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ABSTRACT

Score-based generative models (SGMs) have demonstrated unparalleled sampling
quality and diversity in numerous fields, such as image generation, voice synthe-
sis, and tabular data synthesis, etc. Inspired by those outstanding results, we apply
SGMs to synthesize time-series by learning its conditional score function. To this
end, we present a conditional score network for time-series synthesis, deriving a
denoising score matching loss tailored for our purposes. In particular, our pre-
sented denoising score matching loss is the conditional denoising score matching
loss for time-series synthesis. In addition, our framework is such flexible that both
regular and irregular time-series can be synthesized with minimal changes to our
model design. Finally, we obtain exceptional synthesis performance on various
time-series datasets, achieving state-of-the-art sampling diversity and quality.

1 INTRODUCTION

Time-series frequently occurs in our daily lives, e.g., stock data, climate data, and so on. Especially,
time-series forecasting and classification are popular research topics in the field of machine learn-
ing (Ahmed et al., 2010; Fu, 2011; Ismail Fawaz et al., 2019). In many cases, however, time-series
samples are incomplete and/or the number of samples is insufficient, in which case training machine
learning models cannot be fulfilled in a robust way. To overcome the limitation, time-series synthe-
sis has been studied actively recently (Chen et al., 2018; Dash et al., 2020). These synthesis models
have been designed in various ways, including variational autoencoders (VAEs) and generative ad-
versarial networks (GANs) (Desai et al., 2021; Yoon et al., 2019; Jeon et al., 2022).

Moreover, real-world time series often inevitably contain missing values because of privacy reasons
or medical events. It has been noted that the missing values involve important information, called
informative missingness (Rubin, 1976). To remedy the problem, several works have been developed
to deal with irregular time-series, i.e., the inter-arrival time between observations is not fixed and/or
some observations can be missing (Schafer and Graham, 2002; Che et al., 2016; Kidger et al., 2020),
in which case synthesizing irregular time series is challenging (Jeon et al., 2022).

Score-based generative models (SGMs) have shown good sampling quality and diversity in numer-
ous fields, such as image generation, voice synthesis, and tabular data synthesis, etc (Yang et al.,
2023). However, in time-series generation, SGMs should consider autoregressiveness, meaning
each time-series observation is generated in consideration of its previously generated observations
which makes time-series generation more difficult (Yoon et al., 2019; Jeon et al., 2022). To this end,
we propose the method of Time-series generation using conditional Score-based Generative Model
(TSGM), which consists of three neural networks, i.e., an encoder, a score network, and a decoder
(see Figure 2).

Score-based time-series synthesis SGMs have its potential to deal with autoregressiveness (Meng
et al., 2020). We design our own autoregressive denoising score matching loss for time-series gen-
eration and prove its correctness (see Section 2.1.3). Along with its performances from image gen-
eration domain (cf. Fig. 1), here is our main motivation of using SGMs:

The mathematical structure of SGMs naturally aligns with the sequential nature of time-series data.

Besides, we design a conditional score network on time-series, which learns the gradient of the
conditional log-likelihood.
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Table 1: The table illustrates how many medals
each method gets across all datasets and eval-
uation metrics, based on the generation eval-
uation scores presented in Table 2 and Ta-
ble 12. Our method with the two specific types,
TSGM-VP and TSGM-subVP, achieves supe-
rior generation performance compared to base-
lines.

Method
Olympic Rankings

Gold Silver Bronze
Regular Irregular R I R I

TSGM-VP 4 11 4 11 0 1
TSGM-subVP 6 16 1 7 1 0

TimeGAN 1 0 0 0 1 0
TimeVAE 0 0 0 0 1 4
GT-GAN 0 1 1 1 2 16
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Figure 1: The KDE plots show the estimated dis-
tributions of original data and ones generated by
several methods in the Air and AI4I datasets —
we ignore time stamps for drawing these distribu-
tions. Unlike baseline methods, the distribution of
TSGM-VP is almost identical to the original one.
These figures provide an evidence of the excellent
generation quality and diversity of our method.
For TSGM-subVP, similar results are observed.
Refer to Appendix L for additional visualizations

Regular vs. irregular time-series synthesis Time-series are prevalent throughout our daily lives.
Although regular time-series are easy to be considered, it is common to have missing values because
of privacy issue (Che et al., 2016; Kidger et al., 2020), which makes irregularly sampled time-series1.
This hinders time-series processing and we consider the hardest problem condition: providing com-
plete time-series given not only regular time-series, but also irregular ones. To this end, our method
is considered ‘universial’ in that both both regular and irregular time-series samples can be treated
with minimal changes to our model design. For synthesizing regular time series, we use a recurrent
neural network-based encoder and decoder. Continuous-time methods, such as neural controlled
differential equations (Kidger et al., 2020) and GRU-ODE (Brouwer et al., 2019), can be used as
our encoder and decoder for synthesizing irregular time series (see Section 3.2 and Appendix I, J).

We conduct in-depth experiments with 4 real-world datasets under regular and irregular settings.
To be specific, for the irregular settings, we randomly drop 30%, 50%, and 70% of observations
from regular time-series on training, then generate complete time-series on evaluation. Therefore,
we test with 16 different settings, i.e., 4 datasets for one regular and three irregular settings. Our
specific choices of 9 baselines include almost all existing types of time-series generative paradigms,
ranging from VAEs to GANs. In Table 1 and Figure 1, we compare our method to the baselines,
ranking methods by their evaluation scores and estimating data distribution by kernel density esti-
mation (KDE). We also visualize real and generated time-series samples onto a latent space using
t-SNE (van der Maaten and Hinton, 2008) in Figure 3. Our proposed method shows the best gen-
eration quality in almost all cases. Furthermore, the t-SNE and KDE visualization results provide
intuitive evidence that our method’s generation diversity is also superior to that of the baselines. Our
contributions are summarized as follows:

1. We, for the first time, propose an SGM-based universal time-series synthesis method.

2. We derive our own denoising score matching loss considering the autoregressive nature of
sequential data, connecting SGMs to time-series generation domain.

3. We conduct comprehensive experiments with 4 real-world datasets and 9 baselines under
one regular and three irregular settings since our method supports both regular and irregular
time-series. Overall, our proposed method shows the best generation quality and diversity.

1For example, Physionet (Goldberger et al., 2000 (June 13), a famous dataset for time series classification,
deliberately removed 90% of observations to protect the privacy of patients, posing challenges for learning and
analysis. The synthesized time series can be used instead.
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2 RELATED WORK AND PRELIMINARIES

2.1 SCORE-BASED GENERATIVE MODELS

SGMs offer several advantages over other generative models, including their higher generation qual-
ity and diversity. SGMs follow a two-step process, wherein i) gaussian noises are continuously added
to a sample and ii) then removed to recover a new sample. These processes are known as the for-
ward and reverse processes, respectively. In this section, we provide a brief overview of the original
SGMs in (Song et al., 2021), which will be adapted for the time-series generation tasks.

2.1.1 FORWARD AND REVERSE PROCESS

At first, SGMs add noises with the following stochastic differential equation (SDE):

dxs = f(s, xs)ds+ g(s)dw, s ∈ [0, 1], (1)

where w ∈ Rdim(x) is a multi-dimensional Brownian motion, f(s, ·) : Rdim(x) → Rdim(x) is a vector-
valued drift term, and g : [0, 1] → R is a scalar-valued diffusion function. Hereafter, we define xs

as a noisy sample diffused at time s ∈ [0, 1] from an original sample x ∈ Rdim(x). Therefore, xs can
be understood as a stochastic process following the SDE.

There are several options for f and g: variance exploding(VE), variance preserving(VP), and subVP.
Song et al. (2021) proved that VE and VP are continuous generalizations of the two discrete dif-
fusion methods: one in Song and Ermon (2019) and the other in Sohl-Dickstein et al. (2015); Ho
et al. (2020). The subVP method shows, in general, better negative log-likelihood (NLL) according
to Song et al. (2021). We describe the exact form of each SDE in Table 14 with detailed explanation
in Appendix N. Note that we only use the subVP-based TSGM in our main experiments and exclude
the VE and VP-based one for its inferiority for time series synthesis in our experiments, but checked
the VP-based method from ablation study for its better performances than that of the VE.

SGMs run the forward SDE with a sufficiently large number of steps to make sure that the diffused
sample converges to a Gaussian distribution at the final step. The score network Mθ(s, xs) learns
the gradient of the log-likelihood ∇xs log p(xs), which will be used in the reverse process.

