root for predicted cell types across models (Figure 4). Here, the x-axis represents
binned intervals of the average path length to the ontology root, with shorter values corresponding to
more specific and biologically precise annotations, while the y-axis reports the count of predictions
falling into each interval.
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The results reveal a clear scaling trend: Qwen3-32B produces deeper predictions on average, fol-
lowed by Qwen3-14B and then Qwen3-8B. This hierarchy of prediction depth aligns closely with
their overall benchmark performance, where larger models consistently outperform their smaller
counterparts. Such consistency indicates that as models scale, they not only achieve higher aggre-
gate scores but also tend to generate more specific and biologically meaningful predictions. This
provides additional evidence that SC-ARENA can capture fine-grained distinctions in model behav-
ior, delivering discriminative capacity beyond what traditional NLP metrics can offer.

Figure 4: Distribution of ontology path length to root for predicted cell types across models. The
x-axis shows binned intervals of the average path length to the ontology root, using left-closed,
right-open notation [a,b), and the y-axis indicates the number of predicted cell types falling into
each interval. Shorter path lengths indicate closer alignment with the ontology hierarchy and thus
more specific predictions.

A.5 DETAILED PROMPT FOR EACH TASK

To ensure reproducibility and fairness, we provide here the full set of task-specific prompt templates
used in SC-ARENA. For each benchmark task, we design two categories of prompts: (i) answer
generation prompts, which are provided to the tested models to elicit predictions in a standardized
format, and (ii) score generation prompts, which are presented to the evaluator model (GPT-4o-
mini) to assign task-specific scores following the rubric in Appendix A.3. Together, these templates
operationalize the Virtual Cell abstraction by unifying inputs, outputs, and evaluation across tasks.

Cell Type Annotation (CTA). The answer generation prompt instructs the model to infer the most
likely ontology-grounded cell type from a ranked gene expression list (cell sentence). The evaluation
prompt guides the judge to compare the predicted type with the gold label, rewarding exact matches
or semantically close ontology categories.

Cell Captioning (CC). The answer generation prompt asks the model to produce a concise natural
language description of the cell, highlighting marker genes and lineage context. The evaluation
prompt checks whether the caption aligns with the ontology definition and expression evidence,
penalizing vague or generic responses.

Cell Generation (CG). The answer generation prompt requires the model to synthesize a plausible
ranked gene list given a cell type name and description. The evaluation prompt instructs the judge
to verify consistency with marker gene databases and ontology knowledge, assigning partial credit
when the generated profile is approximately correct.

Perturbation Prediction (PP). The answer generation prompt asks the model to predict both the
perturbed cell sentence and sets of up- and down-regulated genes given a baseline cell sentence
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and perturbation condition. The evaluation prompt guides the judge to assess predictions against
experimental ground truth and external references (e.g., NCBI, UniProt, GO), with scores reflecting
both plausibility and mechanistic validity.

Scientific QA (SQA). The answer generation prompt presents the model with a domain-specific
research question and asks for a step-by-step reasoning process leading to a concise final answer.
The evaluation prompt provides the judge with the model’s answer, the gold reference, and support-
ing PubMed context, instructing it to score factual accuracy, reasoning quality, and alignment with
evidence.

Figures 5–9 illustrate the answer generation prompts for the five tasks, while Figures 10–14 present
the corresponding evaluation prompts.

Cell Type Annotation Answer Generation Prompt

You are given {num_genes} genes ranked by expression level from a {organism} cell.

Cell sentence: {cell_sentence}Please reason step-by-step to determine the most probable cell type. 

Consider known marker genes, expression patterns, and biological context. 

After your reasoning, conclude with your prediction in the exact format: [Predicted_Cell_Type: ...]

Figure 5: Cell Type Annotation Answer Generation Prompt.

Cell Captioning Answer Generation Prompt

The following cell sentence represents {num_genes} genes from a {organism} cell, ranked by expression 
level.  
Cell sentence: {cell_sentence}

Generate a concise, natural-language description of this cell that reflects the most specific cell type  
supported by the gene expression profile, while remaining biologically accurate and consistent with the 
Cell Ontology.

