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ABSTRACT

Graph Neural Networks are popular tools in graph representation learning that cap-
ture the graph structural properties. However, most GNNs employ single-resolution
graph feature extraction, thereby failing to capture micro-level local patterns (high
resolution) and macro-level graph cluster and community patterns (low resolution)
simultaneously. Many multiresolution methods have been developed to capture
graph patterns at multiple scales, but most of them depend on predefined and hand-
crafted multiresolution transforms that remain fixed throughout the training process
once formulated. Due to variations in graph instances and distributions, fixed
handcrafted transforms can not effectively tailor multiresolution representations to
each graph instance. To acquire multiresolution representation suited to different
graph instances and distributions, we introduce the Multiresolution Meta-Framelet-
based Graph Convolutional Network (MM-FGCN), facilitating comprehensive
and adaptive multiresolution analysis across diverse graphs. Extensive experiments
demonstrate that our MM-FGCN achieves SOTA performance on various graph
learning tasks. The code is available on GitHub1.

1 INTRODUCTION

The ubiquity of graph-structured data (Zhou et al., 2020; Wu et al., 2020; Sanchez-Gonzalez et al.,
2018; Fout et al., 2017; Hamaguchi et al., 2017) in today’s interconnected society has sparked
immense interest in the machine learning community for processing and analysis of such data, which
leverages mathematical representations like graphs to capture interdependencies between data entities.
Graph neural network (GNN) has found widespread adoption due to ease of implementation and
quality of prediction. Recent research (Balcilar et al., 2021; Geng et al., 2023) underscores that most
GNN models, including GCN (Kipf & Welling, 2017), GAT (Thekumparampil et al., 2018), and
GraphSage (Hamilton et al., 2017b), fundamentally operate as low-pass filters in the context of graph
signal processing (Chang et al., 2021). They generate smooth node embeddings using low-resolution
features, where neighboring graph nodes share similar graph features, and a local feature aggregation
leads to informative representations.

However, capturing solely low-resolution information is insufficient for achieving a comprehensive
graph representation. Low-resolution information represents graph signals that vary smoothly over
the graph and are associated with low-frequency graph signals, whereas high-resolution information
encompasses local disruption and detailed patterns that are associated with high-frequency graph
signals. Thus, it is also crucial to capture the fine-grained graph details at high-resolution levels. For
instance, GNNs may fail on disassortative graphs (Liu et al., 2022a; Pei et al., 2020; Suresh et al.,
2021), where locally connected nodes often exhibit different features and labels. This heterogeneity
emphasizes the necessity of using the high-pass graph filters to capture the disruptive local patterns
(Liu et al., 2022a; Pei et al., 2020). In another example, for social network data, high- and low-
frequency components represent micro and macro-level dynamics respectively. While the micro-
level highlights individual interactions, revealing personal influences, the macro-level captures
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(a) Filter Banks of Conventional
 Graph Wavelet Transforms (b) Our Proposed MM-FGCN with Multiresolution

(High resolution) (Low resolution)(Mid resolution)

Figure 1: Comparison of the filter banks of the conventional graph wavelet transforms with our proposed
MM-FGCN with learnable multiresolution filter banks. We plot three levels of resolutions and each resolution
level contains one low-pass filter and two high-pass filters.

communities, clusters, and motifs, shedding light on broader social relations and group behaviors.
Therefore, a GNN that relies solely on features from one or a few resolution levels fails to capture a
comprehensive graph representation, necessitating the use of multiresolution graph analysis.

Recent advancements in multiresolution graph representation learning fall into two main categories,
i.e. the 1) graph-structure-based approach (González & Ortega, 2019; Bacciu et al., 2023; Geng et al.,
2023; Xu et al., 2019c), which usually adopts down-sampling methods to partition the graph into
multiple resolutions, or adopt specially designed GNN such as Graph-U-Net (Gao & Ji, 2019) to
capture the graph features at different resolutions. 2) Graph-spectral-based approach, where some of
the methods under this category adopt low-pass and high-pass spectral filters (Zhu et al., 2021; Chien
et al., 2020). Other methods adopt wavelet transforms (Zheng et al., 2021b;a) to project graph signals
to graph signal subspaces of different resolution levels. The wavelet frame transform provides an
efficient way to obtain representations based on features of various scales.

Most current multiresolution methods rely on either heuristic, inflexible spatial down- and up-
sampling strategies, or fixed, manually crafted spectral filters. For instance, the MR-GNN model (Xu
et al., 2019c) employs multi-hop convolution layers with receptive fields of a fixed size. UFGConv
(Zheng et al., 2021a) and WFTG (Dong, 2017b) leverage deliberately designed graph framelet
transform to discern graph signals across various resolutions. Furthermore, PyGNN (Geng et al.,
2023) utilizes a manually devised downsampling technique to categorize graph signals into dif-
ferent frequency levels. However, the reliance of these methods on fixed multiresolution analysis
strategies imposes significant limitations on obtaining high-performing representations. In practice,
various graph instances and distributions may manifest distinct scales and resolution factors, with
their discriminative information residing at different resolution levels. Additionally, designing an
appropriate multiresolution transform demands a deep understanding of the dataset-specific inductive
bias, making it hard to generalize to other domains. Thus, employing fixed multiresolution analysis
strategies fails to customize an appropriate multiresolution transform for individual graph instances.

To address this limitation, it is crucial to learn an adaptive multiresolution representation that can be
automatically tailored to diverse graph instances and distributions. This motivates us to establish a
meta-learner to generate the customized feature transform and multiresolution analysis strategy for
each individual graph instance. In this paper, we introduce the Multiresolution Meta-Framelet-based
Graph Convolution Network (MM-FGCN), a spectral-based method designed to learn adaptive
multiresolution representations for different graph instances. For each input graph instance, the MM-
FGCN first generates the meta-framelet generator, which consists of a set of customized band-pass
filters in the frequency domain. The meta-framlet generator in turn induces a set of framelet-based
multiresolution bases. Then, the input graph feature is decomposed into multiresolution components
through projections onto each multiresolution basis. Finally, these multiresolution components are
manipulated and passed to successive layers for downstream feature processing. As visualized in
Figure 1, our MM-FGCN creates an adaptive multiresolution transform for each graph instance
by learning a customized stratified multiresolution frequency partition in the frequency domain.
In contrast, traditional filter-based and wavelet-based methods are confined to employing a fixed
multiresolution analysis strategy across the entire graph dataset.

Contributions. In this paper, we propose a novel MM-FGCN for adaptive multiresolution represen-
tation learning. The contribution of this paper is three-fold.
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• We introduce Multiresolution Meta-Framelet System (MMFS) (Section 4.1), a set of learn-
able multiresolution bases that can be simply constructed based on a set of meta-band-pass
filters (Section 4.2).

• We show that MMFS induces a series of progressive resolution graph signal spaces that
inherently possess denseness, tightness, and dilation and translation properties (Section 4.1).
Thus, the multiresolution decomposition and reconstruction for any graph signal can be
achieved by projections onto each basis in MMFS.

• Based on the MMFS-based multiresolution transform, we propose the Multiresolution
Meta-Framelet-based Graph Convolutional Network (MM-FGCN) (Section 4.3) for adap-
tive multiresolution graph signal processing. Extensive experiments show that our model
achieves state-of-the-art performance compared to other baseline methods.

2 RELATED WORK

Multi-resolution Graph Representation Learning. Graph representation learning with multi-
resolution techniques aims to provide multi-scale views of the graph data to better understand the
local/detailed and global/overall information. Conventional methods adopt the techniques from
computer visions, constructing different views based on the graph structure. González & Ortega
(2019) adopt the downsampling method to retrieve the graph at different resolutions and perform
graph matching. MR-GNN (Xu et al., 2019c) adopt several weighted graph convolution layers to
learn graph representations at different granularities. Geng et al. (2023) propose the Pyramid Graph
Neural Network which converts graphs with multi-scale downsampling. Another stream of graph
multiresolution analysis focuses on designing graph spectral filters Dong (2017b); Mallat (1989)
to decompose graph signals into multiple resolutions. Zheng et al. (2021a) introduce a tight graph
framelet system with multiresolution, to deliberately process graph signals at different scales. FAGCN
(Bo et al., 2021) enhances graph convolution with frequency adaptation that integrates different
frequencies via an attention mechanism, and GPR-GNN (Chien et al., 2020) iteratively combines
multiple frequencies with generalized pagerank. However, the capability of the aforementioned
model is limited by the fixed spectral filter.

3 PRELIMINARY

We focus on undirected graphs represented asG = (X,A) with n nodes. Here, X ∈ Rn×d represents
node features, and A ∈ Rn×n is the adjacency matrix, where A[i, j] > 0 if an edge exists between
node i and j, and A[i, j] = 0 otherwise. The Laplacian matrix of the graph is defined as L = D−A,
where D = diag(A1n) is the diagonal degree matrix with D[i, i] =

∑n
i=1 A[i, j], and 1n is an

all-one vector of size n. Without specification, ⟨·, ·⟩ denotes the inner product, [n] denotes {1, ..., n}.

Graph Representation Learning. For any graph data G sampled from the graph domain G, graph
representation learning aims to learn a graph representation fθ(·) : G 7→ Rn×h, with which we can
embed each node of G into a h-dimensional compact vector, facilitating downstream tasks such
as node classification and graph classification. A desirable graph representation should be able to
capture the essential graph structural properties.

