Taking Notes Brings Focus? Towards Multi-Turn Multimodal Dialogue
Learnings

Anonymous ACL submission

Abstract

Multimodal large language models (MLLMs),
built on large-scale pre-trained vision towers
and language models, have shown great capa-
bilities in multimodal understanding. However,
most existing MLLMs are trained on single-
turn vision question-answering tasks, which do
not accurately reflect real-world human conver-
sations. In this paper, we introduce MMDiag,
a multi-turn multimodal dialogue dataset. This
dataset is collaboratively generated through de-
liberately designed rules and GPT assistance,
featuring strong correlations between questions,
between questions and images, and among
different image regions; thus aligning more
closely with real-world scenarios. MMDiag
serves as a strong benchmark for multi-turn
multimodal dialogue learning and brings more
challenges to the grounding and reasoning ca-
pabilities of MLLMs. Further, inspired by
human vision processing, we present Diag-
Note, an MLLM equipped with multimodal
grounding and reasoning capabilities. Diag-
Note consists of two modules (Deliberate and
Gaze) interacting with each other to perform
Chain-of-Thought and annotations respectively,
throughout multi-turn dialogues. We empiri-
cally demonstrate the advantages of DiagNote
in both grounding and jointly processing and
reasoning with vision and language informa-
tion over existing MLLMs.

1 Introduction

In recent years, large language models (LLMs)
have achieved remarkable advances in various nat-
ural language applications, including chatbots (Bai
etal., 2023a; Achiam et al., 2023; Reid et al., 2024),
programming assistants (Cursor, 2024), and rhetor-
ical aides (DeepL, 2024). The success has further
spurred the development of multimodal large lan-
guage models (MLLM) (Liu et al., 2024b; Zheng
et al., 2025). However, most existing MLLMs are
trained as single black-box systems to handle mul-

timodal instructions, often struggling with inaccu-
racies and hallucinations, especially in complex
multi-turn dialogues (Tan et al., 2024; Zheng et al.,
2024). We hypothesize such challenges arise from
the MLLM’s difficulty in maintaining focus on tar-
get regions throughout the conversation, especially
for high-resolution images with overly long visual
tokens. In this paper, we seek to address these is-
sues by moving beyond a black-box approach to an
explicit target-grounding solution. Here, we sum-
marize two key goals for multi-turn multimodal dia-
logue learning: @ “saliency tracking”, where mod-
els must keep tracking different relevant regions
over the course of the dialogue, and ® “saliency
recall”, where models need to consistently retain
focus on the same critical information across multi-
ple question-answering (QA) rounds. For example,
in the dialogue illustrated in Figure 1, completing
the Minigrid (Chevalier-Boisvert et al., 2023) task
requires the MLLM to accurately locate both the
agent (i.e.“red triangle”) and the target (i.e.“purple
key”) to answer the initial question. The following
question then builds upon this information, requir-
ing the MLLM to reason about the agent’s starting
position based on the previously identified location
of the key. This example illustrates the need for sus-
tained and explicit grounding to multiple specific
visual details in multi-turn multimodal dialogue.
To achieve these two goals, we draw inspiration
from how humans maintain focus while studying.
For instance, when working through documents,
people may lose concentration, but can quickly re-
focus by using simple techniques such as jotting
down notes or highlighting key points. Even basic
marks, such as circling or underlining, can signifi-
cantly enhance focus without requiring elaborate
explanations. These visual cues guide attention,
making it easier to track, recall, and revisit im-
portant information. In contrast, existing MLLMs
lack such tracking capabilities, prompting us to
ask: “Can an MLLM be designed to equip similar



(a) Human Input:
What should the red triangle agent do if it
. wants to pick up the purple key?
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To achieve this goal, we should first locate
the red triangle agent.

Then, we need to find the purple key.
Finally, we should plan the path for the agent.

purple key.

Human Input:
(b) After that, What should the agent do next if
it wants to reach the red ball below the
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To achieve this goal, we should first locate
the red triangle agent.

Since the agent is located at the place it
reached the last step, we should focus on the
same region at the last step.

Then, we need to find the red ball below the
purple key.

Finally, we should plan the path for the agent.

red ball purple key

red ball

Figure 1: Multi-turn multimodal dialogue: (a) Saliency
tracking. The MLLM needs to focus on both the red
triangle agent and the purple key, which scatter on the
image, to answer the question correctly. (b) Saliency
recall. The MLLM needs to retain focus on the region
where the agent will stop after the last question.

attention-guiding abilities? If so, what would that
model design entail?”

To answer this question, we first review existing
tuning methods for MLLMs and identify a critical
gap: the lack of quality multi-turn multimodal QA
datasets that adequately reason over both visual
and text information. Existing datasets, such as
MMDU (Liu et al., 2024¢) and SciGraphQA (Li
and Tajbakhsh, 2023), primarily consist of single-
turn QA pairs, where most questions can be an-
swered independently without relying on prior con-
text. To bridge this gap, we introduce a novel
dataset, MMDiag, designed as a foundational
benchmark for challenging multi-turn multimodal
dialogue. This dataset offers visually detailed
multi-turn dialogues across a range of scenarios.

Furthermore, recent studies have introduced var-
ious modules to help keep focus in multi-turn mul-
timodal dialogues. However, these methods either
“zoom in” to progressively narrow focus areas with
the aid of external grounding and OCR tools (Qi
et al., 2024), or identify a single region of interest
per question before generating an answer (Shao
et al., 2024). These approaches lead to severe limi-
tations: the zoom-in method restricts the focus to
smaller regions, potentially missing broader con-
text, while the single-region method isolates spe-
cific areas, overlooking multiple relevant details
that could enrich responses. To address these lim-

itations, we propose DiagNote, a model designed
to enhance focus and reasoning in multi-turn mul-
timodal dialogue. DiagNote comprises two main
modules: Deliberate and Gaze. The Deliberate
module guides the Gaze module in dynamically
adjusting regions of visual focus, while the Gaze
module highlights crucial areas for subsequent pro-
cessing by the Deliberate module. These two mod-
ules interact across multiple dialogue turns, emulat-
ing human visual processing to produce an answer
accompanied by optional reasoning and grounding
steps. Through this interactive mechanism, Diag-
Note can achieve more effective reasoning with
multimodal information, resulting in accurate and
context-aware responses throughout dialogues.

Our main contributions are summarized as fol-
lows: @ To address the need for robust multi-
modal grounding and reasoning, we build a new
large-scale multi-turn multimodal dialogue dataset
— MMDiag — across several QA scenarios (e.g.daily
life and tabular data), using rule-based searching
and GPT-40-mini (OpenAl) capabilities. @ In-
spired by human visual processing, we propose
DiagNote and its two key modules — Deliberate
and Gaze — to enhance the model’s capacity for
multimodal information integration and reasoning.
® We evaluate DiagNote’s reasoning and ground-
ing abilities on MMDiag and other benchmarks
and the results demonstrate that the introduction
of MMDiag and DiagNote significantly improves
performance in multimodal conversations, while
the MMDiag itself can also serve as a more chal-
lenging benchmark for this area.

