
Bayesian decision-making under misspecified priors
with applications to meta-learning

Max Simchowitz∗ Christopher Tosh† Akshay Krishnamurthy‡ Daniel Hsu†

Thodoris Lykouris§ Miroslav Dudík‡ Robert Schapire‡

Abstract

Thompson sampling and other Bayesian sequential decision-making algorithms
are among the most popular approaches to tackle explore/exploit trade-offs in (con-
textual) bandits. The choice of prior in these algorithms offers flexibility to encode
domain knowledge but can also lead to poor performance when misspecified. In
this paper, we demonstrate that performance degrades gracefully with misspecifica-
tion. We prove that the expected reward accrued by Thompson sampling (TS) with
a misspecified prior differs by at most Õ(H2ϵ) from TS with a well-specified prior,
where ϵ is the total-variation distance between priors and H is the learning horizon.
Our bound does not require the prior to have any parametric form. For priors with
bounded support, our bound is independent of the cardinality or structure of the
action space, and we show that it is tight up to universal constants in the worst case.
Building on our sensitivity analysis, we establish generic PAC guarantees for algo-
rithms in the recently studied Bayesian meta-learning setting and derive corollaries
for various families of priors. Our results generalize along two axes: (1) they apply
to a broader family of Bayesian decision-making algorithms, including a Monte-
Carlo implementation of the knowledge gradient algorithm (KG), and (2) they
apply to Bayesian POMDPs, the most general Bayesian decision-making setting,
encompassing contextual bandits as a special case. Through numerical simula-
tions, we illustrate how prior misspecification and the deployment of one-step
look-ahead (as in KG) can impact the convergence of meta-learning in multi-armed
and contextual bandits with structured and correlated priors.

1 Introduction

Bayesian decision-making algorithms are widely popular, due to both strong empirical performance
and the flexibility afforded by incorporating inductive biases and domain knowledge through pri-
ors. However, in practical applications, any chosen prior is at best an approximation of the true
environment in which the algorithm is deployed. This raises a critical question:

How sensitive are Bayesian decision-making algorithms to prior misspecification?

For decision-making problems with a very large horizon, it suffices that the misspecified prior places
a vanishingly small probability mass on the ground truth environment; this condition is referred to
informally as a “grain of truth.” This is because, in the large-horizon limit, Bayesian algorithms (like
many non-Bayesian methods) should converge to the optimal policy.
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But in many practical settings, decision-making takes place on shorter time scales. Consider a news
recommendation website that, when presented with a new user, sequentially offers a selection of
currently trending articles. Such a system may only have a few opportunities to make recommen-
dations before the user decides to navigate away, leaving little time to correct for misspecified or
underspecified prior knowledge. Such examples are described more broadly by the meta-learning
paradigm, where a single learning agent must complete multiple disparate-though-related tasks.

In meta-learning problems, and in short-horizon problems more broadly, the “grain of truth” argument
paints a rather uninformative picture. Consequently, recent work has begun to explore sensitivity
bounds in applications with shorter horizons [LL16, KKZ+21]. However, these recent works focus
on particular classes of priors and/or reward models, as well as on the Thompson sampling algorithm
specifically. Notably, this leaves open questions about the extent to which prior sensitivity is deter-
mined by properties of the Bayesian decision-making algorithm, the reward model, and the prior itself.

1.1 Our Contributions

Motivated by meta-learning problems with short task horizons, we establish general, distribution-
independent, and worst-case optimal bounds on the sensitivity of Bayesian algorithms to prior
misspecification. We focus on the Bayesian bandit setting, where a mean-vector “environment” µ is
drawn from a distribution P , and rewards for each action are drawn in accordance with µ. We study
the performance of Bayesian algorithms which operate according to a misspecified prior P ′.

Sensitivity of Thompson Sampling and Related Bayesian Bandit Algorithms. As a concrete
example, we consider the expected reward obtained by Thompson sampling with misspecified prior
P ′ under environments drawn from true prior P .

When the mean rewards lie in the range [0, 1], as in the Bernoulli reward setting, we show that the
difference in expected reward between Thompson sampling with P ′ and with P is at most twice the
total variation distance between P and P ′ multiplied by the square of the horizon length. We prove a
lower bound demonstrating that, for worst-case priors, this result is tight up to constants. Moreover,
our upper bound holds for any two priors P and P ′ and suffers no dependence on the complexity of
the decision space.

We extend this result in two directions. First, we remove the boundedness requirement on the mean
reward range, showing that so long as certain tail probability conditions on the prior means are
satisfied, a similar result holds. Second, we generalize beyond Thompson sampling, bounding the
prior sensitivity of a broad class of Bayesian bandit algorithms, which we term n-Monte Carlo
algorithms. Our lower bounds extend to this class, verifying sharp dependence on the parameter n.