For the forward SDE, there exists the following corresponding reverse SDE (Anderson, 1982):

dxs = [f(s, xs)− g2(s)∇xs log p(xs)]ds+ g(s)dw̄. (2)

The formula suggests that if knowing the score function, ∇xs log p(xs), we can recover real samples
from the prior distribution p1(x) ∼ N (µ, σ2), where µ, σ vary depending on the forward SDE type.

2.1.2 TRAINING AND SAMPLING

In order for the model M to learn the score function, the model has to optimize the following loss
function:

L(θ) = Es{λ(s)Exs [∥Mθ(s, xs)−∇xs log p(xs)∥22]}, (3)

where s is uniformly sampled over [0, 1] with an appropriate weight function λ(s) : [0, 1] → R.
However, using the above formula is computationally prohibitive (Hyvärinen, 2005; Song et al.,
2019). Thanks to Vincent (2011), the loss can be substituted with the following denoising score
matching loss:

L∗(θ) = Es{λ(s)Ex0Exs|x0 [
∥∥Mθ(s, xs)−∇xs log p(xs|x0)

∥∥2
2
]}. (4)

Since SGMs use an affine drift term, the transition kernel p(xs|x0) follows a certain Gaussian distri-
bution (Särkkä and Solin, 2019) and therefore, ∇xs log p(xs|x0) can be analytically calculated.

2.1.3 AUTOREGRESSIVENESS OF DIFFUSION MODEL

Let x1:N be a time-series sample which consists of N observations. In order to synthesize time-
series x1:N , unlike other generation tasks, we must consider autoregressiveness: generating each
observation xn at sequential order n ∈ {2, ..., N} considering its previous history x1:n−1. One
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Encoder Decoder

Forward Reverse

RNN assumption

Thm 3.1

Figure 2: The overall workflow of TSGM (see Section 3.3). Our original learning objective is
to approximate ∇ log p(xs1:n|x0

1:n−1), which is computationally prohibitive, with the conditional
score network Mθ(s, xs1:n, x0

1:n−1) using an MSE loss. We then prove in Thm. 3.1 that learning
∇ log p(xs

1:n|x01:n) is equivalent to ∇ log p(xs1:n|x01:n−1) for θ of Mθ in the MSE loss, i.e., their
optimal model parameter θ is identical. At the end, our score network Mθ(s,hs

n,h0
n−1) learns

∇ log p(hs
n|hn) since RNNs can encode x01:n and x01:n−1 into their hidden states h0

n and h0
n−1, re-

spectively.

can train neural networks to learn the conditional likelihood p(xn|x1:n−1) and generate each xn
recursively using it, depicting so-called autoregressive property of time-series domain.

Up to our survey, there’s no paper about diffusion models considering autoregressiveness in time-
series generation. Instead of it, Meng et al. (2020) dealt with a more generalized case, autoregres-
sive conditional score matching to make its score model, Mθ(s, ·, ·), to be Mθ(s, xsn, x0

1:n−1) ∼
∇xsn log p(xsn|x01:n−1). Inspired by the previous work, we enlighten a connection between SGMs
and time-series generation by deriving an autoregressive denoising score matching (see Theo-
rem 3.1). We emphasize that TSGM is fundamentally different in that (i) TSGM uses its own
autoregressive denoising score matching loss, (ii) as a result, it optimizes not ∇xsn log p(xsn|x01:n−1)

but ∇xs1:n log p(xs1:n|x0
1:n−1), which is fit for its RNN-based (markovian) encoder and decoder.

2.2 TIME-SERIES GENERATION

There are several time-series generation papers, and we introduce their ideas. TimeVAE (Desai
et al., 2021) is a variational autoencoder to synthesize time-series data. This model can provide
interpretable results by reflecting temporal structures such as trend and seasonality in the generation
process. CTFP (Deng et al., 2020) is a well-known normalizing flow model. It can treat both regular
and irreugular time-series data by a deformation of the standard Wiener process.

TimeGAN (Yoon et al., 2019) uses a GAN architecture to generate time-series. First, it trains an
encoder and decoder, which transform a time-series sample x1:N into latent vectors h1:N and re-
cover them by using a recurrent neural network (RNN). Next, it trains a generator and discriminator
pair on latent space, by minimizing the discrepancy between an estimated and true distribution, i.e.
p̂(xn|x1:n−1) and p(xn|x1:n−1). Since it uses an RNN-based encoder, it can efficiently learn the
conditional likelihood p(xn|x1:n−1) by treating it as p(hn|hn−1), since hn ∼ x1:n under the regime
of RNNs. Therefore, it can generate each observation xn considering its previous history x1:n−1.
However, GAN-based generative models are vulnerable to the issue of mode collapse (Xiao et al.,
2022) and unstable behavior problems during training (Chu et al., 2020). GT-GAN (Jeon et al.,
2022) attempted to solve the problems by incorporating an invertible neural network-based genera-
tor into its framework. There also exist GAN-based methods to generate other types of sequential
data, e.g., video, sound, etc (Esteban et al., 2017; Mogren, 2016; Xu et al., 2020; Donahue et al.,
2019). In our experiments, we also use them as our baselines for thorough evaluations.

3 PROPOSED METHOD

Our proposed TSGM consists of three networks: an encoder, a decoder, and a conditional score
network (cf. Fig. 2). Firstly, we train the encoder and the decoder to connect between time-series

4
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samples and a latent space. Next, using the pre-trained encoder and decoder, we train the conditional
score network on the latent space. The conditional score network will be used for sampling fake
time-series on the latent space.

3.1 PROBLEM FORMULATION

Let X and H denote a data space and a latent space, respectively. We define x1:N as a time-
series sample with a sequential length of N , and xn is a multi-dimensional observation of x1:N at
sequential order n. Similarly, h1:N (resp. hn) denotes an embedded time series (resp. an embedded
observation).

Each observation xn can be represented as a pair of time and features, i.e., xn = (tn,u(tn)), where
tn ∈ R≥0 is a time stamp of feature u(tn) ∈ Rdim(u), and dim(u) is a feature dimension. X
can be classified into two types: regular time-series and irregular time-series. For irregular setting,
we randomly remove 30%, 50% and 70% of samples from regular time-series. Therefore, the only
difference between these types is whether time intervals, {tn+1 − tn}N−1

n=1 , are the same or not.

Our irregular setting considers generating complete time-series given training data with missing val-
ues. Consequently, we generate total time-series on both regular and irregular settings and compare
the generated ones with the original regular data on evaluation process.

3.2 ENCODER AND DECODER

The encoder and decoder have the task of mapping time-series data to a latent space and vice versa.
We define e and d as an encoding function mapping X to H and a decoding function mapping H to
X , respectively. For simplicity but without loss of generality, we utilize an autoregressive autoen-
coder: RNN-based ones for regular time-series (Cho et al., 2014b) and Neural CDE, GRU-ODE for
irregular setting (Kidger et al., 2020; Brouwer et al., 2019). In this section, we describe the regular
time-series generation as representative one and leave the irregular case in Appendix I, depicting
how continuous-time methods can be used for the encoder and the decoder to better synthesize
irregular time-series.

The encoder e and the decoder d consist of recurrent neural networks, e.g., gated recurrent units
(GRUs) (Cho et al., 2014b). Since we use RNNs, both e and d are defined recursively as follows:

hn = e(hn−1,xn), x̂n = d(hn), (5)

where x̂n denotes a reconstructed time-series sample at sequential order n. It is well-known that
RNN was devised to efficiently handle variable sequences by summarizing past observations (Cho
et al., 2014a). For example, Yoon et al. (2019) also used RNN-based encoder and decoder to
provide a reversible mapping between features and latent representations, thereby reducing the high-
dimensionality of the adversarial learning space, which is well supported by hn ∼ x1:n.

After embedding real time-series data onto a latent space, we can train the conditional score network
with its conditional log-likelihood, whose architecture is described in Appendix J.2. The encoder
and decoder are pre-trained before our main training.