2 Related Work

2.1 Multimodal Large Language Models

The introduction of Transformers (Vaswani et al.,
2017; Liu et al., 2021) and large-scale training has
significantly advanced model capabilities, enabling
powerful vision encoders (Radford et al., 2021a)
and large language models (LLMs)(Chiang et al.,
2023; Touvron et al., 2023). Building on these
foundations, multimodal large language models
(MLLMs)(Liu et al., 2024b; Zheng et al., 2024)
have achieved strong performance across diverse
tasks, with promising applications in VR/AR and
game agents (Xu et al., 2024; Feng et al., 2024).
MLLMs typically comprise three core compo-
nents: modality encoders, modality interfaces, and
LLMs (Yin et al., 2023). The encoders and LLMs
handle visual and linguistic inputs separately, while



interfaces align non-language modalities with the
language space. Some models further incorporate
generators to produce other modalities, such as ac-
tions (Driess et al., 2023) or images (Zheng et al.,
2024). Training MLLMs usually involves two
stages. The first aligns vision and language via pre-
training on large-scale image-caption datasets (Liu
et al., 2024b; Schuhmann et al., 2022; Changpinyo
etal., 2021). The second fine-tunes models on tasks
like visual question answering (VQA)(Liu et al.,
2024b; Singh et al., 2019) to enhance instruction-
following abilities. This two-stage pipeline under-
pins many state-of-the-art models, including PALI-
X(Chen et al., 2023), Qwen-VL (Bai et al., 2023b),
and LLaVA (Liu et al., 2024b), serving as a foun-
dation for recent MLLM advances.

2.2 Grounding and Reasoning Benefit
MLLMs

MLLMs benefit from language models’ in-context
learning (Brown, 2020) and Chain-of-Thought
(CoT) (Wei et al., 2022) for generalization and rea-
soning. However, MLLMs sometimes rely exces-
sively on LLM components, leading to overlooking
visual details and hallucinations. To address these
limitations, Qi et al. (2024) introduce “Chain of
Manipulations”, allowing MLLMs to perform rea-
soning with external grounding and OCR models,
which enable incremental task-solving. Although
this approach improves performance, it is limited
to zooming in on specific areas and may miss key
scattered details. Similarly, Shao et al. (2024) en-
hance performance by focusing on a single region
of interest per question. However, a single ground-
ing and reasoning round is often insufficient for
complex problems. To overcome these challenges,
we propose two modules: Deliberate for reasoning
and Gaze for grounding, enabling multiple rounds
of reasoning. This iterative approach allows for
better problem-solving by refining both grounding
and reasoning across interactions, making it more
effective in handling complex tasks, like multi-turn
multimodal QAs.

2.3 Multi-Turn Multimodal Dialogue

Multi-turn dialogue involves sustained interaction
between a human and an MLLM-based agent,
spanning casual exchanges (Shuster et al., 2018),
feedback-driven refinement (Chen et al., 2024c),
cooperative tasks (Chen et al., 2024a), and struc-
tured QA scenarios (Lin et al., 2014; Singh et al.,
2019), which is our focus. In language-only dia-

logues, a key challenge lies in handling question
interdependence, where earlier answers serve as
context for later queries. Introducing visual input
adds complexity: the model must @ integrate lan-
guage context, @ align it with visual input, and ©
cope with diminishing visual focus in extended di-
alogues. Dialogues with independent questions re-
duce the task to single-turn QA. Existing multi-turn
datasets (Das et al., 2017; Liu et al., 2024c; Li and
Tajbakhsh, 2023) often feature weakly connected
QA pairs. Seo et al. (2017) include spatial reason-
ing but with simple tasks, while Tian et al. (2024)
address referential challenges by rule-based word
substitution (e.g., it), which harms coherence and
introduces ambiguity. Our method overcomes these
issues by first generating correlated QA drafts with
rules, then refining them using GPT-40-mini (Ope-
nAl), resulting in a more realistic and complex
multimodal, multi-turn dialogue dataset.

3 MMDiag: A New Benchmark for
Multi-Turn Multimodal Dialogue

In the following section, we first motivate the
choice of three scenarios: everyday, tabular, and
Minigrid. Next, we illustrate how to construct the
QA pairs for our MMDiag dataset. We then ex-
plain the evaluation process in Section 3.3. Finally,
we compare MMDiag with existing multimodal
dialogue datasets in Section 3.4. Examples of QA
pairs are given in Appendix A.2. Both MMDiag
and its generation code will be publicly released.

3.1 Chosen Scenarios

The three selected scenarios — Everyday, Tabular,
and Minigrid — are chosen to evaluate distinct yet
complementary challenges in multimodal reason-
ing. Everyday scenes test common-sense under-
standing and multi-turn interactions, reflecting real-
world Al applications. Tabular scenarios require
structured data comprehension and numerical rea-
soning, which many MLLMs struggle with. And
Minigrid focuses on spatial reasoning and planning,
essential for navigation and decision-making. This
diverse selection ensures a comprehensive assess-
ment of multimodal understanding. Empirically,
all three settings pose significant challenges even
for state-of-the-art models like GPT-40 (Figure 3),
with notable failures, such as Visual CoT’s inabil-
ity to generate positive grounding predictions in
Tabular tasks (Table 2).



Dataset QA Scale GND Scale

Generation Process

Average Turns Multi-Turn Multi-Region Dialogue Correlation

CB-300k (Tian et al., 2024) 463k 254k GPT-4/Rule-based 5.49 v X O
Visual CoT (Shao et al., 2024) | 438k 438k GPT-4/0CR 1 X X X
CoM (Qi et al., 2024) 76k GPT-4/Tree-Search/Human 1 X O X
MMDU (Liu et al., 2024c) 410k LLM-filtered/GPT-40 9 4 X X
MMDiag ‘ 639k 1139k Graph-search/OCR/GPT-40-mini 2.19 v v v

Table 1: Comparison between MMDiag and other multimodal dialogue datasets. (): Features are considered, but
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Figure 2: Model architecture of DiagNote. Regions with blue backgrounds represent a deliberation step and the
interaction between the Deliberate and Gaze modules. At each turn, the Deliberate module processes the original
image, dialogue context, and buffers from both modules. It produces two outputs: (1) a Deliberate step, stored in
the Deliberate buffer, and (2) a Gaze query, which is processed by the Gaze module. The resulting bounding boxes

are then stored in the Gaze buffer.
3.2 Dataset Curation

Everyday Scene Subset. The source dataset (Kr-
ishna et al., 2017) includes 108K images with de-
tailed annotations, allowing us to construct a di-
rected graph G = (V, E) for each image, where
V are objects and £ are their relationships. Each
QA pair is represented as a subgraph Gqa
(Vqa, £4q), containing nodes and edges involved in
either question or answer. If a QA pair shares no
nodes or edges with others, it is considered inde-
pendent, as it doesn’t add to dialogue complexity
or rely on cross-QA information. We extend QA
pairs into multi-turn QAs by building a subgraph
pattern M = |J;"_, Gqa', ensuring each Gga' over-
laps with at least one other (i.e., 35 # ¢ such that
Vqa' NVqa’ # ), so answering any pair depends
on others. Subgraph matching is then used to iden-
tify instances of M in G, enabling the generation of
diverse multi-turn QAs. We use GPT-40-mini (Ope-
nAl) to produce natural questions, answers, and
reasoning steps, along with ground-truth object lo-
cations. The prompt is detailed in Appendix A.1.