Sample Complexity of Bayesian Meta-Learning. We apply our prior sensitivity results to the
Bayesian bandit meta-learning setting, in which a meta-learner iteratively interacts on bandit instances
that are sampled from an unknown prior distribution. Motivated by our sensitivity analysis we describe
a generic algorithmic recipe for Bayesian meta-learning, in which the meta-learner explores for several
episodes to estimate the prior and then exploits by instantiating a Bayesian decision-maker with
the learned prior. We formally consider two instantiations of this setup: (1) the Beta-Bernoulli
setting where the rewards are Bernoulli and the prior is a product of Beta distributions and (2) the
Gaussian-Gaussian setting where the rewards are Gaussian and the prior is a Gaussian (with arbitrary
covariance structure) over the means. We note that the Gaussian-Gaussian setting was recently studied
in [KKZ+21] but only for the diagonal covariance setting.

Bayesian Decision-Making Beyond the Bandit Setting. A striking feature of our proof is that
it makes no explicit reference to the structure of bandit decision-making. As a consequence, our
results extend seamlessly to both contextual bandits and the most general Bayesian decision-making
problem: Bayesian POMDPs. While our sensitivity bounds hold almost verbatim in these settings,
we note that estimating the prior may be statistically much more challenging in these scenarios, so
there is no free lunch. To facilitate readability of the paper, we defer all further discussion and formal
results to Appendix E.

Experimental results. We complement our meta-learning theory with synthetic experiments in
multi-armed and contextual bandit settings. Our experiments show the benefits of (a) meta-learning
broadly, (b) estimating higher-order moments of the prior distribution, and (c) using less myopic
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algorithms like the Knowledge Gradient [RPF12] over Thompson sampling when faced with
structured environments.

1.2 Related Work

Bayesian Decision-Making. Bayesian decision-making broadly refers to a class of algorithms that
use Bayesian methods to estimate various problem parameters, and then derive decision/allocation
rules from these estimates. The study of Bayesian decision-making began with the seminal work
of Thompson [Tho33], who introduced the Thompson sampling algorithm for adaptive experi-
ment design in clinical trials. Thompson sampling later gained popularity in the reinforcement
learning community as a means to solve multi-armed bandit and tabular reinforcement learning
problems [Str00, OVR17], and has been extended in many directions [AL17, AL18, GMM14]. Re-
cent years have seen the proliferation of other Bayesian decision-making and learning algorithms,
including Information Directed Sampling [RVR16], Top-Two Thompson Sampling [Rus16], and
Knowledge Gradient [RPF12].

Sensitivity Analysis and Frequentist Regret. The field of robust Bayesian analysis examines
the sensitivity of Bayesian inference to prior and model misspecification (c.f., [BMP+94]). These
approaches typically do not consider decision-making, so they do not account for multi-step adaptive
sampling inherent in our setting. More recent works study frequentist regret for Thompson sampling
[AG12, KKM12]. These guarantees can be interpreted as controlling the sensitivity to arbitrary
degrees of prior misspecification, but consequently, they do not provide a precise picture of how
misspecification affects performance. Moreover, frequentist guarantees for Thompson sampling
focus on relatively long learning horizons, so they are less relevant in the context of meta-learning
with many short-horizon tasks.

Short-Horizon Sensitivity. Most closely related to our paper are two previous works on sensitivity
of Thompson sampling to small amounts of misspecification in short-horizon settings. [LL16] study
the sensitivity of Thompson sampling for two-armed bandits when the prior has finite support. More
recently, [KKZ+21] study meta-learning with Thompson sampling and derive sensitivity bounds
for Thompson sampling in multi-armed bandits with Gaussian rewards and independent-across-arm
Gaussian priors. In contrast to both of these works, the bounds presented in this work apply to
arbitrary families of priors, more general decision-making problems, and to more general families
of decision-making algorithms. Further, as illustrated in Remark 2, our bounds are also tighter than
those achieved by [KKZ+21] when specialized to their precise setting. Finally, our lower bounds
demonstrate that the square-horizon factor incurred in [KKZ+21] is unavoidable for worst-case priors
(though perhaps not for their special case).

[BSLZ19] study sensitivity of general Bayesian algorithms in a dynamic pricing context. Their
approach requires “sufficiently random” reward noise and applies only to algorithms with a non-
adaptive initial exploration phase (unlike true Thompson Sampling); under these conditions, they
show that the trajectories under a well-specified and misspecified Bayesian decision maker can be
coupled so that the two algorithms maintain the same posteriors with good probability. In contrast,
our analysis applies only to Bayesian decision-making algorithms which have sufficient “internal
randomness” (e.g., Thompson sampling, and more generally, the n-Monte Carlo algorithms). Our
approach obviates assumptions about reward noise and initial exploration at the expense of slightly
restricting the class of algorithms to which our guarantees apply.

