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ABSTRACT

Diffusion models achieve high-quality generation but suffer from slow sampling
due to their iterative denoising process. Consistency models offer a faster alter-
native with competitive performance, trained via consistency distillation from
pretrained diffusion models or directly from raw data. We introduce a novel frame-
work interpreting consistency models through a Markov Decision Process (MDP),
framing their training as value estimation via Temporal Difference (TD) Learning.
This perspective reveals limitations in existing training strategies. Building on Easy
Consistency Tuning (ECT), we propose Stable Consistency Tuning (SCT), which
enhances variance reduction using the score identity. SCT significantly improves
performance on CIFAR-10 and ImageNet-64.

1 INTRODUCTION

Diffusion models have achieved state-of-the-art performance in generating images (Dhariwal &
Nichol, 2021; Rombach et al., 2022; Song & Ermon, 2019; Karras et al., 2022; 2024; Wang et al.,
2025), videos (Shi et al., 2024; Blattmann et al., 2023; Singer et al., 2022; Brooks et al., 2024,
Bao et al., 2024; Wang et al., 2023; 2024d;b; Bian et al., 2025), 3D (Gao et al., 2024; Shi et al.,
2023; Lai et al., 2025), and 4D data (Ling et al., 2024). These models iteratively refine noise into
clean samples, yielding high-quality results with stable training (Goodfellow et al., 2020; Sauer
et al., 2023a). However, their reliance on iterative inference leads to high computational costs (Song
et al., 2020; Ho et al., 2020), making practical applications such as real-time generation challenging,
especially for high-resolution images and videos. Consistency models (Song et al., 2023) address
these limitations by enabling high-quality, one-step generation without adversarial training. Recent
studies (Song & Dhariwal, 2023; Geng et al., 2024) show that their one-step and two-step performance
can rival diffusion models, which require significantly more inference steps. These models enforce
the self-consistency condition (Song et al., 2023) along probability flow ODE (PF-ODE) trajectories
through two main training methods: consistency distillation (CD) and consistency training/tuning
(CT). CD utilizes a pretrained diffusion model to simulate the PF-ODE, while CT learns directly
from real data.

This work provides a unified understanding of consistency models through the lens of bootstrapping.
We frame the reverse diffusion process as a Markov Decision Process (MDP), aligning consistency
training with Temporal Difference (TD) learning (Sutton & Barto, 2018). Our analysis reveals that
CD has lower variance and greater stability but is constrained by the pretrained model, while CT
offers higher potential but suffers from instability due to reward estimation variance. To address
this, we introduce Stable Consistency Tuning (SCT), which leverages variance-reduced training
via the score identity (Vincent, 2011; Xu et al., 2023) and a smoother progressive training schedule,
enhancing both stability and performance. Our core motivation is shown in Fig. 1.

2 PRELIMINARIES

Diffusion models generate data by solving a probability flow ordinary differential equation (PF-ODE),
which describes the deterministic evolution of data samples along a learned trajectory. These models
typically rely on a neural network to approximate the score function, enabling numerical solvers
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Figure 1: Stable consistency tuning (SCT) with variance reduced training target. SCT provides a
unifying perspective to understand different training strategies of consistency models.

to generate samples efficiently. Consistency models learn to directly map noisy samples to clean
data in a single step by predicting the solution of the PF-ODE, satisfying fo(x:,t) = X0, V¢ € [0, 1].
They are trained using a consistency loss, d( fg(x:,t), fo- (X, 7)), which ensures different noisy
samples along the same trajectory produce consistent outputs, enabling efficient and high-quality data
generation.

