
UI-Vision: A Desktop-centric GUI Benchmark for
Visual Perception and Interaction

Shravan Nayak * 1 2 3 Xiangru Jian * 4 3 Kevin Qinghong Lin 5 Juan A. Rodriguez 1 3 6 Montek Kalsi 3

Nicolas Chapados 3 M. Tamer Özsu 4 Aishwarya Agrawal 1 2 7 David Vazquez 3 Christopher Pal 1 8 3 7

Perouz Taslakian 3 Spandana Gella 3 Sai Rajeswar 3 1 2

https://uivision.github.io

Abstract
Autonomous agents that navigate Graphical User
Interfaces (GUIs) to automate tasks like docu-
ment editing and file management can greatly
enhance computer workflows. While existing re-
search focuses on online settings, desktop environ-
ments, critical for many professional and everyday
tasks, remain underexplored due to data collec-
tion challenges and licensing issues. We intro-
duce UI-Vision, the first comprehensive, license-
permissive benchmark for offline, fine-grained
evaluation of computer use agents in real-world
desktop environments. Unlike online benchmarks,
UI-Vision provides: (i) dense, high-quality an-
notations of human demonstrations, including
bounding boxes, UI labels, and action trajecto-
ries (clicks, drags, and keyboard inputs) across
83 software applications, and (ii) three fine-to-
coarse grained tasks—Element Grounding, Lay-
out Grounding, and Action Prediction—with
well-defined metrics to rigorously evaluate agents’
performance in desktop environments. Our evalu-
ation reveals critical limitations in state-of-the-art
models like UI-TARS-72B, including issues with
understanding professional software, spatial rea-
soning, and complex actions like drag-and-drop.
These findings highlight the challenges in develop-
ing fully autonomous computer-use agents. With
UI-Vision, we aim to advance the development of
more capable agents for real-world desktop tasks.

*Equal contribution 1Mila - Quebec AI Institute 2Université
de Montréal 3ServiceNow Research 4University of Water-
loo 5National University of Singapore 6École de Technologie
Supérieure 7CIFAR AI Chair 8Polytechnique Montréal. Corre-
spondence to: Shravan Nayak <shravan.nayak@mila.quebec>,
Xiangru Jian <x2jian@uwaterloo.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

 "Create a circle sketch and a 5.00mm pocket with the created sketch."

1 CLI CK(1058, 537)

2
MOVE_TO(974, 472)
DRAG_TO(949, 417)

3
MOVE_TO(778, 163)

CLI CK(778, 173)

4
MOVE_TO(993, 529)

CLI CK(993, 529)

Figure 1: UI-Vision’s Action Prediction task. Given a
task instruction, a screenshot of the current UI state, and a
history of previous interactions, the agent must predict the
next action necessary to progress toward task completion.
We show here an example of a successful episode from a
task based on FreeCAD software1.

1. Introduction
Graphical User Interfaces (GUIs) have become the dominant
way users interact with digital worlds, replacing command-
line interfaces with visually intuitive environments that en-
hance usability across desktops, web browsing, and mobile
devices (Jansen, 1998). To accelerate digital workflows and
assist users, there has been rapid progress in developing
intelligent GUI agents—AI systems capable of automating
GUI interactions, from simple tasks like auto-filling forms
to complex operations such as configuring software set-
tings. Recent advances in Large Language Models (LLMs)
have significantly expanded the capabilities of these agents,
allowing them to reason and follow natural language instruc-
tions (Wei et al., 2022; Yao et al., 2022b; Ouyang et al.,
2022; OpenAI, 2021; Schick et al., 2023). However, LLMs
that rely only on text struggle with GUI automation, as
they lack the ability to interpret visual layouts, spatial re-
lationships, and non-textual UI elements like icons (Gou

1

https://uivision.github.io

UI-Vision

Human Annotated & Verified
Multi-Step Expert Verification

Data Creation Process

UI Data & Benchmark Tasks

UI-Vision Benchmark

Desktop & Open-Source Platforms
83 platforms:

Human Annotator
UI Training

1 UI Task Execution
on Software

Screen Recording
& Action Logs

Tested Skills in UI-VisionKey Features

 Element Grounding Layout Grounding

Instruction
The region contains navigation controls: back,
forward, refresh, and home buttons.

UI Navigation
Connect Visual Grounding with Interaction
Actions: DRAG, CLI CK, MOVE_TO, . . .

UI Grounding
Test Perception and Structural Prediction

Densely Annotated Screen UIs
UI Elements Location, KeyFrames,
Interaction Trajectories

Layout/Spatial Relation Reasoning
Locate Elements using Spatial Relations

 Action Prediction

Instruction

Add text "COOL" to the
image with Text tool.

1 MOVE_TO(123, 156) ,
2 CLI CK(123, 159, l ef t)
3 MOVE_TO(510, 194) ,
4 DRAG_TO(510, 194, 729, 351)
5 TYPI NG(" COOL")
6 MOVE_TO(797, 349) ,
7 CLI CK(797, 349, l ef t)

Instruction: Predict the category and bounding box
coordinates of the following UI elements.

1 cat egor y : Navi gat i on
2 boundi ngBox" : {
3 " x1" : 155,
4 " x2" : 624,
5 " y1" : 79,
6 " y2" : 92
7 }

Rul er

Human Created Dense UI Annotations

1 cat egor y : But t on
2 boundi ngBox" : {
3 " x1" : 58,
4 " x2" : 81,
5 " y1" : 56,
6 " y2" : 81
7 }

Fr eef or m sel ect or

Instruction: Open color selection dialog.

1 cat egor y : I nput El ement
2 boundi ngBox" : { " x1" : 155, " x2" : 624,
3 " y1" : 79, " y2" : 92}

1 cat egor y : Tool bar
2 boundi ngBox" : { " x1" : 12, " x2" : 45,
3 " y1" : 300, " y2" : 80}

the region contains user interaction elements:
search bar, filter options, and sorting controls.

1 cat egor y : Tool bar
2 boundi ngBox" : { " x1" : 400, " x2" : 150,
3 " y1" : 1020, " y2" : 200}

Annotating Keyframes
Bounding Boxes, OCR, Interactions

Quality Assurance
Expert Human Review

2 3

4 5

Figure 2: UI-Vision Benchmark Overview. Human annotators perform GUI tasks across various desktop software
platforms, generating raw trajectories through screen recordings. The collected data undergoes expert verification and is
then annotated with multiple layers of information, including keyframe detection, bounding box annotations with OCR, and
action logs to capture user interactions.

et al., 2024b). Humans navigate software visually, recog-
nizing elements by appearance and position. To replicate
this, automation must incorporate vision, allowing mod-
els to process visual information beyond text. Multimodal
LLMs have demonstrated effectiveness in this domain, suc-
cessfully automating web browsing (Shi et al., 2017; Yao
et al., 2022a; Gou et al., 2024a; Lù et al., 2024) and soft-
ware control (Rodriguez et al., 2023; Li et al., 2023; Hong
et al., 2024a; Qin et al., 2025), opening new possibilities for
human-computer interaction.

Despite progress in LLM- and multimodal-driven automa-
tion, evaluating GUI agents for desktop remains challenging
as existing benchmarks primarily focus on web and mobile
environments. Web-based benchmarks like MiniWoB++
(Shi et al., 2017), Mind2Web (Deng et al., 2024), WebArena
(Lù et al., 2024; Zhou et al., 2023) and WorkArena (Drouin
et al., 2024) assess agent performance using Document Ob-
ject Model (DOM) structures and HTML metadata. While
effective for web interfaces, these approaches fail for desk-
top GUIs, which lack standardized text-based representa-
tions like HTML. Accessibility (A11y) trees provide a se-
mantic alternative but are often inconsistent and incomplete,
limiting their reliability for UI understanding (Gou et al.,
2024a; Dardouri et al., 2024). Similarly, mobile-focused
benchmarks (Li et al., 2020b; Toyama et al., 2021) empha-
size touchscreen interactions, making them less applicable
to desktop environments where interactions rely on pre-
cise mouse control and keyboard interactions. Furthermore,
desktop applications lack standardized automation APIs,

unlike web automation, which benefits from tools like Sele-
nium2 and Playwright3. This lack of standardization hinders
large-scale data collection and automation. Given these
gaps, a dedicated desktop-centric benchmark is needed to
evaluate models on real-world software variability, visual
perception, and open-ended GUI interactions.

To bridge the gap in evaluating GUI agents for desktops, we
introduce UI-Vision, a benchmark spanning 83 software ap-
plications across 6 domains designed to assess GUI agents’
ability to perceive and interact with desktop environments
in an offline setting. To build UI-Vision, participants de-
sign computer use tasks across these applications that reflect
real-world software interactions. They record demonstra-
tions for these tasks and annotate them by labeling all UI
elements (Figure 13) and capturing action sequences such
as clicking, dragging, and typing, creating a rich human-
annotated dataset. For an agent to take meaningful actions
within a GUI, it must first understand the interface it in-
teracts with. This involves two key abilities: recognizing
functional regions where UI elements are grouped together
and identifying specific elements within these regions. Our
evaluation framework builds on these foundational skills
by assessing an agent’s ability to perceive, interpret, and
interact with a GUI through three core tasks. First, Layout
Grounding evaluates how well an agent identifies func-
tional groupings within a GUI, helping it understand the

2https://www.selenium.dev/
3https://playwright.dev/

2

UI-Vision

broader structure of an interface (Figure 4 bottom right).
Next, Element Grounding measures an agent’s ability to
precisely recognize and locate individual UI components
(Figure 4). Finally, Action Prediction builds on these skills,
testing whether agents can execute interactions like click-
ing, dragging, and typing based on their UI understanding
(Figure 1). Unlike web and mobile interfaces, these tasks
remain largely unexplored in desktop environments. UI-
Vision fills this gap by providing a large-scale benchmark
with extensive UI element coverage, spanning 83 platforms,
450 recorded videos with dense annotations, and 8267
query-label pairs, creating a fine-grained and robust evalu-
ation framework for multimodal GUI agents.

We evaluate state-of-the-art GUI agents on our UI-Vision
benchmark, which reveals significant gaps across all three
tasks. Element Grounding, a core ability for performing
actions on GUI, remains particularly difficult where even
the best-performing model, UI-TARS (Qin et al., 2025),
achieves only 25.5% accuracy. This becomes more chal-
lenging when an interface is functionality-rich and visually
complex, with an increased number of UI elements. Layout
Grounding remains a challenging task, with Gemini-1.5-Pro
(Team et al., 2024) achieving only 30.8 IoU, indicating that
models lack high-level visual comprehension to recognize
structured UI regions. Lastly, Action Prediction is conse-
quently challenging, with UI-TARS achieving only 19.7%
recall on click actions. The lack of accurate grounding
naturally limits action prediction, as models struggle to as-
sociate UI elements with the correct interactions. Moreover,
all models struggle with drag actions, exposing weaknesses
in handling motion-based interactions, a capability not typi-
cally required in web-based GUI tasks.

In summary, our major contributions include:

• We introduce UI-Vision, the largest and most diverse
desktop GUI benchmark, spanning 83 real-world envi-
ronments. It enables a comprehensive evaluation of mod-
els in an offline setting across three core tasks: Element
Grounding, Layout Grounding, and Action Prediction.

• Our dataset provides dense annotations with unmatched
UI element coverage, allowing models to be tested on
spatial relationships and UI layout areas often overlooked
in prior benchmarks. Built from open-source and per-
missive data, it ensures accessibility and reproducibility.

• We identify major weaknesses in state-of-the-art models
across core GUI tasks. Grounding of elements and lay-
out remains highly challenging, as models struggle with
fine-grained understanding and lack proper recognition
of UI regions and their significance. These limitations
ultimately hurt action execution, where GUI agents fail at
precise click and drag operations.

2. Related Work
2.1. GUI Agents

Recent research highlights the expanding capabilities of
large language models (LLMs) beyond conventional lin-
guistic tasks including their application in GUI environ-
ments. A key milestone in task-driven GUI navigation is
MiniWoB++ (Shi et al., 2017), a web-based environment.
Interest in this problem has been renewed with the emer-
gence of large language models, which have demonstrated
remarkable capabilities in orchestrating complex workflows
autonomously (Yao et al., 2023; Yang et al., 2024a; Gao
et al., 2023), driving progress in GUI automation. Current
methodologies broadly fall into two categories.

Pure Language Agents extract UI metadata from HTML
structures, accessibility trees, or OCR (Lee et al., 2023) and
spatial-semantic models (Yang et al., 2023; Yan et al., 2023;
Zheng et al., 2024; Lu et al., 2024). LLMs then process
this structured data to generate task-specific actions. While
flexible, these approaches rely on closed-source models
and struggle with generalization, as real-world applications
often operate on raw visual inputs rather than structured
metadata, which is not always available.

Multimodal Agents attempt to overcome these limitations
by using multimodal datasets, pairing images with textual
descriptions (Hong et al., 2023; Cheng et al., 2024; You
et al., 2024; Li et al., 2024; Gou et al., 2024a; Lin et al.,
2024b; Yang et al., 2024b; Wu et al., 2024; Qin et al., 2025).
This approach enables pixel-level element grounding and
context-aware interface navigation. However, progress
remains constrained by the lack of large-scale visual data
and standardized benchmarks for real-world UI interactions
in desktop environments. Our work fills this gap by
introducing a benchmark tailored to desktop applications.