Meta-learning and Meta-RL. Meta-learning is a classical learning paradigm in which a learner
faces many distinct-but-related tasks [Thr96, Thr98, Bax98, Bax00, HYC01]. While the classical
work primarily considered supervised learning tasks, recent, predominantly empirical work has
focused on meta-reinforcement learning (Meta-RL), where each task is itself a decision-making
problem (c.f., [WKNT+17, DSC+16]). This includes some Bayesian approaches [HGH+20]. While
there have been some theoretical results on Meta-RL [ALB13, CLP20, YHLD21, HCJ+21], apart
from [KKZ+21] we are not aware of other theoretical treatments with a Bayesian flavor.

Learning under model misspecification. This work studies a specific notion of misspecification:
running Bayesian decision-making algorithms with inexact approximations of a true underlying prior.
Numerous other types of mispecification have been considered by the learning theory community more
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broadly, although typically in the absence of meta-learning and in frequentist settings. These include
models where rewards may be changing with time [GM11, BGZ14, CSLZ18, WL21] or adversarially
corrupted [LMPL18, GKT19, ZS21], or where a simple function class (e.g., linear models) is used
to approximate a more complex reward function [DKWY20, VRD19, LSW20, FGMZ20]. The
Bayesian analog of these models is that the likelihood is misspecified, which is quite different from
the prior misspecification considered here. Translating these notions of misspecification to Bayesian
decision-making and unifying these lines of work remains an exciting direction for future research.

2 Setting and Notation

Throughout, we use bold v to denote vectors and non-bold va to denote scalars. When the vector vh

has a subscript, vh,a denotes its coordinates.

Bayesian Bandit Learning under Misspecification. A Bayesian bandit learning instance is speci-
fied by (a) an abstract action space A, (b) a parametric family of priors Pθ indexed by parameters
θ ∈ Θ over mean vectors µ ∈ RA with coordinates µa, and (c) a function D : RA → ∆(RA)
mapping mean vectors µ to distributions over reward vectors r ∈ RA such that the expected reward
under D(µ) is µ, i.e., Er∼D(µ)[r] = µ.5 Note that this general setup allows the prior Pθ to encode
complex dependencies between the mean rewards µa of actions a ∈ A.

We consider an episodic bandit protocol with horizon H . First, µ ∼ Pθ is drawn from the prior.
Then, at each time step h = 1, 2, . . . ,H , the learner’s policy, specified by an algorithm alg, selects
an action ah ∈ A. Simultaneously, a reward vector rh is drawn independently from D(µ), and the
learner observes reward rh = rh,ah

. The choice of action ah may depend on the partial trajectory
τh−1 = (a1, r1, . . . , ah−1, rh−1). We let Pθ,alg denote the joint law over µ and the full trajectory τH ,
while expectations are denoted Eθ,alg. We abbreviate the full trajectory τ = τH . We denote the
cumulative reward

R(θ, alg) := Eθ,alg

[∑H
h=1 rh

]
= Eθ,alg

[∑H
h=1 µah

]
.

Bayesian Learning Algorithms. We study a class of algorithms alg(θ) also parameterized by
θ ∈ Θ. For concreteness, the reader may think of alg(θ) as corresponding to Thompson sampling,
where the learner internally computes posteriors using Pθ as its prior. More general classes of
Bayesian algorithms are defined in Section 3.1. We are interested in the consequences of misspecifi-
cation; that is, interacting with µ ∼ Pθ, but executing alg(θ′) for some other θ′ ̸= θ. Note that our
notation for the induced law on the trajectory is Pθ,alg(θ′).

Episodic Bayesian Meta-Learning. We apply the above framework to the problem of Bayesian
meta-learning. Let θ⋆ ∈ Θ be a ground-truth parameter. At each episode t = 1, 2, . . . , T , a mean
parameter µ(t) is drawn i.i.d. from Pθ⋆ . Simultaneously, the learner commits to a (potentially non-
Bayesian) exploration strategy explore(t) and collects the induced trajectory τ(t). At the end of
T episodes, the learner selects a parameter θ̂ ∈ Θ as a function of τ(1), . . . , τ(T ). The learner’s
performance is evaluated on the expected reward of the plug-in algorithm on θ̂: R(θ⋆, alg(θ̂)).

Further notation. Given two probability distributions P and Q over the same probability space
(Ω,F), we denote their total variation TV(P ∥ Q) := supE∈F |P [E ]−Q[E ]| and Kullback-Leibler
divergence KL(P ∥ Q). If P is a joint distribution of random variables (X,Y, Z, . . . ), P (X) denotes
the marginal of X under P , and P (Y |X) the conditional distribution (as a function of random
variable X). We define the diameter of a mean vector as diam(µ) := supa∈A µa− infa∈A µa, which
is a random variable when µ is drawn from Pθ. Throughout, log(·) denotes the natural logarithm.
Given a space X , we let ∆(X ) be the set of probability distributions on X ; see Appendix B.1 for
measure-theoretic considerations.