3.3 TRAINING OBJECTIVE FUNCTION

Loss for autoencoder We use two training objective functions. First, we train the encoder and
the decoder using Led. Let x0

1:N ∼ p(x0
1:N ) and x̂0

1:N denote an real time-series sample and its
reconstructed copy by the encoder-decoder process, respectively. Then, Led denotes the following
MSE loss between x0

1:N and its reconstructed copy x̂0
1:N :

Led = Ex0
1:N

[
∥∥x̂0

1:N − x0
1:N

∥∥2
2
]. (6)

Loss for score network Next, we define another loss LH
score in Eq. equation 11 to train the con-

ditional score network Mθ, which is one of our main contributions. In order to derive the training
loss LH

score from the initial loss definition L1, we describe its step-by-step derivation procedure. At
sequential order n in {1, ..., N}, we diffuse x0

1:n through a sufficiently large number of steps of the
forward SDE to a Gaussian distribution. Let xs

1:n denotes a diffused sample at step s ∈ [0, 1] from

5
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x0
1:n. Then, the conditional score network Mθ(s,x

s
1:n,x

0
1:n−1) can be trained to learn the gradient

of the conditional log-likelihood with the following L1 loss:

L1 = EsEx01:N

[
N∑

n=1

λ(s)l1(n, s)

]
, (7)

where

l1(n, s) = Exs1:n

[ ∥∥Mθ(s, xs
1:n, x0

1:n−1)− ∇xs1:n log p(xs
1:n|x0

1:n−1)
∥∥2

2

]
. (8)

In the above definition, ∇xs1:n log p(xs
1:n|x01:n−1), where x0

i depends on x01:i−1 for each i ∈ {2, ..., n},
is designed specially for time-series generation. Note that for our training, xs1:n is sampled from
p(xs1:n|x01:n−1), and s is uniformly sampled from [0, 1].

However, using the above formula, which is a naı̈ve score matching on time-series, is computation-
ally prohibitive (Hyvärinen, 2005; Song et al., 2019). Thanks to the following theorem, the more
efficient denoising score loss Lscore can be defined.

Theorem 3.1 (Autoregressive denoising score matching). l1(n, s) can be replaced with the follow-
ing l2(n, s)

Lscore = EsEX0
1:N

[
N∑

n=1

λ(s)l2(n, s)

]
, (9)

where

l2(n, s) = EXs
1:n

[ ∥∥Mθ(s, Xs
1:n, X0

1:n−1)− ∇Xs
1:n

log p(Xs
1:n|X0

1:n)
∥∥2
2

]
. (10)

Then, L1 = Lscore is satisfied.

Since we pre-train the encoder and decoder, the encoder can embed x01:n into h0
n ∈ H. Ideally,

h0
n involves the entire information of x01:n. Therefore, Lscore can be re-written as follows with the

embeddings in the latent space:

LH
score = EsEh0

1:N

N∑
n=1

[λ(s)l3(n, s)] , (11)

with l3(n, s) = Ehsn

[∥∥Mθ(s, hs
n, h0

n−1)−∇hsn log p(hs
n|h0

n)
∥∥2

2

]
. LH

score is what we use for our experi-

ments (instead of Lscore). Until now, we introduced our target objective functions, Led and LH
score.

We note that we use exactly the same weight λ(s) as that in (Song et al., 2021). Related proofs are
given in Appendix A.

3.4 TRAINING AND SAMPLING PROCEDURES

Training method We explain details of our training method. At first, we pre-train both the encoder
and decoder using Led. After pre-training them, we train the conditional score network. When
training the latter one, we use the embedded hidden vectors produced by the encoder. After encoding
an input x0

1:N , we obtain its latent vectors h0
1:N — we note that each hidden vector h0

n has all the
previous information from 1 to n for the RNN-based encoder’s autoregressive property as shown
in the Equation 3.2. We use the following forward process (Song et al., 2021), where n means the
sequence order of the input time-series, and s denotes the time (or step) of the diffusion step :

dhs
n = f(s,hs

n)ds+ g(s)dw, s ∈ [0, 1].

Note that we only use the VP and subVP-based TSGM in our experiments and exclude the VE-based
one for its inferiority for time series synthesis in our experiments. During the forward process,
the conditional score network reads the pair (s, hs

n, h0
n−1) as input and thereby, it can learn the

conditional score function ∇ log p(hs
n|h0

n−1) by using LH
score, where h0

0 = 0.

6
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Figure 3: t-SNE plots for TSGM (1st and 2nd columns), TimeGAN (3rd columns), TimeVAE (4th
columns), GT-GAN (5th columns) in Stocks and Air datasets. Red and blue dots mean original and
synthesized samples, respectively. Refer to Appendix L for addition visualizations

Sampling method After the training procedure, we use the following conditional reverse process:
dhs

n = [f(s,hs
n)− g2(s)∇hs

n
log p(hs

n|h0
n−1)]ds+ g(s)dw̄, (12)

where s is uniformly sampled over [0, 1]. The conditional score function in this process can be re-
placed with the trained score network Mθ(s,hs

n,h0
n−1). The detailed sampling method is as follows:

1. At first, we sample z1 from a Gaussian prior distribution and set h1
1 = z1 and h0

0 = 0. We
then generates an initial observation ĥ

0

1 by denoising h1
1 following the conditional reverse

process with Mθ(s,hs
n,h

0
0) via the predictor-corrector method (Song et al., 2021).

2. We repeat the following computation for every 2 ≤ n ≤ N , i.e., recursive generation. We
sample zn from a Gaussian prior distribution and set h1

n = zn for n ∈ {2, ..., N}. After
reading the previously generated samples ĥ

0

n−1, we then denoise h1
n following the con-

ditional reverse process with Mθ(s,hs
n,h0

n−1) to generate ĥ
0

n via the predictor-corrector
method.

Once the sampling procedure is finished, we can reconstruct x̂01:N from ĥ
0

1:N using the trained de-
coder at once.

4 EXPERIMENTS

4.1 EXPERIMENTAL ENVIRONMENTS

4.1.1 BASELINES AND DATASETS

In the case of the regular time-series generation, we use 4 real-world datasets from various fields
with 9 baselines. For the irregular time-series generation, we randomly remove some observations
from each time-series sample with 30%, 50%, and 70% missing rates. Therefore, we totally treat 16
datasets, i.e., 4 datasets with one regular and three irregular settings, and 9 baselines.

Our collection of baselines covers almost all existing types of time-series synthesis methods, rang-
ing from autoregressive generative models to VAEs and GANs. For the baselines, we reuse their
released source codes in their official repositories and rely on their designed training and model
selection procedures. If a baseline does not support irregular time-series synthesis, we replace its
RNN encoder with GRU-D (Che et al., 2016) modified from GRUs to deal with irregular time-
series. For those that do not use an RNN-based encoder, we add GRU-D in front of the encoder,
such as TimeVAE and COT-GAN. Therefore, all baselines are tested for the regular and irregular
environments. We refer to Appendix E for the detailed descriptions on our datasets, baselines, and
Appendix G for other software/hardware environments.

4.1.2 EVALUATION METRICS

In the image generation domain, researchers have evaluated the fidelity and the diversity of models by
using the Fréchet inception distance (FID) and inception score (IS). On the other hand, to measure
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Table 2: The left and right ones denote experimental results on regular time-series and irregular
time-series with 30% missing rates, respectively. Results for higher missing rates are in Table 12.
Note that except for our method (TSGM), CTFP, and GT-GAN, the other methods cannot deal with
irregular time series, so we make it possible for them to operate on irregular settings by replacing
RNN encoder with GRU-D.

Method Regular Settings Irregular Settings (Missing Rate: 30%)
Stocks Energy Air AI4I Stocks Energy Air AI4I

D
is

c.
sc

or
e

TSGM-VP .022±.005 .221±.025 .122±.014 .147±.005 .062±.018 .294±.007 .190±.042 .142±.048
TSGM-subVP .021±.008 .198±.025 .127±.010 .150±.010 .025±.009 .326±.008 .240±.018 .121±.082

T-Forcing .226±.035 .483±.004 .404±.020 .435±.025 .409±.051 .347±.046 .458±.122 .493±.018
P-Forcing .257±.026 .412±.006 .484±.007 .443±.026 .480±.060 .491±.020 .494±.012 .430±.061
TimeGAN .102±.031 .236±.012 .447±.017 .070±.009 .411±.040 .479±.010 .500±.001 .500±.000
RCGAN .196±.027 .336±.017 .459±.104 .234±.015 .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN .399±.028 .499±.001 .499±.000 .499±.001 .500±.000 .500±.000 .500±.000 .450±.150
TimeVAE .175±.031 .498±.006 .381±.037 .446±.024 .423±.088 .382±.124 .373±.191 .384±.086
COT-GAN .285±.030 .498±.000 .423±.001 .411±.018 .499±.001 .500±.000 .500±.000 .500±.000

CTFP .499±.000 .500±.000 .499±.000 .499±.001 .500±.000 .500±.000 .500±.000 .499±.001
GT-GAN .077±.031 .221±.068 .413±.001 .394±.090 .251±.097 .333±.063 .454±.029 .435±.018