2.2. GUI Benchmarks

Existing benchmarks evaluate different aspects of GUI agent
capabilities but remain fragmented in their focus. Element
grounding benchmarks (Cheng et al., 2024; Li et al., 2025)
test an agent’s ability to locate UI elements like icons and
text. Action prediction datasets (Deng et al., 2024; Rawles
et al., 2023; Zhang et al., 2024) assess task understanding
and next-step inference based on screenshots and history.
However, layout grounding is often overlooked—current
coordinate-based methods (Li et al., 2025) fail to capture
structural relationships in GUI tasks (Wu et al., 2023; Ro-
driguez et al., 2024). Most benchmarks specialize in either
grounding (Cheng et al., 2024; Li et al., 2025), naviga-
tion (Rawles et al., 2023; Deng et al., 2024), or understand-
ing (Hsiao et al., 2024), lacking a comprehensive evaluation
framework. Furthermore, GUI benchmarks are dispropor-
tionately skewed towards Web (Hao et al., 2011; Wu et al.,

3

UI-Vision

Benchmarks Environments Tasks Statistics Data Collection

Platform # SW/App Settings Ground. (multi.) Action Layout # Sample Avg. Ele Avg. Steps Human Open License

MiniWoB++ (Shi et al., 2017) Web N/A Online ✗ ✓ ✗ 125 N/A 2.3 N/A N/A
Mind2Web (Deng et al., 2024) Web N/A Offline ✗ ✓ ✗ 2,350 1 7.3 ✓ ✓
AITW (Rawles et al., 2023) Mobile 159 Offline ✗ ✓ ✗ 30,378 1 6.5 ✓ N/A
OmniAct (Kapoor et al., 2024) Desktop, Web 38 Offline ✗ ✓ ✗ 9,802 18.6 1 ✓ N/A
OS-World (Xie et al., 2024) Desktop 8 Online ✗ ✓ ✗ 369 N/A N/A ✓ ✗(Windows)
VideoGUI (Lin et al., 2024a) Desktop 11 Offline ✗ ✓ ✗ 86 N/A 22.7 ✓ N/A
ScreenSpot (Cheng et al., 2024) Desktop, Web, Mobile N/A Offline ✓(✗) ✗ ✗ 1,272 1 N/A ✓ N/A
ScreenSpot-Pro (Li et al., 2025) Desktop 23 Offline ✓(✗) ✗ ✗ 1,581 1 N/A ✓ ✓

UI-Vision (ours) Desktop 83 Offline ✓(✓) ✓ ✓ 8227 71 7.3 ✓ ✓

Table 1: Comparison of existing GUI benchmarks with our UI-Vision. We evaluate their inclusion of desktop platforms,
noting a gap in recent works. Additionally, we examine permissive licensing (Open License), highlighting that UI-Vision
focuses on open-source platforms. Lastly, we assess the presence of relevant annotations, particularly those related to
grounding, text, and OCR. Multi. refers to Multi-purpose query for grounding.

2023; Zhou et al., 2023; Koh et al., 2024) and Mobile (Deka
et al., 2017; Li et al., 2020a;b; Toyama et al., 2021) plat-
forms, primarily due to their accessibility. Desktop environ-
ments, despite their significance in professional work-
flows, remain underexplored. Existing desktop bench-
marks (Xie et al., 2024; Bonatti et al., 2024) primarily focus
on online interactions, while others are constrained by small-
scale datasets (Kapoor et al., 2024; Lin et al., 2024a).

Table 1 compares existing benchmarks, highlighting the lack
of comprehensive desktop datasets with diverse applications,
annotations and real-world complexity. To address these
gaps, we introduce UI-Vision, the largest desktop-centric
benchmark to date, spanning 83 software environments
and featuring rich human annotations. With 8227 query-
label pairs across three tasks and a broad software and do-
main coverage, UI-Vision establishes a new standard for
evaluation in desktop environments.

3. UI-Vision
This section introduces UI-Vision, a large-scale benchmark
for GUI navigation and visual grounding across 83 desktop
applications. We describe the data collection and annotation
in Section 3.1 and in Section 3.2 explain how these annota-
tions are used to construct the UI-Vision benchmark tasks
for model evaluation.

3.1. Data Collection

We first collect data from users interacting with desktop
software to achieve a goal, capturing their actions and an-
notating critical elements. This involves recording user
interactions, extracting action trajectories that document
step-by-step decisions to achieve a goal, and labeling UI
components with bounding boxes and functional descrip-
tions. We partner with a data-sourcing company for this
process, ensuring a diverse and well-trained annotator pool.
Details about the annotators and their qualifications are pro-
vided in the Appendix A. Below, we describe the key steps

Anki
ZoteroGrassGISCalibreAudacityQGISOpenBoard

Mendeley
BraveChrom

ium
Fire

foxDuc
kD

uc
kG

o

VS
Co

de

At
omFre

eC
AD

Ec
lip

se
Ne

tB
ea

ns

Py
Ch

ar
m

In
te

lliJ
 ID

EA
Br

ac
ke

ts
Ge

an
y

Bluefish
KDevelop

Kom
odo Edit

Code::Blocks

Qt Creator

Arduino IDE

Spyder

FreeCAD

Ubuntu Terminal

ConkyBashgedit

LibreOfc Calc

LibreOfc Draw

LibreOfc Impress

LibreOfc Writerdraw.ioJoplinOpenProjectAffineZulip
PDFedit

OnlyOfc Forms
OnlyOfc Cal

OnlyOfc Editor

OnlyOfc Forms

OnlyOfc Pptx

OnlyOfc Xlsx

Nextcloud

Gnumeric

Simplenote

Cryp
tom

ato
r

WeK
an

7-Z
ip

Gn
uC

as
h

Bit
wa

rd
en

Me
ta

ba
se

Jit
si

Fla
m

es
ho

t
Ne

m
o

Bl
en

de
r

GI
M

P
In

ks
ca

pe

Krita
darktable
FontForge
MuseScore
Scribus
Flowblade

OpenShot
OBS Studio

Lightworks

Shotcut

Natron

OpenToonz

WordPress

VLC MPlayer

Kodi
Element

Signal
Mastodon
Lemmy
Matrix
Emby

Education(9.4%)
 Brow

se
rs(

4.7
%)

D
evelopm

ent
 (24.7%

)

Productivity

 (32.9%) Creativity

 (18.8%
)

 Entertainment
 (9.4%)

Figure 3: Distribution of Software Platforms in UI-Vision.
The outer ring displays 83 different software platforms span-
ning six categories shown in the inner ring.

involved in data collection.

Selecting Desktop Applications. We curate data from 83
open-source desktop platforms across six domains: Pro-
ductivity, Development, Creativity, Education, Browsers,
and Social Media/Entertainment, ensuring diverse platforms
for comprehensive benchmarking and permissive licensing
(Figure 3 and Table 6).

Designing Computer Use Tasks. Computer use tasks are
designed around real-world workflows, ranging from basic
tasks (e.g., renaming a folder) to complex operations (e.g.,
applying subtitles to a video). We ensure that each task is
well-defined, and comprehensive. Each platform includes
5–7 computer use tasks.

Capturing and Annotating User Interactions. Expert an-
notators perform computer use tasks while capturing (i) task
videos, (ii) logged actions (10 predefined types; Table 7 in
Appendix B) with metadata such as mouse click type, click
frequency and exact timestamp of the action in the video,

4

UI-Vision

Basic Grounding Spatial Grounding

Functional Grounding Layout Grounding

Grounding Instruction: "New Tab"
UI Type: Button
Bounging Box: [20, 106, 39, 142]

Application: Linux Terminal

Grounding Instruction: "Actions"
UI Type: Button
Bounging Box: [103, 23, 133, 48]

Application: GNU Cash

Grounding Instruction: What is the element that is
vertically closest to the "exit" and above it?

UI Type: Input Element
Bounging Box: [16, 543, 59, 561]

Application: Windows Explorer

Grounding Instruction: What element is
horizontally to the right of 'display selected console'?

UI Type: Button
Bounging Box: [0, 47, 37, 89]

Application: Eclipse IDE

Grounding Instruction: Save the document
UI Type: Button
Bounging Box: [87, 63, 382, 83]

Application: GNU Cash

Grounding Instruction: Open color selection dialog.
UI Type: Input Element
Bounging Box: [9, 213, 155, 416]

Application: GIMP

Grounding Instruction: Region contains tools for
formatting text: font, size, and alignment options.

UI Type: Layout
Bounging Box: [210, 97, 917, 128]

Application: LibreOffice Writer

Grounding Instruction: Region contains input
elements: snapshots, history, duplicate manager.

UI Type: Button
Bounging Box: [18, 317, 325, 620]

Application: Darktable

Figure 4: Examples of Grounding Tasks in UI-Vision. The dataset features three GUI grounding tasks: Basic, involving
locating elements’ bounding boxes; Spatial, focusing on determining positions relative to other elements; and Functional,
requiring identification of click locations for specific actions. Layout Grounding locates larger regions given a description.

and (iii) keyframe screenshots, which are screenshots taken
just before an action, such as a click, is performed. Post-
task, annotators label UI elements with bounding boxes and
descriptions for the keyframes using a proprietary tool. A
multi-stage quality check by separate annotators and peri-
odic verification by authors ensures completeness, accuracy,
and consistency. The final dataset consists of 450 high-
quality demonstrations across 83 applications. Figure 2
provides an overview of the data collection process.

Dataset Statistics. In Figure 3, we present the taxonomy
and software distribution within UI-Vision, with the largest
portions corresponding to 33.7% productivity, 25.3% de-
velopment, and 19.3% creativity. Figure 12 in Appendix
C presents key dataset statistics, including bounding box
distribution per keyframe, task video durations, and action
steps required for completion. Each keyframe contains be-
tween 5 to 200 labeled bounding boxes, with an average of
71, resulting in a dense annotation setup. This count is sig-
nificantly higher than previous works (Table 1), highlighting
the richness of our dataset. Most videos are under 50 sec-
onds, averaging 37.6 seconds. Finally, annotators complete
most tasks within 25 steps, with an average of 14 steps. This
makes the dataset significantly complex, as agents must plan
and predict actions over long-horizon tasks, which pose a
major challenge.

3.2. UI-Vision Benchmark

Building on the rich annotations from the previous section,
we focus on three key tasks essential for an agent’s capa-

bilities: Element Grounding, to identify and localize UI
elements from textual queries; Layout Grounding, to rec-
ognize structural relationships and group UI elements into
functional clusters; and Action Prediction, to determine the
correct interaction needed to achieve a goal. The first two
address perception and structural prediction, while the third
connects perception to interaction. See Figure 4 for exam-
ples of Element and Layout Grounding and Figure 1 for an
example on the Action Prediction task.

TASK 1: ELEMENT GROUNDING

This task evaluates a model’s ability to predict the bounding
box of a UI component in a screenshot given a short query
(e.g., “Add New Tab”). We leverage the dense bounding box
annotations collected during the initial data collection stage
to introduce three grounding subtasks—basic, functional,
and spatial—to assess different aspects of GUI understand-
ing beyond simple textual queries. To create these subtasks,
we implement a multi-stage process that involves sampling
challenging UI elements followed by thorough human eval-
uation of selected UI elements (see details in Appendix B.1).
The basic setting evaluates a model’s ability to predict the
location of a UI element (e.g., button, sidebar, input field)
given a minimal textual description, such as “Actions” (Fig-
ure 4). The functional setting requires identifying UI ele-
ments based on their function rather than direct labels; for
instance, instead of “Save Button,” the query specifies “Save
the current document or data.” Functional descriptions are
generated using GPT-4o (OpenAI, 2023) and then validated
by human reviewers. The spatial setting requires locating

5

UI-Vision

Action Description

Move(x, y) Move the mouse to the specified coordinates.
Click(x, y, button) Click the specified button at the given coordinates.
Typing(‘Hello’) Types a specified string.
Hotkey(‘ctrl’, ‘c’) Performs individual or combination hotkeys.
Drag([x1,y1], [x2,y2]) Drags the mouse from start [x1, y1] to end [x2, y2].

Table 2: Action Prediction task, action space.

UI elements based on their spatial relationships with neigh-
boring components. Queries are generated by detecting the
nearest bounding boxes in four directions (left, right, top,
bottom), e.g., “What is directly above the ‘Exit’ button?”
Both basic and functional grounding subtasks have 1,772
query-label pairs, while the spatial setting has 1,935.

TASK 2: LAYOUT GROUNDING

GUI layouts define how interface components, such as but-
tons, text fields, and containers, are arranged into cohe-
sive regions (e.g., “Formatting Tools” or “Main Navigation
Bar”). This novel task evaluates a model’s ability to clus-
ter UI elements into functional and semantic groups and
predict bounding boxes that encapsulate them, a capabil-
ity not explicitly explored in previous GUI-related bench-
marks (Figure 4, bottom right). We again leverage the dense
bounding box annotations collected during the initial data
collection phase and provide them as input to LLAMA-
3.3-70B (Meta, 2024), which generates non-overlapping
functional or semantic clusters along with textual descrip-
tions (e.g., ”Formatting Tools”). These textual descriptions
serve as queries for the model, which must predict bounding
boxes that encapsulate entire functional or semantic areas.
The dataset comprises 311 human-verified query-label pairs
from 77 platforms, with each functional or semantic cluster
containing 5–10 UI elements (see details in Appendix B.2).