Tabular Scene Subset. This subset is sourced from
ChartQA (Masry et al., 2022), which contains 18K
real-world charts and 23.1K human-authored QA
pairs. As ChartQA consists only of single-turn QA,
it does not meet our multi-turn dialogue require-
ments. To generate multi-turn question answering,
we use GPT-40-mini, primarily relying on chart
images due to the questionable reliability of table-

type metadata. To ensure interrelated dialogues,
where certain regions are referenced as pronouns to
increase complexity, we explicitly emphasize this
requirement in the prompt. However, GPT-40-mini
struggles with maintaining this structure, requir-
ing supplementary prompts to guide generation
more effectively. Details on the prompt design are
provided in Appendix A.l. Finally, we use Easy-
OCR (JaidedAlI, 2024) to match keywords with
corresponding chart regions, enabling generation
of bounding boxes for relevant areas.

Minigrid Scene Subset. Minigrid (Chevalier-
Boisvert et al., 2023) is a Gymnasium-based (Tow-
ers et al., 2024) collection of 2D grid-world en-
vironments with goal-oriented tasks. The agent,
represented as a triangular figure with a discrete ac-
tion space, navigates maze-like maps and interacts
with objects such as doors, keys, and boxes. These
tasks test the model’s ability to focus on image de-
tails, spatial reasoning, and action planning, with
some requiring numerous steps to complete, mak-
ing them particularly challenging. To construct this
subset, we use Minigrid and BabyAlI (Chevalier-
Boisvert et al., 2019) to generate grid worlds, tasks,
and step-by-step action plans, which are formatted
as prompts for GPT-40-mini. Further details on
environment generation and prompt design are in
Appendix A.1.

Common Visual-Text Subset. To enable MLLMs
with robust capabilities to answer the question, we



also add additional visual-text pairs with high qual-
ity from previous works (Liu et al., 2024b) to en-
hance their instruction-following ability.

3.3 Multi-Turn Multimodal Dialogue
Evaluation

MMDiag outputs three components: reasoning
process, grounded key regions, and final answers,
which we evaluate separately. For the reasoning
and answers—both in natural language and vari-
able in phrasing—we follow standard practice by
inputting images, questions, ground-truth and gen-
erated answers into a strong MLLM for scoring. To
avoid evaluation bias, we use Gemini-1.5-Pro (Reid
et al., 2024) instead of GPT-40-mini (OpenAl),
which was used in dataset generation. Following
prior work (Lee et al., 2024; Stureborg et al., 2024;
Chen et al., 2024b), we adopt “ad-hoc” reasoning-
based scoring across five categories on a 0—10 scale
for consistency and interpretability; the full prompt
is in Appendix A.3. We also evaluate grounding
using key region queries and bounding boxes, form-
ing a GND subset. As these queries often describe
objects or regions with detailed attributes and rela-
tions, the subset effectively assesses grounding for
complex cases. Grounding accuracy is measured
via Intersection over Union (IoU).

3.4 Multimodal Dialogue Datasets
Comparison

We compare MMDiag with prior datasets designed
for vision-language understanding and reasoning.
As shown in Table 1, MMDiag is the first to feature
multi-turn, multi-region dialogues with strong QA
dependencies, reinforced by a thorough generation
process. In contrast, datasets like CB-300k (Tian
et al., 2024) and MMDU (Liu et al., 2024¢) lack
mechanisms to enforce such dependencies, reduc-
ing multi-turn dialogues to mere concatenations
of independent QA pairs. Although MMDiag has
relatively short dialogues, the inherent dependence
between turns presents significant challenges for
MLLMs, including GPT-40, as demonstrated in
Figure 3. The grounding and QA test splits include
1,000 unseen images and QA pairs, respectively.

4 DiagNote

In this section, we introduce our proposed Diag-
Note and its training process. Using two essential
modules named Deliberate and Gaze, DiagNote is
trained on the train split of MMDiag to meet the
requirements for multi-turn multimodal dialogue,

which provides capabilities of stepwise reasoning
and grounding corresponding salient visual regions
for each dialogue.

4.1 Model Architecture

The overall framework of our model is illustrated in
Figure 2. We adopt the same architecture, LLaVA-
1.5 (Liu et al., 2024b,a), for both the Deliberate
and Gaze modules, with no shared parameters. To
leverage the generalization capability of MLLMs,
we avoid using dedicated grounding models such
as Grounding DINO (Liu et al., 2023) for the Gaze.
Each module consists of an LLM backbone, a pre-
trained ViT (Radford et al., 2021b) as vision en-
coder, and an MLP projection for vision-language
alignment, with distinct parameters for the two
modules. Given an image Iv and a dialogue of
T turns (I3, IL,---  IT IT), where I and I’ de-
note the ¢-th question and answer, the model per-
forms multi-step interactions between Deliberate
and Gaze at each turn to generate the answer I.

At turn ¢, given question Iq?, the Deliberate mod-
ule D takes the image I, and dialogue context
C'= (LI, I 1 I 1) to produce a De-
liberate step S} and a Gaze query Q}, stored in
buffers B, and B!, respectively. The Gaze G then
outputs bounding box of based on Q}, also stored
in BZ. In each subsequent round ¢, the Deliber-
ate receives I, context C?, Gaze buffer BZ, and
Deliberate buffer B, to generate new S} and Q!,
while Gaze returns of. The process repeats until
the Deliberate outputs ‘END’ as query QFin — 1,
indicating that the Deliberate and Gaze back-and-
forth process is complete.

Finally, the image, the dialogue context, and
all the buffers are fed into the Deliberate mod-
ule D to produce the final answer SL,  (i.e., I.)
and the Gaze query QL. . The Gaze module G
then provides the bounding box of the salient area
ol for the ¢-th dialogue turn. The final output
is St , along with the optional key region bound-
ing box ol . as well as the Deliberate process
(S’j, e S%m_l), if required. The final answer I},
is then appended to the dialogue context for the
next dialogue turn.

4.2 Model Training

The training process of both Deliberate and Gaze
modules follows that of LLaVA, and DiagNote pro-
vides two prompt templates p® and p? for Delib-
erate and Gaze respectively. At the ¢-th round of

Deliberate and Gaze for Question Ig, the instruc-



‘ ‘ MMDiag GND Testset ‘ GND Dataset |
Model Train Data o . Average

| | Everyday Tabular Minigrid | MSCOCO RefCOCO|
Grounding DINO (Liu et al., 2023) | - 038 0001 0209 | 0715 0469 | 0356
LLaVA (Liu et al., 2024b) LCS558K+Mixed665K 0237 0006 0142 | 0365 0414 | 0233
Visual CoT (Shao etal., 2024) | VisCoT 0220 0003 0160 | 0321 0362 | 0213
DiagNote CoCo 0307 0008  0.199 | 0662 0765 | 0388
DiagNote MMDiag 0369  0.466 1.0 0259 0257 | 0471
DiagNote MMDiag + COCO 0399 0487 0988 | 0624 0742 | 0.648
DiagNote MMDiag + COCO + VisCoT| 0433 0281 0910 | 0.662 0837 | 0.625

Table 2: Comparison results with existing MLLMs on Grounding benchmarks (GND) to demonstrate the challenging
characteristics of our dataset MMDiag. We use Intersection over Union (IoU) as the evaluation metric.

tion Rin¢ for the Deliberate module is:

p(L,C"), i=1
Rin{ = < pd(I,,C", B}, B}), 1<i<Fin
p? (L, C*, BY, B, Fin), i =Fin,
(1)

where B,

( ﬁ’...’Qg_l).