Pr
ed

.s
co

re

TSGM-VP .037±.000 .257±.000 .005±.000 .217±.000 .012±.002 .049±.001 .042±.002 .067±.013
TSGM-subVP .037±.000 .252±.000 .005±.000 .217±.000 .012±.001 .049±.001 .044±.004 .061±.001

T-Forcing .038±.001 .315±.005 .008±.000 .242±.001 .027±.002 .090±.001 .112±.004 .147±.010
P-Forcing .043±.001 .303±.006 .021±.000 .220±.000 .079±.008 .147±.001 .101±.003 .134±.005
TimeGAN .038±.001 .273±.004 .017±.004 .253±.002 .105±.053 .248±.024 .325±.005 .251±.010
RCGAN .040±.001 .292±.005 .043±.000 .224±.001 .523±.020 .409±.020 .342±.018 .329±.037

C-RNN-GAN .038±.000 .483±.005 .111±.000 .340±.006 .345±.002 .440±.000 .354±.060 .400±.026
TimeVAE .042±.002 .268±.004 .013±.002 .233±.010 .207±.014 .139±.004 .105±.002 .144±.003
COT-GAN .044±.000 .260±.000 .024±.001 .220±.000 .274±.000 .427±.000 .451±.000 .570±.000

CTFP .084±.005 .469±.008 .476±.235 .412±.024 .070±.009 .499±.000 .060±.027 .424±.002
GT-GAN .040±.000 .312±.002 .007±.000 .239±.000 .077±.031 .221±.068 .064±.002 .087±.013
Original .036±.001 .250±.003 .004±.000 .217±.000 .011±.002 .045±.001 .044±.006 .059±.001

the fidelity and the diversity of synthesized time-series samples, we use the following predictive
score and the discriminative score as in (Yoon et al., 2019; Jeon et al., 2022). We strictly follow
the evaluation protocol agreed by the time-series research community (Yoon et al., 2019; Jeon et al.,
2022). Both metrics are designed in a way that lower values are preferred. We run each generative
method 10 times with different seeds, and report its mean and standard deviation of the following
discriminative and predictive scores:

i) Predictive Score: We use the predictive score to evaluate whether a generative model can suc-
cessfully reproduce the temporal properties of the original data. To do this, we first train a popular
LSTM-based sequence model for time-series forecasting with synthesized samples. However, the
existing predictive score only predicts a last sample of total sequence, so Jeon et al. (2022) suggests
a comprehensive approach that considers the entire time series. For fair comparison, we reuse evalu-
ation metrics of Yoon et al. (2019), Jeon et al. (2022) for regular and irregular settings, respectively.

ii) Discriminative Score: In order to assess how similar the original and generated samples are, we
train a 2-layer LSTM model that classifies the real/fake samples into two classes, real or fake. We
use the performance of the trained classifier on the test data as the discriminative score. Therefore,
lower discriminator scores mean real and fake samples are similar.

4.2 EXPERIMENTAL RESULTS

At first, on the regular time-series generation, Table 2 shows that our method achieves remarkable
results, outperforming TimeGAN and GT-GAN except only for the discriminative score on AI4I.
Especially, for Stock, Energy, and Air, TSGM exhibits overwhelming performance by large margins
for the discriminative score. Moreover, for the predictive score, TSGM performs the best and obtains
almost the same scores as that of the original data, which indicates that generated samples from
TSGM preserve all the predictive characteristics of the original data.

Next, on the irregular time-series generation, we give the result with the 30% missing rate setting on
Table 2 and other results in Appendix K. TSGM also defeats almost all baselines by large margins on
both the discriminative and predictive scores. Interestingly, VP generates poorer data as the missing
rate grows up, while subVP synthesizes better one.

We show t-SNE visualizations and KDE plots for the regular time-series generation in Figure 3 and
Figure 1. TimeGAN, GT-GAN, and TimeVAE are representative GAN or VAE-based baselines. In
the figures, unlike the baseline methods, the synthetic samples generated from TSGM consistently
show successful recall from the original data.
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Table 3: Sensitivity results on the depth of Mθ and the number of sampling steps. Our default TSGM
has a depth of 4 and its number of sampling steps is 1,000. For other omitted datasets, we observe
similar patterns.

Method TSGM Depth of 3 500 steps 250 steps 100 steps
SDE VP subVP VP subVP VP subVP VP subVP VP subVP

D
is

c. Stocks .022±.005 .021±.008 .022±.004 .020±.007 .025±.005 .020±.004 .067±.009 .022±.009 .202±.013 .023±.005
Energy .221±.025 .198±.025 .175±.009 .182±.009 .259±.003 .248±.002 .250±.003 .247±.002 .325±.003 .237±.004

Pr
ed

. Stocks .037±.000 .037±.000 .037±.000 .037±.000 .037±.000 .037±.000 .037±.000 .037±.000 .039±.000 .037±.000
Energy .257±.000 .252±.000 .253±.000 .253±.000 .257±.000 .253±.000 .256±.000 .253±.000 .256±.000 .253±.000

Furthermore, TSGM generates more diverse synthetic samples compared to the three representative
baselines across all cases. Notably, TSGM achieves significantly higher diversity on the Energy
and Air dataset, which exhibits the most complex correlations (cf. Fig. 3 and Fig. 6). Diffusion
models are known to produce more diverse data than GANs (Bayat, 2023; Yang et al., 2023). As
demonstrated by our results, TSGM synthesizes diverse data, highlighting another advantage of
using diffusion models as anticipated.

4.3 SENSITIVITY AND ABLATION STUDIES

We conduct two sensitivity studies on regular time-series: i) reducing the depth of our score network,
ii) decreasing the sampling step numbers. The results are in Table 3. At first, we modify the depth
of our score network from 4 to 3 to check the performance of the lighter conditional score network.
Surprisingly, we achieve a better discriminative score with a slight loss on the predictive score. Next,
we decrease the number of sampling steps for faster sampling from 1,000 steps to 500, 250, and 100
steps, respectively. For VP, the case of 500 steps achieves almost the same results as that of original
TSGM. Surprisingly, in the case of subVP, we achieve good results until 100 steps.

Table 4: Comparison between with and without
pre-training the autoencoder

Method SDE Stocks Energy

D
is

c. TSGM VP .022±.005 .221±.025
subVP .021±.008 .198±.025

w/o pre-training VP .022±.004 .322±.003
subVP .059±.006 .284±.004

Pr
ed

. TSGM VP .037±.000 .257±.000
subVP .037±.000 .252±.000

w/o pre-training VP .037±.000 .252±.000
subVP .037±.000 .251±.000

As an ablation study, we simultaneously train
the conditional score network, encoder, and de-
coder from scratch on regular time-series gen-
eration (i.e., without the pre-training process).
The results are in Table 4. These ablation mod-
els are worse than the full model due to the in-
creased training complexity, but they still out-
perform many baselines. This ablation study
shows the efficacy of pre-training our autoen-
coder. Additionally, in Appendix M, we pro-
vide an additional ablation study about the efficacy of our recursive structures.

5 CONCLUSIONS

We presented a score-based generative model framework for universal time-series generation. We
combined an autoencoder and our score network into a single framework to accomplish the goal
— our framework supports RNN-based or continuous-time method-based autoencoders. We also
designed an appropriate denoising score matching loss for our generation task and achieved state-
of-the-art results on various datasets in terms of the discriminative and predictive scores. In addition,
we conducted rigorous ablation and sensitivity studies to prove the efficacy of our model design.

Limitations. Although our method achieves state-of-the-art sampling quality and diversity, there
exists a fundamental problem that all SGMs have. That is, SGMs are slower than GANs for gener-
ating samples (see Appendix H). Since there are several accomplishments for faster sampling (Xiao
et al., 2022; Jolicoeur-Martineau et al., 2021), however, one can apply them to our method and it
would be much faster without any loss of sampling quality and diversity. Moreover, TSGM’s gen-
eration is not too much slow since time-series data are much smaller than image data, which means
TSGM still has its commercial value. We point out that TSGM generates a sample of the Energy
dataset, the largest dataset among our baselines, using only 0.8 second (see Section H).
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A PROOFS

We introduce an additional lemma to prove Theorem 3.1. In the following lemma, we state about
the denoising score matching on time-series.

Lemma A.1. In L1 loss function, l1(n, s) can be replaced by the following l⋆2(n, s):

l⋆2(n, s) = EX0
n
EXs

1:n

[∥∥Mθ(s, Xs
1:n, X0

1:n−1)−∇Xs
1:n

log p(Xs
1:n|X0

1:n)
∥∥2
2

]
, (13)

where X0
n and Xs

1:n are sampled from p(X0
n|X0

1:n−1) and p(Xs
1:n|X0

1:n). Therefore, we can use an

alternative objective, L2 = EsEX1:N

[∑N
n=1 λ(s)l

⋆
2(n, s)

]
instead of L1.