TASK 3: ACTION PREDICTION

Action prediction builds on the previous perception tasks,
requiring the agent to solve computer use tasks through a
structured sequence of interactions. Unlike static recogni-
tion tasks, this agentic task evaluates a model’s capability to
interpret a given goal (e.g., ”Apply a transparency of 45.9%
to the layer”) and determine the correct sequence of actions.
We use the action trajectories collected during the data col-
lection stage to create this task. Each step in the trajectory
is treated as an independent prediction, with the model re-
ceiving the screenshot of the current UI state and previous
actions as input. More concretely, given a task query Q and
a screenshot Ii at the i-th state, along with the previous
action history H = {aj}j≤i−1, the model is required to
output ãi. Each action ai includes both the action type and
its parameters. The details of creating the task including
choosing the right screenshots from videos for prediction
and processing action trajectories are detailed in Appendix
B.3. As a result, we obtain 3191 action-annotation pairs
over 442 computer use tasks. In Table 2, we explicitly define

our action spaces and their corresponding parameters.

4. Experiments
4.1. Baselines

We tested several open-source VLMs with GUI capabilities,
including Qwen2-VL-7B and Qwen2.5VL-7B (Wang et al.,
2024), MiniCPM-V-2.6-8B (Yao et al., 2024), InternVL2-
8B and InternVL2.5-8B (Chen et al., 2024); open source
GUI agents, including CogAgent-9B (Hong et al., 2023),
SeeClick-9.6B (Cheng et al., 2024), UGround-7B and
72B (Gou et al., 2024b), UI-TARS 7B and 72B (Qin et al.,
2025), OSAtlas-7B (Wu et al., 2024), ShowUI-2B (Lin
et al., 2024b), Aria-UI-25.3B(3.9B active parameters) (Yang
et al., 2024b) and Aguvis-7B (Xu et al., 2024). We also
considered closed source models such as GPT-4o (Ope-
nAI, 2024), Claude-3.5-Sonnet and Claude-3.7-Sonnet (An-
thropic, 2024), and Gemini-1.5-pro and Gemini-Flash-
2.0 (Team et al., 2024). Each model used its recommended
format for prompting.

4.2. Evaluation Metrics

Element Grounding. Following prior works (Li et al.,
2025; Cheng et al., 2024; Wu et al., 2024), a prediction is
considered correct if the predicted point (xi, yi) falls within
the ground-truth bounding box: Correct = 1(xmin ≤ xi ≤
xmax ∧ ymin ≤ yi ≤ ymax). We compute accuracy across
all UI components. As prior analysis (Cheng et al., 2024)
showed minimal gains from bounding-box-based evaluation,
we adopt point-based evaluation throughout.

Layout Grounding. We assess predicted bounding boxes
using Intersection over Union (IoU), precision, and recall,
measuring alignment with ground truth.

Action Prediction. Inspired by action evaluation metrics
used by (Lin et al., 2024a), we develop metrics for each
action type in our dataset:

• Click & Move: We evaluate coordinate predictions
[x, y] using two metrics: Distance (Dist.) – normalized
Euclidean distance (D) between predicted and ground-truth
locations: Dist := D

L , where L is the maximum possible
distance to any corner. Recall@d – a click is correct if
within d pixels of the ground truth. We calculate d as the
average bounding box size across the dataset.

• Drag: Evaluated using: Distance (Dist.) measures
average displacement error by computing the mean Eu-
clidean distance between the predicted and actual start and
end coordinates of the drag action: Dist := 1

2

(
∆s
Ls

+ ∆e
Le

)
.

Recall@d checks if both start and end positions are within
d pixels.

• Typing & Hotkey: Evaluated using Correctness

6

UI-Vision

Basic Functional Spatial
Final Avg

Model Ed Br De Pr Cr En Overall Ed Br De Pr Cr En Overall Ed Br De Pr Cr En Overall
(215) (56) (376) (605) (438) (82) (1772) (215) (56) (376) (605) (438) (82) (1772) (212) (31) (338) (740) (586) (28) (1935)

Closed-Source VLMs
GPT-4o (OpenAI, 2024) 2.23 0.00 1.86 1.16 1.14 4.88 1.58 1.40 0.00 3.19 0.83 0.91 3.66 1.52 0.94 0.00 1.48 1.22 0.51 3.57 1.03 1.38

Gemini-1.5-pro (Team et al., 2023) 0.47 0.00 1.60 0.83 0.46 0.00 0.79 0.00 1.79 0.27 0.17 0.46 0.00 0.28 0.94 0.00 0.89 0.54 0.34 0.00 0.57 0.55

Gemini-Flash-2.0 (Team et al., 2023) 0.00 0.00 0.27 0.66 0.68 0.00 0.45 0.47 1.79 0.00 0.66 0.23 0.00 0.40 0.00 0.00 0.00 0.14 0.00 0.00 0.05 0.30

Claude-3.5-Sonnet (Anthropic, 2024) 3.26 16.1 5.32 6.94 1.83 4.88 5.08 5.12 19.6 4.79 5.95 2.51 4.88 5.19 2.83 9.68 5.03 2.43 2.56 7.14 3.15 4.47

Claude-3.7-Sonnet (Anthropic, 2024) 6.51 12.5 7.98 11.24 9.13 11.0 9.48 5.12 7.14 8.24 9.92 6.16 4.88 7.73 6.60 9.68 7.69 7.43 7.85 10.7 7.60 8.27

Open-Source VLMs
Qwen-2.5VL-7B (Wang et al., 2024) 0.47 0.00 1.33 1.65 0.68 1.22 1.24 0.47 0.00 0.80 1.16 0.46 1.22 0.79 0.47 0.00 1.48 0.00 0.51 0.00 0.51 0.85

InternVL2-8B (Chen et al., 2024) 0.00 0.00 0.00 0.02 0.00 0.14 0.11 0.00 0.00 0.27 0.00 0.00 1.22 0.11 0.00 0.00 0.00 0.14 0.00 0.00 0.05 0.09

InternVL2.5-8B (Chen et al., 2024) 0.93 8.93 3.46 2.31 1.37 4.88 2.48 1.40 7.14 3.72 2.81 1.60 6.10 2.82 0.94 3.23 1.78 0.68 0.68 3.57 0.98 2.09

Qwen-2VL-7B (Wang et al., 2024) 2.79 7.14 3.72 3.97 0.68 12.2 3.44 2.79 12.5 3.19 3.97 0.68 6.10 3.22 0.47 3.23 2.37 1.08 0.51 3.57 1.45 2.70

MiniCPM-V-8B (Yao et al., 2024) 4.19 21.4 7.71 7.44 3.65 18.3 7.11 4.19 19.6 6.38 4.63 2.97 11.0 5.30 0.47 3.23 1.78 0.27 0.17 3.57 1.45 4.34

Open-Source GUI Agents
ShowUI-2B (Lin et al., 2024b) 5.12 16.1 9.84 9.09 3.42 19.5 8.07 5.12 12.5 9.31 8.60 4.11 15.9 7.67 0.94 9.68 2.96 2.70 0.68 3.57 2.07 5.94

AriaUI-25.3B (Yang et al., 2024b) 10.7 23.2 13.0 12.9 8.22 20.7 12.2 12.6 19.6 15.4 14.6 10.5 22.0 14.0 3.77 9.68 4.44 4.86 2.22 7.14 3.98 10.1

UGround-v1-7B (Gou et al., 2024a) 11.6 35.7 19.7 15.0 11.0 18.3 15.4 15.4 33.9 22.3 16.5 11.6 19.5 17.1 4.25 6.45 9.76 6.35 4.44 14.3 6.25 12.9

OSAtlas-7B (Wu et al., 2024) 10.7 23.2 13.3 12.6 8.22 22.0 12.2 11.6 16.1 11.4 12.7 7.53 13.4 11.2 3.77 6.45 5.62 3.65 2.22 7.14 3.67 9.02

UGround-7B (Gou et al., 2024a) 10.2 23.2 14.9 10.6 7.53 19.5 11.5 12.1 25.0 15.2 11.2 7.99 20.7 12.2 2.36 0.00 4.14 2.70 2.22 7.14 2.79 8.83

Aguvis-7B (Xu et al., 2024) 16.7 37.5 22.3 16.2 12.6 26.8 17.8 17.2 35.7 21.5 18.0 13.0 24.4 18.3 5.19 9.68 6.51 4.05 4.78 14.3 5.06 13.7

UI-TARS-7B (Qin et al., 2025) 15.4 41.1 21.8 21.2 13.2 39.0 20.1 20.5 41.1 25.5 26.5 16.0 45.1 24.3 6.60 12.9 11.0 9.19 5.80 17.9 8.37 17.6

CogAgent-9B (Hong et al., 2024b) 11.2 14.3 12.5 13.7 8.68 15.9 12.0 11.6 14.3 11.4 14.7 8.22 18.3 12.2 3.30 0.00 1.18 4.05 1.37 7.14 2.63 8.94

SeeClick-9.6B (Cheng et al., 2024) 7.44 23.2 13.0 8.43 5.48 17.1 9.42 4.65 7.14 5.32 3.97 4.34 7.32 4.68 0.47 6.45 3.25 1.22 2.73 3.57 2.07 5.39

UGround-v1-72B (Gou et al., 2024a) 27.0 42.9 31.7 26.6 22.8 40.2 27.9 25.1 33.9 30.6 26.6 21.0 40.2 26.7 15.1 25.8 19.8 13.4 12.8 25.0 14.9 23.2

UI-TARS-72B (Qin et al., 2025) 30.7 48.2 32.7 33.6 21.9 51.2 31.4 29.8 46.4 30.9 34.1 22.6 36.6 30.5 13.7 16.1 19.2 15.4 11.1 25.0 14.7 25.5

Table 3: Element Grounding results by category for Basic, Functional, and Spatial settings. For each setting, the first six
columns (Ed, Br, De, Pr, Cr, En) present the fine-grained breakdown, followed by an overall score column. The number
of samples in each category is noted under the column name. The final column shows the overall average. Abbreviated
category labels: Ed (Education), Br (Browsers), De (Development), Pr (Productivity), Cr (Creativity), En (Entertainment).
The best model within each size category is highlighted in bold, and the runner-up is underlined. Models are categorized by
size: gray marks closed-source models, green indicates open-source VLM models, blue represents open-source GUI
Agent models below 8B (active) parameters, orange denotes open-source GUI Agent models above (active) 8B parameters.

(Corr.), which verifies exact string or keystroke matches.

We also compute the Step Success Rate (Deng et al., 2024)
as an overall performance measure across the dataset. A
step is considered successful only if the predicted action and
its associated metadata are correct. This includes bounding
boxes for click and drag actions, as well as keyboard inputs
for typing and hotkey actions.

4.3. Results

Performance on Element Grounding. Table 3 presents
model performance on the three Element Grounding sub-
tasks. Both closed-source and open-source VLMs struggle
with this task. The best closed-source model, Claude 3.7
Sonnet (Anthropic, 2024), achieves only 8.7% accuracy,
while the best open-source model, MiniCPM-V-8B (Yao
et al., 2024), performs even worse at 4.3%. This poor per-
formance likely stems from these models being trained for
broad visual understanding, including grounding objects
in natural scenes, rather than the fine-grained grounding
required for desktop environments, where UI elements are
smaller and context-dependent. GUI agents trained on large-
scale GUI data for UI understanding and grounding tasks
perform best, with UI-TARS achieving 25.5% and UGround
closely following at 23.2%. However, their overall perfor-

mance remains low, highlighting the challenges of ground-
ing in desktop environments. Functional grounding yields
similar scores to basic grounding for GUI agents, as they
are explicitly trained on such functional tasks (Gou et al.,
2024b; Qin et al., 2025). In contrast, both open-source and
closed-source VLMs perform worse in this setting. The
biggest challenge lies in spatial grounding, where even the
best model achieves only 14.9%, underscoring the difficulty
of understanding spatial relationships in GUIs.