Gaze module is:

(Sf,---,8!_)) and B
The instruction Rin? for the

Rin? = p%(L,,Q}), i <Fin,i+# Fin— 1.
2
We fine-tune the LLM on the prediction tokens,
utilizing the auto-regressive training objective to
optimize. We compute the probability of the target
output Rout} with length L at i-th round by:

L

p (Rout} | Rin}) = Hpgx (rl | Rin}, Routf‘d) ,

=1
where x € {d, g}.
3)

0% is the trainable parameters of Deliberate and
Gaze modules respectively, with x € {d, g}. Rin}
are input tokens of ¢-th round of the Deliberate
and Gaze interaction process. Rout”™_; are answer
tokens before the current prediction token r;.

Our Deliberate and Gaze modules take LLaVA-
1.5 as base models. For the Gaze module, since
grounding such salient areas as words and ob-
jects with detailed descriptions is quite challenging,
we first fine-tune it with an additional grounding
dataset, and then fine-tune Deliberate and Gaze
modules together. We combine the fine-tuning
dataset from LLaVA (Liu et al., 2024b) with the
grounding split of MMDiag to generate the ground-
ing dataset; and we also combine the fine-tuning
dataset from LLaVA with the training split of the
MMDiag dataset to generate the entire training
dataset. For data points in LLaVA, DiagNote does

not add Deliberate prompts for the Deliberate mod-
ule, thus instructing the Deliberate module to main-
tain the ability to output answers in general format.

S Experiments

5.1 Implementation Details

We use LLaVA-1.5-7B (Liu et al., 2024a) as the
foundation model for both Deliberate and Gaze
modules, with CLIP-ViT-Large-Patch14-336 (Rad-
ford et al., 2021b) as vision tower. Training is con-
ducted on 8 x A800 GPUs with a learning rate of
2e-5. Deliberate and Gaze are optimized separately
via supervised learning with ground-truth outputs
per round. During inference, the Gaze module sig-
nals reasoning completion by outputting “END” for
turn T, (Table 4), with the round number dynami-
cally determined by DiagNote. Additional training
details are provided in the Appendix B,C.

5.2 Results on MMDiag
5.2.1 Visual Grounding

This section focuses on how the MMDiag dataset
enhances grounding performance in MLLMs.
Grounding is essential for enabling MLLMs to
attend to salient regions and reveal the reason-
ing process, rather than acting as black boxes.
We evaluate DiagNote on standard grounding
(GND) benchmarks (Lin et al., 2014; Kazemzadeh
et al., 2014; Tian et al., 2024) and the MMDiag
GND benchmark, using average IoU scores, as
shown in Table 2. Compared to benchmarks
like MSCOCO, DiagNote shows a notable per-
formance drop on MMDiag, indicating its higher
difficulty. Existing models like Visual CoT, de-
spite incorporating region-based attention, perform
poorly on GND tasks—e.g., scoring -0.394 vs.
Grounding DINO on MSCOCO and underperform-
ing LLaVA—revealing their limited robustness in
grounding relevant image areas. In contrast, Diag-



MMDiag

Model ‘ Gaze ‘ Train Data ‘ Everyday Tabular Minigrid ‘ Average
‘ ‘ ‘ reasoning answer reasoning answer reasoning answer ‘
LLaVA (Liu et al., 2024b) X LCS558K+Mixed665K 2.55 4.85 1.00 1.28 2.29 0.42 2.21
CogCoM (Qi et al., 2024) X - 3.05 5.45 0.50 1.25 0.53 0.96 2.20
Visual CoT (Shao et al., 2024) X VisCoT 4.15 4.90 1.23 1.95 1.09 2.50 2.81
DiagNote X MMDiag 4.25 4.95 3.61 4.20 4.95 4.27 4.32
DiagNote v MMDiag 5.82 6.15 3.95 4.05 5.10 4.15 492
DiagNote v MMDiag+COCO 6.35 5.97 3.95 4.30 5.75 4.93 5.18
DiagNote v GT 6.85 5.80 6.32 7.76 7.37 9.15 7.00

Table 3: Comparison of the evaluation score with baselines to validate the Gaze module, we use Gemini-1.5-Pro
to evaluate the performance of the reasoning process and the final answer. The evaluation process is detailed

in Section 3.3.

Tabular

Reasoning Answer

|
Model ‘
|

T1 T2 T3 T4 TI1 T2 T3 T4

CogCoM 055 091 1.15 067 175 0.73 0.85 035
Visual CoT | 1.50 1.05 133 1.02 186 124 1.03 0.88
LLaVA 234 035 100 058 142 050 097 0.50

w/o Gaze 401 3.05 215 1.66 347 203 165 1.63
with Gaze | 3.86 3.34 231 253 325 265 217 1.98

Table 4: The Gemimi-1.5-Pro evaluation of the reason-
ing process and the final answer, scaling to 0-10, at turns
1 to 4 under the tabular scenario, where Tx* denotes the
*-th turn in the dialogue.

Note—trained on limited GND annotations from
MMDiag and MSCOCO—achieves clear improve-
ments on MSCOCO and RefCOCO, and outper-
forms others across all MMDiag subsets. Impor-
tantly, MSCOCO is used solely to enhance ground-
ing, and we deliberately restrict GND data size
to avoid scale bias. As shown in Row 4, training
solely on MSCOCO leads to the weakest perfor-
mance, underscoring the necessity and advantages
of MMDiag.

5.2.2 Multi-Turn Reasoning

We evaluate our model’s multi-turn reasoning ca-
pabilities using the MMDiag benchmark. Beyond
final answer correctness, the evaluator also assesses
the coherence and logic of the reasoning process
within the Deliberate module, with detailed results
in Table 3. “GT” denotes settings where the Delib-
erate receives ground-truth inputs during reasoning,
serving as an upper bound. Other settings use Gaze
queries generated by DiagNote, preventing infor-
mation leakage. As expected, the GT setting signif-
icantly outperforms others, highlighting room for
improvement. To validate the effectiveness of our
proposed module, we observe that Gaze improves
performance on specific reasoning tasks. For ex-

ample, in everyday scenarios, models with Gaze
achieve higher accuracy, showing enhanced focus
and reasoning accuracy. When similar objects dif-
fer in location or attributes, the model may fail to
identify the referenced one. Annotating the target
in the image helps the model maintain focus and
avoid such errors as reasoning progresses.

We further compare DiagNote with CogCoM (Qi
et al., 2024) and Visual CoT (Shao et al., 2024),
which also handle region-focused multimodal dia-
logue. DiagNote shows notable advantages, espe-
cially in tabular and Minigrid scenarios, reflecting
the dataset’s complexity and strengths of two mod-
ules. Table 4 shows a breakdown of tabular results
across dialogue rounds: DiagNote consistently out-
performs others in rounds two through four, un-
derscoring its strength in long-context reasoning.
Gaze brings more noticeable gains in longer dia-
logues (e.g.T3,4), further validating its benefit for
extended multimodal understanding. Note that Ta-
ble 3 includes QA pairs of lengths 2—4, while Ta-
ble 4 focuses only on 4-turn dialogues.

5.3 Qualitative Results.

In this section, we provide additional grounding
and reasoning examples of DiagNote. More visual-
ization results can be found in Appendix D,F.