Spectral Graph Signal Processing. A graph signal x(·) generally refers to a G 7→ R mapping.
As x(·) assigns a value to each of the n nodes, it is represented by a vector x ∈ Rn, where x[i]
corresponds to the graph signal value assigned to the i-th node of G. In spectral graph signal
processing (Kipf & Welling, 2017; Shuman et al., 2013), the graph Laplacian L plays a crucial role
in graph modeling and analysis, and it is tightly related to graph structural properties, including
clusterability (Chiplunkar et al., 2018), connectivity (Fiedler, 1989), node distance, etc. In fact, L
serves as a graph shift operator which enables us to transform a graph signal into the frequency domain
and manipulate its frequency components. Suppose the eigendecomposition of the graph Laplacian
is L = UΛU⊤, the graph spectrum refers to the diagonal eigenvalue matrix Λ = diag(λ1, ..., λn),
and the spectral bases is the collection of eigenvectors U = (u1, ...,un). Thus, a graph signal x can
be transformed into the frequency domain via graph Fourier transform x̂ = (⟨u1,x⟩, ..., ⟨un,x⟩)⊤ =
U⊤x, and it can be reconstructed from its frequency components x̂ via the inverse graph Fourier
transform x =

∑
i⟨ui,x⟩ ui = Ux̂. Furthermore, one can apply a smooth filter gθ to manipulate
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frequency components of x by the spectral convolution (Kipf & Welling, 2017)
gθ(L) ∗ x ≜ Ugθ(Λ)U⊤x.

In machine learning practice, applying spectral convolution to the graph feature X (which can be
viewed as a d-dimensional graph signal) provides us with informative graph representation. Different
implementations of filter gθ lead to desirable graph representations for different purposes, such as
classification, denoising, smoothing, and abnormally detection (Xu et al., 2019a; Gasteiger et al.,
2019; Li et al., 2021a; Tang et al., 2022).

Spectral Graph Multiresolution Analysis. Classic multiresolution analysis (Mallat, 1989; Cohen
et al., 1993) aims to decompose a signal into multiple components of varying resolutions, which
can then be processed individually to provide a comprehensive representation of the signal. Let
L2(R) be the measurable, square-integrable one-dimensional functions, where the inner product
of x, z ∈ L2(R) is ⟨x, z⟩ =

∫
x(t)z(t)dt. Given a resolution factor γ > 1, the multiresolution

decomposition for signals in L2(R) is determined by a series of progressive resolution function
spaces {Vr}r, where each Vr is a subspace of L2(R), and Vr ⊂ Vr′ if r < r′. The {Vr}r is expected
to satisfy the denseness, dilation property, and translation property (Mallat, 2006), ensuring that Vr
collects the γr-resolution signals, and the multiresolution decomposition of any given signal x can be
achieved by projecting it into each subspace Vr.

• Denseness: {Vr}r contains sufficient information to represent and reconstruct any signal,
that is, the union of {Vr}r is dense in L2(R), and the intersection of {Vr}r is {0}.

• Dilation property: signals in Vr can be derived from signals in Vr+1 by scaling them using
a resolution factor of γ, that is, ψ(t) ∈ Vr ⇐⇒ Dγψ(t) = ψ(γt) ∈ Vr+1, where Dγ is
the dilation operator.

• Translation property: when a signal x is translated for s in the spatial domain, its γr-
resolution component translates for the same amount in the frequency domain, that is,
Pr(Tsx) = TsPr(x), where Pr : L2(R) 7→ Vr is the projection to Vr, and Tsx(·) = x(s−·)
is the translation operator.

The goal of multiresolution analysis is to determine a set of bases {ψri}i that spans the desirable Vr,
satisfying the denseness, dilation, and translation properties. Moreover, the γr-resolution component
of a signal x should be derivable from its projection onto each basis, i.e. Pr(x) =

∑
i⟨ψri, x⟩ ψri.

Thus, the multiresolution decomposition of x can be achieved by x =
∑

r Pr(x) =
∑

r,i⟨ψri, x⟩ ψri.
For instance, a proper choice of Vr is the collection of piecewise constant functions over [−γr, γr],
and ψri can be set as the associated Haar-like wavelets (Dong, 2017b).

For multiresolution graph analysis, one needs to extend the dilation and translation properties to the
graph signal domain (where each graph signal is represented by a vector in Rn) and determine the
multiresolution graph bases {φri}r,i ⊂ Rn. To this end, one needs to define the spatial dilation and
translation operators for graph signals by generalizing the scalar multiplication and node subtraction
to the graph domain. According to the harmonic analysis theory (Stein, 1993; Gavish et al., 2010),
the graph dilation and translation operators can be defined based on the graph Fourier transform.
Consider a graph signal φ ∈ Rn generated by a one-dimensional filter g, i.e. φ =

∑
k g(λk) uk, the

γ-dilation and v-translation of φ are defined as

Dγφ =
∑
k

g(γλk) uk, ∀γ > 0, and Tvφ =
∑
k

g(λk)uk[v] uk, ∀v ∈ G,

respectively. Therefore, finding the desirable multiresolution bases is equivalent to identifying a set
of filters {gri}r,i such that the bases {φriv}r,i,v generated by φriv =

∑
k gri(λk)uk[v] uk satisfies

the aforementioned conditions.

Finally, a desirable set {φriv}r,i,v must exhibit tightness. The set of bases is called tight if and only
if ∥x∥2 =

∑
r,i,v |⟨φriv,x⟩|2 holds for arbitrary x. Intuitively, tightness ensures that the projection

operator onto these bases preserves the overall energy (norm) of the original graph signal. It’s worth
noting that this property, while essential, is less restrictive than orthogonality. As guaranteed by the
polarization identity, it enables multiresolution decomposition via x =

∑
r,i,v⟨φriv,x⟩ φriv .

This decomposition can be equivalently expressed as x =
∑

r,i,v φrivφ
⊤
riv x = ΦΦ⊤x, where Φ is

an n-by-N multiresolution transform matrix, with each column representing a basis φriv, and N is
the total number of bases. As the multiresolution transform matrix is defined by concatenating the
multiresolution bases, we will use these two terms interchangeably throughout the rest of the paper.
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4 METHODOLOGY

We propose the Multiresolution Meta-Framelet-based Graph Convolution Network (MM-FGCN),
designed for adaptive multiresolution representation learning for varying graph instances. In Section
4.1 and Section 4.2, we construct a set of learnable multiresolution bases, termed Multiresolution
Meta-Framelet System (MMFS). Our MMFS inherently possesses tightness and spans progressive
multiresolution graph signal subspaces that satisfy denseness, dilation, and translation properties. For
each graph, MM-FGCN first calculates the adaptive MMFS and the associated multiresolution trans-
form matrix. This matrix enables us to decompose and manipulate the multiresolution components of
the graph feature, yielding comprehensive graph representations (Section 4.3).

4.1 MULTIRESOLUTION META-FRAMELET SYSTEM

As mentioned in Section 1, learning the adaptive multiresolution bases is essential for obtaining
a comprehensive graph representation. Suppose N is the total number of multiresolution bases, a
straightforward approach is to learn the multiresolution transform matrix via a neural network Mξ :
G 7→ Rn×N parameterized by ξ, such that Φ = Mξ(X,A). However, without additional constraints,
this directly learned Φ may fail to meet the tightness property ΦΦ⊤ = I, making the multiresolution
decomposition infeasible. Even if we impose constraints on Φ to ensure tightness, denseness,
translation, and dilation properties, the constrained optimization process becomes challenging to
solve due to numerical instability. Additionally, learning a dense n×N matrix requires an excessive
amount of parameters, leading to a significant computational overhead.

To address these limitations, we construct a set of learnable multiresolution bases with much fewer
parameters, called the Multiresolution Meta-Framelet System (MMFS). MMFS consists of a set of
learnable graph framelets, each generated by a spectral meta-filter. Individually, these meta-filters
are distinguished by their trainable bandwidth parameters and specific resolution levels, all while
sharing a common trainable resolution factor. The following arguments show that our MMFS is
born to be tight, and it spans progressive multiresolution spaces that possess denseness, dilation,
and translation properties. Hence, multiresolution decomposition can be achieved by using the
MMFS-based multiresolution transform.

Definition 1 (Multiresolution Meta-Framelet System). Given the number of resolution levels R > 0,
for the each resolution level r ∈ [R], we define I spectral meta-filters

{
gωr,1, ..., g

ω
r,I

}
. These

meta-filters are mappings from the interval [0, 1] to itself, and they are parameterized by a vector
ω ∈ Ω. The collection of the R× I meta-filters is called the meta-framelet generator. We define the
meta-framelet learner as Mξ(·) : G 7→ Ω × R+, a neural network that maps any graph instance
G = (X,A) to a specific meta-framelet generator ω and a resolution factor γ. The Multiresolution
Meta-Framelet System (MMFS) is defined as a set of graph signals {φriv}, where

φriv =

n∑
k=1

gωr,i
(
γ−J+r · λk

)
uk[v] uk, (1)

where (ω, γ) = Mξ(X,A), λk and uk is the k-th eigenvalue and eigenvector of the graph Laplacian
L, and J is the smallest value such that γ−J+Rλmax(L) ⩽ 1. The MMFS-based multiresolution
transform matrix is defined as the concatenation of {φriv}, that is

ΦMM ≜
(
U gω1,1(γ

−J+1Λ)U⊤, · · · ,U gωR,I(γ
−J+RΛ)U⊤) . (2)

Definition 1 illustrates the construction of MMFS based on the meta-framelet generator. Here, φriv

represents the basis comprising a r-resolution dilation and translation w.r.t the v-th node. At the
r-resolution level, the meta-filter gωr,i filtrates the information localized around the v-th node. Notably,
equation 2 enables the efficient computation of ΦMM. This can be achieved by circumventing the need
for eigen-decomposition of L through the application of Chebyshev approximation (Defferrard et al.,
2016b) to gωr,i(γ

−J+rL). The subsequent proposition offers a construction for the meta-framelet
generator, ensuring that the MMFS meets the criteria of tightness, denseness, translation, and dilation.
The proof is available in Appendix D.