A closer analysis reveals two major factors influencing
model performance. First, as shown in Figure 5(a), models
perform better when grounding larger UI elements, sug-
gesting that smaller elements are harder to predict. Second,
Figure 5(b) indicates that accuracy drops sharply when more
elements are present in a screenshot. This pattern is evident
across domains—creativity platforms such as Blender and
GIMP exhibit the lowest performance, likely due to their
densely packed GUI interface, with an average of 112 bound-
ing boxes per screen and an UI element area averaging 418
square pixels. In contrast, entertainment platforms like VLC
Media Player achieve the highest performance, benefiting
from larger and more spaced-out UI elements, averaging
62.8 bounding boxes per screen and an average area of 875
square pixels per element. While it is commonly assumed

7

UI-Vision

Layout Grounding
Model IoU↑ Precision↑ Recall↑

Closed-Source VLMs
GPT-4o (OpenAI, 2024) 20.0 59.6 24.1
Claude-3.5-Sonnet (Anthropic, 2024) 22.4 64.3 26.8
Claude-3.7-Sonnet (Anthropic, 2024) 17.6 31.5 34.1
Gemini-1.5-pro (Team et al., 2023) 30.8 67.8 36.9
Gemini-2.0-flash (Team et al., 2023) 28.3 63.0 34.2

Open-Source VLMs
Qwen-2VL-7B (Wang et al., 2024) 24.3 65.7 33.4
MiniCPM-V-8B (Yao et al., 2024) 16.3 25.7 43.6

Open-Source GUI Agents
CogAgent-9B (Hong et al., 2024b) 6.22 7.99 42.9
SeeClick-9.6B (Cheng et al., 2024) 5.11 6.32 30.1
OSAtlas-7B (Wu et al., 2024) 28.2 66.4 41.6

Table 4: UI-Vision Leaderboard on Layout Grounding.
We present the performance results of state-of-the-art UI
understanding models that can predict bounding boxes. Re-
sults are averaged across IoU, precision, and recall.

that screenshot resolution significantly impacts grounding
accuracy, our analysis (see Appendix E.1) reveals that it is
not a key factor empirically.

Error Analysis on Element Grounding. Our analysis
highlights three key challenges in model performance (see
Appendix D.1). (i) Fine-grained ambiguity: Models often
understand the query but struggle to distinguish the correct
target when multiple similar-looking elements are present
(Figure 14). (ii) Lack of domain knowledge: Agents fail
to interpret certain symbols, such as the letter ”F,” due to
missing context, suggesting the need for external knowledge
sources like software documentation (Figure 15). (iii) Small
elements: Models have difficulty recognizing small UI com-
ponents (Figure 16), especially in high-resolution interfaces,
indicating that strategies like iterative zooming (Wu & Xie,
2024) could improve performance. (iv) Cross-platform gen-
eralization: Models incorrectly apply UI layout assump-
tions from one platform to another, such as confusing button
locations between Windows and iOS systems (Figure 17).

Performance on Layout Grounding. Table 4 summarizes
the evaluation results on Layout Grounding. We only eval-
uate models capable of generating bounding boxes across
closed-source VLMs, open-source VLMs, and GUI agents.
Unlike Element Grounding, VLMs—both open and closed-
source—outperform GUI agents in detecting UI layouts.
Closed-source VLMs achieve state-of-the-art performance,
while open-source VLMs perform comparably. This is likely
due to their strong general visual understanding, which aids
in semantic comprehension of the UI screen which is neces-
sary for this task. Additionally, their training on grounding,
even in natural image settings, may contribute to their suc-
cess. In contrast, GUI agents perform poorly on this task.
Both CogAgent-9B and SeeClick-9.6B show subpar results.
While OSAtlas-7B is the exception, it is trained upon Qwen-

(a) (b)

(c) (d)

Figure 5: Analysis on Element Grounding (UI-TARS-72B
under Basic setting) in terms of (a) Area of GT. Bbox and
(b) # Element per screenshot. ; Layout Grounding (Gemini-
1.5-pro) in terms of (c) Area of GT. Bbox and (d) # Element
per screenshot. To enhance clarity, we do not display long-
tail examples below 5%.

2VL and does not show significant improvement compared
to the latter. This might be due to the fact that current GUI
agent frameworks focus primarily on element grounding,
such as improving click accuracy, rather than layout under-
standing and bounding box prediction.

Similar to grounding, IoU increases with the ground-truth
bounding box area (Figure 5 (c)) and decreases as element
density rises (Figure 5 (d)). Hence, complex and cluttered
UI layouts make precise layout generation more challenging
and remains the primary bottleneck in layout grounding.

Error Analysis on Layout Grounding. Models exhibit dis-
tinct failure patterns in layout grounding (see Appendix D.2).
(i) Inaccurate bounding box placement: Closed-source mod-
els often fail to return the minimal bounding box for a target
region, even when it is contained within their prediction (see
Figure 18a, 19a). This suggests a weak understanding of lay-
out partitioning. (ii) Poor functional grouping: Open-source
GUI agents struggle to interpret UI structures at a higher
level, failing even on queries that explicitly mention rele-
vant elements (see Figure 18b). This indicates quite a weak
understanding of functional groups with coarser granularity
maybe due to a lack of such training data. (iii) Superficial
semantic matching: When uncertain, open-source models
tend to select smaller elements based on partial keyword
matches rather than true semantic relevance, leading to in-
correct predictions (Figure 19b). These limitations highlight

8

UI-Vision

Model Click / Move Drag Typing Hotkey SSR

Dist. ↓ Recall@d ↑ Dist. ↓ Recall@d ↑ Corr. ↑ Corr. ↑ ↑
Naive Baselines

Random 81.6 0.0 94.2 0.0 N/A N/A N/A
GPT-4o (w/o image) 52.0 3.3 72.4 0.0 22.7 34.0 7.64

Closed-Source VLMs
GPT-4o (OpenAI, 2024) 41.2 4.4 63.9 1.5 32.1 56.5 11.5
Gemini-1.5-Pro (Team et al., 2024) 38.7 13.0 61.1 1.6 24.7 45.3 16.0
Claude-3.5-Sonnet (Anthropic, 2024) 41.0 4.8 61.4 1.1 29.0 39.2 9.9

Open-Source GUI Agents
ShowUI-2B (Lin et al., 2024b) 42.8 11.8 N/A N/A 15.2 62.5 15.7
UI-TARS-7B (Qin et al., 2025) 47.0 19.7 64.8 3.1 33.8 40.5 21.4

Table 5: UI-Vision Action Prediction Leaderboard. We com-
pare the performance of three model categories: Closed-Source
VLMs, Open-Source VLMs, and Agentic solutions across four
action types—Click/Move, Drag, Typing, and Hotkey. The eval-
uation metrics include Distance (Dist.) and Recall@d for Click
and Drag actions, while Correctness (Corr.) is reported for Typing
and Hotkey. Step Success Rate (SSR) represents the overall per-
formance of models on the Action Prediction task.

the need for better spatial reasoning and structural awareness
in GUI agents.

Performance on Action Prediction. Table 5 summarizes
the results of the Action Prediction task. The random base-
line, where actions and bounding box coordinates are se-
lected at random for click and drag actions, performs very
poorly, achieving 0% recall for both highlighting the chal-
lenging nature of the setup. In all our settings, we provide
action histories to the model. To assess its impact, we set up
an experiment where only task descriptions and action his-
tories are given to GPT-4o without the image (GPT-4o (w/o
image) in Table 4). The results suggest that action history
only significantly improves performance compared to the
random baseline. Notably, the model also performs well for
typing and hotkey actions. This may be because prompts
explicitly state information like emails or passwords for typ-
ing, while hotkeys sometimes follow predictable sequences,
such as pressing the ’enter’ key after typing.

Among closed-source models, Gemini-1.5-Pro outperforms
GPT-4o and Claude-3.5-Sonnet on click and drag actions.
Gemini’s strong performance in the Layout Grounding task
suggests that a high-level understanding of UI structures aids
in predicting actions more accurately. In contrast, GPT-4o
achieves significantly higher accuracy on keyboard-related
actions. However, all models struggle with click and drag
actions, indicating inadequate grounding—a trend also ob-
served in the Element Grounding task. Moreover, poor drag
action performance reveals a weakness in handling motion-
based interactions, likely due to their limited presence in
web-based tasks, which dominate training data.

Closed-source models are known for generating effective
plans for GUI-related tasks (Lin et al., 2024a). To better un-
derstand their performance, we evaluate a setup that isolates
their planning ability from grounding. Instead of requiring
models to predict both an action and its exact coordinates,
we prompt them to generate only a textual description of
the action (e.g., ”click the file button”). A strong ground-
ing model (UGround-v1) then maps these actions onto the

screen. This approach substantially improves click action
recall by 2x to 5x across all models. Specifically, GPT-4o
achieves 26.7% recall, Claude reaches 26.9%, and Gemini
follows with 25.0%, bringing their performance to near par-
ity. These results indicate that while closed-source models
are good at predicting the action, their main limitation is
accurately grounding them within the UI.

Open-source GUI agent UI-TARS, achieves the highest over-
all performance, particularly in click actions with a recall of
19.7%. However, these models often fail to follow instruc-
tions accurately, likely due to rigid behavior from training
on specific instruction formats. For instance, ShowUI fails
to generate drag actions entirely, while UI-TARS occasion-
ally inserts wait() and finish() actions, even when
they are not specified in the prompt. This suggests that
while open-source models exhibit stronger grounding, their
instruction adherence remains a challenge.

Error Analysis on Action Prediction. We identify three
major sources of errors in the Action Prediction task (see
Appendix D.3). (i) Poor grounding: Models often predict
the correct action but fail to execute it in the correct loca-
tion on the screen, leading to grounding errors. (ii) Lack of
platform knowledge: Some models lack platform-specific
knowledge, causing them to hallucinate or predict incorrect
actions when they do not fully understand the UI. (iii) Com-
plexity of the platforms: Performance tends to be lower
on visually dense platforms with many small UI elements,
making action prediction more challenging. For example,
UI-TARS has the highest error rate (85%) on creativity
platforms, where UI elements are tightly packed, whereas
education platforms, with simpler layouts, show the lowest
error rate (72%).

More Analysis. For further insights into factors affecting
model performance on all three tasks, we provide additional
experiments in Appendix E, including the impact of screen-
shot resolution (Appendix E.1), cross-software generaliza-
tion (Appendix E.2), latency trade-offs (Appendix E.3), and
an ablation study on planner vs. grounding contributions
(Appendix E.4).

5. Conclusion
We present UI-Vision, a large-scale GUI benchmark cov-
ering 83 desktop applications, making it one of the most
extensive and diverse dataset of its kind. We use UI-Vision
to build benchmarks supporting three structured evaluation
tasks: (i) Element Grounding; (ii) Layout Grounding; and
(iii) Action Prediction. Our experiments with state-of-the-
art VLMs highlight significant challenges, such as the diffi-
culty in grounding UI elements and predicting actions ac-
curately. The results underscore key gaps in current model
capabilities, emphasizing the need for further research in UI
interaction modeling for desktops.

9

UI-Vision

Impact Statement
This research benchmark and analysis offers contributions
that are crucial for the advancement of visual-centric UI
assistants, specifically targeting agents for Desktop-based
software and their applications. The rise of these agents
promises to revolutionize how humans engage with digital
software and transform the execution of digital tasks by
workers. In the following sections, we will discuss both the
potential positive and negative societal impacts stemming
from this research.

Positive Impacts: Enabling GUI agents to automate repet-
itive and complex desktop tasks allows users to achieve
higher productivity and focus on more creative and strate-
gic activities. With more studies and capable GUI agents,
software developers can easily finish unit-tests and collect
feedback to develop better software or an interface. UI-
Vision also provides a standardized desktop benchmark to
drive innovation in GUI automation and advance the devel-
opment of GUI models.

Potential Negative Impacts: While our work advances
GUI automation, it also presents several challenges. First,
protecting user privacy is crucial when developing, evaluat-
ing or deploying GUI agents on personal devices, as these
systems may inadvertently expose sensitive information.
Second, the high computational cost of vision-language
models (VLMs) during inference raises significant envi-
ronmental concerns due to increased energy consumption,
which must be addressed for sustainable deployment. Lastly,
reliance on highly capable GUI agents may lead to user over-
dependence, diminishing manual proficiency, and critical
problem-solving skills over time.

Acknowledgments
Authors would like to sincerely thank Ghazwa Darwiche,
Christian Hudon, Tom Murray, Ryan Ghiselli, Pierre-Andre,
Chao Wang, and Fanny Rancourt for their valuable adminis-
trative and technical support. We also thank Megh Thakkar
for his valuable feedback on the paper. Furthermore, we
acknowledge MITACS for supporting the recruitment of
visiting student researchers who played a significant role in
this project.

References
Anthropic, A. The claude 3 model family: Opus, sonnet,

haiku. Claude-3 Model Card, 2024.

Bonatti, R., Zhao, D., Bonacci, F., Dupont, D., Abdali, S.,
Li, Y., Lu, Y., Wagle, J., Koishida, K., Bucker, A., et al.
Windows agent arena: Evaluating multi-modal os agents
at scale. arXiv preprint arXiv:2409.08264, 2024.

Chen, Z., Wang, W., Tian, H., Ye, S., Gao, Z., Cui, E.,
Tong, W., Hu, K., Luo, J., Ma, Z., Ma, J., Wang, J.,
Dong, X., Yan, H., Guo, H., He, C., Shi, B., Jin, Z.,
Xu, C., Wang, B., Wei, X., Li, W., Zhang, W., Zhang,
B., Cai, P., Wen, L., Yan, X., Dou, M., Lu, L., Zhu, X.,
Lu, T., Lin, D., Qiao, Y., Dai, J., and Wang, W. How
far are we to gpt-4v? closing the gap to commercial
multimodal models with open-source suites, 2024. URL
https://arxiv.org/abs/2404.16821.