5In fact, our analysis extends to more general cases where the reward distribution is parameterized by more
than just the mean vectors, but we restrict ourselves to the current setting for ease of exposition.
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3 Prior Sensitivity in Bayesian Learning

This section states sensitivity bounds for various Bayesian bandit algorithms and families of priors,
starting with the concrete instance of Thompson sampling under priors with bounded-range means.
Our results extend almost verbatim to more general decision-making tasks such as contextual bandits;
see Appendix E for further details. Throughout, we use the fact that the posterior distribution of the
mean µ given trajectories τh does not depend on the choice of learning algorithm alg; hence, we
denote these posteriors Pθ[· | τh−1].6

Recall the classical Thompson sampling algorithm: at each step h, TS(θ) draws a mean µ̃h ∼
Pθ[· | τh−1] and selects the reward-maximizing action ah ∈ argmaxa µ̃h,a. We say that the prior Pθ

is B-bounded if Pθ[diam(µ) ≤ B] = 1. For Thompson sampling under B-bounded priors, we have
the following result:
Corollary 3.1. Let Pθ be B-bounded. Then, the suboptimality of misspecified Thompson sampling
TS(θ′) on instance θ is at most

|R(θ,TS(θ))−R(θ,TS(θ′))| ≤ 2H2 · TV(Pθ ∥ Pθ′) ·B.

Corollary 3.1 follows directly from Theorem 3.2, which we state in Section 3.2, and which generalizes
the statement of the corollary along two axes: to a more general family of Bayesian algorithms
that we call “n-Monte Carlo” and to less restrictive conditions on the behavior of diam(µ), such
as sub-Gaussian tails. Due to lack of space, we focus on the first such generalization; the second
direction is more technical in nature, and we leave its exposition to Appendix B.2.

3.1 n-Monte Carlo algorithms

Unfortunately, for arbitrary Bayesian bandit algorithms, the behavior under two different priors
cannot always be controlled in terms of the total variation distance of their priors. Indeed, consider
an algorithm that always pulls a particular arm a⋆ if the prior places any probability mass on a mean
for which a⋆ is best; clearly, this algorithm’s behavior is not robust to small changes in its prior
distribution. However, many important Bayesian bandit algorithms, such as Thompson sampling,
are not arbitrary functions of their priors; rather, they select actions based on their internal posterior
distribution in a relatively stable manner. We call such algorithms n-Monte Carlo algorithms.
Definition 3.1 (n-Monte Carlo algorithm). Given n > 0, we say that a family of algorithms alg(·)
parameterized by θ ∈ Θ is n-Monte Carlo if, for any θ, θ′, step h ≥ 1, and partial trajectory τh−1,

TV(Palg(θ)(ah | τh−1) ∥ Palg(θ′)(ah | τh−1)) ≤ n · TV(Pθ(µ | τh−1) ∥ Pθ′(µ | τh−1)).

In words, n-Monte Carlo algorithms are those Bayesian algorithms for which small changes in the
posterior distribution result in small changes (up to a multiplicative factor of n) in the distribution
over actions. Note that on the left-hand side, we do not need to specify the true θ⋆, because each
algorithm’s choice of an action can only depend on τh−1. The nomenclature arises because any
algorithm that selects actions based exclusively on n samples from its posterior Pθ(µ | τh−1) is
n-Monte Carlo. However, the definition is more general and in Appendix C we describe various
algorithms that satisfy the n-Monte Carlo property, summarizing key insights here:

• We show that TS(θ) is 1-Monte Carlo.
• We introduce a generalization of Thompson sampling, which we call k-shot Thompson sampling

(k-TS(θ)), that samples k means µ̃1, . . . , µ̃k i.i.d. from the posterior Pθ[· | τh−1], and selects the
action ah ∈ argmaxa max{µ̃1,a, . . . , µ̃k,a}. We show that k-TS(θ) is k-Monte Carlo.

• We introduce a Monte Carlo approximation of the knowledge gradient algorithm [RPF12], which
we call two-step Receding Horizon Control (2-RHC(θ)). This algorithm is non-myopic in that it
chooses an action that maximizes the expected value at the subsequent time (according to its own
posterior updates). We show that when A is finite, 2-RHC(θ) is n-Monte Carlo for some n that
is polynomial in |A| and the number of Monte Carlo samples it draws from its posterior.