Proposition 2 (MMFS-based Multiresolution Decomposition). Following the notations in Definition
1, suppose the meta-framelet generator satisfies
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• gω1,1(λ)
2
+ · · ·+ gω1,I(λ)

2
= 1, ∀ λ ∈ [0, 1].

• gωr,i(γ
−J+rλ) = gω1,i(γ

−J+rλ) gω1,1(γ
−J+r−1λ) · · · gω1,1(γ−J+1λ), ∀r > 1, i ∈ [I],

then following the construction in Definition 1, the MMFS induced by {φriv} forms a tight bases
system. Here, the indices (r, i, v) are iterated over v ∈ [n], with (r, i) drawn from the set ([R] ×
[I])\(r, 1) : 1 ⩽ r < R. For any graph signal x ∈ Rn, the multiresolution transform matrix is
ΦMM ∈ Rn×(R(I−1)n), the multiresolution decomposition is achieved by

x =
∑
r,i,v

⟨φriv,x⟩ φriv = ΦMMΦ⊤
MM x,

where x 7→ Φ⊤
MMx is the multiresolution transform. Moreover, let Vr = span({φriv}i,v), the

resulting subspaces {Vr}r turn out to be a series of progressive resolution space that possess
denseness, dilation, and translation properties.

Proposition 2 shows that, once the meta-filters of the 1-resolution level are determined, a desirable
MMFS can be constructed in a stratified and iterative manner. As visualized in Figure 1, the r-
resolution level meta-filters {gωr,1, ..., gωr,I} induce a unitary partition within the support of gωr+1,1,
which is the low-pass filter of the (r + 1)-resolution level.

4.2 META-FRAMELET GENERATOR

To implement MMFS-based transform, the remaining step is to design the formulation of the
meta-framelet generator

{
gω1,1, ..., g

ω
1,I

}
such that

∑
i g

ω
1,i

2 ≡ 1. This inspires us to simply set{
gω1,1, ..., g

ω
1,I

}
as I band-pass filters to partition the [0, 1] interval into I regions. In this paper, we

instantiate each gω1,i as a meta-band-pass filter based on polynomial splines in Han et al. (2016), i.e.

gω1,i(λ) ≜


0, λ ∈ [0, ci−1 − εi−1] ∪ [ci + εi, 1],

sin(
π(λ−ci−1+εi−1)

4εi−1
), λ ∈ (ci−1 − εi−1, ci−1 + εi−1),

1, λ ∈ [ci−1 + εi−1, ci − εi],

cos(π(λ−ci+εi)
4εi

), λ ∈ (ci − εi, ci + εi),

(3)

where {c1, ε1, ..., cI−1, εI−1} are parameters encoded in ω. Specifically, for any ω ∈ Ω ⊂ R2(I−1),
we define

ci ≜
1

∥ω∥2
∑
j⩽i

ω[j]2, εi ≜ αmin{ci − ci−1, ci+1 − ci}, (4)

where α ∈ (0, 1/2) is a predefined hyperparameter and it holds that 0 = c0 ⩽ c1 ⩽ · · · ⩽ cI−1 ⩽
cI = 1. Notably, the parameterization of the meta-framelet generator uses only 2(I − 1) parameters,
significantly reducing the budget compared to the dense n-by-(R × (I − 1) × n) multiresolution
transform matrices. Intuitively, the meta-filters adaptively decompose graph features into spectral
channels and process frequency components at various resolution levels, leading to a flexible and
comprehensive graph representation.

4.3 MULTIRESOLUTION META-FRAMELET-BASED GRAPH CONVOLUTION NETWORK

Leveraging the efficient construction and computation of MMFS-based multiresolution transform
matrix ΦMM in Proposition 2, we can now establish the Multiresolution Meta-Framelet-based Graph
Convolution (MM-FGConv) and its associated graph pooling counterpart (MM-FGPool). These
operators serve as meta-analogs to the conventional graph convolution and graph pooling methods
(Defferrard et al., 2016b). The MM-FGPool operator is simply defined as MMFGPoolξ(H;X,A) ≜
1⊤Φ⊤

MMH, where the meta-framelet coefficients are aggregated and concatenated as the output of
the readout of the final classifier. The computation of MM-FGConv is illustrated in Figure 2 and its
details are presented in Algorithm 1.

An L-layer MMFS-based Graph Convolutional Network (MM-FGCN) is defined by
MMFGCNθ,w;ξ(A,X) ≜ h ◦MMFGPoolξ (HLWL;A,X) , (5)

Hl ≜ σ
(
MMFGConvΘl−1,ξ(Hl−1;A,X)Wl−1

)
, ∀ l ∈ [L], (6)

θ ≜ vec
(
{Θl}l∈[L]

)
, w ≜ vec

(
{Wl}l∈[L]

)
, (7)
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Figure 2: the computation of MM-FGConv operator with a meta-framelet learnerMξ and learnable filter Θ.

Algorithm 1 MM-FGConv

1: Input: graph data G = (X,A), graph Laplacian
L, the meta-framelet generators {gωr,i}, a meta-
neural networkMξ, a learnable diagonal matrix
Θ, the T -order Chebyshev polynomial approxima-
tion ChebyshevT (·).

2: Output: X̃, the output processed graph signal.
3: J ← ⌈logγ(λmax(L)) +R⌉
4: (ω, γ)←Mξ(X,A)
5: g̃ωr,i ← ChebyshevT (g

ω
r,i), for r ∈ [R], i ∈ [I]

6: ΦMM ←
(
g̃ω1,1(γ

−J+1L), ..., g̃ωR,I(γ
−J+RL)

)
7: X̃← ΦMMΘΦ⊤

MM X

8: return X̃

Algorithm 2 Meta-training MM-FGCN
1: Input: graph dataset S, MM-FGCN parameters

(θ,w; ξ), the empirical lossL(·, ·). Learning rates
β1, β2 > 0.

2: Output: optimized MM-FGCN (θ∗,w∗; ξ∗)
3: Split dataset Smeta, Smain ← S
4: for t in [T ] do
5: B ← MiniBatch(Smeta)
6: ξ′ ← ξ − β1∇ξLB(θ,w; ξ)
7: B′ ← MiniBatch(Smain)
8: (θ,w; ξ)← (θ,w; ξ)− β2∇LB′(θ,w; ξ′)
9: end for

10: (θ∗,w∗; ξ∗)← (θ,w; ξ)
11: return (θ∗,w∗; ξ∗)

Figure 3: Left: the computation of MMFS-based multiresolution graph convolution operator. Right: implemen-
tation of MM-FGCN meta-training algorithm.

where MetaFGConvΘ,ξ(·) is the meta-framelet-based graph convolutional operator as defined in
Algorithm 1, h is a fixed classifier (e.g. softmax), Wl ∈ Rdl−1 ×dl are learnable weight matrices,
and σ(·) is the activation function. We define (θ,w) as the base-parameters, and define ξ as the
meta-parameters. By design, the MM-FGCN is permutational invariant (Maron et al., 2019), and is
equipped with a learnable multiresolution transform that adapts to each graph instance.

Following the optimization paradigm introduced in MAML (Finn et al., 2017; Hospedales et al.,
2022), we employ meta-learning to train the MM-FGCN model. We aim to acquire a multiresolu-
tion transformation that enables the MM-FGCN backbone to adaptively and effectively represent
individual graph instances. Specifically, our objective is

min
θ

LS(θ, ξ
∗(θ)), s.t. ξ∗(θ) = argmin

ξ
L(θ, ξ), (8)

LS(θ, ξ) =
1

|S|
∑

(G,y)∈S

L(MMFGCNθ,w;ξ(G), y), (9)

where L(·, ·) is a loss function, e.g. the cross entropy. As outlined in Algorithm 2, we partition
the training data into two sets: a meta-training set and a standard training set. In each iteration, we
initiate an update to the meta-parameter ξ, denoted as ξ′, through gradient descent computed on a
batch of meta-training data. Subsequently, we proceed to update all parameters (θ,w, ξ) using the
full gradient evaluation at (θ,w, ξ′) based on the standard training data.

5 EXPERIMENTS

5.1 NODE CLASSIFICATION

Datasets. We conduct experiments on both assortative and disassortative graph datasets. A dataset
is called assortative if its neighboring nodes usually have similar labels and features (Ma et al.,
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Table 1: Test accuracy (in percentage) for citation networks with standard deviation after ±. The results with the
best performance are highlighted with *.