Cheng, K., Sun, Q., Chu, Y., Xu, F., Li, Y., Zhang, J., and
Wu, Z. Seeclick: Harnessing gui grounding for advanced
visual gui agents. arXiv preprint arXiv:2401.10935, 2024.

Dardouri, T., Minkova, L., Espejel, J. L., Dahhane, W., and
Ettifouri, E. H. Visual grounding for desktop graphical
user interfaces. arXiv preprint arXiv:2407.01558, 2024.

Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan,
D., Li, Y., Nichols, J., and Kumar, R. Rico: A mobile app
dataset for building data-driven design applications. In
Proceedings of the 30th annual ACM symposium on user
interface software and technology, pp. 845–854, 2017.

Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang,
B., Sun, H., and Su, Y. Mind2web: Towards a general-
ist agent for the web. Advances in Neural Information
Processing Systems, 36, 2024.

Drouin, A., Gasse, M., Caccia, M., Laradji, I. H., Verme,
M. D., Marty, T., Boisvert, L., Thakkar, M., Cappart, Q.,
Vazquez, D., Chapados, N., and Lacoste, A. Workarena:
How capable are web agents at solving common knowl-
edge work tasks?, 2024.

Gao, D., Ji, L., Zhou, L., Lin, K. Q., Chen, J., Fan, Z., and
Shou, M. Z. Assistgpt: A general multi-modal assistant
that can plan, execute, inspect, and learn. arXiv preprint
arXiv:2306.08640, 2023.

Gou, B., Wang, R., Zheng, B., Xie, Y., Chang, C., Shu,
Y., Sun, H., and Su, Y. Navigating the digital world as
humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024a. URL https:
//arxiv.org/abs/2410.05243.

Gou, B., Wang, R., Zheng, B., Xie, Y., Chang, C., Shu,
Y., Sun, H., and Su, Y. Navigating the digital world as
humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024b.

Hao, Q., Cai, R., Pang, Y., and Zhang, L. From one tree to
a forest: a unified solution for structured web data extrac-
tion. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information
Retrieval, pp. 775–784, 2011.

10

https://arxiv.org/abs/2404.16821
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2410.05243

UI-Vision

Hong, S., Zhuge, M., Chen, J., Zheng, X., Cheng, Y.,
Wang, J., Zhang, C., Wang, Z., Yau, S. K. S., Lin, Z.,
Zhou, L., Ran, C., Xiao, L., Wu, C., and Schmidhuber, J.
MetaGPT: Meta programming for a multi-agent collabo-
rative framework. In The Twelfth International Confer-
ence on Learning Representations, 2024a. URL https:
//openreview.net/forum?id=VtmBAGCN7o.

Hong, W., Wang, W., Lv, Q., Xu, J., Yu, W., Ji, J., Wang,
Y., Wang, Z., Dong, Y., Ding, M., et al. Cogagent: A
visual language model for gui agents. arXiv preprint
arXiv:2312.08914, 2023.

Hong, W., Wang, W., Lv, Q., Xu, J., Yu, W., Ji, J., Wang, Y.,
Wang, Z., Dong, Y., Ding, M., et al. Cogagent: A visual
language model for gui agents. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14281–14290, 2024b.

Hsiao, Y.-C., Zubach, F., Wang, M., and Chen, J. Screenqa:
Large-scale question-answer pairs over mobile app
screenshots, 2024.

Jansen, B. J. The graphical user interface. ACM
SIGCHI Bull., 30:22–26, 1998. URL https://api.
semanticscholar.org/CorpusID:18416305.

Kapoor, R., Butala, Y. P., Russak, M., Koh, J. Y., Kamble,
K., Alshikh, W., and Salakhutdinov, R. Omniact: A
dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. arXiv preprint
arXiv:2402.17553, 2024.

Koh, J. Y., Lo, R., Jang, L., Duvvur, V., Lim, M. C., Huang,
P.-Y., Neubig, G., Zhou, S., Salakhutdinov, R., and Fried,
D. Visualwebarena: Evaluating multimodal agents on re-
alistic visual web tasks. arXiv preprint arXiv:2401.13649,
2024.

Lee, K., Joshi, M., Turc, I. R., Hu, H., Liu, F., Eisensch-
los, J. M., Khandelwal, U., Shaw, P., Chang, M.-W.,
and Toutanova, K. Pix2struct: Screenshot parsing as
pretraining for visual language understanding. In Inter-
national Conference on Machine Learning, pp. 18893–
18912. PMLR, 2023.

Li, H., Su, J., Chen, Y., Li, Q., and ZHANG, Z.-X. Sheet-
copilot: Bringing software productivity to the next level
through large language models. In Advances in Neural
Information Processing Systems, pp. 4952–4984. Curran
Associates, Inc., 2023.

Li, K., Meng, Z., Lin, H., Luo, Z., Tian, Y., Ma, J., Huang,
Z., and Chua, T.-S. Screenspot-pro: Gui grounding for
professional high-resolution computer use, 2025.

Li, Y., He, J., Zhou, X., Zhang, Y., and Baldridge, J. Map-
ping natural language instructions to mobile ui action
sequences. arXiv preprint arXiv:2005.03776, 2020a.

Li, Y., Li, G., He, L., Zheng, J., Li, H., and Guan, Z.
Widget captioning: Generating natural language descrip-
tion for mobile user interface elements. arXiv preprint
arXiv:2010.04295, 2020b.

Li, Z., You, K., Zhang, H., Feng, D., Agrawal, H., Li,
X., Moorthy, M. P. S., Nichols, J., Yang, Y., and Gan, Z.
Ferret-ui 2: Mastering universal user interface understand-
ing across platforms. arXiv preprint arXiv:2410.18967,
2024.

Lin, K. Q., Li, L., Gao, D., Wu, Q., Yan, M., Yang, Z.,
Wang, L., and Shou, M. Z. Videogui: A benchmark for
gui automation from instructional videos. arXiv preprint
arXiv:2406.10227, 2024a.

Lin, K. Q., Li, L., Gao, D., Yang, Z., Wu, S., Bai, Z., Lei,
W., Wang, L., and Shou, M. Z. Showui: One vision-
language-action model for gui visual agent, 2024b. URL
https://arxiv.org/abs/2411.17465.

Lù, X. H., Kasner, Z., and Reddy, S. Weblinx: Real-
world website navigation with multi-turn dialogue. arXiv
preprint arXiv:2402.05930, 2024.

Lu, Y., Yang, J., Shen, Y., and Awadallah, A. Omniparser
for pure vision based gui agent, 2024. URL https:
//arxiv.org/abs/2408.00203.

Meta. Introducing meta llama 3: The most capable openly
available llm to date, 2024. URL https://ai.meta.
com/blog/meta-llama-3/. Accessed: 2024-04-
18.

OpenAI. Introducing chatgpt. OpenAI Blog, 09 2021. URL
https://openai.com/blog/chatgpt.

OpenAI. Gpt-4 technical report, 2023.

OpenAI. Hello gpt-4o, May 2024. URL https://
openai.com/index/hello-gpt-4o/. Accessed:
2024-06-06.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Qin, Y., Ye, Y., Fang, J., Wang, H., Liang, S., Tian, S.,
Zhang, J., Li, J., Li, Y., Huang, S., Zhong, W., Li, K.,
Yang, J., Miao, Y., Lin, W., Liu, L., Jiang, X., Ma, Q.,
Li, J., Xiao, X., Cai, K., Li, C., Zheng, Y., Jin, C., Li,
C., Zhou, X., Wang, M., Chen, H., Li, Z., Yang, H.,
Liu, H., Lin, F., Peng, T., Liu, X., and Shi, G. Ui-tars:
Pioneering automated gui interaction with native agents.
arXiv preprint arXiv:2501.12326, 2025. URL https:
//github.com/bytedance/UI-TARS.

11

https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://api.semanticscholar.org/CorpusID:18416305
https://api.semanticscholar.org/CorpusID:18416305
https://arxiv.org/abs/2411.17465
https://arxiv.org/abs/2408.00203
https://arxiv.org/abs/2408.00203
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://openai.com/blog/chatgpt
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://github.com/bytedance/UI-TARS
https://github.com/bytedance/UI-TARS

UI-Vision

Rawles, C., Li, A., Rodriguez, D., Riva, O., and Lillicrap,
T. Android in the wild: A large-scale dataset for android
device control. arXiv preprint arXiv:2307.10088, 2023.

Rodriguez, J., Jian, X., Panigrahi, S. S., Zhang, T., Feizi,
A., Puri, A., Kalkunte, A., Savard, F., Masry, A., Nayak,
S., et al. Bigdocs: An open and permissively-licensed
dataset for training multimodal models on document and
code tasks. arXiv preprint arXiv:2412.04626, 2024.

Rodriguez, J. A., Agarwal, S., Laradji, I. H., Rodriguez,
P., Vazquez, D., Pal, C., and Pedersoli, M. Starvector:
Generating scalable vector graphics code from images.
arXiv preprint arXiv:2312.11556, 2023.

Schick, T., Dwivedi-Yu, J., Dessı̀, R., Raileanu, R., Lomeli,
M., Hambro, E., Zettlemoyer, L., Cancedda, N., and
Scialom, T. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information
Processing Systems, 36:68539–68551, 2023.

Shi, T., Karpathy, A., Fan, L., Hernandez, J., and Liang,
P. World of bits: An open-domain platform for web-
based agents. In International Conference on Machine
Learning, pp. 3135–3144. PMLR, 2017.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Team, G., Georgiev, P., Lei, V. I., Burnell, R., Bai, L.,
Gulati, A., Tanzer, G., Vincent, D., Pan, Z., Wang, S.,
Mariooryad, S., Ding, Y., Geng, X., Alcober, F., Frostig,
R., Omernick, M., Walker, L., Paduraru, C., Sorokin,
C., Tacchetti, A., Gaffney, C., Daruki, S., Sercinoglu,
O., Gleicher, Z., and Others. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens of
context. arXiv preprint arXiv:2403.05530, 2024.

Toyama, D., Hamel, P., Gergely, A., Comanici, G., Glaese,
A., Ahmed, Z., Jackson, T., Mourad, S., and Precup,
D. Androidenv: A reinforcement learning platform for
android. arXiv preprint arXiv:2105.13231, 2021.

Wang, P., Bai, S., Tan, S., Wang, S., Fan, Z., Bai, J., Chen,
K., Liu, X., Wang, J., Ge, W., Fan, Y., Dang, K., Du,
M., Ren, X., Men, R., Liu, D., Zhou, C., Zhou, J., and
Lin, J. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint
arXiv:2409.12191, 2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Wu, J., Wang, S., Shen, S., Peng, Y.-H., Nichols, J., and
Bigham, J. P. Webui: A dataset for enhancing visual ui
understanding with web semantics. In Proceedings of the
2023 CHI Conference on Human Factors in Computing
Systems, pp. 1–14, 2023.

Wu, P. and Xie, S. V?: Guided visual search as a core
mechanism in multimodal llms. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13084–13094, 2024.

Wu, Z., Wu, Z., Xu, F., Wang, Y., Sun, Q., Jia, C., Cheng,
K., Ding, Z., Chen, L., Liang, P. P., et al. Os-atlas: A
foundation action model for generalist gui agents. arXiv
preprint arXiv:2410.23218, 2024.

Xie, T., Zhang, D., Chen, J., Li, X., Zhao, S., Cao, R.,
Hua, T. J., Cheng, Z., Shin, D., Lei, F., et al. Os-
world: Benchmarking multimodal agents for open-ended
tasks in real computer environments. arXiv preprint
arXiv:2404.07972, 2024.

Xu, Y., Wang, Z., Wang, J., Lu, D., Xie, T., Saha, A., Sa-
hoo, D., Yu, T., and Xiong, C. Aguvis: Unified pure
vision agents for autonomous gui interaction, 2024. URL
https://arxiv.org/abs/2412.04454.

Yan, A., Yang, Z., Zhu, W., Lin, K., Li, L., Wang, J., Yang,
J., Zhong, Y., McAuley, J., Gao, J., et al. Gpt-4v in won-
derland: Large multimodal models for zero-shot smart-
phone gui navigation. arXiv preprint arXiv:2311.07562,
2023.

Yang, J., Zhang, H., Li, F., Zou, X., Li, C., and Gao, J.
Set-of-mark prompting unleashes extraordinary visual
grounding in gpt-4v, 2023. URL https://arxiv.
org/abs/2310.11441.

Yang, R., Song, L., Li, Y., Zhao, S., Ge, Y., Li, X., and
Shan, Y. Gpt4tools: Teaching large language model to use
tools via self-instruction. Advances in Neural Information
Processing Systems, 36, 2024a.

Yang, Y., Wang, Y., Li, D., Luo, Z., Chen, B., Huang, C.,
and Li, J. Aria-ui: Visual grounding for gui instructions.
arXiv preprint arXiv:2412.16256, 2024b.

Yao, S., Chen, H., Yang, J., and Narasimhan, K. Web-
shop: Towards scalable real-world web interaction with
grounded language agents. Advances in Neural Informa-
tion Processing Systems, 35:20744–20757, 2022a.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting
in language models. arXiv preprint arXiv:2210.03629,
2022b.