Guidelines:  
- Prioritize lineage-defining markers, key functional modules, and unique biological roles directly 

indicated by the gene list.  
- If gene evidence strongly supports a unique terminal cell type, describe it clearly and specifically.  
- If evidence is insufficient or ambiguous for the exact terminal type, describe the most specific broader 

parent type supported by the data, and note the uncertainty or possible alternatives.
- Avoid generic phrases such as "highly active" or "robust metabolism" unless tied to specific markers.

Your entire response must be wrapped in the format: [Captioning: ...]

Figure 6: Cell Captioning Answer Generation Prompt.
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Cell Generation Answer Generation Prompt

You are given the name and description of a cell type.  
Cell Type: {cell_type}  
Description: {cell_description}

Generate a cell sentence that reflects the expected gene expression profile of this cell. The cell sentence 
should be a comma-separated list of 200 genes, ordered from highest to lowest expression.

Ensure the gene ordering is biologically plausible and consistent with the described cell type's known 
functions and markers.

Be sure to state your answer using the exact format:  [Cell_Sentence: ...]

Figure 7: Cell Generation Answer Generation Prompt.

Perturbation Prediction Answer Generation Prompt

You are a single-cell transcriptomics expert.

Background  
- Original expression profile (genes ranked by descending expression): {cell_sentence}  
- Perturbation applied: {perturbation_description}Candidate differentially expressed genes (DEGs): 

{candidate_deg_list}

Task  
1. From the provided candidate DEGs, identify which genes are significantly Up-regulated (Up) and 

which are Down-regulated (Down), based on the perturbation context and prior gene knowledge. 
2. Based on these changes, generate the updated cell sentence that reflects the perturbed expression 

profile.

Output  
- You may briefly explain your reasoning (≤ 5 bullets or ≤ 120 words).  
- Conclude with the final answer in exactly this format, on a single line:  [Up: geneA, geneB, ...][Down: 

geneX, geneY, ...][Cell_Sentence: gene1 gene2 gene3 ...]

Figure 8: Perturbation Prediction Answer Generation Prompt.

Scientific QA Answer Generation Prompt

You are a domain expert in single-cell biology. You will be given a specific type of question and the 
question itself. Please think step by step using relevant biological knowledge before answering. Your final 
answer must be enclosed in the following format: `[Answer: ...]` Use clear, concise, and scientifically 
accurate language.

Input:  
Question Type: {question_type}  
Question: {question}

Your Response:

Figure 9: Scientific QA Answer Generation Prompt.
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Cell Type Annotation Score Generation Prompt

## Input Provided:

        - **Exact Cell Type**: The manually annotated ground truth cell type  
        - **Cell Ontology Chain(s)**: Hierarchical paths from the root to the exact cell type  
        - **Predicted Cell Type**: The machine-generated cell type to evaluate  

        ---

        ## Task:

        Score the predicted cell type on a scale of **0–5**, based on both:

        1. Its biological and functional proximity to the exact cell type  
        2. Its position in the provided ontology chain(s), if applicable  

        Use your knowledge of cell biology and immunology to make a judgment that prioritizes **semantic and lineage closeness**, using the 
ontology chains as a **supporting reference**, not a rigid constraint.

        ---

        ## Scoring Rules:
        ###  Score: 5
        - The predicted type **exactly matches** the provided ground truth cell type.
        ###  Score: 4
        - The predicted type is a **recognized synonym**, **functionally equivalent**, or a **direct parent/ancestor** in the ontology path.
        - Alternatively, it is a highly specific **sibling subtype** of the exact cell (e.g., CD4+ vs. CD8+ T cells).
        ###  Score: 3
        - The predicted type is a **reasonable sibling** or **subtype within the same lineage**, but is **less specific** or **1–2 levels away**.
        - It may appear in the ontology path, or be biologically close based on known immunology or developmental origin.
        ###  Score: 2
        - The predicted type belongs to the **same broad functional category or lineage**, but is **general or distant** in semantic meaning.
        ###  Score: 1
        - The predicted type is **vaguely related**, such as belonging to the **same germ layer** or **broader immune context**, but lacks clear 
lineage relevance.
        ###  Score: 0
        - The predicted type is from a **different cell lineage**, **functionally unrelated**, or has **no biologically plausible relationship** to the 
exact cell type.
        - Also assign 0 for nonsensical, ambiguous, or non-cell-type predictions.

        ## Additional Principles for Scoring:

        - **Ontology Chains as Reference**:  
        Use the ontology path(s) to help identify possible matches and hierarchy positions. However, do **not rely solely on ontology inclusion**—
prioritize functional and lineage reasoning.