Method Assortative Disassortative

Cora Citeseer Pubmed Cornell Texas Wisconsin Chameleon Squirrel

MLP 55.1± 1.1 46.5± 1.3 71.4± 0.7 81.6± 6.3 81.3± 7.1 84.9± 5.3 48.5± 3.0 31.5± 1.4
SPECTRAL (Bruna et al., 2014) 73.3± 1.4 58.9± 0.8 73.9± 0.6 52.1± 7.2 57.5± 7.5 56.7± 5.1 62.4± 2.4 53.8± 2.2
CHEBYSHEV (Defferrard et al., 2016a) 81.2± 1.2 69.8± 0.9 74.4± 0.6 53.1± 7.8 59.1± 7.2 55.3± 5.3 60.2± 2.9 55.4± 2.5
GWNN (Xu et al., 2019b) 82.8± 0.9 71.7± 1.1 79.1± 0.8 56.8± 7.6 63.1± 6.9 61.2± 4.9 63.7± 2.8 55.4± 2.3
MPNN Gilmer et al. (2017) 78.0± 1.1 64.0± 1.9 75.6± 1.0 52.3± 7.0 58.2± 5.4 56.4± 5.1 60.8± 2.7 53.1± 2.3
GRAPHSAGE Hamilton et al. (2017a) 74.5± 0.8 67.2± 1.0 76.8± 0.6 54.2± 7.8 60.5± 7.2 58.7± 5.3 62.4± 2.9 55.4± 2.5
LANCZOSNET Liao et al. (2019) 79.5± 1.8 66.2± 1.9 78.3± 0.3 53.1± 7.5 60.4± 7.2 57.1± 4.7 65.2± 2.5 54.1± 2.1
GCN Kipf & Welling (2016) 81.5± 1.2 70.3± 0.9 79.0± 0.4 54.2± 7.3 61.1± 7.0 59.6± 4.5 67.6± 2.4 54.9± 1.9
GAT (Veličković et al., 2018) 83.0± 0.7 72.5± 0.7 79.0± 0.3 56.3± 4.3 57.9± 6.1 57.8± 4.3 65.0± 3.7 51.3± 2.5
GIN+0 Xu et al. (2018) 81.7 ± 1.3 71.4 ± 0.8 79.2 ± 0.3 57.4 ± 7.8 61.4 ± 5.9 58.3 ± 7.2 62.7 ± 2.7 38.0 ± 1.8
GIN+ϵ Xu et al. (2018) 81.6 ± 1.4 71.5 ± 0.8 79.1 ± 0.4 59.2 ± 6.5 60.5 ± 6.2 61.1 ± 6.8 61.4 ± 2.2 37.2 ± 1.5
GraphGPS Rampášek et al. (2022) 83.1 ± 0.7 72.3 ± 0.8 79.5 ± 0.4 67.2 ± 7.7 79.5 ± 5.6 76.9 ± 4.9 68.2 ± 2.5 58.4 ± 1.6
NLMLP Liu et al. (2021a) 68.5± 1.9 61.2± 1.6 71.8± 0.9 84.9± 5.7 85.4± 3.8 87.3± 4.3 50.7± 2.2 33.7± 1.5
NLGCN Liu et al. (2021a) 79.4± 1.5 70.2± 1.4 77.9± 0.7 57.6± 5.5 65.5± 6.6 60.2± 5.3 70.1± 2.9 59.0± 1.2
NLGAT Liu et al. (2021a) 80.1± 1.3 71.2± 1.5 78.1± 0.7 54.7± 7.6 62.6± 7.1 56.9± 7.3 65.7± 1.4 56.8± 2.5
Geom-GCN-I Pei et al. (2020) 80.0± 1.2 71.3± 0.8 78.2± 0.5 56.7± 8.6 57.5± 5.8 58.2± 4.9 60.3± 2.7 33.3± 1.4
PyGNN Geng et al. (2023) 83.3± 0.9 72.9± 0.8 79.8± 0.4 75.3± 8.6 79.2± 4.6 76.9± 4.5 65.4± 2.5 59.3± 1.7
UFGCONV-S Zheng et al. (2021a) 83.0± 0.5 71.0± 0.6 79.4± 0.4 67.8± 8.0 75.9± 4.8 72.4± 4.2 62.8± 2.3 57.6± 1.5
UFGCONV-R Zheng et al. (2021a) 83.6± 0.6 72.7± 0.6 79.9± 0.1 68.9± 8.3 77.2± 4.7 73.5± 4.1 63.1± 2.4 57.2± 1.5

MM-FGCN (Ours) 84.4∗ ± 0.5 73.9∗ ± 0.6 80.7∗ ± 0.2 88.9∗ ± 8.3 86.1∗ ± 4.5 88.5∗ ± 4.1 73.97∗ ± 2.1 67.5∗ ± 1.2

Table 2: Performance comparison for graph property prediction. QM7 is a regression task in MSE; others are for
classification in test accuracy in percentage. The results with the best performance are highlighted with *.

Pooling Operators PROTEINS (↑) Mutagenicity (↑) D&D (↑) NCI1 (↑) Ogbg-molhiv (↑) QM7 (↓)

TOPKPool 73.48± 3.57 79.84± 2.46 74.87± 4.12 75.11± 3.45 78.14± 0.62 175.41± 3.16
AttentionPool 73.93± 5.37 80.25± 2.22 77.48± 2.65 74.04± 1.27 74.44± 2.12 177.99± 2.22
SAGPool 75.89± 2.91 79.86± 2.36 74.96± 3.60 76.30± 1.53 75.26± 2.29 41.93± 1.14
SUMPool 74.91± 4.08 80.69± 3.26 78.91± 3.37 76.96± 1.70 77.41± 1.16 42.09± 0.91
MAX 73.57± 3.94 78.83± 1.70 75.80± 4.11 75.96± 1.82 78.16± 1.33 177.48± 4.70
MEAN 73.13± 3.18 80.37± 2.44 76.89± 2.23 73.70± 2.55 78.21± 0.90 177.49± 4.69
UFGPool-SUM 77.77± 2.60 81.59± 1.40 80.92± 1.68 77.88± 1.24 78.80± 0.56 41.74± 0.84
UFGPool-SPECTRUM 77.23± 2.40 82.05± 1.28 79.83± 1.88 78.36± 0.77 78.36± 0.77 41.67± 0.95

MM-FGPool (Ours) 78.07∗ ± 2.36 83.91∗ ± 1.32 81.51∗ ± 1.55 78.57∗ ± 0.82 79.12∗ ± 0.85 41.19∗ ± 0.88

2022), as observed in citation networks and community networks. In contrast, disassortative datasets,
such as co-occurrence networks and webpage linking networks, consist of numerous nodes with
identical labels that are distant from one another. In this paper, we evaluate the performance of our
MM-FGCN on assortative datasets, including Cora, Citeseer, and Pubmed (Sen et al., 2008), as
well as disassortative datasets, including Cornell (Craven et al., 1998), Texas (Craven et al., 1998),
Wisconsin (Craven et al., 1998), Chameleon (Rozemberczki et al., 2021), and Squirrel (Rozemberczki
et al., 2021). For assortative datasets, following the configuration in (Kipf & Welling, 2016), we
allocate 20 nodes per class for training, 1,000 nodes for testing, and 500 for validation. As for
disassortative datasets, we divide each dataset into training, validation, and test sets using a split ratio
of 60%:20%:20%. All experimental results are averaged over 10 independent repetitions.

Baselines. We benchmark MM-FGCN against various competitive baselines on node classifica-
tion tasks, including MLP, CHEBYSHEV (Defferrard et al., 2016a), GCN (Kipf & Welling, 2016),
SPECTRAL CNN (Bruna et al., 2014), GWNN (Xu et al., 2019b), MPNN (Gilmer et al., 2017),
GRAPHSAGE (Hamilton et al., 2017a), LANCZOSNET (Liao et al., 2019), GAT (Veličković et al.,
2018), Non-Local GNN (Liu et al., 2021a), Geom-GCN (Pei et al., 2020), two variants of UFGConv
(Zheng et al., 2021a), i.e. UFGConvShrinkage and UFGConvRelu, and PyGNN (Geng et al., 2023).
We adhere to the original implementations of the baseline models as described in their respective
papers. As for MM-FGCN, the implementation details are elaborated in the Appendix A.

Results. As presented in Table 1, our proposed MM-FGCN model demonstrates state-of-the-art
performance compared to all baseline models on both assortative and disassortative datasets. For
disassortative datasets, compared to GCN, MM-FGCN achieves a significant performance gain of
34.7%, 25%, and 28.9% on the Cornel, Texas, and Wisconsin datasets, respectively. This evidence
highlights that in disassortative datasets, where the node homophily is diminished and conventional
models based on low-pass filters such as GCN struggle to capture effective graph representations.
In contrast, MM-FGCN demonstrates its capability of learning a multiresolution framelet transform
that dynamically adapts to the characteristics of each graph dataset. More experiments and results on
node classifications are elaborated in the Appendix B.
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Table 3: Ablation study on the meta-framelet learner and the meta-learning algorithm. Test accuracy (in
percentage) with standard deviation after ±. are reported.