3 STABLE CONSISTENCY TUNING

3.1 UNDERSTANDING CONSISTENCY MODELS

For a general form of diffusion x; = a;x¢ + o€, the consistency model aims to learn a xq predictor
with only the information from x;, V¢ € [0, 1]. Specifically, for consistency models formulated as
X0(x¢,t;0) = a%xt — hg(xt,t), where hg approximates the weighted integral of €, we have the
self-consistency learning objective:

ho(xt,t) ‘ﬁ_tr""he*(X?'vT)v M

where r represents the integral of € over the time interval. This formulation aligns with the Bellman
equation, with hg serving as a value function. Particularly, we show the diffusion process can
be modeled as a Markov Decision Process (MDP) and consistency training corresponds to a value
estimation problem in Temporal Difference Learning (TD-Learning). We provide a detailed discussion
in Section II.

3.2 REDUCING THE TRAINING VARIANCE

Previous research has shown that reducing the variance for diffusion training can lead to improved
training stability and performance (Xu et al., 2023). However, this technique has only been applied to
unconditional generation and diffusion model training. We generalize this technique to both condi-
tional/unconditional generation and consistency training/tuning for variance reduction. Let c represent
the conditional inputs (e.g., class labels). We show the conditional epsilon estimation adopted in
consistency training/tuning can be replaced by our variance-reduced estimation in Theorem 1:
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data from the dataset can be used to adjust the learning objective of the consistency model, reducing
training variance and enhancing stability, as illustrated in Fig. 1.

where W; = is the weight of conditional €(x, t; x(()i) ). In simple terms, other

3.3 REDUCING THE DISCRETIZATION ERROR

To achieve higher performance, we minimize At = (¢t — r). A large At increases discretization
errors, while a small At may cause error accumulation or training failure. Previous works (Song
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et al., 2023; Song & Dhariwal, 2023; Geng et al., 2024) adopt progressive training, starting with a
large At and gradually reducing it. This accelerates optimization initially and later refines results,
improving performance. The ECT training schedule follows:

1
t ~ LogNormal(Pyean, Pya), 7 := ReLU (1 - Mn(t)) t, 3)

where ¢ controls shrinking speed, d determines frequency, and ReLU is max(-, 0). We empirically
find that a smoother shrinking process is beneficial, achieved by reducing both ¢ and d, leading to
faster and more stable training. Following (Song & Dhariwal, 2023; Geng et al., 2024), we apply
weighting 1/(t — r). Assuming r = «at, the weighting decomposes into } x ﬁ The term 1/t
prioritizes smaller timesteps, ensuring stable predictions as teachers for larger steps. The factor
1/(1 — «) increases weight as At shrinks, preventing gradient vanishing. To avoid instability when

At is too small, we introduce a smooth term § > 0 in the weighting function: ﬁ < %.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Evaluation Benchmarks. Following the evaluation protocols of iCT (Song & Dhariwal, 2023)
and ECT (Geng et al., 2024), we validate the effectiveness of SCT on CIFAR-10 (uncondi-
tional) (Krizhevsky et al., 2009) and ImageNet-64 (conditional) (Deng et al., 2009). Performance
is measured using Frechet Inception Distance (FID, lower is better) (Heusel et al., 2017) consistent
with recent studies (Geng et al., 2024; Karras et al., 2024).

Compared baselines. We compare our method against accelerated samplers (Lu et al., 2022; Zhao
et al., 2024), state-of-the-art diffusion-based methods (Ho et al., 2020; Song & Ermon, 2019; 2020;
Karras et al., 2022), distillation methods (Zhou et al., 2024; Salimans & Ho, 2022), alongside
consistency training and tuning approaches. Among these models, consistency training and tuning
methods serve as key baselines, including CT (LPIPS) (Song et al., 2023), iCT (Song & Dhariwal,
2023), ECT (Geng et al., 2024), and MCM (CT) (Heek et al., 2024). From a model perspective, iCT
is based on the ADM (Dhariwal & Nichol, 2021), ECT is built on EDM2 (Karras et al., 2024), and
MCM follows the UViTs of Simple Diffusion (Hoogeboom et al., 2023). The model size of ECT
is similar to that of iCT, while MCM does not explicitly specify the model size. The iCT model is
randomly initialized, whereas both ECT and MCM use pretrained diffusion models for initialization.
In terms of training costs, iCT uses a batch size of 4096 across 800,000 iterations, MCM employs a
batch size of 2048 for 200,000 iterations, and ECT utilizes a batch size of 128 for 100,000 iterations.
SCT follows ECT’s model architecture and training configuration.