Proof. At first, if n = 1, it can be substituted with the naive denoising score loss by Vincent (2011)
since x0

0 = 0.

Next, let us consider n > 1. l1(n, s) can be decomposed as follows:

l1(n, s) = −2 · Exs1:n⟨Mθ(s, xs1:n, x01:n−1),∇xs1:n log p(xs
1:n|x01:n−1)⟩

+Exs1:n

[∥∥Mθ(s, xs1:n, x01:n−1)
∥∥2
2

]
+ C1

(14)

Here, C1 is a constant that does not depend on the parameter θ, and ⟨·, ·⟩ means the inner product.
Then, the first part’s expectation of the right-hand side can be expressed as follows:

Exs1:n [⟨Mθ(s, xs
1:n, x0

1:n−1),∇xs1:n log p(xs1:n|x01:n−1)⟩]

=

∫
xs1:n

⟨Mθ(s, xs1:n, x0
1:n−1),∇xs1:n log p(xs1:n|x0

1:n−1)⟩p(xs1:n|x01:n−1)dxs1:n

=

∫
xs1:n

⟨Mθ(s, xs1:n, x01:n−1),
1

p(x0
1:n−1)

∂p(xs1:n, x01:n−1)

∂xs1:n
⟩dxs

1:n

=

∫
x0n

∫
xs1:n

⟨Mθ(s, xs
1:n, x01:n−1),

1

p(x0
1:n−1)

∂p(xs1:n, x01:n−1, x0n)
∂xs1:n

⟩dxs
1:ndx0n

=

∫
x0n

∫
xs1:n

⟨Mθ(s, xs
1:n, x01:n−1),

∂p(xs1:n|x0
1:n))

∂xs1:n
⟩

p(x0
1:n−1, x0n)

p(x0
1:n−1)

dxs
1:ndx0n

=

∫
x0n

∫
xs1:n

⟨Mθ(s, xs1:n, x01:n−1),
∂p(xs1:n|x0

1:n)

∂xs
1:n

⟩p(x0
n|x01:n−1)dxs1:ndx0n

= Ex0n

[∫
xs1:n

⟨Mθ(s, xs1:n, x01:n−1),
∂p(xs1:n|x01:n)

∂xs1:n
⟩dxs1:n

]

= Ex0n

[∫
xs1:n

⟨Mθ(s, xs1:n, x01:n−1),∇xs1:n log p(xs
1:n|x01:n)⟩p(xs

1:n|x01:n)dxs
1:n

]
= Ex0nExs1:n [⟨Mθ(s, xs

1:n, x01:n−1),∇xs1:n log p(xs1:n|x01:n)⟩]

(15)
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Similarly, the second part’s expectation of the right-hand side can be rewritten as follows:

Exs1:n [
∥∥Mθ(s, xs1:n, x01:n−1)

∥∥2
2
]

=

∫
xs1:n

∥∥Mθ(s, xs1:n, x01:n−1)
∥∥2
2
· p(xs1:n|x0

1:n−1)dxs1:n

=

∫
x0n

∫
xs1:n

∥∥Mθ(s, xs
1:n, x01:n−1)

∥∥2
2
·

p(xs1:n, x01:n−1, x0
n)

p(x0
1:n−1)

dxs1:ndx0n

=

∫
x0n

∫
xs1:n

∥∥Mθ(s, xs1:n, x01:n−1)
∥∥2
2
· p(xs1:n|x0

1:n)
p(x01:n−1, x0n)

p(x0
1:n−1)

dxs
1:ndx0n

=

∫
x0n

∫
xs1:n

∥∥Mθ(s, xs1:n, x01:n−1)
∥∥2
2
· p(xs1:n|x0

1:n)p(x
0
n|x01:n−1)dxs1:ndx0

n

= Ex0nExs1:n [
∥∥Mθ(s, xs1:n, x0

1:n−1)
∥∥2
2
]

(16)

Finally, by using above results, we can derive following result:

l1 = Ex0nExs1:n

[∥∥Mθ(s, xs
1:n, x01:n−1)

∥∥2
2

]
+ C1

− 2 · Ex0nExs1:n⟨Mθ(s, xs1:n, x01:n−1),∇xs1:n log p(xs
1:n|x01:n)⟩

= Ex0nExs1:n

[∥∥Mθ(s, xs1:n, x01:n−1)−∇xs1:n log p(xs1:n|x0
1:n)
∥∥2
2

]
+ C

(17)

C is a constant that does not depend on the parameter θ.

Theorem A.1 (Autoregressive denoising score matching). l1(n, s) can be replaced with the follow-
ing l2(n, s)

Lscore = EsEx01:N

[
N∑

n=1

λ(s)l2(n, s)

]
, (18)

where

l2(n, s) = EXs
1:n

[∥∥Mθ(s, Xs
1:n, X0

1:n−1)−∇Xs
1:n

log p(Xs
1:n|X0

1:n)
∥∥2
2

]
. (19)

Then, L1 = Lscore is satisfied.

proof. By Lemma A.1, it suffices to show that L2 = Lscore. Whereas one can use the law
of total expectation, which means E[X] = E[E[X|Y ]] if X,Y are on an identical probability
space to show the above formula, we calculate directly. At first, let us simplify the expecta-
tion of the inner part with a symbol f(x0

1:n) for our computational convenience, i.e., f(x01:n) =

EsExs1:n

[
λ(s)

∥∥Mθ(s, xs1:n, x01:n−1)−∇xs1:n log p(xs
1:n|x01:n)

∥∥2
2

]
. Then we have the following defi-

nition:

L2 = EsEx01:N
[l⋆2] = Ex01:N

[
N∑

n=1

Ex0n [f(x
0
1:n)]

]
=

N∑
n=1

Ex01:N
Ex0n [f(x

0
1:n)] (20)
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At last, the expectation part can be further simplified as follows:

Ex01:N
Ex0n [f(x

0
1:n)]

=

∫
x01:N

∫
x0n

f(x0
1:n)p(x

0
n|x0

1:n−1)dx0n · p(x0
1:n−1)p(x

0
n:N |x01:n−1)dx0

1:N

=

∫
x01:N

∫
x0n

f(x0
1:n)p(x

0
1:n)dx0n · p(x0

n:N |x01:n−1)dx01:N

=

∫
x0n:N

(∫
x01:n

f(x0
1:n)p(x

0
1:n)dx0

1:n

)
p(x0n:N |x01:n−1)dx0n:N

=

∫
x01:n

f(x0
1:n)p(x

0
1:n)dx01:n

=

∫
x01:n

(∫
x0n+1:N

p(x0n+1:N |x0
1:n)dx0n+1:N

)
f(x01:n)p(x

0
1:n)dx01:n

=

∫
x01:N

f(x01:n)p(x
0
1:N )dx01:N

= Ex01:N
[f(x01:n)]

(21)

Since
∑N

n=1 Ex01:N
[f(x01:n)] = Ex01:N

[
∑N

n=1 f(x
0
1:n)] = Lscore, we prove the theorem. □

B EXISTING TIME-SERIES DIFFUSION MODELS

There exist time-series diffusion models for forecasting and imputation (Rasul et al., 2021; Tashiro
et al., 2021). However, our approach to time-series synthesis is technically distinct. While these
models aim to generate fulfilled samples given partially known time-series, TSGM focuses on pro-
ducing diverse samples. Furthermore, TSGM is designed to provide diverse regular time-series given
regular or irregular data unlike time-series forecasting, which predicts future observations based on
past data, and time-series imputation, which infers missing elements within a given time-series sam-
ple. This intuition is reflected in the experimental results in Section C.

We refer to a detailed analysis of these experiments in Section C.3.

B.1 DIFFUSION MODELS FOR TIME-SERIES FORECASTING AND IMPUTATION

TimeGrad (Rasul et al., 2021) is a diffusion-based method for time-series forecasting, and
CSDI (Tashiro et al., 2021) is for time-series imputation.