Methods Graph Classification Node Classification

Mutagenicity D&D NCI1 Cora Citeseer Cornell Texas Chameleon Squirrel

(a) Haar-type 81.4± 1.4 80.9± 1.7 75.8± 1.3 83.3± 0.5 72.7± 0.7 77.8± 7.9 75.6± 9.8 54.6± 6.6 52.2± 2.1
(b) Linear-type 81.6± 1.4 80.6± 1.8 75.1± 1.1 83.0± 0.6 71.8± 0.9 76.1± 7.5 72.8± 9.5 54.3± 2.1 54.7± 1.7
(c) Quadratic-type 81.1± 1.3 80.3± 1.9 74.8± 1.4 82.7± 0.7 71.1± 0.7 76.7± 8.9 72.2± 9.4 57.5± 2.7 53.1± 1.8
(d) Trainable framelet transforms 82.3± 1.4 81.0± 1.7 75.9± 0.9 82.9± 0.5 72.2± 0.7 78.2± 8.5 77.9± 9.2 62.6± 2.6 59.2± 2.2
(e) MM-FGCN (Ours) 83.9∗ ± 1.3 81.5∗ ± 1.5 78.5∗ ± 0.8 84.4∗ ± 0.5 73.9∗ ± 0.6 88.9∗ ± 8.3 86.1∗ ± 4.5 73.9∗ ± 2.1 67.5∗ ± 1.2

5.2 GRAPH CLASSIFICATION

We assess the efficacy of MM-FGCN on 6 benchmark graph classification and regression datasets,
including D&D (Dobson & Doig, 2003), PROTEINS (Dobson & Doig, 2003), NCI1 (Wale et al.,
2008), Mutagenicity (Kazius et al., 2005), Ogbg-molhiv (Hu et al., 2020), and QM7 (Blum &
Reymond, 2009). Following the configuration of Zheng et al. (2021a), each dataset is split into
a training, validation, and test set by a ratio of 80%, 10%, and 10%. The results are averaged
over 10 independent repetitions. We also compare MM-FGPool with graph classification methods
based on the conventional GCN backbone together with various state-of-the-art pooling strategies,
including SUM, MEAN, MAX pooling, TOPKPool (Gao & Ji, 2019), AttentionPool (Li et al., 2016),
SAGPool (Lee et al., 2019), UFGPool-SUM, and UFGPool-SPECTRUM (Zheng et al., 2021a). The
implementation details can be found in Appendix A. The results are shown in Table 2, and our model
achieves the highest performance among all the baselines on the five datasets, demonstrating the
effectiveness of MM-FGPool in aggregating graph information on various datasets.

5.3 ABLATION STUDIES

To validate the benefits of using a meta-framelet learner, in Table 3, we show the MM-FGCN variants
with handcrafted filters (Dong, 2017b) (e.g. (a) Haar-type, (b) linear-type, (c) quadratic-type framelet
filters). To assess the performance improvement achieved by the meta-learning algorithm elaborated
in Algorithm 2, we compare it against a direct training scheme where both θ and ξ are updated
simultaneously, as shown in row (d) trainable framelet transforms of Table 3. According to the results,
models with trainable meta-framelet generators outperform those with fixed and handcrafted graph
transforms, highlighting the necessity of using trainable graph transforms for enhanced performance.
Furthermore, using a meta-framelet learner indeed brings performance gain compared to using
directly trainable filters, showing that the meta-framelet learner enhances the capacity of MM-FGCN.
We also show that meta-learning contributes to improvement in the generalization performance of
our MM-FGCN, leading to more discriminative graph representations. Extra ablation studies on the
hyperparameters of MM-FGCN and visualizations are detailed in Appendix B.

6 CONCLUSION

In this paper, we present MM-FGCN, a spectral-based model for adaptive multiresolution repre-
sentation learning for varying graph instances. Our MM-FGCN model is equipped with a set of
trainable multiresolution bases, which can be simply and efficiently constructed based on a set of
meta-band-pass filters. By optimizing the meta-filters, MM-FGCN learns an adaptive frequency parti-
tion of the graph spectrum domain, enabling us to perform a customized multiresolution transform
on each graph instance. Comprehensive experiments show that our proposed method exhibits high
performance and adaptivity to various types of graphs, including graph and node classification for
dissortative and assortative graphs from various domains.
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A EXPERIMENT DETAILS

A.1 DETAILS ON GRAPH DATASETS

We show the statistics of the datasets for node classification in Table 4. For each dataset, we list its
graph statistics, data split, and homophily score, which is computed as follows.

Homophily. We adopt the homophily indicator H(G) of the graph G from Liu et al. (2021b), which
can be calculated as:

H(G) = 1

|V |
∑
v∈V

| {u : u ∈ N (v) and y(u) = y(v)} |
|N (v)|

,

where | {u : u ∈ N (v) and y(u) = y(v)} | denotes the number of v′ s directly connected nodes
who have the same label as v and |N (v)| is the number of neighbouring nodes of v. Intuitively, high
H(G) indicates an assortative graph and vice versa.

Table 4: Statistics of the node-classification datasets used in our experiments. The homophily level of
the dataset can be used to distinguish assortative and disassortative graph datasets.

Datasets Cora Citeseer Pubmed Chameleon Squirrel Cornell Texas Wisconsin

Homophily 0.83 0.71 0.79 0.25 0.22 0.11 0.06 0.16
Splits 140/500/1, 000 120/500/1, 000 60/500/1, 000 60%/20%/20% 60%/20%/20% 60%/20%/20% 60%/20%/20% 60%/20%/20%
#Nodes 2, 708 3, 327 19, 717 2, 277 5, 201 183 183 251
#Edges 5, 429 4, 732 44, 338 36, 101 217, 073 295 309 499
#Features 1, 433 3, 703 500 2, 325 2, 089 1, 703 1, 703 1, 703
#Classes 7 6 3 5 5 5 5 5

For the graph classification task, we adopt Mutagenicity, D&D, NCI1, Ogbg-molhiv, and QM7
datasets. The D&D and PROTEINS datasets are used for protein structure classification, which
aims to categorize proteins into enzyme and non-enzyme structures. The NCI1 dataset is used for
identifying chemical compounds that inhibit lung cancer cells. The Mutagenicity dataset is used
for recognizing mutagenic molecular compounds that have the potential for drug development. The
QM7 dataset is used for predicting the atomization energy value of molecules. The Ogbg-Molhiv is a
molecular property prediction dataset for predicting whether a molecule inhibits HIV virus replication
or not. All the datasets contain more than 1,000 graphs with varying graph structures (in terms of the
average number of nodes and edges, the average degree of nodes) and node features. The statistics of
each dataset are displayed in Table 5.

Table 5: Summary of the datasets for the graph property prediction tasks.

Datasets PROTEINS Mutagenicity D&D NCI1 ogbg-molhiv QM7
# Graphs 1,113 4,337 1,178 4,110 41,127 7,165
Min # Nodes 4 4 30 3 2 4
Max # Nodes 620 417 5,748 111 222 23
Avg # Nodes 39 30 284 30 26 15
Avg # Edges 73 31 716 32 28 123
# Features 3 14 89 37 9 0
# Classes 2 2 2 2 2 1 (R)

A.2 IMPLEMENTATION DETAILS

Hyper-parameters

We implement our model using PyTorch. We set the default number of filters as four, which is
suitable for most of the datasets. The default Chebyshev approximation order is set to 6. The
dimension of hidden variables is searched from {16, 32, 64}, and the level of filters are selected from
{2, 3, 4, 5}. Other hyperparameters are set at: 0.001 for the learning rate, 0.001 for weight decay,
0.5 for dropout, and 2 for the number of MM-FGConv layers. These hyper-parameters are used
for both node and graph classification tasks. For the graph classification task, we further apply our
proposed MM-FGPool operation as elaborated in Section 4.3, followed by a linear classifier. For
baseline methods in node classification, we adopt the code from the author’s released implementation
with the default settings. For graph classification, we adopt the experiment setting form Zheng et al.
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(2021a), where we use two-layer GCN networks followed by the pooling methods listed in Table 2.
Specifically, this experiment setting is comparable to our model’s design, where we also adopt two
convolutional layers and one pooling layer.

Design of the neural network Mξ

In practice, the neural network Mξ is set to be a 2-layer standard GCN network that maps a graph
data (X,A) ∈ Rn×d × Rn×n into a 2(I − 1)-dimensional vector ω ∈ R2(I−1), i.e. the parameters
of the meta-filters {gωr,i}r,i.

Specifically, we set Mξ(X,A) = 1/n · 1⊤σ(L σ(LXW1)W2)W3, where W1 ∈ Rd×d/2,W2 ∈
Rd/2×d/2 and W3 ∈ Rd/2×2(I−1) are trainable weights, L is the normalized graph Laplacian matrix
computed from the adjacency matrix A, and σ(·) is the ReLU activation function. We denote the
collection of all the trainable weights as ξ = (W1,W2,W3).

After obtaining the 2(I − 1)-dimensional output ω ∈ R2(I−1) from Mξ, we use Equation (3)
and Equation (4) to determine the exact formulation of the meta-filters {gωr,i}r,i. To determine the
formulation of (r, i)-th meta-filter, we first decode its lower- and the upper-cutoff positions and
margins, i.e. ci, ci+1, ϵi, and ϵi+1, from ω using Equation (3). Then, the formulation of gω1,i (the
bandpass starting from ci + ϵi to ci+1 + ϵi+1) can be directly derived from Equation (4). Finally,
starting from gω1,i, we can determine gωr,i in an iterative manner, using the second condition in
Proposition 2. The visualization example of the meta-filters is shown in Figure 1 and Figure 2 of the
manuscript.