4.2 RESULTS AND ANALYSIS

Training efficiency and efficacy. In Fig. 2, we plot 1-step FID and 2-step FID for SCT and ECT
along the number of training epochs, under the same training configuration. From the figure, we
observe that SCT significantly improves convergence speed compared to ECT, demonstrating the
efficiency and efficacy of SCT training. Additionally, the performance comparisons in Tables 1 and 2
also show that SCT outperforms ECT across different settings.
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Table 1: Comparison on CIFAR-10. Table 2: Comparison on ImageNet-64.
METHOD NEFE (}) FID (}) METHOD NFE () FID ()
Fast samplers & distillation for diffusion models Fast lers & distillation for diffusion models
DDIM (Song et al., 2020) 10 13.36 DDIM (Song et al., 2020) 50 13.7
DPM-solver-fast (Lu et al., 2022) 10 4.70 10 18.3
3-DEIS (Zhang & Chen, 2022) 10 4.17 DPM solver (Lu et al., 2022) 10 7.93
UniPC (Zhao et al., 2024) 10 3.87 20 342
Knowledge Distillation (Luhman & Luhman, 2021) 1 9.36 DEIS (Zhang & Chen, 2022) 10 6.65
DFNO (LPIPS) (Zheng et al., 2022) 1 3.78 20 3.10
2-Rectified Flow (+distill) (Liu et al., 2022) 1 485 DFNO (LPIPS) (Zheng et al., 2022) 1 7.83
TRACT (Berthelot et al., 2023) 1 3.78 TRACT (Berthelot et al., 2023) 1 7.43
Diff-Instruct (Luo et al., 2023) 1 4.53 2 4.97
PD (Salimans & Ho, 2022) 1 8.34 BOOT (Gu et al., 2023) 1 16.3

2 5.58 Diff-Instruct (Luo et al., 2023) 1 5.57
CTM (Kim et al., 2023) 1 5.19 PD (Salimans & Ho, 2022) 1 15.39
18 3.00 2 8.95
CTM (+GAN +CRJ) 1 1.98 CTM (+GAN + CRJ) (Kim et al., 2023) 1 1.92
2 1.87 SID (a = 1.0) (Zhou et al., 2024) 1 2.03
SiD (o = 1.0) (Zhou et al., 2024) 1 2.03 PD (LPIPS) (Song et al., 2023) 1 7.88
SiD (o = 1.2) (Zhou et al., 2024) 1 1.98 2 5.74
CD (LPIPS) (Song et al., 2023) 1 3.55 CD (LPIPS) (Song et al., 2023) 1 6.20
2 293 2 4.70
Direct Generation Direct Generation
Score SDE (Song et al., 2021) 2000 238 RIN (Jabri et al., 2022) 1000 1.23
Score SDE (deep) (Song et al., 2021) 2000 2.20 DDPM (Ho et al., 2020) 250 11.0
DDPM (Ho et al., 2020) 1000 3.17 iDDPM (Nichol & Dhariwal, 2021) 250 2.92
LSGM (Vahdat et al., 2021) 147 2.10 ADM (Dhariwal & Nichol, 2021) 250 2.07
PFGM (Xu et al., 2022) 110 235 EDM (Karras et al., 2022) 511 1.36
EDM (Karras et al., 2022) 35 2.04 EDM* (Heun) (Karras et al., 2022) 79 2.44
NVAE (Vahdat & Kautz, 2020) 1 235 BigGAN-deep (Brock et al., 2019) 1 4.06
BigGAN (Brock et al., 2019) 1 14.7 Consistency Training/Tuning
StyleGAN2 (Karras et al., 2020) 1 8.32 CT (LPIPS) (Song et al., 2023) 1 13.0
Consistency Training/Tuning 2 11.1
CT (LPIPS) (Song et al., 2023) 1 8.70 iCT (Song & Dhariwal, 2023) 1 4.02
2 5.83 2 3.20
iCT (Song & Dhariwal, 2023) 1 2.83 iCT-deep (Song & Dhariwal, 2023) 1 3.25
2 2.46 2 2.77
iCT-deep (Song & Dhariwal, 2023) 1 251 MCM (CT) (Heek et al., 2024) 1 72
2 224 2 2.7
ECT (Geng et al., 2024) 1 3.78 ECT-M (Geng et al., 2024) 1 3.67
2 2.13 2 2.35
SCT 1 311 SCT-M 1 3.30
2205 2 213