In TimeGrad (Rasul et al., 2021), they used a diffusion model for forecasting future observations
given past observations. On each sequential order n ∈ {2, ..., N} and diffusion step s ∈ {1, ..., T},
they train a neural network ϵθ(·,x1:n−1, s) with a time-dependent diffusion coefficient ᾱs by mini-
mizing the following objective function:

Ex0n,ϵ,s[
∥∥ϵ− ϵθ(

√
ᾱsx

0
n +

√
1− ᾱsϵ,x1:n−1, s)

∥∥2
2
], (22)

where ϵ ∼ N (0, I). The above formula assumes that we already know x1:n−1, and by using an RNN
encoder, x1:n−1 can be encoded into hn−1. After training, the model forecasts future observations
recursively. More precisely speaking, x1:n−1 is encoded into hn−1 and the next observation xn is
forecast from the previous condition hn−1.

CSDI (Tashiro et al., 2021) proposed a general diffusion framework which can be applied mainly
to time-series imputation. CSDI reconstructs an entire sequence at once, not recursively. Let x0 ∈
Rdim(X)×N be an entire time-series sequence with N observations in a matrix form. They define
x0co and x0ta as conditions and imputation targets which are derived from x0, respectively. They then
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Figure 4: Graphical representation of TimeGrad (left) and TSGM (right). We adapt TimeGrad to our
generation task but its results are not comparable even to other baselines’ results (see Appendix C.1).

train a neural network ϵθ(·, x0co, s) with a corresponding diffusion coefficient ᾱs and a diffusion step
s ∈ {1, ..., T} by minimizing the following objective function:

Ex0,ϵ,s[
∥∥ϵ− ϵθ(s, xsta, x0

co)
∥∥2
2
], (23)

where xs
ta =

√
ᾱsx0ta+(1−ᾱs)ϵ. By training the network using the above loss, it generates missing

elements from the partially filled matrix x0co.

B.2 DIFFERENCE BETWEEN EXISTING AND OUR WORKS

Although they have earned state-of-the-art results for forecasting and imputation, we found that
they are not suitable for our generative task due to the fundamental mismatch between their model
designs and our task (cf. Table 5 and Fig. 4).

Table 5: Comparison among various recent GAN, diffusion, and SGM-based methods for time-
series. xt (resp. x̂t) means a raw (resp. synthesized) observation at time t. For CSDI, xco means
a set of known values and xta means a set of target missing values — it is not necessary that xco
precedes xta in time in CSDI.

Method Type Task Description
TimeGrad Diffusion From x1:N−K , infer x̂N−K+1:N .

CSDI Diffusion Given known values xco, infer missing values x̂ta.
TimeGAN GAN Synthesize x̂1:N from scratch.
GT-GAN GAN Synthesize x̂1:N from scratch.
TSGM SGM Synthesize x̂1:N from scratch.

TimeGrad generates future observations given the hidden representation of past observations hn−1,
i.e., a typical forecasting problem. Since our task is to synthesize from scratch, past known obser-
vations are not available. Thus, TimeGrad cannot be directly applied to our task.

In CSDI, there are no fixed temporal dependencies between x0co and x0ta since its task is to impute
missing values, i.e., x0ta, from known values, i.e., x0co, in the matrix x0. It is not necessary that x0co
precedes x0ta in time, according to the CSDI’s method design. Our synthesis task can be considered
as x0co = ∅, which is the most extreme case of the CSDI’s task. Therefore, it is not suitable to be
used for our task.

To our knowledge, we are the first proposing an SGM-based time-series synthesis method. We
propose to train a conditional score network by using the denoising score matching loss proposed by
us, which is denoted as LH

score. Unlike other methods (Rasul et al., 2021; Tashiro et al., 2021) that
resort to existing known proofs, we design our denoising score matching loss in Eq. equation 11 and
prove its correctness. Meanwhile, TimeGrad and CSDI can be somehow modified for time-series
synthesis but their generation quality is mediocre (see Appendix C).

C EXPERIMENTAL RESULTS FOR INAPPLICABILITY OF EXISTING
TIME-SERIES DIFFUSION MODELS TO OUR WORK

In this section, we provide experimental results to show inapplicability of the existing time-series
diffusion models, TimeGrad and CSDI, to the time-series generation task.
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Table 6: Comparison between TSGM and modified TimeGrad in Energy for its regular time-series
setting

Method Disc. Pred.
TSGM-VP .221±.025 .257±.000

TSGM-subVP .198±.025 .252±.000
Modified TimeGrad .500±.000 .287±.003

Table 7: Comparison between TSGM and modified CSDI in Stock, Air, Energy and AI4I for its
regular time-series setting

Method Stock Air Energy AI4I
Disc. Pred. Disc. Pred. Disc. Pred. Disc. Pred.

TSGM-VP .022±.005 .037±.000 .122±.014 .005±.000 .147±.005 .217±.000 .221±.025 .257±.000
TSGM-subVP .021±.008 .037±.000 .127±.010 .005±.000 .150±.010 .217±.000 .198±.025 .252±.000
Modified CSDI .379±.008 .045±.001 .437±.144 .040±.001 .427±.081 .217±.000 .500±.000 .251±.000

C.1 ADAPTING TIMEGRAD TOWARD GENERATION TASK

In this section, TimeGrad (Rasul et al., 2021) is modified for the generation task. We simply add
an artificial zero vector 0 in front of the all time-series samples of Energy. Therefore, TimeGrad’s
task becomes given a zero vector, forecasting (or generating) all other remaining observations. For
the stochastic nature of its forecasting process, it can somehow generate various next observations
given the sample input 0. Table 6 shows the experimental comparison between modified TimeGrad
and TSGM in Energy for its regular time-series setting. TSGM gives outstanding performance,
compared to modified TimeGrad. When checked in Table 2, modified TimeGrad is even worse than
some baselines. Therefore, unlike TSGM, TimeGrad is not appropriate for the generation task.

C.2 ADAPTING CSDI TOWARD GENERATION TASK

In this section, we apply CSDI to the unconditional time-series generation task by regarding all
observations as missing values (i.e., x0co = 0) varying i) its kernel size from 1 to 7 and ii) the
number of diffusion steps from 50 to 250. However, as demonstrated in Table 7, CSDI fails to
generate reliable time series samples in the datasets for its regular time series setting. In particular,
TSGM with 250 steps in the ablation study section significantly outperforms it. Hence, we conclude
that CSDI’s unconditional generation is unsuitable for the time-series generation task.

C.3 ANALYSIS ON EXPERIMENTAL RESULTS

Until now, we have demonstrated the inferior results of forecasting and imputation on time-series
generation. As shown by the results, these two models achieve relatively good predictive score
but poor discriminative score, indicating a lack of diversity. This is because the primary goal of
imputation and forecasting is to generate precise values that closely match the ground truth, as we
discussed in Section B. For example, CSDI takes its imputed time-series by averaging synthesized
samples 100 times. Therefore, as the quality of forecasting and imputation improves, the diversity
of the generated samples decreases, which means they are not suitable for time-series generation.

D DETAILED TRAINING PROCEDURE

We train the conditional score network and the encoder-decoder pair alternately after the pre-training
step. For some datasets, we found that training only the conditional score network achieves better
results after pre-training the autoencoder. Therefore, usealt = {True, False} is a hyperparameter
to set whether we use the alternating training method. We give the detailed training procedure in
Algorithm 1.
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Algorithm 1: Training algorithm
Input: x0

1:N ; usealt is a Boolean parameter to set whether to use the alternating training method; iterpre
is the number of iterations for pre-training; itermain is the number of iterations for training.

1 for iter ∈ {1, ..., iterpre} do
2 Train Encoder and Decoder by using Led

3 end
4 for iter ∈ {1, ..., itermain} do
5 Train Mθ by using LH

score

6 if usealt then
7 Train the Encoder and Decoder by using Led

8 end
9 end

10 return Encoder,Decoder,Mθ

E DATASETS AND BASELINES

We use 4 datasets from various fields as follows. We summarize their data dimensions, the number
of training samples, and their time-series lengths (window sizes) in Table 8.

• Stock (Yoon et al., 2019): The Google stock dataset was collected irregularly from 2004 to
2019. Each observation has (volume, high, low, opening, closing, adjusted closing prices),
and these features are correlated.

• Energy (Candanedo et al., 2017): This dataset is from the UCI machine learning repository
for predicting the energy use of appliances from highly correlated variables such as house
temperature and humidity conditions.

• Air (De Vito et al., 2008): The UCI Air Quality dataset was collected from 2004 to 2005.
Hourly averaged air quality records are gathered using gas sensor devices in an Italian city.

• AI4I (Matzka, 2020): AI4I means the UCI AI4I 2020 Predictive Maintenance dataset. This
data reflects the industrial predictive maintenance scenario with correlated features includ-
ing several physical quantities.