Visual Grounding. The Gaze module offers both
grounding and OCR capabilities across diverse
scenarios. As illustrated in Figure 4b, Ground-
ing DINO (Liu et al., 2023) struggles in complex
scenes where multiple objects of the same cate-
gory exist with different attributes or relationships,
therefore often failing to locate the target object
precisely. In contrast, DiagNote’s Gaze module
effectively manages such situations, as shown in
Figure 4a. Additionally, when faced with tasks re-
quiring text recognition, the Gaze module exhibits



The provided image depicts a grid world, with gray squares representing
impassable walls, black squares as the background color, and the agent repre-
sented as a red triangle, with its pointed tip indicating the initial direction it is
facing. Various squares may contain different objects such as colored balls,
keys, boxes, and doors.

Question': '"How can the agent go to the yellow box?

CoT:

To help the agent (the red triangle) reach the yellow

1.To start, we need to identify the agent’s current - - -
position.

2. Next, we need to locate the y@ﬂﬂ@w bes, which is
the target.

3. To reach the yellow box, the agent should move
right.

|
|
- = - — - — |-
|

4.Then, the agent should move forward toward the 1
yellow box. |
|

1

5. Finally, the agent needs to move forward one more
time to reach the yellow box.

Final_Ans: The agent should move right, then forward | _
twice to reach the yellow box.

gﬁ ii
| EEENE
CEEES S

box, you can follow these steps:

-1. Identify the Agent's Position: The agent starts in the
bottom left corner of the grid.

-2. Determine the Position of the Yellow Box: The
yellow box is located in the middle column, second
row from the top.

3.Plan the Path:
= Move up to the square directly above the agent.
= Move up again to the next row.
= Move right to the middle column.
= Finally, move up to reach the yellow box.

This path avoids impassable walls and allows the
agent to reach the yellow box efficiently.

Figure 3: Comparison for an example of the Minigrid scenario, one of the subsets in MMDiag. We give

and the same environmental description and question. DiagNote focuses on the key regions and gives the
correct reasoning process and the final answer. In contrast, GPT-4o fails to locate the object and thus gives the wrong
answer. Examples for the MMDiag subsets of everyday scenarios and tabular scenes can be found in Appendix F.

;,;,Q\rm

(a) DiagNote

(b) Grounding DINO

Figure 4: A grounding comparison between Grounding
DINO and DiagNote’s Gaze module , with the Gaze
query “pink and white sign”. In (a), the red bounding
box represents the ground-truth answer, while the blue
one indicates the output generated by the Gaze module
in DiagNote. In (b), the red bounding boxes show the
outputs produced by Grounding DINO.

more robust OCR capabilities, accurately identify-
ing and localizing specific keywords.

Multi-Turn Reasoning. With the incorporation
of the Gaze module, our model can also more ef-
fectively focus on fine-grained details distributed
across the image, offering a clear advantage in tasks
that demand cohesive reasoning across both visual
and linguistic information. As shown in Figure 3,
a comparison between our DiagNote and GPT-40
within a simple Minigrid environment highlights
this benefit. Despite detailed descriptions provided
in the prompt, GPT-40 struggles with completing a
short-range, single-subgoal task, underscoring the
strengths of our dataset and methodology.

5.4 Ablation Study

We observe a counterintuitive performance trend
when comparing DiagNote with and without the
Gaze module. To analyze its impact, we fine-tune
DiagNote and Visual CoT on MMDiag and confirm
Gaze’s effectiveness. However, its gains are lim-
ited, likely due to low-resolution image inputs. Fail-
ure cases show that when dialogues reference tiny

key regions (under 0.2% of the image), Gaze often
produces inaccurate bounding boxes, confusing the
Deliberate module. The CLIP-ViT-Large-Patch14-
336 encoder further limits resolution, contributing
to errors. On standard multimodal benchmarks, Di-
agNote performs comparably or slightly lower, as
it targets complex multi-region dialogues without
in-domain training data. Ablation details are in
Appendix E.

6 Conclusion

In this paper, we focus on a key challenging task
scenario for MLLMs—multi-turn multimodal dia-
logue. To address it, we first introduce a specially
designed dataset, MMDiag, where accomplishing
tasks requires properly integrating visual informa-
tion across different regions of an image and con-
necting multimodal information across various QA
pairs. This setting closely resembles natural conver-
sations and poses significant challenges to current
MLLMs. To solve this, we construct MMDiag
across three distinct scenarios—everyday, tabular,
and Minigrid—using a combination of rule-based
methods and GPT-40-mini to ensure robustness and
diversity. Experimental results highlight challenges
posed by MMDiag. Therefore, we propose Diag-
Note, an MLLM inspired by human visual process-
ing, composed of two modules: Gaze and Delib-
erate. Deliberate performs reasoning step by step,
with the assistance of Gaze, which provides anno-
tations of salient regions to focus on. Experiments
show that DiagNote enhances both grounding and
reasoning capabilities, effectively addressing MM-
Diag challenges. We hope our work helps advance
the development of more intelligent MLLMs.



Limitations

Although MMDiag contains diverse data, our meth-
ods can be expected to generate even more sce-
narios and complex questions, resulting in even
more challenging datasets for multi-turn multi-
modal dialogue. Larger sub-graph patterns can
be used to search for longer and more complex
dialogues. While qualitative results and case stud-
ies demonstrate the effectiveness of our approach,
there remains considerable room for improvement.
The potential performance drops with the intro-
duction of Gaze module may stem from failures
in queries involving extremely tiny objects. Fine-
tuning Gaze to abstain from answering when un-
certain or replacing the vision encoder backbone
may enhance its robustness. Further exploration of
training paradigms and model architecture could
also potentially lead to enhanced performance.
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A Dataset

We use GPT-40-mini (OpenAl) to generate our
MMDiag dataset. Our dataset mainly consists of
three parts: everyday scenes, tabular scenes, and
Minigrid settings. We adopt different prompts for
the generation of datasets under different scenes.

A.1 Dataset Collection

We design prompts for different scenarios, and the
same devising ideas can be used in other scenarios
for data collection.

Everyday Scenes. For everyday scenes, we gener-
ate our dataset from the Visual Genome dataset (Kr-
ishna et al., 2017). Since the original dataset has
human-annotated attributes and relationship data,
we extract the subsets that represent the QA pairs
and feed them to GPT-40-mini to generate corre-
sponding dialogues. Figure 5,6,7 show several ex-
ample prompts.

Vs
Please generate a new list based on a dictionary ("dict’) structured as follows:
[Image_Dict]

The resulting list should be structured as follows:
[Result_Dict]

### Explanation:
There are two dictionaries in the generated list.

- The first dictionary's question is based on the relation to the first object in the “an-
swer'. The first two items in the "CoT" (Chain of Thought) list correspond to the first list
in "gnd’, breaking the question down into two steps of grounding reasoning. The final
"CoT' item provides a complete and concise answer to the question.

- The second dictionary’s question refers to the attributes of the object from the first
question's answer and is presented using a pronoun. The first "CoT" item deduces the
referent, the second extracts the attribute information, and the last item provides a
complete and concise answer to the question. The "Question” and "CoT" answers
should be diverse and natural. The "Query" contains a concise, detailed description of
the object in that step, and "Bbox" includes the object's coordinates from “obj_info".

Only output the dict in JSON format.

**IMPORTANT**: The order of objects in the CoT reasoning should follow the order of
objects in the ‘gnd" list.

Human:{Current_lmage_Dict}

(S J

Figure 5: The first example prompt for generating data
samples in everyday scenes.

Tabular Scenes. For tabular scenes, we generate
our dataset from the ChartQA dataset (Masry et al.,
2022). In general, we use different types of graphs
to capture various visualization intuitions, provid-
ing corresponding chart examples in the prompts.
Figure 8 illustrates the main structure of the prompt,
while Figure 9,10,11 show examples for line, pie,
and bar charts, respectively.