Results for existing methods are taken from previous papers. Results of SCT on CIFAR-10 are trained with batch size 128 for 200k iterations.
Results of SCT on ImageNet-64 are trained with batch size 128 for 100k iterations.

Quantitative evaluation. We present results in Table 1 and Table 2. Our approach consistently
outperforms ECT across various scenarios, achieving results comparable to advanced distillation
strategies and diffusion/score-based models.

The effectiveness of training variance reduction. It is worth noting that SCT and ECT employ
different progressive training schedules. To exclude this effect, we adopt ECT’s fixed training
schedule, in which the 2-step FID surpasses Consistency Distillation within a single A100 GPU
hour. We use At = t/256 as a fixed partition, with a batch size of 128, over 16k iterations on
CIFAR-10, while keeping all other settings unchanged. For SCT models on CIFAR-10, we calculate
the variance-reduced target only within the training batch, which is also the default setting of all
our experiments on CIFAR-10. To further showcase the effectiveness of the variance-reduced target,
we use all 50,000 training samples as a reference to compute the target. Although more reference
samples are used, they do not directly influence the model’s computations; they are solely utilized for
calculating the training target. Fig. 3 presents a comparison of these three methods, showing that
our approach achieves notable improvements in both 1-step and 2-step FID. Notably, when using the
entire sample set as the reference batch, the improvement becomes more pronounced, with the 1-step
FID dropping from 5.61 to 4.56.

5 CONCLUSION AND LIMITATIONS

We propose Stable Consistency Tuning (SCT), a unified approach that improves consistency models
by reducing training variance and discretization errors. SCT achieves faster convergence and state-of-
the-art generative performance in 1-step and few-step sampling on CIFAR-10 and ImageNet-64 x 64.
While our work focuses on unconditional and class-conditional generation on standard benchmarks,
similar to iCT and ECT, future research should explore consistency training/tuning at larger scales or
more advanced settings such as text-to-image generation.
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APPENDIX

I RELATED WORKS

Diffusion Models. Diffusion models (Ho et al., 2020; Song et al., 2021; Karras et al., 2022) have
emerged as leading foundational models in image synthesis. Recent studies have developed their
theoretical foundations (Lipman et al., 2022; Chen & Lipman, 2023; Song et al., 2021; Kingma et al.,
2021) and sought to expand and improve the sampling and design space of these models (Song et al.,
2020; Karras et al., 2022; Kingma et al., 2021). Other research has explored architectural innovations
for diffusion models (Dhariwal & Nichol, 2021; Peebles & Xie, 2023), while some have focused on
scaling these models for text-conditioned image synthesis and various real-world applications (Shi
et al., 2024; Rombach et al., 2022; Podell et al., 2023). Efforts to accelerate the sampling process
include approaches at the scheduler level (Karras et al., 2022; Lu et al., 2022; Song et al., 2020) and
the training level (Meng et al., 2023; Song et al., 2023), with the former often aiming to improve the
approximation of the probability flow ODE (Lu et al., 2022; Song et al., 2020). The latter primarily
involves distillation techniques (Meng et al., 2023; Salimans & Ho, 2022; Wang et al., 2024e) or
initializing diffusion model weights for GAN training (Sauer et al., 2023b; Lin et al., 2024).