12

https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2310.11441

UI-Vision

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and act-
ing in language models. In International Conference on
Learning Representations (ICLR), 2023.

Yao, Y., Yu, T., Zhang, A., Wang, C., Cui, J., Zhu, H., Cai, T.,
Li, H., Zhao, W., He, Z., et al. Minicpm-v: A gpt-4v level
mllm on your phone. arXiv preprint arXiv:2408.01800,
2024.

You, K., Zhang, H., Schoop, E., Weers, F., Swearngin, A.,
Nichols, J., Yang, Y., and Gan, Z. Ferret-ui: Grounded
mobile ui understanding with multimodal llms. arXiv
preprint arXiv:2404.05719, 2024.

Zhang, J., Wu, J., Teng, Y., Liao, M., Xu, N., Xiao, X., Wei,
Z., and Tang, D. Android in the zoo: Chain-of-action-
thought for gui agents. arXiv preprint arXiv:2403.02713,
2024.

Zheng, B., Gou, B., Kil, J., Sun, H., and Su, Y. Gpt-
4v(ision) is a generalist web agent, if grounded. In Forty-
first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?
id=piecKJ2DlB.

Zhou, S., Xu, F. F., Zhu, H., Zhou, X., Lo, R., Sridhar, A.,
Cheng, X., Bisk, Y., Fried, D., Alon, U., et al. Webarena:
A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854, 2023.

13

https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB

UI-Vision

Appendix

Table of Contents
Page

A. Human Annotation . 15
B. UI-Vision Benchmark Tasks . 15

B.1 Element Grounding . 15
B.2 Layout Grounding . 17
B.3 Action Prediction . 18

C. Dataset Statistics and Examples . 19
D. Error Analysis . 19

D.1 Element Grounding . 19
D.2 Layout Understanding . 21
D.3 Action Prediction . 22

E. More Experimental Analysis . 22
E.1 Effect of Screenshot Resolution on Element Grounding Accuracy . 22
E.2 Cross-software Generalization Analysis . 22
E.3 Latency Analysis . 22
E.4 Analysis of Planner vs. Grounding Model Contributions . 22

F. Limitation and Future works . 25

14

UI-Vision

Category Software Applications

Education Anki, Zotero, GrassGIS, Calibre, Audacity, QGIS, OpenBoard, Mendeley

Browsers Brave, Chromium, Mozilla Firefox, DuckDuckGo

Development VSCode, Atom, FreeCAD, Eclipse, NetBeans, PyCharm, IntelliJ IDEA, Brackets, Geany,
Bluefish, KDevelop, Komodo Edit, Code::Blocks, Qt Creator, Arduino IDE, Spyder, Ubuntu
Terminal, Conky, Bash, gedit

Productivity LibreOffice Calc, LibreOffice Draw, LibreOffice Impress, LibreOffice Writer, draw.io, Joplin,
OpenProject, Affine, Zulip, PDFedit, OnlyOffice Calendar, OnlyOffice Document Editor,
OnlyOffice Forms, OnlyOffice PDF Forms, OnlyOffice Presentation, OnlyOffice Spread-
sheet, Nextcloud, Gnumeric, Simplenote, Cryptomator, WeKan, 7-Zip, GnuCash, Bitwarden,
Metabase, Jitsi, Flameshot, Nemo

Creativity Blender, GIMP, Inkscape, Krita, darktable, FontForge, MuseScore, Scribus, OpenShot, OBS
Studio, Lightworks, Shotcut, Natron, OpenToonz, WordPress

Entertainment VLC Media Player, Kodi, Element, Signal, Mastodon, Lemmy, Matrix, Emby

Table 6: Mapping from coarse-grain categories to platforms. This table lists the categories and their corresponding platforms
used in our study.

A. Human Annotation
We partnered with Turing4 (referred to as the ”Vendor”), a data labeling company that specializes in data curation for AI
applications. The annotation process spanned roughly over three three-month periods, with the initial month dedicated to a
pilot phase. During this pilot period, we worked closely with the vendor annotation team conducted detailed reviews, and
provided extensive feedback to help annotators better grasp the task requirements.

The Vendor annotation team consisted of 70 annotators. This included a multi-tiered team comprising annotators, quality
assurance specialists, and managers. The majority of the team was based in India and Latin America. The annotators were in
the 20–35 year-old age group, with an equal distribution of male and female participants. They all had strong proficiency in
technical writing and English. All of the annotators hold bachelor’s degrees in Engineering, Computer Science, and related
disciplines. Annotators also had prior experience in data labeling and UI research.

To ensure high-quality annotations, annotators underwent a training process to familiarize themselves with the platforms and
the applications. Annotators were paid per hour, and each task took an average of 60 to 90 minutes to complete, from task
creation to quality check. The annotators started with creating computer use tasks for 83 different software applications
highlighted in Table 6. These computer use tasks were verified by quality assurance specialists and the authors to ensure
diversity and coverage. This was followed by the execution of computer use tasks and screen recording. A proprietary tool
captured action trajectories and logged the precise coordinates of actions as the annotators performed the task. Finally, the
annotators used a custom annotation tool to capture screenshots (keyframes) of each user interaction and refine the action
trajectories. Each of the captured keyframes was annotated by drawing bounding boxes around all interface elements visible
on the screen. The entire process underwent rigorous quality assurance, including review by human annotators and custom
annotation evaluation scripts.

B. UI-Vision Benchmark Tasks
B.1. Element Grounding

To create a high-quality benchmark, we implement a systematic data workflow to ensure accuracy, diversity, and reliability
for evaluating GUI models. The following steps outline this process:

We start with the bounding box annotations obtained during the initial data collection, as highlighted in Section 3.1. Figure 13
illustrates an example screenshot with annotations. Given the large number of annotations, we sample a subset for the

4https://www.turing.com/

15

UI-Vision

Source Raw
UI Data

Synthetic Predict ions
of SOTA Multimodal

Models

Post Processing
Deduplication Based

on IoU and Annotation

Human Verif ication
of Annotations

Curated

Grounding
Datasets

UI-Vision

1 2 3

Figure 6: UI-Vision’s Element Grounding Data Curation Workflow. Step-by-step process from sourcing raw UI data to
creating curated datasets. The workflow includes synthetic predictions using state-of-the-art (SOTA) multimodal models,
post-processing for deduplication, and human verification to ensure high-quality annotations.

benchmark to ensure comprehensive platform coverage while maintaining ease of evaluation.

Our analysis of state-of-the-art models like UI-TARS (Qin et al., 2025) reveals that they perform well on naive data samples,
particularly those with textual information, but struggle significantly with icon-based elements and smaller UI components.
Additionally, models show lower performance on platforms with a high bounding box ratio, such as those in the creativity
category like Blender and GIMP. To address these issues, we sample bounding boxes from different image resolutions and
sizes, with a focus on smaller screen elements.

To maximize diversity, we apply an Intersection over Union (IoU) threshold within each platform, filtering out redundant
samples with similar functionality or spatial positioning. This ensures that the selected samples vary in function and
placement within the UI. After the initial sampling, we use an ensemble of four top-performing GUI models (e.g., (Qin
et al., 2025; Gou et al., 2024b; Yang et al., 2024b)) to identify additional challenging cases. Samples are classified as hard
(where all models fail or predictions disagree) or easy (where at least one model provides a correct prediction), ensuring a
balanced difficulty distribution. Reviewers verify uncertain instances by consulting documentation or online sources.

To expand the evaluation beyond basic queries, we introduce variations to assess model capabilities in functional and spatial
settings. This approach allows us to reuse existing annotations while benchmarking different aspects of GUI understanding.

For the functional setting, we use each element’s annotation and corresponding screenshot (with the bounding box
highlighted) as input to GPT-4o to generate function-based descriptions. These descriptions reflect how the element is used
rather than just its label.

õ Prompt used with GPT-4o to generate annotation for Element Grounding with functional setting

You are an assistant tasked with generating a single, precise functional
annotation for a UI element based on its basic textual description. Your job
is to:
1. Ensure the functional annotation is accurate, straightforward, and
directly aligns with the provided description and bounding box context before
adding any complexity or diversity.
2. Focus on clarity and correctness first, avoiding ambiguous or overly
complex annotations.
3. Use the textual description and bounding box context to infer the most
likely purpose or role of the UI element.
4. Try best not to directly copy the textual description, but rather provide
a functional interpretation based on the context.

Below is the input for generating a functional annotation:
1. Screenshot: Please refer to the provided image. The UI element is
highlighted by a red bounding box.
2. Description of the UI element (basic textual content): "{annotation for
basic setting}".

16

UI-Vision

õEnsure the annotation meets the following requirements:
- It directly reflects the UI element’s functionality as described in the
textual content.
- It is clear, concise, and free of unnecessary complexity.
- It avoids speculative or ambiguous statements.
- It clearly reflects how the user interacts with the UI element.

Provide only the JSON output without additional explanations.

For the spatial setting, we iterate over four directions—[up, bottom, left, right]—to generate queries about
the closest neighboring element. For example, given an element labeled "previous annotation options",
a corresponding query might be: "What is the element that is immediately to the right of
’previous annotation options’ horizontally?" We retrieve the correct bounding box for the queried
element using the bounding boxes collected during initial data creation (Section 3.1). To ensure accuracy and reduce
ambiguity, we remove samples where no valid closest element exists or where the distance exceeds a set threshold. The
processing scripts will be released alongside the code for reproducibility.

B.2. Layout Grounding

GUI layouts define how interface components, such as buttons, text fields, and containers, are arranged into cohesive regions
(e.g., “Formatting Tools” or “Main Navigation Bar”). In our layout grounding task, we start with raw UI element annotations
collected during the initial data collection phase, which include dense bounding box information for individual elements.
These annotations are then fed into LLAMA-3.3-70B (Meta, 2024) using a predefined prompt (provided below) that instructs
the model to cluster UI elements into non-overlapping functional and semantic groups. For each group, the model generates
a corresponding textual description and computes an aggregated bounding box that encompasses all the elements within that
group, thereby capturing the higher-level structure of the GUI.

Following the automated model inference, the predicted clusters and bounding boxes are subjected to a rigorous human
verification process. Expert annotators in our research team review and validate each functional group to ensure that the
clusters accurately represent the intended UI regions and that the aggregated bounding boxes fully cover the grouped
elements. Specifically, we remove all samples that do not meet the requirements and retain those that do. This two-stage
procedure yields a high-quality dataset of 311 human-verified query-label pairs spanning 77 platforms, with each functional
group typically containing 5–10 UI elements. The process thus extends individual element grounding to a comprehensive
layout grounding task, emphasizing both spatial organization and semantic coherence in desktop interfaces. To the best of
our knowledge, this is the first work to introduce this setting and systematically evaluate GUI agents in this context.

õ Prompt used with LLAMA-3.3-70B to generate samples for layout grounding

Below is a list of dictionaries representing UI elements for the software
’{software name}’. Please use the knowledge you have on this software to
analyze these elements and group them based on their functionality.

Your task is to:

1. Analyze each element for text, category, and boundingBox attribute.
2. Identify the elements that belong to a particular functional group (e.g.,
all the file edit tools). Name as many as you possibly can, but make sure the
functional groups make sense.
3. Combine the bounding boxes of all elements belonging to that functional
group into a single bounding box that encompasses them all.
4. Return a structured response (JSON or similarly structured text) that
includes: - The name of the group (e.g., "Edit Tools Region").
- An explanation of the group’s functionality. Please be as specific as

17

UI-Vision

õpossible but do not simply repeat the names of the UI elements in the group.
- The coarse bounding box (x1, y1, x2, y2, etc.).

Here is the list of dictionaries you should work with:
{raw data for the given screenshot}

Please produce your final answer in a structured JSON-like format, such as:

[
{

"name": "Edit Tools Region",\\[1ex]
"explanation": "This region contains all the tools related to

editing the files.",
"boundingBox": \{

"x1": ...,
"y1": ...,
"x2": ...,
"y2": ...

\}
\},
...

]

Some additional requirements:

1. Please try your best to make functional groups that cover all the elements
in the list.
2. Please make the functional group not overlap with each other. Try to
prioritize non-overlapping bounding boxes containing more elements.
3. Make sure the name of each group is descriptive as well as meaningful to
the human user and relevant to the elements it contains. Please make sure the
name is not too generic.
4. Make the bounding box complete, based on the bounding boxes of the
elements it contains.

Make sure to provide the accurate bounding box that encloses all relevant
elements for each functional group. And return only this JSON object.

B.3. Action Prediction

We begin with the raw action trajectories collected and annotated by humans during the initial data collection stage. Table
7 lists all recorded actions. Our analysis revealed that current GUI models are limited in their ability to predict a wide
range of actions, as they are typically trained on a restricted set. To simplify evaluation, we standardized actions into five
categories: click, move to, drag, typing, and hotkey. These actions are common across all models. We excluded tasks
involving key down, key up, and scroll actions, reducing the total number of tasks to 442. Additionally, we applied the
following preprocessing steps to refine the action data:

1. Removing Redundant Move Actions: If a ”move to” action directly preceded a ”click” action, we removed it. Since
the ”click” action already contains positional data, the preceding movement was unnecessary.