We use several types of generative methods for time-series as baselines. At first, we consider
autoregressive generative methods: T-Forcing (teacher forcing) (Graves, 2013; Sutskever et al.,
2011) and P-Forcing (professor forcing) (Goyal et al., 2016). Next, we use GAN-based methods:
TimeGAN (Yoon et al., 2019), RCGAN (Esteban et al., 2017), C-RNN-GAN (Mogren, 2016), COT-
GAN (Xu et al., 2020), GT-GAN (Jeon et al., 2022). We also test VAE-based methods into our
baselines: TimeVAE (Desai et al., 2021). Finally, we treat flow-based methods. Among the array
of flow-based models designed for time series generation, we have chosen to compare our TSGM
against CTFP (Deng et al., 2020). This choice is informed by the fact that CTFP possesses the capa-
bility to handle both regular and irregular time series samples, aligning well with the nature of our
task which involves generating both regular and irregular time series data.

Table 8: Characteristics of the datasets we use for our experiments

Dataset Dimension #Samples Length
Stocks 6 3685

24Energy 28 19735
Air 13 9357

AI4I 5 10000

F HYPERPARAMETERS AND ITS SEARCH SPACE

Table 9 shows the best hyperparameters for our conditional score network Mθ on regular and irreg-
ular time-series, and we explain its neural network architecture in Appendix J.2. Mθ has various
hyperparameters and for key hyperparameters, we set them as listed in Table 9. For other common
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Table 9: The best hyperparameter setting for TSGM on regular and irregular time-series . Dhidden

denotes the hidden dimension of GRU-ODE-decoder.

Dataset Regular Settings Irregular Settings
dim(h) usealt iterpre itermain Dhidden dim(h) usealt iterpre itermain

Stocks 24 True 50000

40000

48 24 True

50000 40000Energy 56 False 100000 112 56 False
Air 40 True 50000 40 40 True

AI4I 24 True 50000 48 24 True

hyperparameters with baselines, we reuse the default configurations of TimeGAN (Yoon et al., 2019)
and VPSDE (Song et al., 2021) to conduct the regular time-series generation.

We give our search space for the hyperparameters of TSGM. iterpre is in {50000,100000}. The di-
mension of hidden features, dhidden, ranges from 2 times to 5 times the dimension of input features.
On regular time-series generation, we follow the default values in TimeGAN (Yoon et al., 2019)
and VPSDE (Song et al., 2021). For irregular time-series tasks, we search the hidden dimension of
decoder from 2 times to 4 times the dimension of input dimension, and follow GTGAN (Jeon et al.,
2022) for other settings of NCDE-encoder and GRU-ODE-decoder.

For baselines, we check their hyperparameters as follow:

• T-forcing (Graves, 2013): We control batch size among {256, 512, 1024}.
• P-forcing (Goyal et al., 2016): We control batch size among {256, 512, 1024}.
• TimeGAN (Yoon et al., 2019): The dimension of hidden features range from 2 times to 4

times the dimension of input features.
• RCGAN (Esteban et al., 2017): We control learning rate of generator’s optimizer and dis-

criminator’s optimizer from {1e-4, 2e-4} and {1e-3, 5e-3}, respectively.
• C-RNN-GAN (Mogren, 2016): We control learning rate of generator’s optimizer and dis-

criminator’s optimizer from {1e-4, 2e-4} and {3e-4, 4e-4}, respectively. We also use label
smoothing which is stated in the paper.

• TimeVAE (Desai et al., 2021): We control its latent dimension among {5, 10, 20}.
• COT-GAN (Xu et al., 2020): We calculate score every 250 epoch during 1000 epochs and

get the best experimental results.
• GT-GAN (Jeon et al., 2022): For encoder-decoder pair, we test from exactly the same

search space as TSGM. We calculate score every 5000 iteration during 40000 iterations
and get the best score.

Especially for COT-GAN, since it is on video generation, modifying the architecture to one di-
mensional form was difficult. So, we augment our time-series data into two dimensional ones by
stacking them. After generating two-dimensional data, we extract the first row of the synthesized
one and calculate the score. We search every hyperparameter from {0.5, 1, 2} times of default value.
Through the experiment, we acquire compatible result but lower than TimeGAN in several datasets.

We follow default values for miscellaneous settings which are not explained on the above. Addition-
ally, to deal with irregular time-series, we search the hyperparameters of GRU-D, which substitutes
for RNN or are added to the head of baselines. We test the hidden dimension of GRU-D from 2
times to 4 times the dimension of input features.

G MISCELLANEOUS EXPERIMENTAL ENVIRONMENTS

We give detailed experimental environments. The following software and hardware environments
were used for all experiments: UBUNTU 18.04 LTS, PYTHON 3.9.12, CUDA 9.1, NVIDIA Driver
470.141, i9 CPU, and GEFORCE RTX 2080 TI.

In the experiments, we report only the VP and subVP-based TSGM and exclude the VE-based
one for its lower performance. For baselines, we reuse their released source codes in their official
repositories and rely on their designed training and model selection procedures. For our method, we

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 10: The memory usage of TimeGAN, GTGAN, and TSGM for training and the sampling time
of them for generating 100 samples on each dataset. Note that The original score-based model (Song
et al., 2021) requires 3,214 seconds for sampling 1000 CIFAR-10 images while StyleGAN (Karras
et al., 2019) needs 0.4 seconds, which is similar to the case between TSGM and TimeGAN.

Method Memory Usage (GiB) Inference Time (s)
Stock Energy Stock Energy

TimeGAN 1.1 1.6 0.43 0.47
GTGAN 2.3 2.3 0.43 0.47
TSGM 1.9 1.9 86.32 85.89

select the best model for every 5000 iterations. For this, we synthesize samples and calculate the
mean and standard deviation scores of the discriminative and predictive scores. Furthermore, TSGM
requires 100 sampling steps, which is relatively lower compared to other diffusion-based models—
CSDI (Tashiro et al., 2021) requires 50 steps but averages samples over 100 iterations, effectively
requiring 5000 steps.

H EMPIRICAL SPACE AND TIME COMPLEXITY ANALYSES

We report the memory usage during training and the wall-clock time for generating 100 time-series
samples in Table 10. We compare TSGM to TimeGAN (Yoon et al., 2019) and GTGAN (Jeon
et al., 2022). Our method is relatively slower than TimeGAN and GTGAN, which is a fundamental
drawback of all SGMs. For example, the original score-based model (Song et al., 2021) requires
3,214 seconds for sampling 1,000 CIFAR-10 images while StyleGAN (Karras et al., 2019) needs
0.4 seconds. However, we also emphasize that this problem can be relieved by using the techniques
suggested in (Xiao et al., 2022; Jolicoeur-Martineau et al., 2021) as we mentioned in the conclusion
section.

I ENCODER AND DECODER FOR IRREGULAR TIME-SERIES

To process irregular time-series, one can use continuous-time methods for constructing the encoder
and the decoder. In our case, we use neural controlled differential equations (NCDEs) for designing
the encoder and GRU-ODEs for designing the decoder, respectively (Kidger et al., 2020; Brouwer
et al., 2019). Our encoder based on NCDEs can be defined as follows:

h(tn) = h(tn−1) +

∫ tn

tn−1

f(t,h(t); θf )
dX(t)

dt
dt, (24)

where X(t) is an interpolated continuous path from x1:N — NCDEs typically use the natural cubic
spline algorithm to define X(t), which is twice differentiable and therefore, there is not any problem
to be used for forward inference and backward training. In other words, NCDEs evolve the hidden
state h(t) by solving the above Riemann-Stieltjes integral.

For the decoder, one can use the following GRU-ODE-based definition:

d(tn) = d(tn−1) +

∫ tn

tn−1

g(t,d(t); θg)dt, d(tn) = GRU(h(tn),d(tn)), x̂n = FC(d(tn)),

(25)

where FC denotes a fully-connected layer-based output layer. The intermediate hidden represen-
tation d(tn) is jumped into the hidden representation d(tn) by the GRU-based jump layer. At the
end, there is an output layer.

For our irregular time-series experiments, i.e, dropping 30%, 50%, and 70% of observations from
regular time-series, we use the above encoder and decoder definitions and have good results.
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J NEURAL NETWORK ARCHITECTURE

J.1 ARCHITECTURAL DETAILS OF NCDES AND GRU-ODES

As mentioned in Appendix I, we take the following architecture for functions f , g of (24) and (25)
in Table 11.

Table 11: Architecture of functions f (upper) and g(lower). Each layer of encoder and gate of
decoder takes (σ ◦ Linear) form where σ denotes activation function. We describe which activation
and Linear function are used.