Minigrid Settings. For Minigrid settings,
we generate our dataset from the Minigrid
database (Chevalier-Boisvert et al., 2023). Since
we observe that GPT-40-mini struggles to solve the
mission without ground-truth planning, we first use
BabyAlI (Chevalier-Boisvert et al., 2019) to collect
the plan needed to complete the mission for each
environment generated by the Minigrid database.
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( N
Please generate a new "dict” based on the provided one. The provided "dict" is struc-
tured as follows:
[Image_Dict]
The generated “dict” should look like this:
[Result_Dict]
##H# Explanation:
- The "Question” should be generated based on the “relation” predicates and the "attri-
butes® of the last object in the "gnd".
- The "CoT" (Chain of Thought) list's first three entries MUST correspond to the "gnd”
objects list, which break the problem into three steps of grounding reasoning. The
“Query” MUST correspond to the "gnd" objects list.
- The fourth item in the "CoT" list refers to the attributes of the target object.
- The last "CoT" entry provides a concise final answer to the question.
- The "Question™ and "CoT.Ans’ should be varied and natural. "Query" is a brief, specif-
ic description of the object, while "Bbox™ corresponds to the object’s “coordinates’ in
“obj_info".
Only output the dict in JSON format.
**IMPORTANT**: The order of objects in the CoT reasoning should follow the order of
objects in the “gnd" list.
Human:{Current_Image_Dict}

(& J

Figure 6: The second example prompt for generating
data samples in everyday scenes.

Please generate a new "dict” based on the given one. The provided dict is structured
as follows:
[Image_Dict]

The new “dict” should follow this structure:
[Result_Dict]

#1#H# Explanation:

- The first "dict” asks a question based on the first object in the ‘relation[0]" and uses
the first object from the “answer’. The "CoT" list contains step-by-step reasoning,
aligning with the first item in “gnd’, breaking the problem into two steps of grounding
reasoning. The final item in the "CoT" list provides a simple and concise answer to the
question.

- The second “dict™ asks about the attributes of the object answered in the first ques-
tion, referring to it with a pronoun. The first "CoT" item infers the referred object, the
second item extracts the attributes, and the final item provides a full, concise answer.
- The third “dict™ asks a question about the related object from “relation[1]’, again refer-
ring to it with a pronoun. The "CoT" steps involve reasoning to identify the referred
object and then the related object, ending with a complete, concise answer.

*IMPORTANT**: The order of objects in the CoT reasoning must match the order of
objects in the “gnd" list.

Human:{Current_Image_Dict}

- J

Figure 7: The third example prompt for generating data
samples in everyday scenes.

We then combine the positions of all objects with
the mission and plan, as shown in Figure 12, and
feed them to GPT-40-mini. For details, Minigrid
creates environments based on specific constraints,
saving grid world data as both rendered images
and lists of special objects with bounding boxes.
BabyAl then identifies feasible solutions by ana-
lyzing the agent’s field of view and determining
subgoal-aligned actions. To simplify QA genera-
tion, we make the entire grid world visible, allow-
ing MLLMs to guide the agent from a top-down
perspective. GPT-40-mini then generates natural
questions, reasoning steps, key region queries, and
concise final answers. The prompt structure is il-
lustrated in Figure 13.

A.2 Dataset Format

Examples of the final MMDiag dataset are shown
in Figure 14,15,16. Figure 14a,15a,16a display



Please generate a new list based on the provided chart and table data. The main
reference should be the chart content, as the table content might contain errors. The
format of the new list should be similar to the following example:

[QA_and_CoT]

This list consists of two dictionaries corresponding to two rounds of Q&A. Each ques-
tion is based on the chart, providing a reasoning process and an answer. The CoT
(Chain of Thought) consists of multiple steps with "Ans" representing the answer
broken down into steps, and "Query" indicating the key terms in the chart relevant to
that step. The final step of CoT provides a complete and concise answer to the ques-
tion, and the "Query" highlights the key terms in the chart that are relevant to the ques-
tion.

The Question and CoT answers should be diverse and natural.

**Important**: The second question should refer back to the answer from the first
question, meaning that you can’t answer the second question unless you know the
answer of the first question. The answer of the first question is presented using a pro-
noun in the second question, and shouldn’t appear in the second question.

You only need to output the list in JSON format.

Human:{Current_QA_and_CoT}

(. J

Figure 8: The prompt structure to generate samples in
tabular scenes.

( )
[
"Question": "In which year did the highest percentage of voters care about the
election outcome, and what was the percentage?",
"CoT": [
{
"Ans": "To solve this, we should first find the highest point of the brown line,
which is 83.",
"Query": "83"
h
{
"Ans": "Next, we can identify that this occurred in 2020.",
"Query": "2020"
z,
"Ans": "In 2020, 83% of voters cared the most about the election result.",
"Query": "83"
}
1
b
"Question": "What percentage of voters didn't care about the election result four
years before that year?",
"CoT": [
{ . . .
"Ans": "The referenced year is 2020 from the previous question, and four
years earlier would be 2016.",
"Query": "2016"
b
{
"Ans": "The yellow line in 2016 indicates a value of 22.",
"Query": "22"
h
{
"Ans": "In 2016, 22% of voters did not care about the election outcome.",
"Query": "22"
}
1
}
1
(& J

Figure 9: The question-answer (QA) and Chain-of-
Thought (CoT) examples for line charts.

the original images from the source datasets and
environments, while Figure 14b,15b,16b show the
data format of MMDiag generated by GPT-40-mini
and standardized according to specific rules.

A.3 Evaluation

Since GPT-40-mini contributes to generating our
datasets, we use Gemini-1.5-Pro (Reid et al., 2024)
for evaluation. There are multiple reasons for
choosing it for this task: answer formatting and
the Chain of Thought (CoT) processes may be di-
verse, making a simple similarity score insufficient
for evaluation. Additionally, recent works (Liu
et al., 2024b; Zheng et al., 2024) commonly ap-
ply LLMs for judgment. We provide the MLLM
with images, ground-truth answers, and generated
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-
[

"Question": "What did most Americans favor when it comes to spending on polic-
ing, and what was the percentage?",
"CoT": [

"Ans": "To solve this, we should first locate the largest part of the pie chart,
which is 42%.",
"Query": "42"
h
{

"Ans": "Next, we can see that this part represents people who favored main-
taining the same level of spending on policing.",
"Query": "Stay about the same"

"Ans": "The largest group, with 42%, favored maintaining current spending
levels on policing.",
"QUSW"Z "42"

"Question": "How does this group compare to those who favored reduced spend-

"Ans": "This group refers to the one mentioned in the previous answer,
which represents 42%.",
"Query": "42"

h
{
"Ans": "Now, we need to compare it with those who favored reduced spend-
ing, indicated by the label 'Decreased".",
"Query": "Decreased"

b

"Ans": "The portion of people who favored reduced spending is represented
by the purple section of the pie chart, at 25%.",
"Query”: "25"

"Ans": "The difference in percentage is 42 - 25 = 17.",
"Query": "

"Ans": "This group is 17 percentage points larger than those who favored
reduced spending.”,
"Query"; "7"

1
}
1

-

Figure 10: The question-answer (QA) and Chain-of-
Thought (CoT) examples for pie charts.

responses, and ask it to score the accuracy of the
generated answers across five categories. We notice
that the MLLM provides more reasonable rankings
when asked to explain the ‘ad-hoc’ reason before
their final score. As a result, we include this rea-
soning step in the prompt, as shown in Figure 17.