        - **Biological Reasoning Encouraged**:  
        Even if a term is missing from the ontology chain, consider whether the predicted type is biologically plausible and reasonably related.

        - **Lineage First, Specificity Second**:  
        Prioritize whether the prediction belongs to the correct cell lineage before judging how specific or distant it is.

        - **Use the Best-Matching Chain**:  
        If multiple ontology chains are provided, use the one that leads to the best possible valid score for the predicted cell type.

        ## Your Output:

        Provide only the final score in the following format:

        [Score: X]
        Where `X` is an integer from 0 to 5.
 
        Input:
        Exact Cell Type:%s
        Cell Ontology Chain(s):%s
        Predicted Cell Type:%s

Figure 10: Cell Type Annotation Score Generation Prompt.
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Cell Captioning Score Generation Prompt

You are a biomedical expert in single-cell transcriptomics and cell type classification, with deep expertise in the Cell Ontology and its hierarchical 
structure.  

                Your task is to **evaluate a model-generated description of a single cell** using three clearly separated inputs:  

                ---

                ### 1. **Gene expression profile**
                A ranked list of genes from most to least expressed.  

                {cell_sentence}

                ---

                ### 2. **Cell Ontology definition path**
                A hierarchical lineage from a broad parent concept down to a specific, fine-grained cell type. Each level contains a name and definition.  

                {cell_path_chain}

                ---

                ### 3. **Cell description (to be evaluated)**
                **IMPORTANT:** This is the only text produced by the model that you should score.  
                If this section is empty, contains only whitespace, or does not describe a cell type, you must assign **[Score: 0]** without further 
analysis.  

                {predicted_caption}

                ---

                ## **Evaluation Objective**
                Assess whether the description in **Section 3** accurately and specifically reflects the **target cell type** as situated in the ontology 
path, while considering **gene expression evidence** from Section 1.  

                You must:
                - Check **ontology match** (terminal node or appropriate ancestor).  
                - Check **gene expression support** for claimed specificity.  

                ---

                ## **Key Principles**
                - **5 points** — Description exactly matches the **terminal node**, supported by clear marker genes.  
                - **4 points** — Matches terminal node but with minor omissions; gene evidence mostly supportive.  
                - **3 points** — Correct broader parent type or plausible sibling type, supported by gene data; **does not** name terminal node.  
                - **2 points** — Overly broad or vague description with limited evidence.  
                - **1 point** — Barely relevant or generic tissue/system reference.  
                - **0 points** — Empty, unrelated, incoherent, or wrong cell type.  

                **Special rule:** If Section 3 is empty or generic (e.g., "unknown cell" / "this is a cell"), assign **0** immediately.  

                ---

                **Your answer should include a score in the following format:**  
                [Score: X]  
                Then add a brief justification (2–4 sentences) explaining the reasoning behind your score.

                ---

Figure 11: Cell Captioning Score Generation Prompt.
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Cell Type Annotation Score Generation Prompt

## Input Provided:

        - **Exact Cell Type**: The manually annotated ground truth cell type  
        - **Cell Ontology Chain(s)**: Hierarchical paths from the root to the exact cell type  
        - **Predicted Cell Type**: The machine-generated cell type to evaluate  

        ---

        ## Task:

        Score the predicted cell type on a scale of **0–5**, based on both:

        1. Its biological and functional proximity to the exact cell type  
        2. Its position in the provided ontology chain(s), if applicable  

        Use your knowledge of cell biology and immunology to make a judgment that prioritizes **semantic and lineage closeness**, using the 
ontology chains as a **supporting reference**, not a rigid constraint.

        ---

        ## Scoring Rules:
        ###  Score: 5
        - The predicted type **exactly matches** the provided ground truth cell type.
        ###  Score: 4
        - The predicted type is a **recognized synonym**, **functionally equivalent**, or a **direct parent/ancestor** in the ontology path.
        - Alternatively, it is a highly specific **sibling subtype** of the exact cell (e.g., CD4+ vs. CD8+ T cells).
        ###  Score: 3
        - The predicted type is a **reasonable sibling** or **subtype within the same lineage**, but is **less specific** or **1–2 levels away**.
        - It may appear in the ontology path, or be biologically close based on known immunology or developmental origin.
        ###  Score: 2
        - The predicted type belongs to the **same broad functional category or lineage**, but is **general or distant** in semantic meaning.
        ###  Score: 1
        - The predicted type is **vaguely related**, such as belonging to the **same germ layer** or **broader immune context**, but lacks clear 
lineage relevance.
        ###  Score: 0
        - The predicted type is from a **different cell lineage**, **functionally unrelated**, or has **no biologically plausible relationship** to the 
exact cell type.
        - Also assign 0 for nonsensical, ambiguous, or non-cell-type predictions.