6Note that whenever τh lies in the support of Pθ , the posterior Pθ[µ | τh−1] is well-defined and unique,
even if τh−1 was generated by interacting with mean µ ∼ Pθ′ for some θ′ ̸= θ. When τh−1 does not lie in
the support of Pθ , we allow Pθ[µ | τh−1] to be any distribution over µ (for concreteness, one may default to
Pθ[µ]). Note, however, that although Pθ[µ | τh−1] may not be uniquely defined, Pθ,alg[τh−1 | µ] is always
uniquely defined and independent of θ.
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3.2 General Sensitivity Upper and Lower Bounds

We are now ready to state a general prior sensitivity bound for n-Monte Carlo algorithms. For
simplicity, we state our bounds for B-bounded priors, that is, Pθ[diam(µ) ≤ B] = 1, and under a
natural sub-Gaussian tail condition stated formally in Appendix B.2 (Theorem B.2).
Theorem 3.2. Let alg(·) be an n-Monte Carlo family of algorithms on horizon H ∈ N, and let
θ, θ′ ∈ Θ. Setting ε = TV(Pθ ∥ Pθ′), we have the following guarantees.

(a) If Pθ is B-bounded, then |R(θ, alg(θ))−R(θ, alg(θ′))| ≤ 2nH2ε ·B.
(b) If Pθ is coordinate-wise σ2-sub-Gaussian, then

|R(θ, alg(θ))−R(θ, alg(θ′))| ≤ 2nH2ε

(
diam(Eθ[µ]) + σ

(
8 + 5

√
log
(

|A|2
min{1,2nHϵ}

)))
.

Next, we complement our upper bound with a lower bound that matches Theorem 3.2(a) for n-shot
Thompson sampling (an n-Monte Carlo algorithm) up to a multiplicative constant:
Theorem 3.3 (Lower Bound, Informal). For any parameter n ∈ N, horizon H ≫ 1, number of arms
N = |A| ≫ H , and separation ϵ≪ 1/nH , there exist two priors Pθ and Pθ′ over bounded means
µ ∈ [0, 1]N such that TV(Pθ ∥ Pθ′) = ϵ and

R(θ, n-TS(θ)) ≥ R(θ, n-TS(θ′)) + (1− o(1)) · nH
2ϵ

2
,

where the o(1) decays to zero as 1/H , H/N , ϵnH → 0.

See Theorem D.1 for a precise, quantitative statement and Appendix D for a full proof.

Remark 1 (Comparison to Õ(
√
H) regret guarantees). At first glance, Theorem 3.3 appears incon-

sistent with known upper bounds for Thompson sampling which show that regret relative to the best
action in hindsight scales sublinearly as Õ(

√
|A|H) in the horizon H . Notice however that our lower

bound requires the number of actions |A| to scale at least linearly in H , so the bound applies in
a regime where regret upper bounds are in fact vacuous. Instead, the purpose of our lower bound
is to quantify the influence of the misspecified prior for fixed horizons, but where the magnitude
TV(Pθ ∥ Pθ′) of the misspecification may be arbitrarily small.

Proof ideas. One of the key ingredients in the proof of Theorem 3.2, and a result which may be of
independent interest, is the following bound on the total variation of the trajectory of an algorithm
run with the true prior and the same algorithm run with an incorrect prior.
Proposition 3.4. Let alg(·) be an n-Monte Carlo family of algorithms on horizon H ∈ N. Then,

TV(PH ∥ P ′
H) ≤ 2nH · TV(Pθ ∥ Pθ′),

where PH = Pθ,alg(θ)(µ, τH) and P ′
H = Pθ,alg(θ′)(µ, τH).

A full proof is given in Appendix B.6 and relies on a careful coupling argument between the two
trajectories detailed therein. As a concrete warmup, we illustrate this coupling for a Gaussian bandit
instance in Appendix B.5. The factor of H arises from a telescoping argument (Lemma B.9) based
on the performance-difference lemma [Kak03].

For B-bounded priors, Proposition 3.4 directly translates into the sensitivity bound in Theorem 3.2(a),
where the difference in rewards can be bounded as BH times the probability that the trajectory
of alg(θ) differs from the trajectory of alg(θ′). Addressing more general tail conditions like sub-
Gaussianity requires more care; see Appendix B for details.

4 Meta-learning

In this section, we apply the above prior sensitivity guarantees to episodic Bayesian meta-learning
and obtain sample-efficiency guarantees for canonical Bayesian bandit setups.