Consistency Models. Consistency models are an emerging class of generative models (Song
et al., 2023; Song & Dhariwal, 2023) for fast high-quality generation. It can be trained through
either consistency distillation or consistency training. Advanced methods have demonstrated that
consistency training can surpass diffusion model training in performance (Song & Dhariwal, 2023;
Geng et al., 2024). Several studies propose different strategies for segmenting the ODE (Kim et al.,
2023; Heek et al., 2024; Wang et al., 2024a), while others explore combining consistency training
with GANSs to enhance training efficiency (Kong et al., 2024). Additionally, the consistency model
framework has been applied to video generation (Wang et al., 2024c; Mao et al., 2024), language
modeling (Kou et al., 2024) and policy learning (Prasad et al., 2024).

II UNDERSTANDING CONSISTENCY MODELS

Consistency model as bootstrapping. For a general form of diffusion x; = a;x¢ + o€, there exists
an exact solution form of PF-ODE as shown in previous work (Song et al., 2021; Lu et al., 2022),

e As
Xy = — X4 — ozsf e*)‘e(xt“b\)d)\, 4)
(673 A
where \; = In(ay /o), A is the reverse function of ¢y, and €(x, ,tx) = —oy, V1og Py, (x4, ) is the

scaled score function. Consistency models aim to learn a x( predictor with only the information from
X¢, Vt € [0,1]. The left term is already known with x;, and thereby we can write the consistency
model-based x prediction as

N 1
Xo(x¢,t;0) = Xt ho(xt,1), (%)
t
where s is set to 0 with as = 1, 0 is the model weights, and hg is applied to approximate the
weighted integral of € from ¢ to s = 0.

The loss of consistency models penalize the x( prediction distance between x; and x, at adjacent
timesteps,

%o (xt, 1, 0) < %o(x,,707), (6)

where 0 < r < t are timesteps and 8~ is the EMA weight of 8. Therefore, we have the following
learning target
1 1
—x; — ho(xt,t) <= —xX, — ho-(x,,7) @
o) !

t T

A

. A _ . .
Noting that x,, = %:xt — Q. S 3 € €(x¢, , tx)dA, and hence we replace the x,. in the above equation

and have

h@(xtﬂ f) (ﬁ_t T+ h’e’ (XT',« T) ) (8)
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Table 4: The definition of symbols in the value estimation of the PF-ODE equivalent MDP.

MDP symbols  Definition MDP symbols Definition
Stn (tN_”“XtN—n) atn XtN,n,1 = ‘I)(XtN,,“tN—n;tN—n—l)
PO(SO) (thN(O’ I)) P(stn+1 ‘ St atn) (5tN—n,—1 ) 6X1,N7n,1 )
A .
m(at, | st,)  Ox, R(st,,at,) SA::::_ e re(xy,, tx)dA
Vo(stn) he(XtN_natN—n)

where 7 = S;\f e~ e(xy, ,tx)dA. The above equation is a Bellman Equation. hg(x;,, ) is the value

estimation at state x;, hg- (x,, ) is the value estimation at state x,., and r is the step ‘reward’.

Standard formulation. It is known that the diffusion generation process can be modeled as a Markov
Decision Process (MDP) (Black et al., 2023; Fan et al., 2024), and here we show that the training
of consistency models can be viewed as a value estimation learning process, which is also known
as Temporal Difference Learning (TD-Learning), in the equivalent MDP. We show the standard
formulation in Table 4. In Table 4, s;, and a;, are the state and action at timestep ¢,,, Py and P are
the initial state distribution and state transition distribution, ®(x;,_, ,tN—n,tN—n—1) is the ODE
solver, 7 is the policy following the PF-ODE, reward R is equivalent to the 7 defined above and value
function Vj is corresponding to hg. 7 is the Dirac distribution § due to the deterministic nature of
PF-ODE. From this perspective, we can have a unifying understanding of consistency model variants
and their behaviors. Fig. 1 provides a straightforward illustration of our insight. One of the most
important factors of the consistency model performance is how we estimate 7 in the equation.