        ## Additional Principles for Scoring:

        - **Ontology Chains as Reference**:  
        Use the ontology path(s) to help identify possible matches and hierarchy positions. However, do **not rely solely on ontology inclusion**—
prioritize functional and lineage reasoning.

        - **Biological Reasoning Encouraged**:  
        Even if a term is missing from the ontology chain, consider whether the predicted type is biologically plausible and reasonably related.

        - **Lineage First, Specificity Second**:  
        Prioritize whether the prediction belongs to the correct cell lineage before judging how specific or distant it is.

        - **Use the Best-Matching Chain**:  
        If multiple ontology chains are provided, use the one that leads to the best possible valid score for the predicted cell type.

        ## Your Output:

        Provide only the final score in the following format:

        [Score: X]
        Where `X` is an integer from 0 to 5.
 
        Input:
        Exact Cell Type:%s
        Cell Ontology Chain(s):%s
        Predicted Cell Type:%s

Figure 12: Cell Generation Score Generation Prompt.
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Perturbation Prediction Score Generation Prompt

You are an expert in single-cell transcriptomics and gene regulation. Your task is to evaluate the **biological plausibility and accuracy** of a 
predicted gene expression perturbation in response to a specific condition. You will be given the following information:

                1. **Unperturbed Cell Expression (cell sentence)** – A description of the gene expression profile before any perturbation.  
                2. **Perturbation Condition** – The experimental factor applied to perturb the cell.  
                3. **Ground Truth**:  
                - Perturbed Cell Expression (cell sentence)  
                - List of significantly **up-regulated genes**  
                - List of significantly **down-regulated genes**  
                4. **Predicted Result** by a language model:  
                - Predicted perturbed Cell Expression (cell sentence)  
                - Predicted significantly **up-regulated genes**  
                - Predicted significantly **down-regulated genes**  
                5. **Reference Knowledge**:  
                - Brief summaries from NCBI, GeneCards, and UniProt for the involved genes  
                - Gene Ontology (GO) information:  
                    - Cellular Component (GO_C_description)  
                    - Biological Process (GO_P_description)  
                    - Molecular Function (GO_F_description)  

                Your job is to compare the predicted response against the ground truth and reference knowledge, considering the following criteria:

                - Are the **predicted expression changes** consistent with the true perturbation pattern?  
                - Are the **up/down-regulated genes** biologically plausible given the perturbation and consistent with known gene functions?  
                - Does the **predicted cell sentence** qualitatively resemble the real one in terms of key gene activity shifts?  
                - Are the predictions **supported or contradicted** by the provided reference knowledge?  

                Give a score from **0 to 5** based on overall plausibility and alignment with both ground truth and known biology, where:  
                - 0 = Completely incorrect and biologically implausible  
                - 1 = Poor prediction and unconvincing  
                - 2 = Somewhat plausible but with major gaps or errors  
                - 3 = Reasonable prediction with some soundness  
                - 4 = Mostly correct with minor inconsistencies  
                - 5 = Highly accurate and biologically consistent  

                **Your answer should include a score in the following format**:  
                `[Score: X]`

                ### Input:

                1. **Unperturbed Cell Expression (cell sentence)**:  
                {ctrl_sentence}
                2. **Perturbation Condition**:  
                {perturbation_description}
                3. **Ground Truth**:  
                - **Perturbed Cell Expression (cell sentence)**:  
                {pert_sentence}  
                - **Up-regulated Genes**:  
                {up_genes_str}  
                - **Down-regulated Genes**:  
                {down_genes_str}
                4. **Predicted Result** by the language model:  
                - **Predicted Perturbed Cell Expression (cell sentence)**:  
                {cell_sentence}  
                - **Predicted Up-regulated Genes**:  
                {up_genes}  
                - **Predicted Down-regulated Genes**:  
                {down_genes}
                5. **Reference Knowledge**:  
                - **Gene Summaries (NCBI / GeneCards / UniProt)**:  
                {NCBI_gene_card_UniProt_summaries}  
                - **Gene Ontology Descriptions**:  
                - **Cellular Component**: {GO_C_description}  
                - **Biological Process**: {GO_P_description}  
                - **Molecular Function**: {GO_F_description}