2. Grouping Drag Actions: A drag action is always preceded by a mouse-down event and followed by a mouse-up event.
We merged these three actions into a single ”drag” action. Additionally, since a drag operation requires moving the
cursor to the starting position, we included this movement, resulting in a standardized format: drag(x1, y1, x2, y2)
where x1, y1 is the start of the drag and x2, y2 is the end coordinates of the drag.

3. Merging Press and Hotkey Actions: In the raw trajectories, a ”press” action referred to pressing a single key, whereas

18

UI-Vision

Action Type Parameters Description

MOVE TO x, y Move the cursor to the specified position
CLICK button, Click the mouse button at a specified location

x, y,
num clicks

MOUSE DOWN button Press and hold the specified mouse button
MOUSE UP button Release the specified mouse button
DRAG TO x, y Drag the cursor to the specified position with the left button pressed
SCROLL dx, dy Scroll the mouse wheel up or down
TYPING text Type the specified text
KEY DOWN key Press and hold the specified key
KEY UP key Release the specified key
HOTKEY key/keys Press the specified key or key combination

Table 7: Table of original Mouse and Keyboard Actions during human demonstration.

a ”hotkey” involved multiple keys. We merged both into a single ”hotkey” category to maintain consistency.

C. Data Statistics and Examples
Data Statistics. Figure.12 presents key statistical distributions within the UI-Vision. (a) Shows the distribution of bounding
box number per screenshot, indicating a mean of 74.3, reflecting the dense UI elements present in each frame. (b) Illustrates
the distribution of human recording durations in UI-Vision, with a mean of 38.2 seconds, highlighting the variation in the
GUI navigation task. (c) Depicts the distribution of the number of action steps required to complete tasks, with a mean of
14.0, indicating the long-horizon challenges and interaction complexity within the dataset. (d) Shows the distribution of
different screenshot resolutions in our dataset. We have more than 100 screenshot resolutions offering rich diversity for
benchmarking.

Visualization. Figure 7 to 11 illustrate concrete examples highlighting different aspects and challenges of UI-Vision’s
tasks across multiple software applications. In Figure 7, we demonstrate examples from the Element Grounding task with
the basic setting, showing typical UI elements identified by straightforward textual descriptions. Models must accurately
localize UI components based solely on labels like ”crop tool” or ”skip all breakpoints”. Figure 8 presents cases from the
Element Grounding task with the functional setting, emphasizing the need for models to understand UI elements based on
their functionality rather than simple visual labels, such as ”Remove data series from the chart” or ”Open the DoxyBlocks
plugin menu”. Figure 9 provides challenging examples from the Element Grounding task with spatial setting, requiring
models to precisely interpret spatial relations among UI components, such as elements directly adjacent or positioned
relative to specific reference elements. Lastly, Figure 10 demonstrates examples from Layout Grounding, showcasing how
models must group UI components into meaningful semantic regions, like identifying comprehensive areas for menu options,
editing tools, or formatting tool clusters. Figure 11 shows an example of Action Prediction task along with the task and raw
actions collected.

D. Error Analysis
D.1. Element Grounding

Below, we present several failure cases predicted by the top-performing UI-TARS model (Qin et al., 2025) to examine the
limitations of current models. We highlight the ground truth with a red box. The prediction of the model is indicated by a
red arrow surrounding it.

A. Fine-grained ambiguity: As shown in Fig. 14, the agent effectively understands the query and primarily responds to the

19

UI-Vision

(a) Query: “crop tool”. The ground truth element is bounded
by red bounding box. The platform of the example is GIMP.

(b) Query: “constrain arc or circle”. The ground
truth element is bounded by red bounding box. The platform
of the example is FreeCAD.

(c) Query: “skip all breakpoints”. The ground truth
element is bounded by red bounding box. The platform of the
example is Eclipse.

(d) Query: “code intelligence”. The ground truth element
is bounded by red bounding box. The platform of the example is
Komodo Edit.

Figure 7: Examples of Element Grounding with basic setting. The ground truth element is bounded by red bounding box.
We demonstrate examples from the Element Grounding task with the basic setting, showing typical UI elements identified
by straightforward textual descriptions. Models must accurately localize UI components based solely on labels like ”crop
tool” or ”skip all breakpoints”.

nearby region but struggles to recognize the correct target among several similar candidates. This highlights the need for
existing agents to develop advanced validation strategies.

B. Lack of domain knowledge : In Fig.15, we observe that the model’s difficulty in identifying the most efficient approach
to task completion underscores a deficiency in domain-specific knowledge, such as understanding what the letter “F”
signifies. This challenge prompts us to consider developing solutions based on Retrieval-Augmented Generation (RAG) or
integrating external databases, such as software documentation or tutorials, to enhance the model’s performance.

C. Small elements: In Fig.16, we find that the model struggles with small visual elements, especially in an interface with
high resolution, and more importantly, a dense distribution of UI elements. To resolve this issue, one potential strategy is to
develop an iterative zoom-in strategy as V-Search (Wu & Xie, 2024).

D. Cross-platform generalization: The model sometimes incorrectly transfers layout assumptions across platform. As in
Fig.17, the query given to the model is minimize window. The model fails to generalize to the ”minimize” button for
IOS system and points to the place where ”minimize” button is located in the Windows operating system. We highlight the
ground truth with a red box. The prediction of the model is indicated by a red arrow surrounding it.

20

UI-Vision

(a) Query: “Remove data series from the chart”.
The ground truth element is bounded by red bounding box. The
platform of the example is LibreOffice Draw.

(b) Query: “Create a new Java package”. The ground
truth element is bounded by red bounding box. The platform of
the example is Eclipse.

(c) Query: “Adjusts path curvature by pinching
vector points”. The ground truth element is bounded by
red bounding box. The platform of the example is OpenToonz.

(d) Query: “Open the DoxyBlocks plugin menu”. The
ground truth element is bounded by red bounding box. The plat-
form of the example is Code::Blocks.

Figure 8: Examples of Element Grounding with functional setting. The ground truth element is bounded by red bounding
box. We present cases from the Element Grounding task with the functional setting, emphasizing the need for models to
understand UI elements based on their functionality rather than simple visual labels, such as ”Remove data series from the
chart” or ”Open the DoxyBlocks plugin menu”.

D.2. Layout Grounding

Below, we present some failure cases predicted by the top-performing closed-source model Gemini-1.5-pro (Team et al.,
2024) and open-source GUI agent OSAtlas-7B (Wu et al., 2024) to examine the limitations of both types of models as their
error patterns are not identical. We highlight the prediction of the model with a blue box. The ground truth is indicated by a
red arrow surrounding it.

A. Inaccurate bounding box placement: As shown in Figure 18a and Figure 19a, it is quite typical for closed-source
models to fail to return the minimal bounding box of the ground truth region, though it is usually contained in the predicted
box. This indicates models can not understand the partition of the layout well.

B. Poor functional grouping: As shown in Figure 18b, open-source GUI agents sometimes struggle even with a very
specific query that explicitly mentions the names of almost all the elements. Usually it should not be very difficult for
the model to ground those elements one at a time in the basic Element Grounding setting. This indicates quite a weak
understanding of functional groups with coarser granularity. Instead, they may rely solely on learning the correspondence
between an element’s label and its position. This limitation is likely due to the lack of training data that enables models to
perceive interfaces at a higher and more generalized level.

C. Superficial semantic matching: As shown in Figure 19b, when an open-source agent lacks sufficient knowledge or
confidence in locating the requested region, it sometimes predicts only one or two items whose labels share words with the
query but are not semantically equivalent. In the example, the predicted item labeled ”Design” appears in the query but is an

21

UI-Vision

incorrect selection. This suggests that open-source GUI agents require a deeper semantic understanding of interface layouts
beyond simple keyword matching and grounding.

D.3. Action Prediction

We analyze UI-TARS (Qin et al., 2025), the best-performing open-source model, and Gemini 1.5-Pro (Team et al., 2024),
the highest-performing closed-source model, to identify common failure cases in Action Prediction prediction. Our analysis
highlights three major sources of errors that impact model performance:

A. Poor Grounding: As discussed in Section 4.3, both open-source and closed-source models struggle with accurately
grounding actions. In many cases, models correctly predict the intended action but fail to execute it on the correct UI element.
Figure 20 illustrates an example where Gemini-1.5-Pro identifies the right action but applies it to the wrong location, leading
to failed execution.

B. Lack of Platform Knowledge: Each platform has unique UI elements and interactions. To perform tasks effectively,
models need an understanding of platform-specific keywords and the major operations each platform supports. Our analysis
shows that models often lack this knowledge, likely due to insufficient exposure to diverse desktop environments during
training. As a result, models sometimes hallucinate actions or generate nonsensical predictions. Figures 21 and 22 showcase
cases where the models’ limited platform knowledge leads to incorrect or implausible actions.

C. Complexity of the Platforms: Models struggle more with platforms that have dense and intricate UI layouts. Smaller UI
elements and tightly packed interfaces make it harder for models to perceive and interact accurately. Additionally, platforms
with extensive functionalities allow users to perform complex workflows, increasing the difficulty of predicting appropriate
actions. This challenge is reflected in UI-TARS’ highest error rate (85%) on creativity platforms, where elements are densely
packed, while education platforms, with simpler layouts, exhibit the lowest error rate (72%).

E. More Experimental Analysis
E.1. Effect of Screenshot Resolution on Element Grounding Accuracy

Figure 23 presents the grounding accuracy of the two best-performing models, UI-TARS-72B and UGround-v1-72B, across
different screenshot areas (i.e., resolutions). Observing the accuracy distributions, there is no clear trend that indicates a
strong correlation between the resolution of the screen and the grounding accuracy. The accuracy values fluctuate across
different resolution levels for both models, suggesting that factors other than resolution may have a more significant impact
on performance.

E.2. Cross-software Generalization Analysis

We compare model performance on common apps (e.g., VSCode) vs. less common ones (e.g., FreeCAD, QGIS) using the
element grounding subset in R1. Results are included in Table 8. While we cannot confirm the exact training data used in
several models, this serves as a proxy for generalization analysis. We observe that all models show significant accuracy
drops on less common apps, confirming consistent generalization challenges.

E.3. Latency Analysis

We report latency per query, average output tokens, and GPU usage across all three tasks using default Hugging Face
implementations for consistency. Table 9, 10 and 11 for Element Grounding,Layout Grounding and Action Prediction,
respectively. Token efficiency was measured with GPT-4 tokenization. Models like UI-TARS, trained on action-heavy tasks,
generate longer outputs due to detailed step-by-step reasoning.

E.4. Analysis of Planner vs. Grounding Model Contributions

Our experiments demonstrate a significant improvement in recall when large language model planners are combined with
grounding models, a gain we attribute primarily to better action selection since the grounding model only supplies coordinates.
We further analyzed error rate reductions across platform categories (Fig. 24), finding that productivity tools experienced the
largest decrease (26%) despite entertainment tools having a higher baseline grounding accuracy—underscoring the planner’s
impact—whereas creativity platforms saw the smallest gain (14%), highlighting challenges in planning and grounding

22

UI-Vision

Basic Functional Spatial

Model Acc (Common) Acc (Rare) Delta (%) Overall Acc (Common) Acc (Rare) Delta (%) Overall Acc (Common) Acc (Rare) Delta (%) Overall

(205) (173) (1772) (205) (173) (1772) (289) (156) (1935)

Closed-Source Models

Claude-3.5-Sonnet 5.85 0.58 90.09 5.08 4.39 0.00 100.00 5.19 1.73 2.56 -47.98 3.15
Claude-3.7-Sonnet 9.26 3.47 62.53 9.48 8.78 1.73 80.30 7.73 6.92 1.92 72.25 7.60

Open-Source VLMs

Qwen2VL-7B 3.41 0.58 82.99 3.44 2.44 0.00 100.00 3.22 0.69 0.64 7.25 1.45
MiniCPM-V-8B 6.34 4.62 27.13 7.11 3.41 2.31 32.26 5.30 0.35 0.00 100.00 1.45

Open-Source GUI Agents

ShowUI-2B 7.80 5.20 33.33 8.07 8.78 5.20 40.77 7.67 2.08 1.28 38.46 2.07
AriaUI-25.3B 13.70 9.82 28.32 12.20 13.20 8.09 38.71 14.00 4.50 3.20 28.89 3.98
OSAtlas-7B 11.70 6.93 40.77 12.20 9.76 8.09 17.11 11.20 3.11 3.85 -23.79 3.67
UGround-v1-7B 15.10 10.40 31.13 15.40 16.10 13.30 17.39 17.10 6.23 5.13 17.66 6.25
Aguvis-7B 15.60 10.40 33.33 17.80 17.10 10.40 39.18 18.30 3.46 3.21 7.23 5.06
UI-TARS-7B 20.50 11.60 43.41 20.10 23.40 15.60 33.33 24.30 8.30 5.13 38.19 8.37
CogAgent24-9B 19.50 6.36 67.38 12.00 16.10 4.05 74.84 12.20 6.23 0.64 89.73 2.63
UGround-v1-72B 26.80 17.90 33.21 27.90 26.80 14.50 45.90 26.70 15.90 12.80 19.50 14.90
UI-TARS-72B 34.60 20.80 39.88 31.40 33.70 18.50 45.10 30.50 16.60 11.50 30.72 14.70

Table 8: Cross-software generalization analysis for Element Grounding. Since directly retraining models for evaluation
is beyond the scope of this study, we approximate cross-software generalization by comparing model performance on
common apps (e.g., VSCode, draw.io, OnlyOffice suite) versus rare apps (e.g., FreeCAD, QGIS, Qt Creator, darktable,
Mastodon), the latter presumably unseen during training. We report accuracy scores on these subsets along with the relative
accuracy degradation (delta percentage). Positive deltas indicate better performance on common apps, reflecting a drop
when generalized to rare apps. We also add the overall results in Table 3 as a reference. From the results, all models
show significant accuracy drops on less common apps, confirming consistent generalization challenge. Notably, larger and
extensively trained models (e.g., UI-TARS-72B) exhibit higher overall accuracy but still encounter noticeable performance
reductions on rare apps, highlighting the challenges of generalization in practical scenarios. Models are categorized by size
for clarity: gray (closed-source models), green (open-source VLMs), and blue / orange for open-source GUI Agents
below/above 8B (active) parameters, respectively.