Split of Smeta and Smain

The Smeta and Smain are the data randomly split from the training data. In our experiment, we take
80% of the training data as the Smain and 20% as Smeta. In practice, our MM-FGCN shares the same
train and test dataset splitting scheme as other baseline methods. We first train the MM-FGCN by
meta-training (Algorithm 2) on the training data. Then, we fix the trained parameters θ, ξ, and we
evaluate the accuracy of the MM-FGCN on the testing dataset. The dataset splitting in line 3 of
Algorithm 2 is done randomly within the training data. Hence, in our experiments, the MM-FGCN is
evaluated under the same data resource as other baselines.

B EXTRA EXPERIMENTS

B.1 EXPERIMENTS ON RANDOM 60%/20%/20% SPLITS

The main results of the full sets of node classification experiments with statistics of datasets are
summarized in Table 1, and Table 4. For a fair comparison with the state-of-the-art methods, we list
the additional experiments for node classification on homophily graph datasets with 60%/20%/20%
split. Corresponding results are shown in Table 6.

Cora Citeseer Pubmed

MLP 76.44± 0.30 76.25± 0.28 86.43± 0.13
GCN 87.78± 0.96 81.39± 1.23 88.9± 0.32
GAT 76.70± 0.42 67.20± 0.46 83.28± 0.12
GraphSAGE 86.58± 0.26 78.24± 0.30 86.85± 0.11
Geom-GCN 85.27± 1.28 77.99± 0.92 90.05± 0.17
ACM-GCN 88.62± 1.22 81.68± 0.97 90.66± 0.47
GCNII 88.98± 1.33 81.58± 1.3 89.8± 0.30
MM-FGCN (Ours) 89.89∗ ± 1.12 82.97∗ ± 0.85 91.52∗ ± 0.21

Table 6: Test accuracy for classifications on homophily graphs under 60%/20%/20% random split.

B.2 EXPERIMENTS ON FIXED 48%/32%/20% SPLITS

We further conduct the node classification experiments on data split with fixed 48%/32%/20%
according to Pei et al. (2020). The corresponding results are shown in Table 7.
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Cornell Wisconsin Texas Chameleon Squirrel Cora Citeseer Pubmed

Geom-GCN 60.54± 3.67 64.51± 3.66 66.76± 2.72 60.00± 2.81 38.15± 0.92 85.35± 1.57 78.02± 1.15 89.95± 0.47
GGCN 85.68± 6.63 86.86± 3.29 84.86± 4.55 71.14± 1.84 55.17± 1.58 87.95± 1.05 77.14± 1.45 89.15± 0.37
H2GCN 82.70± 5.28 87.65± 4.98 84.86± 7.23 60.11± 2.15 36.48± 1.86 87.87± 1.20 77.11± 1.57 89.49± 0.38
MixHop 73.51± 6.34 75.88± 4.90 77.84± 7.73 60.50± 2.53 43.80± 1.48 87.61± 0.85 76.26± 1.33 85.31± 0.61
Geom-GCN 60.54± 3.67 64.51± 3.66 66.76± 2.72 60.00± 2.81 38.15± 0.92 85.35± 1.57 78.02± 1.15 89.95± 0.47
ACM-GCN 85.14± 6.07 88.43± 3.22 87.84± 4.4 69.14± 1.91 55.19± 1.49 87.91± 0.95 77.32± 1.7 90.00± 0.52
GCNII 77.86± 3.79 80.39± 3.40 77.57± 3.83 63.86± 3.04 38.47± 1.58 88.37± 1.25 77.33± 1.48 90.15± 0.43
NLMLP 84.9± 5.7 87.3± 4.3 85.4± 3.8 50.7± 2.2 33.7± 1.5 76.9± 1.8 73.4± 1.9 88.2± 0.5
NLGCN 57.6± 5.5 60.2± 5.3 65.5± 6.6 70.1± 2.9 59.0± 1.2 88.1± 1.0 75.2± 1.4 89.0± 0.5
NLGAT 54.7± 7.6 56.9± 7.3 62.6± 7.1 65.7± 1.4 56.8± 2.5 88.5± 1.8 76.2± 1.6 88.2± 0.3
MM-FGCN (Ours) 87.35∗ ± 6.18 89.02∗ ± 5.41 89.31∗ ± 1.56 72.61∗ ± 1.84 61.34∗ ± 1.22 89.35∗ ± 1.15 79.86 ± 1.42 91.42∗ ± 0.41

Table 7: Test accuracy for node classification results under fixed 48%/32%/20% split.

B.3 PERTURBATION RESILIENCE OF MM-FGCN.

In this study, we add extra experiments to assess the perturbation resilience of our MM-FGCN against
noise perturbation present in input graph data, which is ubiquitous in real-world datasets. Particularly,
we train the MM-FGCN with corrupted data that are contaminated by random noise of various
magnitudes. The noise magnitude is controlled by the noise ratios, which are defined as the amount
of randomly deleted edges (or randomly flipped binary-valued features) divided by the number of
untainted edges (or features). We then investigate how the performance of the resultant models varies
when the noise level change from 0 to 1. As illustrated in Figure 4, our MM-FGCN consistently
outperforms the baselines with a remarkable margin even under the presence of considerable noise.
Thus, the MM-FGCN demonstrates a strong noise resilience making it a highly promising solution
for real-world applications.

Figure 4: Noise resilience experiments with the edge (left) and feature (right) noise perturbations on
Cora.

B.4 ABLATION ON THE NUMBER OF THE META-FRAMELET GENERATORS

We analyze how the size of the meta-framelet generator (i.e. a set of spectral filters), I , affects
the performance of MM-FGCN. With an insufficient amount of meta-filters, the model may fail to
learn the optimal frequency partition and cannot disentangle graph signals into desirable frequency
components. Intuitively, an overly small I may hinder the learning of discriminative graph represen-
tations. Conversely, a large I improves the precision of frequency partition learning but also increases
computational expenses. This requires us to strike a balance between the by selectively choosing the
value of I .

We evaluate the performance of MM-FGCN with different choices of I over Cora, Citeseer,
Chameleon, Squirrel, and D&D datasets. As shown in Figure 5 (a), the Meta-FCGN is able to
achieve state-of-the-art performance by constructing the meta-framelet generator with only 3 filters.
Overall, the model performance is stable and robust across different choices of I . In general, we
recommend setting I = 4 for effective and efficient implementation.
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B.5 ABLATION ON THE ORDER OF CHEBYSHEV APPROXIMATION

Recall that the Chebyshev approximation trick Defferrard et al. (2016b) is applied in Algorithm
1 for efficient computation of each gωr,i(L). Broadly speaking, using a higher-order Chebyshev
approximation leads to a smaller approximation error w.r.t the meta-generator, but creates a greater
computational overhead. As illustrated in Figure 5 (b), the performance of MM-FGCN is robust
to Chebyshev approximation of different orders. Empirically, the MM-FGCN achieves optimal
performance with a Chebyshev approximation of an order greater than 4. In contrast, a low-order
Chebyshev approximation order incurs an undesirable approximation error, which hinders graph
representation learning and impairs model generalization. We recommend using a higher than 4-order
Chebyshev approximation for good model performance.

(a) Ablation on the number of filters used in the meta-
framelet generator.

(b) Ablation on the order of Chebyshev approxima-
tion.

Figure 5: Ablation studies on MM-FGCN’s hyperparameters.

B.6 VISUALIZATION OF MM-FGCN REPRESENTATION

In this section, we empirically show that the MM-FGCN is able to produce more discriminative
graph representations than conventional GCN, on both assortative (e.g. Cora) and disassortative (e.g.
Cornell) datasets. In order to assess the quality of the learned graph representation, we visualize the
hidden features generated by the penultimate layer of both MM-FGCN and GCN via t-SNE van der
Maaten & Hinton (2008). As shown in Figure 6, the graph representation of our MM-FGCN is more
spatially clustering than GCN, especially for the disassortative dataset that is more challenging for
classification. In fact, the learned feature of MM-FGCN is strongly correlated to the label, which
significantly facilitates node and graph classification tasks. In summary, the visualization of the
learned hidden features validates that the adaptiveness and expressiveness of our MM-FGCN are
beneficial to learning discriminative graph representations.

We also demonstrate the effectiveness of the MM-FGCN by visualising the filters learned by MM-
FGCN in Figure 6. We can observe that the filters learned from the Cora dataset (assortative)
more concentrate on the low-frequency signals than the filters learned from the Cornell dataset
(disassortative). Due to the assortative properties, aggregating local information with low-frequency
signals can benefit the model’s performance on the Cora dataset. In contrast, as elaborated in Bo
et al. (2021), high-frequency signals are useful for disassortative networks, which corresponds to our
learned multi-resolution filters since more filters concentrate on the high-frequency part, providing
a comprehensive feature extraction on the high-frequency signal. This phenomenon shows the
adaptivity of our MM-FGCN on different types of graphs.