B DiagNote

Our DiagNote consists of two MLLMs, one for De-
liberate, and one for Gaze. For each input question,
DiagNote appends buffer information and queries
to the respective prompts for Deliberate and Gaze.
For images from Minigrid, a description of the
Minigrid environment, as shown in Figure 20, is
included in both training and testing. The remain-
ing components of the Deliberate prompt and Gaze
prompt are consistent across all three scenes.

Deliberate Prompt. For deliberating, Diag-
Note provides the dialogue context and Chain of
Thought (CoT) history for the current question in
the prompt, as shown in Figure 21. When the
‘END’ token appears in the latest ‘Query’ from
the Deliberate module, signaling the end of the
CoT process, DiagNote provides a new prompt, as



-
[

"Question": "Which region had the second smallest consumption of Ozone-De-
pleting Substances in tonnes in 1998?",
"CoT": [
{ B i '
"Ans": "To solve this, we first need to find the second smallest consumption
in tonnes, which is 143 tonnes.",
"Query": "143 tonnes"
h
{

"Ans": "Next, we can determine that this bar refers to Malta.",
"Query": "Malta"

"Ans": "In 1998, Malta had the second smallest consumption of Ozone-De-
pleting Substances, with 143 tonnes.",
"Query": "143 tonnes"

1
b
{

"Question": "How many times greater was the highest consumption of Ozone-De-
pleting Substances compared to that region?",
"CoT": [
{
"Ans": "The region in question is Malta, with 143 tonnes.",
"Query": "143 tonnes"
h
{
"Ans": "The highest consumption to compare it with is 2,262 tonnes.",
"Query": "2,262 tonnes"
h
{
"Ans": "The ratio is calculated as 2,262 / 143 = 15.8.",
"Query": "
h

"Ans": "The region with the highest consumption used 15.8 times more

Ozone-Depleting Substances than Malta.",
"Query": "

}
1
}
1
&

J

Figure 11: The question-answer (QA) and Chain-of-
Thought (CoT) examples for bar charts.

shown in Figure 22, to the Deliberate module for
generating the final answer.

Gaze Prompt. For gazing, DiagNote extracts the
‘Query’ from the output of the Deliberate module
and provides it to the Gaze module along with the
prompt shown in Figure 23. The output from the
Gaze module, which includes the bounding box of
the query, is then saved in the Deliberate buffer to
support the next turn of Deliberating.

C Implementation

The detailed parameters of implementation are
shown in Table 5,6.

D Qualitative Comparison of Grounding

Figure 18,19 show a comparison of grounding abil-
ity between DiagNote and Grounding DINO (Liu
et al., 2023). As illustrated in Figure 18b, Ground-
ing DINO struggles with grounding tasks involving
Optical Character Recognition (OCR). In contrast,
DiagNote leverages the generalization capability
of LLMs, enabling it to effectively locate the tar-
get words, as shown in Figure 18a. Figure 19b
illustrates that Grounding DINO fails to handle ob-
jects with attributes. Although the grey key has a
marginally higher confidence, accurately locating
the ‘grey’ key in the image confuses Grounding
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( R N\
"mission": "open the grey door, then open the green door",
"object™: {

"grey door": "[256, 320, 288, 352]",
"red triangle agent": "[288, 288, 320, 320]",
"green door": "[320, 288, 352, 320]"
"plan_list": [
"Actions.left",
"(GoNextToSubgoal: grey door None, reason: Open)"
1
[
"Actions.forward",
"(GoNextToSubgoal: grey door None, reason: Open)"
1
[
"Actions.left",
"(GoNextToSubgoal: grey door None, reason: Open)"
1
[
"Actions.toggle",
"(OpenSubgoal)"
1
[
"Actions.left",
"(GoNextToSubgoal: green door None, reason: Open)"
1
[
"Actions.forward",
"(GoNextToSubgoal: green door None, reason: Open)"
1
[
"Actions.toggle",
"(OpenSubgoal)"
1
]
}
- J

Figure 12: The mission and plan input example of Min-
igrid settings.

( Based on the provided image and the given mission and object information, generate
a new dict. The provided image is a grid world, where gray squares represent impass-
able walls, black squares are the background color, and the agent is a red triangle,
with the pointed tip indicating the initial direction the agent is facing. Different squares
may contain various objects such as colored balls, keys, boxes, doors, etc. The mis-
sion provides the task that the agent needs to accomplish, the plan list provides the
action and subgoal for each step, and the object provides the coordinates of these
objects. The format of mission and object is as follows:

[Mission_and_Plan]

The format of the new dict should be similar to the following example:
[QA_and_CoT]

Each dict should consist of a Question, a CoT (Chain of Thought) process, and a
Final_Ans. The Question is generated based on the mission. The CoT consists of
multiple steps, where each step has "Ans" for the explanation ,"Query" for identifying
the key elements in the image relevant to that step and "Bbox" for the coordinates of
the object in "Query". The Final_Ans provides a clear and concise solution to the ques-
tion, with the "Query" highlighting the key terms in the image corresponding to the
solution.

Ensure the Question, CoT answers, and Final_Ans are diverse and natural.

The Bbox should contains all the bounding boxes of the Query.
Output the dict in JSON format only.

Human:{Current_QA_and_CoT}

. J

Figure 13: The prompt structure to generate data sam-
ples in Minigrid settings.

DINO. In contrast, DiagNote accurately identifies
the grey key in Figure 19a, which aids the subse-
quent actions of the Deliberate module.

E Ablation Study

We observe a counterintuitive performance trend
in Table 3 in the main paper: Gaze provides only
limited performance gains and, in some cases, even
reduces performance, particularly in tabular and
Minigrid scenarios. As shown in Figure 24, Gaze
incorrectly identifies the bounding box for a critical
but tiny piece of information—the year 2019—mis-
leading Deliberate to focus on the wrong color bar.
This issue accounts for most failure cases.

To further analyze this, we evaluate the propor-



hyper-parameters value hyper-parameters value
deepspeed zero3 deepspeed zero3
base model LLaVA-1.5-7B base model LLaVA-1.5-7B
conversation template | Vicuna vl conversation template Vicuna v1
vision tower CLIP-ViT-Large- vision tower CLIP-ViT-Large-
Patch14-336 Patch14-336
modality projector type | mlp2x_gelu modality projector type mlp2x_gelu
image aspect ratio pad layer selected for -2
training epochs 1 fine-tuning vision tower
training batch size 16 image aspect ratio pad
learning rate 2e-5 training epochs 1
weight decay 0 training batch size 32
warm-up ratio 0.03 learning rate 2e-5
model max length 2048 weight decay 0
data loader workers 4 warm-up ratio 0.03
model max length 2048
Table 5: The implementation details of the Deliberate
module. data loader workers 4
fine-tune vision tower True/False

tion of tiny key regions across different scenarios in
MMDiag (Table 9). In tabular and Minigrid scenes,
nearly all key regions occupy less than 3% of the
total image area, making them particularly chal-
lenging for Gaze to detect accurately. To mitigate
this, we curate an alternative test dataset for tabular
scenes, excluding questions that require attention
to extremely small regions. We then fine-tune Vi-
sual CoT and DiagNote with MMDiag and evaluate
them on this revised tabular split. As shown in Ta-
ble 7, Gaze’s impact becomes more pronounced.
Table 8 demonstrates that DiagNote performs com-
parably or slightly lower on standard multimodal
benchmarks, as it targets complex multi-region dia-
logues without in-domain training data.