III PROOFS

Lemma 1. The ground truth €(xq,t) is the expectation value of conditional epsilon prediction
€(X¢,t;%0) over the distribution P(xq | X¢), i.e., €(X¢,t) = Ep(xy|x,) [€(X¢, ;3 %0)]-

Proof.

€(x¢,t) = —0¢Vy, log P (x¢)
= _Ut]EIP’t(x0|xt) [vXt IOg]P)(Xt | XO)]

Xt — X
= —UtEIP’(x(ﬂxt) _T , (9)
Xt — X
=E or o
]P(XO\Xt) |: oy :|
= Ep(xo|x,) [€(X¢,t%0)]
O

Theorem 1. We show the ground truth epsilon estimation can be approximated by numerical
computation with sampled training data, i.e.,

1 n—1 )
€(xt,1) = —01 Vi, log Pr(x:) = ~ 3 Wielxe, t:x{)) | (10)
=0

where W,; = is the weight of conditional €(xy, t; x(()i)).

P(x|x”)
] i [€))
2 ey POReIXG)
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Proof.
Vi, logPi(x: | €) = Ep(xy|x;,e) [V, l0g Pe(x¢ | X0, €)]

7P(X0 ‘ Xtvc)
=K ————— 2V, logP ,
Pexole) | TP [ o) Vi, log Py (x; | x0,¢)
[ P(x¢ | %0, €)
= EP(XO‘C) _vat log]Pt(Xt ‘ XO,C)
[P(x; | x0)
= EIP(xO\c) mvm log I (Xt | Xo)
i=0,..n—1 (4)
1 P(x; | x;”) (i) an
R — ——————=Vy, logP
no Z P(Xt | c) ¢ 108 t(xt ‘ Xo )
{xg }~P(xo0lc)
] =0t P(x, | & ;
DY Gt | x07) Vi, log Pu(x; | x3)
) ~Beole) 2oy P [ X675 €
1=0,...n—1 (i)
1 P(x; | x i
~ 2 G [0 ) Vi, log Py (x; | x5)

" o eale) 2 ey FXE %)

The key difference between the variance-reduced score estimation of conditional generation and
unconditional generation is whether the samples utilized for computing the variance-reduced target
are sampled from the conditional distribution P(xg | ¢) or not. In the class-conditional generation,
this means we compute stable targets only within each class cluster. For text-to-image generation, we
might estimate probabilities using CLIP (Radford et al., 2021) text-image similarity, though we leave
this for future study.

Then, according to Lemma 1, we can easily observe that
1 n—1 )
€(x¢,t) = —01Vx, log Pr(x¢) = p Z Wie(xt,t;xg))). (12)
i=0

where W; = is the weight of conditional e(x, ¢; xéi)). We proceed by explicitly

P fxg”)
Zxéj)e{x(()i)} ]P’(xt\x((jj))
computing the weight ;. Given that the transition probability follows a high-dimensional Gaussian
distribution:

1 1
Pt | x0) = G o (gl —xal?). 13

the weight IW; is defined as: .
Pl | ()

Wi = N (14)
2ey Pxe | %57)
Substituting the Gaussian density function, we obtain:
exp (gl = x )
Wi = : (15)

Sarerey o (~arlx —x§1?)

This formulation shows that W; is a softmax function over the negative squared Euclidean distances
between x; and different xé] ) , scaled by o2. This weight determines the contribution of the conditional
noise term €(xy, t; x((f)) relative to all possible values x(()] )
(4)
0

. The softmax structure implies that the

weight is higher for values of x;’ that are closer to x;, with the scaling controlled by o2. O

IV QUALITATIVE RESULTS
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Figure 4: 1-step samples from unconditional SCT trained on CIFAR-10.
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Figure 5: 2-step samples from unconditional SCT trained on CIFAR-10.
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Figure 6: 1-step samples from class-conditional SCT trained on ImageNet-64. Each row corresponds
to a different class.
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Figure 7: 2-step samples from class-conditional SCT trained on ImageNet-64. Each row corresponds
to a different class.
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