B.7 ROBUSTNESS ANALYSIS

We show that our MM-FGCN inherently possesses greater robustness compared to conventional
GCN models, even without relying on any specific robust data augmentation techniques in Appendix
B.4. Furthermore, we observe that the robustness of our MM-FGCN can be further enhanced when
combined with data augmentation methods. We assess the robustness of our MM-FGCN in the face
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Figure 6: Meta-framelet generator (row 1) and feature visualization (row 2-3) on the test and validation
sets of Cora (left, assortative) and Cornell (right, disassortative) datasets using MM-FGCN and GCN.
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Figure 7: Top: the adversarial accuracy of MM-FCGN under graph attack. Bottom: representation distortion of
each perturbation level.

of both adaptive and non-adaptive graph attacks Mujkanovic et al. (2022). These attacks encompass
graph poisoning, which involves perturbing the adjacency matrix before training, and graph evasion,
which perturbs the adjacency matrix after training. We not only compare our method with GCN
but also evaluate two prevalent graph defense techniques, namely GRAND defense and Jaccard
defense. We present the results on Cora in the top row of Figure 7, demonstrating that our MM-FGCN
showcases substantially higher adversarial accuracy than GCN when subjected to graph attacks.
Moreover, by incorporating GRAND and Jaccard defense techniques, the adversarial accuracy of
MM-FGCN can be further enhanced. This highlights that the inherent robustness gain of MM-FGCN
is independent of the benefits offered by graph defense methods, demonstrating our orthogonal
contributions.

We also validate our MM-FGCN’s immunity against realist graph topology perturbations. To evaluate
the robustness of a well-trained model, we introduce noise of varying magnitudes into the adjacency
matrix. Subsequently, we assess the deviation between the perturbed hidden representation and the
original one using the ℓ2 distance metric. As depicted in the bottom row of Figure 7, our MM-FGCN
demonstrates a distinct ‘potential well’, where the potential refers to the distance from the perturbed
feature to the original, unperturbed feature. The results in Figure 7 show that our MM-FGCN has
the capability to learn robust representations that remain intact by minor perturbations in the graph
adjacency matrix. In contrast, conventional GCN experiences a progressively linear increase in
representation distortion as the magnitude of perturbation grows.

B.8 ABLATION STUDIES ON META-LEARNING

We compare the performance of MM-FGCN, both with and without meta-training, on the node
classification datasets including Cora, Citeseer, PubMed, Cornell, Texas, Wisconsin, Chameleon,
and Squirrel; and graph classification datasets including PROTEINS, Mutagenicity, D&D, NCI1,
Ogbg-molhiv, and QM7. We show the ablation study results in Table 8 and Table 9.

Cora Citeseer PubMed Cornell Texas Wisconsin Chameleon Squirrel
MM-FGCN w/o meta-learning 82.9 ± 0.5 72.2 ± 0.7 80.1 ± 0.2 78.2 ± 8.5 77.9 ± 9.2 82.3 ± 4.8 62.6 ± 2.6 59.2 ± 2.2

MM-FGCN 84.4 ± 0.5 73.9 ± 0.6 80.7 ± 0.2 88.9 ± 8.3 86.1 ± 4.5 88.5 ± 4.1 73.97 ± 2.1 67.5 ± 1.2

Table 8: Comparison of with and without meta-learning framework on the node classification tasks.
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PROTEINS (↑) Mutagenicity (↑) D&D (↑) NCI1 (↑) Ogbg-molhiv (↑) QM7 (↓)
MM-FGPool w/o meta-learning 77.86 ± 2.53 82.3 ± 1.4 81.0 ± 1.7 75.9 ± 0.9 78.57 ± 0.73 41.65 ± 0.91

MM-FGPool 78.07 ± 2.36 83.91 ± 1.32 81.51 ± 1.55 78.57 ± 0.82 79.12 ± 0.85 41.19 ± 0.88

Table 9: Comparison of with and without meta-learning framework on the graph classification tasks.

As shown in Table 8 and Table 9, in practice, using meta-training (Algorithm 2) leads to a consistent
performance gain on varying datasets in both graph and node classification settings. Moreover, as
shown in Figure 8, the meta-training process accelerates the convergence of MM-FGCN and improves
the generalization performance of MM-FGCN.

In intuition, using different data batches in the meta-step and main-step of Algorithm 2 helps
MM-FGCN to avoid overfitting. In the meta-step, the meta-framelet learner ξ is first optimized to
improve the meta-framelet for the current backbone model θ. Based on this optimized meta-framelet
representation, the whole model is then evaluated and optimized with another newly sampled data
batch. Using two identically distributed but distinct data batches, the ξ-meta-framelet transform will
be cautiously updated until achieving good performance on both the meta- and main-data batches.
Consequently, we anticipate that the meta-training process encourages MM-FGCN to find meta-
framelet representations that can be generalized to different batches drawn from the underlying
distribution, rather than merely following the gradient calculated on the current data batch, thus
reducing the risk of overfitting.

How does meta-learning work?

Following Hospedales et al. (2022), in this paper, Meta-learning is understood as ‘learning-to-learn’,
which refers to the process of improving the base learning algorithm over multiple learning episodes,
i.e. the base- and meta-learning episodes. During base-learning, a base-learning algorithm solves
the base task, such as graph/node classification. During meta-learning, a meta-algorithm updates the
base learning algorithm such that the model learns to improve the meta objective.

In this paper, the base objective refers to ‘learning a graph/node classifier using features based on a
framelet transform parameterized by ω’, as shown in Equation (8) and Equation (9). We aim to design
a meta-objective that refers to ‘finding a good ω such that the ω-base-objective can be achieved well’.
To this end, as shown in the second term of Equation (8), we set the meta-objective to be ‘finding the
ω with the lowest classification loss, for any given network backbone parameter θ’. The intuition
behind this is that for any model backbone, we always want to choose the most compatible ω-framelet
transform, such that the model backbone θ can fully release its power, achieving a classification loss.
By combining the base- and meta-objectives, we establish the meta-learning training paradigm of
MM-FGCN as a bi-level optimization problem in Equation (8).

Unlike meta-learning models, where the base-learning algorithm is continuously improved during the
meta-learning episode, a standard machine learning model is trained on a specific task using fixed,
handcrafted base-learning algorithms. For instance, standard GCNs are trained to predict graph labels
by minimizing the classification loss, using human-designed features like the graph Fourier transform.
On the contrary, our MM-FGCN is able to learn suitable meta-framelet transform that is adaptive to
varying graph instances and distributions via the meta-learning paradigm.

In a nutshell, using meta-learning improves the performance MM-FGCN on various graph learning
scenarios. In intuition, meta-learning encourages MM-FGCN to learn meta-framelet representations
that generalize well.

B.9 EXPERIMENTS ON LARGE-SCALE GRAPH DATASETS

Our MM-FGCN can be applied to large graphs, e.g. OGBN datasets, and it achieves a high perfor-
mance. We conduct experiments on the OGBN-arxiv and OGBN-product datasets, and the results are
listed in the following table.

To train our MM-FGCN, for OGBN-arxiv, we use the 128-dimensional feature vector as the node
feature of each node; for OGBN-product, we use the 100-dimensional feature vector as each node’s
feature. It is worth noting that some state-of-the-art methods (such as SimTeG+TAPE+RevGAT,
TAPE+RevGAT, and SimTeG+TAPE+GraphSAGE) adopt the raw title and abstract form the OGBN-
arxiv and detailed product descriptions from OGBN-product as the node features, and achieve better
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(a) Accuracy on the test set (b) Accuracy on the train set

Figure 8: Comparison of MM-FGCN with and w/o meta-training on the Cora dataset. We report the
train and test accuracy of each training step.

results due to using a good NLP module in extracting node features. Since we mainly compare the
performance of the GNN module, we neglect the gain from using NLP modules such as GIANT-XRT
or TAPE, etc. Instead, we directly use the preprocessed feature vectors provided in both datasets on
our model and our baseline models.

Training details

To train the OGBN-Arxiv, we use the full-batch training. In the OGBN-products dataset, we use
neighbor sampling with size = 10 (similar to UniMP [10]) to sample the subgraph during training.
Other hyperparameter settings follow our experiments on other datasets as elaborated in the Appendix.
We show the corresponding results in the following tables.

Method Test Acc. Val. Acc.
MLP 55.50 ± 0.23 57.65 ± 0.12
NODE2VEC 70.07 ± 0.13 71.29 ± 0.13
GRAPHZOOM 71.18 ± 0.18 72.20 ± 0.07
P&L + C&S 71.26 ± 0.01 73.00 ± 0.01
GRAPHSAGE 71.49 ± 0.27 72.77 ± 0.17
GCN 71.74 ± 0.29 73.00 ± 0.17
DEEPERGCN 71.92 ± 0.17 72.62 ± 0.14
SIGN 71.95 ± 0.11 73.23 ± 0.06
GAAN 71.97 ± 0.18 –
UFGCONV-R 71.97 ± 0.12 73.21 ± 0.05
UniMP 73.11 ± 0.21 74.50 ± 0.05
Exphormer 72.44 ± 0.28 –
DRGAT 74.16 ± 0.07 75.34 ± 0.02
Ours 74.25 ± 0.15 75.46 ± 0.08

Table 10: Experiment on the OGBN-Arxiv dataset.