Suppose an episodic Bayesian meta-learner uses an exploration strategy explore(t) in T episodes and
computes an estimate θ̂ = θ̂(τ(1), . . . , τ(T )) of the ground-truth parameter θ⋆. Suppose further that,
for any ε, δ ∈ (0, 1), with probability at least 1− δ over the realizations of the episodes and internal
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randomization of the meta-learner, the estimate θ̂ satisfies TV(Pθ⋆ ∥ Pθ̂) ≤ ε. Then, Theorem 3.2
implies that, for any n-Monte Carlo algorithm alg(·), the relative performance of alg(θ̂) compared to
alg(θ⋆) is (essentially) bounded as Õ(nH2ε) over horizon H .

Our task of designing meta-learners is thus reduced to that of designing estimators (and exploration
strategies) for θ⋆ that enjoy convergence guarantees in TV distance. This is quite a general recipe
that can produce concrete meta-learning algorithms in many Bayesian bandit settings. We explain
how to do so in two setups: (1) Pθ⋆ is a product of Beta distributions, and the rewards are Bernoulli;
(2) Pθ⋆ is a multivariate Gaussian and the rewards are Gaussian.

4.1 Beta Priors and Bernoulli Rewards

We first consider the situation where the prior distribution is a product of Beta distributions Pθ⋆ =⊗
a∈A Beta(α⋆

a, β
⋆
a) and the reward distribution is a product of Bernoulli distributions D(µ) =⊗

a∈A Bern(µa). Recall that Beta(α, β) for α > 0 and β > 0 is a continuous probability distribution
supported on (0, 1), and hence our parameter space Θ is the (strictly) positive orthant in R2|A|.

Our approach is to directly estimate the parameters θ⋆ = (α⋆,β⋆) from the observed rewards in
the T episodes. Since the family of Beta distributions is an exponential family [Bro86] (with (α, β)
being the natural parameters), we can appeal to general statistical theory to bound the total variation
distance between two such distributions in terms of their parameter distance.

Suppose we adopt the exploration strategy where arm 1 is selected in the first n rounds in each of the
first T/|A| episodes, arm 2 in the next T/|A| episodes, and so on. (We assume the horizon H and
n satisfy H ≥ n ≥ 2.) We focus on the estimation of (α⋆

1, β
⋆
1), as the exact same approach works

for all of the arms. Let Xt denote the cumulative reward collected in the first n rounds of episode t.
Then, the random variables X1, . . . , XT/|A| are i.i.d. draws from a Beta-Binomial distribution with
parameters (α⋆

1, β
⋆
1 , n), where n denotes the number of trials of the binomial component. The first

and second moments of Xt are

m⋆
1 = E[Xt] =

nα⋆
1

α⋆
1 + β⋆

1

and m⋆
2 = E[X2

t ] =
nα⋆

1(n(1 + α⋆
1) + β⋆

1)

(α⋆
1 + β⋆

1)(1 + α⋆
1 + β⋆

1)
.

These moments uniquely determine α⋆
1 and β⋆

1 as long as n ≥ 2. Therefore, we can estimate (α⋆
1, β

⋆
1)

using plug-in estimates of the first two moments (m⋆
1,m

⋆
2) via the method of moments [TGG94].

Using this approach, we obtain the following sample complexity guarantee for estimating the prior
distribution:

Theorem 4.1. The exploration strategy and estimator described above enjoy the following guarantee.
If Pθ⋆ =

⊗
a∈A Beta(α⋆

a, β
⋆
a) and D(µ) =

⊗
a∈A Bern(µa), then there is a constant C depending

only on (α⋆,β⋆) such that, for any ε, δ ∈ (0, 1), if H ≥ 2 and

T ≥ C · |A|2 log(|A|/δ)
ε2

,

then P[TV(Pθ⋆ ∥ Pθ̂) ≤ ε] ≥ 1− δ.

The proof of the theorem is given in Appendix F.1.

4.2 Gaussian Priors and Gaussian Rewards

We now consider the situation where the prior distribution is a multivariate Gaussian Pθ⋆ =
N (ν⋆,Ψ⋆) in RA, and the reward distribution is a spherical Gaussian distribution D(µ) =
N (µ, σ2I). Note that such a prior distribution is able to capture correlations between the arms’
mean rewards in an episode, which cannot be captured by the product-form priors in the previous
subsection (nor in previous work [KKZ+21]).

We again directly estimate the parameters θ⋆ = (ν⋆,Ψ⋆) using a simple exploration strategy and the
method of moments. In each episode (which we assume to have H ≥ 2), we select independent and
uniformly random actions in the first two rounds. Let at and bt denote the actions taken in episode t,
and let rt and st denote the corresponding observed rewards. Our estimates for ν⋆ and Ψ⋆ based on
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Figure 1: Learning curves for Gaussian MAB and linear CB experiments. We run 100 replicates per
algorithm and visualize two standard errors with error bands. For meta-learners we tune the number
of exploration rounds and display the performance of the best configuration at each point, which we
call the upper envelope.

the information collected in T episodes are7

ν̂ :=
|A|
T

T∑
t=1

rteat
and Ψ̂ :=

|A|2

T

T∑
t=1

rtst
(
eat

eT

bt + ebte
T

at

)
− ν̂ν̂T.