Layer Activation function Linear
1 ReLU dim(x)→ 4 dim(x)
2 ReLU 4 dim(x)→ 4 dim(x)
3 ReLU 4 dim(x)→ 4 dim(x)
4 Tanh 4 dim(x)→ dim(x)

Layer Gate Activation function Linear

1
rt ReLU

dim(h)→ dim(h)zt ReLU
ut Tanh

J.2 CONDITIONAL SCORE NETWORK

Unlike other generation tasks, e.g., image generation (Song et al., 2021) and tabular data synthe-
sis (Kim et al., 2022), where each sample is independent, time-series observations are dependent to
their past observations. Therefore, the score network for time-series generation must be designed to
learn the conditional log-likelihood given past generated observations, which is more complicated
than that in image generation.

In order to learn the conditional log-likelihood, we modify the popular U-net (Ronneberger et al.,
2015) architecture for our purposes. Since U-net has achieved various excellent results for other gen-
erative tasks (Song and Ermon, 2019; Song et al., 2021), we modify its 2-dimensional convolution
layers to 1-dimensional ones for handling time-series observations. The modified U-net, denoted
Mθ, is trained to learn our conditional score function (cf. Eq. equation 11). More details on training
and sampling with Mθ are in Sec. 3.4.

K ADDITIONAL EXPERIMENTAL RESULTS

We give additional experimental results for irregular time-series generation with 50% and 70% miss-
ing rates in Table 12.

L ADDITIONAL VISUALIZATIONS

In this section, we provide additional visualization results in each dataset. Figure 5 illustrates the
density function of each feature estimated by KDE in original and generated data. Figure 6 shows
original and generated data points projected onto a latent space using t-SNE (van der Maaten and
Hinton, 2008)

M EFFICACY OF OUR RECURSIVE GENERATION

In this section, we investigate the efficacy of our proposed recursive design. We compare TSGM
to an method using one-shot generation. we call one-shot generation when a generation method
generates all time-series observations at once, not recursively. In other words, D × N matrices,
where D means the number of features and N means the sequence length, are synthesized at once.
CSDI (Tashiro et al., 2021) is one of the most famous one-shot imputation model for time-series.
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Table 12: The left and right ones denote experimental results on irregular time-series with 30% and
50% missing rates, respectively. Note that except for our method (TSGM), CTFP, and GT-GAN, the
other methods cannot deal with irregular time series, so we make it possible for them to operate on
irregular settings by replacing RNN encoder with GRU-D.

Method Irregular Settings (Missing Rate: 50%) Irregular Settings (Missing Rate: 70%)
Stocks Energy Air AI4I Stocks Energy Air AI4I

D
is

c.
sc

or
e

TSGM-VP .051±.014 .398±.003 .272±.012 .156±.106 .065±.010 .482±.003 .337±.025 .327±.104
TSGM-subVP .031±.012 .421±.008 .213±.025 .137±.102 .035±.009 .213±.025 .329±.027 .235±.123

T-Forcing .407±.034 .376±.046 .499±.001 .473±.045 .404±.068 .336±.032 .499±.001 .493±.010
P-Forcing .500±.000 .500±.000 .494±.012 .437±.079 .449±.150 .494±.011 .498±.002 .440±.125
TimeGAN .477±.021 .473±.015 .500±.001 .500±.000 .485±.022 .500±.000 .500±.000 .500±.000
RCGAN .500±.000 .500±.000 .500±.000 .500±.000 .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN .500±.000 .500±.000 .500±.000 .450±.150 .500±.000 .500±.000 .500±.000 .500±.000
TimeVAE .411±.110 .436±.088 .423±.153 .389±.113 .444±.148 .498±.003 .426±.148 .371±.092
COT-GAN .499±.001 .500±.000 .500±.000 .500±.000 .498±.001 .500±.000 .500±.000 .500±.000

CTFP .499±.000 .500±.000 .500±.000 .499±.001 .500±.000 .500±.000 .500±.000 .499±.000
GT-GAN .265±.073 .317±.010 .434±.035 .276±.033 .230±.053 .325±.047 .444±.019 .362±.043

Pr
ed

.s
co

re

TSGM-VP .011±.000 .051±.001 .041±.001 .060±.001 .011±.000 .053±.001 .043±.000 .092±.024
TSGM-subVP .011±.000 .051±.001 .042±.002 .065±.013 .012±.000 .042±.002 .042±.001 .097±.020

T-Forcing .038±.003 .090±.000 .121±.003 .143±.005 .031±.002 .091±.000 .116±.003 .144±.004
P-Forcing .089±.010 .198±.005 .101±.003 .116±.007 .107±.009 .193±.006 .107±.002 .125±.007
TimeGAN .254±.047 .339±.029 .325±.005 .251±.010 .228±.000 .443±.000 .425±.008 .323±.011
RCGAN .333±.044 .250±.010 .335±.023 .276±.066 .441±.045 .349±.027 .359±.008 .346±.029

C-RNN-GAN .273±.000 .438±.000 .289±.033 .373±.037 .281±.019 .436±.000 .306±.040 .262±.053
TimeVAE .195±.012 .143±.007 .103±.002 .144±.004 .199±.009 .134±.004 .108±.004 .142±.008
COT-GAN .246±.000 .475±.000 .557±.000 .449±.000 .278±.000 .456±.000 .556±.000 .435±.000

CTFP .084±.005 .469±.008 .476±.235 .412±.024 .084±.005 .469±.008 .476±.235 .412±.024
GT-GAN .018±.002 .064±.001 .061±.003 .113±.024 .020±.005 .076±.001 .059±.004 .124±.003
Original .011±.002 .045±.001 .044±.006 .059±.001 .011±.002 .045±.001 .044±.006 .059±.001
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Figure 5: Additional KDE plots for each feature in Air and AI4I datasets.

We convert our TSGM for the one-shot generation by removing the RNN-based encoder. In Ta-
ble 13, TSGM-oneshot shows poor generation quality in Stock and Energy. TSGM-oneshot achieves
comparable predictive scores but its discriminative score gets worse a lot. From these results, we
can support the efficacy of our recursive structures, compared to one-shot generation. One can also
check the one-shot generation result by CSDI in Appendix C.2.
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Figure 6: Additional t-SNE plots in Energy and AI4I datasets.
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Table 13: Comparison between TSGM and one-shot generations. We give representative results.
For other datasets, the results are similar or worse than the table.

Method Stock Energy
Disc. Pred. Disc. Pred.

TSGM-VP .022±.005 .037±.000 .221±.025 .257±.000
TSGM-subVP .021±.008 .037±.000 .198±.025 .252±.000
TSGM-oneshot .029±.018 .037±.000 .494±.001 .258±.000

Table 14: Comparison of drift and diffusion terms. σ(s) means positive noise values which are
increasing, and β(s) denotes noise values in [0,1], which are used in Song and Ermon (2019); Ho
et al. (2020).

SDE drift (f) diffusion (g)

VE 0
√

dσ2(s)
ds

VP − 1
2
β(s)xs

√
β(s)

subVP − 1
2
β(s)xs

√
β(s)(1− e−2

∫ s
0 β(t)dt)

N DRIFT AND DIFFUSION TERMS IN VE, VP AND SUBVP SDE

In this section, we describe the detailed form of each SDE. In (Song et al., 2021), the authors
investigated that SMLD (Song and Ermon, 2019) and DDPM (Ho et al., 2020) can be extended to
continuous forms and as a result, suggested VE and VP SDEs. Furthermore, the author proposed an
additional SDE form, called subVP SDE, which has a smaller variance than VP SDE but the same
expectation. The exact calculation is not a main subject of this paper, so we only explain the form
of these terms in Table 14. Please refer to (Song et al., 2021) for the detailed computation.

Along with already mentioned notations in Section 2.1, we define noise scales. σ(s) means positive
noise values which are increasing, and β(s) denotes noise values in [0,1] which are used in SMLD
and DDPM. Although we give the exact form of the three SDEs, we report only the VP and subVP-
based TSGM in our experiments and exclude the VE-based one for its lower performance.

O DETAILED DESCRIPTION OF GRU-D

GRU-D (Che et al., 2016) is a modified GRU model which is for learning time-series data with
missing values. This concept is similar with our problem statement, so we apply it to our baseline
for irregular case. GRU-D needs to learn decaying rates along with the values of GRU. First, GRU-D
learns decay rates which depict vagueness of data as time passed. After calculating the decay rates,
each value is composed of decay rate, mask, latest observed data, and predicted empirical mean that
of GRU. The code can be utilized in the following link: https://github.com/zhiyongc/GRU-D
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