Figure 13: Perturbation Prediction Score Generation Prompt.
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Scientific QA Score Generation Prompt

You are a domain expert in single-cell biology and scientific reasoning.  
                    Your task is to evaluate whether the answer provided by a language model ("Evaluated Model") to a scientific question is accurate, 
well-reasoned, and biologically sound.

                    ## You will be given:
                    - **[Question Type]**: A label indicating the type of knowledge or reasoning required (e.g., Marker-Based Reasoning, Pathway Logic, 
Experimental Design, etc.).
                    - **[Original Question]**: The actual question that was posed to the model.
                    - **[Ground Truth Answer]**: A reliable, expert-verified reference answer.
                    - **[Model Answer]**: The output from the Evaluated Model.
                    - **[Reference Paper Title]**: The title of the scientific paper from which the question is derived.
                    - **[Reference Paper Abstract]**: The abstract of that paper, provided as external knowledge to help you assess correctness.
                    - **[Relevant Passage]**: The specific section of the paper most closely related to this question (may include results, figures, or 
methods). Use this passage as the primary reference for correctness.

                    ## Instructions
                    Carefully analyze whether the Model Answer is:
                    1. **Scientifically correct** (check facts, terminology, biological mechanisms).  
                    2. **Logically consistent** with the Original Question.  
                    3. **Well-aligned** with the Ground Truth Answer.  
                    4. **Appropriate** to the Question Type, showing the right reasoning depth and domain relevance.  
                    5. **Consistent with and supported by the Reference Paper and Relevant Passage** (do not copy text verbatim, but use them to 
check correctness).  

                    ## Important Evaluation Rules
                    - Any **factual or scientific error** (e.g., misclassifying cytokines, incorrect pathway direction, or wrong biological effect) must lower 
the score.  
                    - If such an error exists, the score **cannot be 5**.  
                    - **Conceptual or mechanistic errors** that undermine reasoning (e.g., mixing up immune stimulatory vs suppressive roles) should be 
considered major flaws, scored **≤3**.  
                    - If the answer is largely correct but contains **minor imprecision** (e.g., vague wording, lack of detail without scientific 
contradiction), it may be scored **4**.  
                    - Only if the answer is **fully correct, with no scientific errors and strong alignment**, may it receive a **5**.  
                    
                    ## Your Evaluation Should Include:

                    - **Strengths**: What the Model Answer did well.  
                    - **Weaknesses / Errors**: Be explicit about what is wrong or misleading.  
                    - **Impact of Errors**: How they affect correctness and scoring.  

                    ## Scoring Rubric
                    | Score | Description |
                    |-------|-------------|
                    | **5** | Fully correct, scientifically accurate, no errors, insightful, and well-aligned with the ground truth. |
                    | **4** | Mostly correct, but with minor flaws or imprecisions; no major scientific errors. |
                    | **3** | Partially correct, contains at least one clear scientific error or noticeable gap, though some correct reasoning is present. |
                    | **2** | Largely incorrect or incomplete; multiple scientific errors or major misunderstanding. |
                    | **1** | Minimally relevant, deeply flawed, or mostly wrong. |
                    | **0** | Completely incorrect, irrelevant, or nonsensical. |
                    At the end of your response, you must include the final score in this exact format:
                    `[Score: X]`
                    
                    ## Input
                    1. **Question Type**:  
                    `{question["type"]}`
                    2. **Original Question**:  
                    `{question["question"]}`
                    3. **Ground Truth Answer**:  
                    `{question["answer"]}`
                    4. **Model Answer**:  
                    `{model_answer}`
                    5. **Reference Paper Title**:  
                    `{paper_title}`
                    6. **Reference Paper Abstract**:  
                    `{paper_abstract}`
                    7. **Relevant Passage**:  
                    `{question["relevant_passage"]}`

Figure 14: Scientific QA Score Generation Prompt.
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