For these estimators, we have the following theorem.
Theorem 4.2. The exploration strategy and estimator described above enjoy the following guarantee.
If Pθ⋆ = N (ν⋆,Ψ⋆) andD(µ) = N (µ, σ2I), then there is a constant C depending only on (ν⋆,Ψ⋆)
and σ2 such that, for any ε, δ ∈ (0, 1), if H ≥ 2 and

T ≥ C · (|A|4 + |A|3 log(1/δ))
ε2

,

then P[TV(Pθ⋆ ∥ Pθ̂) ≤ ε] ≥ 1− δ.

The proof of the theorem and the precise dependence on ν⋆, Ψ⋆, and σ2 are given in Appendix F.2.
The quartic dependence on |A| is due to estimating Ψ⋆; it improves to |A|2 if Ψ⋆ is known.
Remark 2 (Comparison to [KKZ+21]). [KKZ+21] study the case where Pθ⋆ = N (ν⋆, σ

2
0I), which

is a product-form prior over means µ with known σ2
0 . For ϵ̃ = |A| · ∥ν⋆ − ν̂∥∞/σ0, they show that8

|R(θ,TS(θ))−R(θ,TS(θ̂))| ≤ O
(
∥ν⋆∥∞ + σ0

√
log(H/ϵ̃)

)
·H2ϵ̃.

On the other hand, Theorem 3.2 applied to the 1-Monte Carlo Thompson Sampling algorithm
(and bounding diam(ν⋆) ≤ ∥ν⋆∥∞) yields the same inequality, but with ϵ̃ replaced by ϵ =
TV(N (ν⋆, σ

2
0I) ∥ N (ν̂, σ2

0I)) ≤ ∥ν⋆ − ν̂∥2/σ0. Note that ϵ̃ is always larger than ϵ by a fac-
tor of at least

√
|A|; thus, our result is strictly sharper.

5 Experiments

We demonstrate the generality of our results in three distinct meta-learning experimental settings.
First, we study a simple multi-armed bandit scenario with Gaussian prior and Gaussian rewards,
where we demonstrate how meta-learning higher-order moments of the prior can significantly improve
performance. Next, we consider a Gaussian linear contextual bandits scenario, to demonstrate the
generality of Bayesian meta-learning. Finally, we study a more interesting multi-armed bandit
problem with discrete priors, where, in addition to the value of meta-learning, we see that look-ahead
algorithms can substantially outperform Thompson sampling. Additional experimental details are
presented in Appendix A.

Gaussian MAB. Our first scenario is a multi-armed bandit problem with Gaussian prior and
Gaussian reward. The instance has |A| = 6 arms and each episode has horizon H = 10. The prior
is N (ν⋆,Ψ⋆) where ν⋆ = [0.5, 0, 0, 0.1, 0, 0] and Ψ⋆ has block structure so that arms 1, 2, 3 are

7This estimator can be generalized to explore for more of the episode and use more of the observed rewards.
8The following optimizes Lemma 5 of [KKZ+21] over its free parameter δ > 0 for ϵ̃ small.
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Figure 2: Synthetic experiments with discrete MAB for |A| = 20 and H = 10. Left: visualization
of the instance showing the reward for each of the arms in each of the 16 possible tasks along
with the prior distribution over tasks (probabilities rounded, actual values are 9/40 and 1/120).
Top right: learning curves for 6 algorithms (100 replicates, error bands at 2 standard errors, we
tune the number of exploration rounds and plot upper envelopes for meta-learners). Bottom right:
empirical distribution of the first arm pulled in each episode by each algorithm. Note that the color
scale is non-linear.

highly correlated, and analogously for arms 4, 5, 6. The rewards are Gaussian with variance 1, which
is known to all learners.

We run four algorithms. Two are non-meta-learning Thompson sampling algorithms: OracleTS,
which uses the correct prior, and MisTS, which uses the misspecified prior N (0, I). We also run
MetaTS:no-cov which only attempts to meta-learn the prior mean µ0 and assumes that the prior co-
variance matrix is the identity (this algorithm is essentially the one studied in [KKZ+21]). Finally, our
algorithm is MetaTS:full which meta-learns both the prior mean and covariance. Both meta-learners
are run in an explore-then-commit fashion where the first T0 episodes are used for exploration.9

In Figure 1, we plot the cumulative average per-episode reward for each algorithm, where for the meta-
learners we sweep over many choices of T0 and display the pointwise best (i.e., the upper envelope).
The experiment clearly shows the value of meta-learning as both MetaTS:no-cov and MetaTS:full
quickly outperform misspecified TS. Additionally, we also see the importance of learning the covari-
ance matrix, even though it can require many samples. Indeed, the final performance of MetaTS:full
with T0 = 5K, ignoring the regret incurred due to exploration, is competitive with OracleTS, while
MetaTS:no-cov asymptotes to a much lower performance (see Figure 3 in Appendix A).