Method Test Acc. Val. Acc.
MLP 55.50 ± 0.23 57.65 ± 0.12
GCN-Cluster 78.97 ± 0.36 92.12 ± 0.09
GAT-Cluster 79.23 ± 0.78 89.85 ± 0.22
GAT-NeighborSampling 79.45 ± 0.59 –
GraphSAINT 80.27 ± 0.26 –
DeeperGCN 80.90 ± 0.20 92.38 ± 0.09
UniMP 82.56 ± 0.31 93.08 ± 0.17
AGDN 83.34 ± 0.27 92.29 ± 0.10
Ours 84.03 ± 0.23 93.57 ± 0.12

Table 11: Experiment on the OGBN-Products dataset.
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Figure 9: From (a) to (d): Variation of filters during the training process on the Cora dataset. From
(e) to (h): Variation of filters during the training process on the Cornell dataset.

B.10 VARIATION OF FILTERS DURING THE TRAINING PROCESS

We visualize the variation of filters during the training process on the Cora and Cornell datasets. We
train our model on both datasets for 100 epochs and visualize the filters at training steps 0, 20, 50,
and 100.

Recall that the Cora dataset contains a graph of a citation network, where each node represents a
scientific publication and the node labels are the research domain. Thus, the node label (i.e. the graph
signal of interest) varies smoothly across the nodes, emphasizing the importance of low-frequency
information in learning good graph representations.

As shown in Figure 9 (a, b, c, d), we observe that MM-FGCN automatically learns to focus more
on establishing the low-frequency representations: at the initial stage of the training process, the
meta-filters are evenly separated and do not show special preference to the graph signals at specific
frequencies. During the training process, the filters tend to concentrate on the low-frequency part of
the graph signal to retrieve more refined low-frequency information of the graph.

The Cornell dataset contains a website network, where each node represents a web page that is
manually classified into five categories: student, project, course, staff, and faculty. Edges represent
hyperlinks between them. In this case, nodes with the same labels are not likely to link to each other.
Thus, the node label (i.e. the graph signal of interest) varies drastically across neighbouring nodes,
showing that high-frequency information is essential in learning good graph representations.

As shown in Figure 9 (e, f, g, h), we observe that MM-FGCN automatically learns to focus more
on establishing the high-frequency representations: at the initial stage of the training process, the
meta-filters are evenly separated and do not show special preference to the graph signals at specific
frequencies. During the training process, the filters tend to concentrate on the high-frequency part of
the graph signal to refine the high-frequency representations of the graph.

B.11 TIME COMPLEXITY ANALYSIS

The complexity of a single forward pass of the meta-framelet convolution is approximately r times as
the cost of standard graph convolution, where r is the number of meta-framelets. In practice, our
MM-FGCN can be computed efficiently, without significant overhead.

Suppose we instantiate the meta-learner Mξ as a L-layer GCN, we use a k-order Chebyshev
approximation for the n×n graph Laplacian matrix L, and we set the number of filters as r. Then, for
each d-dimensional input graph feature H ∈ Rn×d, the computational complexity of meta-framelet
convolution is O(rn×n× d)+O(n×n× d)+O(r× k2 ×n2) = O(rn2(d+ k2)). In this setting,
the standard graph convolutional layer costs O(n2d).
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Experiments on training and inference time cost

In the following Table 12 and Table 13, we compare both the training and inference time cost of our
MM-FGCN against training other baselines, including GCN, GAT, GraphSage and SVD-GCN. We
report the time cost of one training epoch in Table 12, and we evaluate the time cost of on single
forward pass in Table 13. Specifically, each training epoch of MM-FGCN includes both the base-
and the meta-update step. And we set the Chebyshev approximation order k and the number of
meta-framelets r as k = 4 and r = 4. We conduct the experiments on varying GNN architectures,
with varying parameter budgets (e.g. model size). The experiments are conducted on a single 40G
A100 GPU.

Model # Parameters Acc. (↑) Time/Epoch (↓) # Parameters Acc. (↑) Time/Epoch (↓) # Parameters Acc. (↑) Time/Epoch (↓)
GCN 10,246 80.4 0.012 51,238 81.2 0.016 100,204 82.0 0.018
GAT 10,124 79.6 0.021 50,422 81.7 0.022 101,684 82.5 0.024
GraphSage [4] 10,076 78.9 0.248 51,682 80.9 0.281 107,216 81.9 0.315
SVD-GCN [15] 10,578 79.6 0.236 53,412 81.4 0.254 106,452 82.5 0.261
MM-FGCN (ours) w/o meta-training 10,674 82.2 0.048 52,546 83.7 0.050 101,046 84.0 0.053
MM-FGCN (ours) 10,674 82.6 0.054 52,546 84.4 0.058 101,046 84.5 0.61

Table 12: Comparison of accuracy and training runtime (in seconds) on Cora datasets. Although our
model’s runtime is slightly larger than GCN and GAT, our method remains faster than GraphSage
and SVD-GCN.

Model # Parameters Acc. (↑) Inference Time (↓) # Parameters Acc. (↑) Inference Time (↓) # Parameters Acc. (↑) Inference Time (↓)
GCN 10,246 80.4 0.011 51,238 81.2 0.015 100,204 82.0 0.017
GAT 10,124 79.6 0.019 50,422 81.7 0.020 101,684 82.5 0.023
GraphSage [4] 10,076 78.9 0.231 51,682 80.9 0.275 107,216 81.9 0.302
SVD-GCN [15] 10,578 79.6 0.227 53,412 81.4 0.247 106,452 82.5 0.258
MM-FGCN (ours) 10,674 82.6 0.047 52,546 84.4 0.050 101,046 84.5 0.052

Table 13: Comparison of accuracy and inference time (in seconds) under different parameter sizes on
the Cora dataset.

C RELATED WORKS ON META GRAPH REPRESENTATION LEARNING

Graph representation learning refers to the process of converting the raw graph data into high
dimensional vectors while preserving intrinsic graph properties (Chen et al., 2020). Effective graph
representations can provide significant insights into graph data and benefit downstream tasks, such as
social analysis (Min et al., 2021), molecular property prediction and generation (Zhang et al., 2021;
Zang & Wang, 2020), graph generation (Jo et al., 2022; Luo et al., 2023b;a), time series analysis (Li
et al., 2021b; Cui et al., 2021), neural signal processing (Ding et al., 2023; Ding & Guan, 2023), etc.

Meta-learning (Hospedales et al., 2022; Liu et al., 2022b; Finn et al., 2017), also referred to as
learning to learn, aims to enhance a base learning algorithm through knowledge gained from a
meta-algorithm. It has been applied to graph representation learning in (Huang & Zitnik, 2020;
Xiao et al., 2021; Zügner & Günnemann, 2019). Huang & Zitnik (2020) use local subgraphs to
transfer subgraph-specific information and learn transferable knowledge faster via meta gradients.
Xiao et al. (2021) use a meta-learner to relate tasks on graphs describing the relations of their own
dimensions to improve few-shot learning. Zügner & Günnemann (2019) optimize the graphs as a
hyperparameter using meta-gradients to solve a bi-level optimization problem underlying training-
time attacks. While these methods are designed for either transfer learning or multi-task learning
scenarios, our proposed meta-learning algorithm for MM-FGCN model aims to improve the base
graph representation algorithm, the graph transform of MM-FGCN, by optimizing a meta-algorithm,
i.e. the meta-framelet learner. Since a perturbation on graph framelets may cause high variation in
graph representations, simultaneously updating the meta-framelet learner and the base model may be
inefficient. Therefore our meta-framelet algorithm is learned in a bi-level meta-learning framework
to enhance the overall learning performance.

D PROOF DETAILS

Proof of Proposition 2. According to the discrete tight framelet transform theory (Theorem 2.1
and Theorem 3.1 in (Dong, 2017a)), the series of progressive resolution subspaces {Vr}r with
Vr = span ({φriv}i,v) inherently satisfies the denseness, translation, and dilation properties, making
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it a set of desirable multiresolution bases for graph domain data. To complete the proof, one only
need to verify the tightness of the MMFS, i.e. ΦMMΦ⊤

MMx = x holds for any graph signal x. Let
I = ([R]× [I])\{(r, 1) : 1 ⩽ r < R}, we have

ΦMMΦ⊤
MM =

∑
r,i,v

φrivφriv (10)

=
∑

(r,i)∈I

(
Ugωr,i(γ

−J+rL)U⊤) (Ugωr,i(γ−J+rL)U⊤)⊤ (11)

=U

 ∑
(r,i)∈I

gωr,i
2(γ−J+rL)

U⊤ (12)

=U

(( ∑
1<i⩽I,1⩽r<R

gω1,i
2(γ−J+1L)

)
(13)

+

( ∑
i∈[I]

gωR,i
2(γ−J+RL)gω1,1

2(γ−J+R−1L) · · · gω1,1
2(γ−J+1L)

))
U⊤

=U

(( ∑
1<i⩽I,1⩽r<R

gω1,i
2(γ−J+1L)

)
(14)

+

(
gω1,1

2(γ−J+R−1L) · · · gω1,1
2(γ−J+1L)

))
U⊤

=U

(( ∑
1<i⩽I,1⩽r<R

gω1,i
2(γ−J+1L)

)
+ gωR−1,1(γ

−J+R−1L)

)
U⊤ (15)

=U

(( ∑
1<i⩽I,1⩽r<R−1

gω1,i
2(γ−J+1L)

)
+ gωR−2,1(γ

−J+R−2L)

)
U⊤ (16)

... (17)

=U

( ∑
1⩽i⩽I

gω1,i
2(γ−J+1L)

)
U⊤ = I, (18)

which completes the proof.
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