23

UI-Vision

Model Avg Latency per Query (s) Avg # Output Tokens # GPUs (H100)

Closed-Source Models (API-based)
Claude-3.5-Sonnet - 8.28 -
Claude-3.7-Sonnet - 47.5 -

Open-Source VLMs
Qwen2VL-7B 1.36 116.1 1
MiniCPM-V-8B 0.84 28.6 1

Open-Source GUI Agents
ShowUI-2B 4.73 25.9 1
AriaUI-25.3B 2.38 14.0 4
UI-TARS-7B 4.97 66.1 2
Aguvis-7B 1.38 18.3 1
OSAtlas-7B 0.76 40.6 1
UGround-7B 0.60 6.42 1
CogAgent24-9B 6.14 173.2 1
UI-TARS-72B 12.1 57.6 4

Table 9: Efficiency metrics for the Element Grounding task under the Basic setting. Latency measurements are based on
default Hugging Face implementations via the Transformers library, ensuring fair comparison (not applicable to closed-
source models). Output tokens are counted using the GPT-4 tokenizer. Models are grouped into three categories: gray

for closed-source models (API-based), green for open-source VLMs, and blue / orange for open-source GUI Agents
below/above 8B (active) parameters, respectively.

Model Avg Latency per Query (s) Avg # Output Tokens # GPUs (H100)

Closed-Source Models (API-based)
GPT-4o - 33.9 -
Claude-3.5-Sonnet - 166.2 -
Gemini-1.5-pro - 20.1 -

Open-Source VLMs
MiniCPM-V-8B 0.66 18.8 1
Qwen2VL-7B 0.95 25.7 1

Open-Source GUI Agents
OSAtlas-7B 0.95 39.8 1
CogAgent24-9B 6.71 192.1 1

Table 10: Efficiency metrics for the Layout Grounding task. Latency measurements are based on default Hugging Face
implementations via the Transformers library, providing a fair comparison across models (not applicable to closed-source
models). Output tokens are counted using the GPT-4 tokenizer. Models are grouped into three categories: gray for closed-

source models (API-based), green for open-source VLMs, and blue / orange for open-source GUI Agents below/above
8B parameters, respectively.

24

UI-Vision

Model Avg Latency per Query (s) Avg # Output Tokens # GPUs (H100)

Closed-Source Models (API-based)
GPT-4o - 59.6 -
Claude-3.5-Sonnet - 65.3 -
Gemini-1.5-pro - 55.9 -

Open-Source GUI Agents
ShowUI-2B 0.6 25.3 1
UI-TARS-7B 1.7 58.0 1

Table 11: Efficiency metrics for the Action Prediction task. Latency measurements are based on default Hugging Face
implementations via the Transformers library, providing a fair comparison across models (not applicable to closed-source
models). Output tokens are counted using the GPT-4 tokenizer. Models are grouped into two categories: gray for

closed-source models (API-based), and blue for open-source GUI Agents. We use FlashAttention-2 in our implementation
for all open-source models.

within functionally dense interfaces featuring small UI elements.

F. Limitation and Future works
Our benchmark tasks evaluate models in an offline setting. However, expanding it to an online environment would enable
a more comprehensive assessment of real-world interactions. We currently use heuristic sampling methods to select
challenging UI elements for the benchmark. Future work should explore improved strategies to ensure more representative
UI elements are sampled for evaluating agentic abilities. In the action task, we rely on a single human demonstration, which
may not fully capture the range of possible user interactions. Since tasks can often be completed in multiple ways, a single
demonstration might not provide a complete assessment of model capabilities. Expanding the dataset to include multiple
action trajectories per task would offer a more robust evaluation and reduce potential biases. Additionally, we have not
yet incorporated human-recorded videos, which are crucial for assessing GUI action understanding. Providing video clips
and querying models about possible actions could offer deeper insights into their reasoning and decision-making processes.
Finally, our benchmark does not explicitly evaluate combined actions involving both mouse and keyboard inputs, such as
holding the Control key while dragging an item. Since most models have limited exposure to such interactions, developing
reliable evaluation methods for these complex actions remains an open challenge.

25

UI-Vision

(a) Query: “Directly vertically below the
"baseSize", can you find the closest
element?”. The element in the blue box is the refer-
ence one referring to “medium eraser” while the red one is the
ground truth. The platform of the example is Qt Creator.

(b) Query: “What is the element that is
vertically closest to the "change case"
and above it?”. The element in the blue box is the reference
one referring to “medium eraser” while the red one is the ground
truth. The platform of the example is OnlyOffice Document
Editor.

(c) Query: “What is the element that is
vertically closest to the "Activate fill
tool" and above it?”. The element in the blue box is the
reference one referring to “medium eraser” while the red one is
the ground truth. The platform of the example is Darktable.

(d) Query: “What is the element that is
horizontally closest to the "Image Frame"
and to the right of it”. The element in the blue box
is the reference one referring to “medium eraser” while the red
one is the ground truth. The platform of the example is Scribus.

Figure 9: Examples of Element Grounding with spatial setting. The ground truth element is bounded by red bounding
box. We provide challenging examples from the Element Grounding task with spatial setting, requiring models to precisely
interpret spatial relations among UI components, such as elements directly adjacent or positioned relative to specific
reference elements.

26

UI-Vision

(a) Query: “Menu Bar: this region contains
the main menu options for the application,
including file, edit, view, and more.” The red
is the ground truth. The platform of the example is Krita.

(b) Query: “Shortcut Region: this region
contains shortcuts to various actions and
features such as bookmarks, history, and
settings.” The red is the ground truth. The platform of the
example is Mozilla Firefox.

(c) Query: “Cover Management Region: this
region contains all the tools and options
related to managing book covers, such as
changing, removing, and generating covers.”
The red is the ground truth. The platform of the example is
Calibre.

(d) Query: “Top Menu Bar: this region contains
the main menu options for the application,
including Media, Playback, Audio, Video,
and Help.” The red is the ground truth. The platform of the
example is VLC Media Player.

Figure 10: Examples of Layout Grounding. The ground truth element is bounded by red bounding box. We demonstrate
examples from Layout Grounding, showcasing how models must group UI components into meaningful semantic regions,
like identifying comprehensive areas for menu options, editing tools, or formatting tool clusters.

27

UI-Vision

Click

Move to the Slider at
[660, 135]

Left click on the OK
at the location

[734, 913]

Left click on Transparency
at the location

[275, 257]

Release the left
mouse button

Left click on the Properties
at the location
[310, 70419]

Left click on the Google
satellite at the location

[122, 716]

Hold down the left
mouse button

Drag cursor to [487, 146]

Click Click

Move

Click

Release

DragHold

"Apply a transparency of 45.9 to the layer"

1 2 3 4

8765

Figure 11: The figure illustrates the raw action trajectories recorded for a computer use task in QGIS software. To simplify
evaluation, certain actions, such as drag, are grouped with related actions like mouse up and mouse down, while redundant
actions, such as move, are removed. The recorded data consists only of action coordinates, which have been translated into
descriptive terms for clarity.

0 100 200 300 400
Number of bounding box annotations per screenshot

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity

Mean: 74.3
Median: 68.0

0 50 100 150 200
Duration of the video in seconds

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

Mean: 38.2
Median: 31.6

(a) Distribution of bounding boxes (b) Video duration distribution

0 10 20 30 40 50 60 70 80
Number of steps to complete the task

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

De
ns

ity

Mean: 14.0
Median: 13.0

Other 98 resolutions (39.8%)

1920 x 1080 (26.9%)

16
80

 x
 1

04
4

(6
.2

%
) 1280 x 720 (4.7%

)
1366 x 722 (3.8%

)
1920 x 1020 (3.3%)

1920 x 1030 (3.1%)

1920 x 1032 (2.7%)

1366 x 768 (2.7%)

1920 x 912 (2.4%)

1920 x 1022 (2.4%)

1366 x 720 (2.0%)

(c) Action steps distribution (d) Distribution of different screenshot resolutions

Figure 12: Dataset Statistics. (a) Distribution of the number of bounding boxes present per keyframe. (b) Distribution of
video durations in UI-Vision. (c) Distribution of the number of actions required to complete the task.

28

UI-Vision

Figure 13: Examples of raw annotation of a screenshot in UI-Vision. It is a representative of dense and complete element
coverage of bounding box annotations.

Figure 14: Typical error case (A) of Element Grounding with basic setting. The query given to the model is horizontal
grids. The model fails to identify the fine-grained differences in those cases. We highlight the ground truth with a red box.
The prediction of the model is indicated by a red arrow surrounding it. The ground truth element is cropped and attached
below the screenshot of each interface.

29

UI-Vision

Figure 15: Typical error case (B) of Element Grounding with basic setting. The query given to the model is insert font
work text. The model shows the obvious lack of domain knowledge of the software/platform in question. We highlight
the ground truth with a red box. The prediction of the model is indicated by a red arrow surrounding it. The ground truth
element is cropped and attached below the screenshot of each interface.

30

UI-Vision

Figure 16: Typical error case (C) of Element Grounding with basic setting. The query given to the model is Calligraphy.
The model fails to locate and understand small items within an interface with a dense distribution of UI elements. We
highlight the ground truth with a red box. The prediction of the model is indicated by a red arrow surrounding it. The ground
truth element is cropped and attached below the screenshot of each interface.

Figure 17: Typical error case (D) of Element Grounding with basic setting. The query given to the model is minimize
window. The model fails to generalize to the ”minimize” button for IOS system and points to the place where the ”minimize”
button is located in the Windows operating system. We highlight the ground truth with a red box. The prediction of the
model is indicated by a red arrow surrounding it.

31

UI-Vision

(a) Case from Gemini-1.5-pro (b) Case from OSAtlas-7B

Figure 18: Layout Grounding error case. Query: “Menu Bar: this region contains the main menu
options for the application, including file, edit, view, and more.” The red is the ground
truth. blue box is the model prediction. The platform of the example is LibreOffice Impress.

(a) Case from Gemini-1.5-pro (b) Case from OSAtlas-7B

Figure 19: Layout Grounding error case. Query: “Widget Toolbox: This region contains
a collection of widgets that can be used to design and build user interfaces,
including buttons, sliders, and input fields.” The red is the ground truth. blue box is the model
prediction. The platform of the example is Qt Creator.

32

UI-Vision

Figure 20: Gemini was instructed to ”Increase the parallel job count to 5 in analyzer settings.” At this step, it correctly
predicts the action: Click on Analyzer in the left sidebar menu to open the settings. However, as shown by the yellow arrow,
it fails to ground the action in the correct location, clicking on an incorrect element instead. This highlights a common issue
where models generate accurate plans but struggle with precise execution.

Figure 21: Gemini was instructed to ”In the Sketcher workbench of FreeCAD, set the orientation offset to 10, and draw a 2D
ellipse.” However, instead of clicking the Sketcher button (indicated by the arrows in the figure), it predicts the action ”Click
on the new sketch button to create a new sketch.” Since a sketch is already present, this action is unnecessary and incorrect.
This suggests that Gemini may lack knowledge of the Sketcher icon and its intended functionality.

33

UI-Vision

Figure 22: UI-TARS was instructed to ”Enable timeout for 60 seconds for testing.” Instead of dragging through the dialog
box’s left menu to locate the Timeout setting, it predicts the action click on the ”Manage” button. Although the action is
accurately grounded (yellow arrows on the screen), it is incorrect because the button is in the background and inaccessible
without closing the dialog. This suggests that UI-TARS may lack familiarity with the Qt Creator platform and does not
recognize the need to scroll within the dialog to find the testing option.

(a) UI-Tars-72B (b) UGround-v1-72B

Figure 23: Analysis on Element Grounding accuracy on top two performing models in terms of the area of screenshot (i.e.
resolution of screenshot).

34

UI-Vision

Figure 24: Percentage decrease in error when using GPT-4o as a planner, paired with UGround-v1-7B for grounding the
predicted action and target UI element.

35