Gaussian linear contextual bandits. Our second experiment concerns Gaussian linear contextual
bandits. Here we run OracleTS, MisTS, and MetaTS:full, on a synthetic linear contextual bandit
problem where there are |A| = 6 actions each with a d = 6 dimensional action feature (generated
stochastically at each time step), and with horizon H = 20. The prior is over the linear parameter
µ that determines the reward for action-feature xa ∈ Rd as r(a) ∼ N (⟨µ,xa⟩, 1). We set the prior
as N (1,Ψ⋆) where Ψ⋆ is a scaled-down version of the block diagonal matrix used in the previous
experiment. In the right panel of Figure 1 we again see that by meta-learning the prior, we quickly
outperform the misspecified approach and asymptotically achieve the oracle performance. This
demonstrates that Bayesian meta-learning is quite broadly applicable and highlights the importance
of our general theoretical development.

Discrete bandits. Finally, we study a synthetic MAB setting with |A| = 20 arms and a prior sup-
ported on a finite set of 16 reward distributions (tasks), under each of which rewards are deterministic.
The instance is visualized in the left panel of Figure 2. It is constructed so that each task has a unique
optimal arm and there are four arms that can quickly identify which task the agent is in (arms A1, A6,

9For MetaTS:no-cov, we follow [KKZ+21] and only use the first step of each exploration episode for
exploration, switching to TS with the current prior estimate for the rest of the episode. On the other hand,
MetaTS:full explores for all time steps in the first T0 episodes.
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A11, A16), so that it can infer the optimal arm. Additionally, the prior is concentrated on the first
four tasks, so that pulling the first identifying arm almost always reveals the current task.

We evaluate 6 algorithms: Oracle, Misspecified, and Meta-learning each with TS and Monte-Carlo
Knowledge Gradient (an instantiation of the 2-RHC(θ) algorithm detailed in Appendix C) as the
base learners, and we visualize the results in the top right panel of Figure 2. Perhaps more revealing
is the bottom right panel of Figure 2, where we visualize the empirical distribution over the first arm
pull in each episode for each algorithm. We see that OracleTS typically plays uniformly over arms
A2–A5 in the first round as these are highly likely to be the optimal arm under the prior, while MisTS
plays uniformly over the 16 plausibly optimal arms. MetaTS quickly learns to play uniformly over
arms A2–A5 and is asymptotically competitive with OracleTS.

The interesting property of this instance is that playing the identifying arms is crucial for optimal
behavior. However, since TS is myopic and these arms never produce large rewards, TS will never
play them. Thus, to achieve optimal behavior, we must use a less myopic base learner like Knowledge
Gradient. As can be seen, both OracleKG and MisKG first play the identifying arms, where the oracle
almost always pulls the first one while MisKG plays them uniformly. The performance of OracleKG
is much better than all TS configurations. Finally, the meta-learning configuration of Knowledge
Gradient quickly learns to pull the first identifying arm and competes with OracleKG.

6 Discussion

In our simulations, we demonstrated the superiority of more expressive prior families (e.g., modeling
means and covariances) and non-myopic base algorithms (e.g., Knowledge Gradient) over less
expressive priors (e.g., product measures) and greedy base learners (e.g., Thompson sampling).
Notably, the generality and flexibility of our theoretical contributions ensure robustness to prior
misspecification even for these richer priors and sophisticated base learners.

Still, theory and experiments alike point to a tradeoff: despite the potential for improved performance,
richer prior families are harder to learn, and some base learners (e.g., n-Monte Carlo algorithms
for large n) can be more sensitive to incorrect priors. It is an exciting direction for future work to
investigate the joint problems of model selection (over priors) and algorithm selection (over base
learners) in order to optimally navigate these tradeoffs. Perhaps model and algorithm selection
can be coupled so that certain base learners exhibit improved performance, or greater robustness,
over certain classes of priors. We would like to further understand how these tradeoffs interface
with computational burdens of using certain priors and base learners, and whether our sensitivity
analysis extends to computationally efficient approximations of sampling-based decision-making
algorithms (e.g., via Laplace approximations, MCMC, Gibbs Sampling, and Variational Methods;
the long-horizon performance of Thompson sampling under approximate inference has already been
studied [PAYD19]). Finally, we hold hope that a more instance-dependent analysis may improve our
sensitivity bounds for certain families of priors, which may in turn inform more clever exploration
strategies that circumvent worst-case tradeoffs.
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