F Qualitative Comparison of Multi-Turn
Multimodal Dialogue

We present several cases comparing models in ev-
eryday scenarios and tabular scenes. Figure 25,26
show examples from unseen everyday scenarios. In
Figure 25, CogCoM (Qi et al., 2024) completely
fails to answer the two-turn questions correctly.
Despite the assistance of the counting expert, Cog-
CoM is unable to answer the first counting question.
Although LLaVA-1.5-13B (Liu et al., 2024a) and
Visual CoT (Shao et al., 2024) can answer the first
questions accurately, both encounter hallucinations
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Table 6: The implementation details of the Gaze mod-
ule.

Model | Fine-tuningData | Gaze | TI T2 T3 T4
Visual CoT-13B MMDiag 200 143 040 095
DiagNote-14B MMDiag X |315 235 178 123
DiagNote-14B MMDiag v/ 420 310 255 195

Table 7: Tabular scenes results of MLLMs fine-tuned
on MMDiag, using the same evaluation metrics as the
previous evaluation.

Benchmark ‘MMBench MM-Vet RefCOCO+ RefCOCOg

DiagNote-14B ‘ 63.7 28.5 0.834 0.775

Table 8: DiagNote performance on general datasets.

Scemario | <0.2% <1% <3% <5% <10%
Everyday | 7.57% 27.62% 47.99% 57.49% 69.91%
Tabular | 87.17% 99.24% 99.80% 99.92%  100%
Minigrid | 6.98% 66.61% 96.99% 99.41%  100%

Table 9: MMDiag tiny key regions percentage.

when responding to the second question, mistak-
enly identifying white plates as cups and bowls,
respectively. In contrast, our DiagNote performs
well on both questions, demonstrating the effec-
tiveness of the Gaze module in ensuring DiagNote
stays grounded in visual details. In Figure 26, Cog-
CoM fails to provide a clear answer to the first



question, instead offering a confusing single word
‘jean’. Again, LLaVA-1.5-13B and Visual CoT an-
swer the first question correctly, but imagine the
man was holding a frisbee. Both CogCoM and
DiagNote understand the context, with DiagNote
accurately describing the can based on the visual
details. In contrast, CogCoM mistakenly assumes
it is a can of beer, which may not be the case.

What percentage of LGBT Americans consider religion
to be very important in their lives?

In comparison, how much does the percentage change
of those who consider religion to be less important?

o Questions
According to the survey, do more LGBT Americans tend
to be religiously affiliated or not?

According to the Pew Research Center, 17% of LGBT
Americans consider religion to be very important

in their lives.

In comparison, 34% of LGBT Americans consider
religion to be less important in their lives.

LGBT Americans’
Religious Affiliation
and Commitment

LLaVA-1.5-138
The survey shows that a majority of LGBT Americans.
are religiously affiliated, with 34% being religiously

RELIGIOUSLY  RELIGIOUSLY
AFFILIATED  UNAFFILATED
_ affiliated and 44% being unaffiliated.

A
34% N 0,
Religion is fess R 17%
Y T
theirives | 48% Visual CoT 1%
- Not
Relgonle very
mpartant in )
o) Based on the data provided by Pew Research Center,
17% of LGBT Americans consider religion to be very
PEW RESEARCH CENTER important in their lives.
CogCoM The percentage of those who consider religion to be
less important has increased from 34% to 50%.
The survey shows that more LGBT Americans tend to
be religiously affiliated than not.
Thus, 17% of LGBT Americans consider religion to be
very important in ther lives.
Therefore, the percentage of those who consider
DiagNote religion less important is 17 percentage points higher

than those who consider it very important.

Thus, more LGBT Americans tend to be religiously
affiliated than not.

Figure 27: One example of comparison between differ-
ent MLLMs under tabular scenes.

Figure 27 presents examples of unseen tabular
scenes. All models answer the first question cor-
rectly. However, Visual CoT provides a completely
incorrect answer to the second question, while Cog-
CoM introduces an unfounded ‘50%’. LLaVA-1.5-
13B correctly identifies the visual detail ‘34%’, but
overlooks the keyword ‘change’ in the question,
which requires a calculation between two percent-
ages. Only DiagNote answers the question pre-
cisely. The final question requires the models to
understand the entire pie chart. The model should
compare the sum of two parts on the right side of
the pie chart with the left part to obtain the final
answer ‘yes’. Visual CoT fails to provide this cor-
rect answer, and LLaVA-1.5-13B misinterprets the
unaffiliated percentage and derives an incorrect af-
filiated percentage. Both CogCoM and DiagNote
reach the right conclusion. Overall, DiagNote per-
forms well on all questions, demonstrating its abil-
ity to focus on both visual and language details and
to comprehend the full picture the chart conveys.
This strong ability can be attributed to the Gaze
and Deliberate structure, which enables it to zoom
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in on specific details while integrating multimodal
information for a holistic understanding.



(a) the original image

{
"QA_pairs": [

"Question": "What's the woman holding?",
"CoT": [

"Ans": "To address this question, we should first identify the woman.",
"Query": "woman",
"Bbox": [211, 46, 478, 255]

h

"Ans": "Next, we can observe that she is holding a cup.",
"Query": "END"

"Final_Ans": "The woman is holding a cup.",
"Query": "cup",
"Bbox": [309, 118, 338, 154]
}
1
b

"Question": "Could you describe it in detail?",
"CoT": [

"Ans": "The 'it' in the question refers to the cup from the previous question, so
we first need to locate the cup.”,

"Query™ "oup”,

"Bbox": [309, 118, 338, 154]

"Ans": "We can see that the cup is made of paper.",
"Query": "END"
h

"Final_Ans": "The cup is a paper cup.",
"Query": "cup",
"Bbox": [309, 118, 338, 154]
}
1
}

1
“image": "2353699.jpg",
"question_id": 16

(b) the sample format

Figure 14: One example of the original image and the
generated sample from Visual Genome in JSON format.
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Average advertsement costin million s, dallars

© Additional Information

Show source @

(a) the original image

{
"QA_pairs": [

"Question": "What was the average advertisement cost during Super Bowl XXXVI
(2002)?",
"CoT": [
"Ans": "To find the average advertisement cost for Super Bowl XXXVI, we look

at its specific entry.",
"Query": "Super Bowl XXXVI (2002)"

"Ans": "The average cost listed is 2.3 million U.S. dollars.",
"Query": "END"
b

"Final_Ans": "Thus, the average advertisement cost during Super Bowl XXXVI
was 2.3 million U.S. dollars.",
"Query": "2.3 million U.S. dollars"
}

!
b

"Question": "How much more did the average advertisement cost for Super Bow!
LV (2021) compared to that event?",
"CoT": [
"Ans": "The average advertisement cost for Super Bow! LV is 5.6 million U.S.

dollars.",
"Query": "5.6 million U.S. dollars"

"Ans": "The cost difference can be calculated as 5.6 - 2.3.",

"Ans": "This results in a difference of 3.3 million U.S. dollars.",
"Query": "END"

"Final_Ans": "Therefore, the average advertisement cost for Super Bowl LV was
llars more than that event.",

1
"image": "two_col_383.png"

(b) the sample format

Figure 15: One example of the original image and the
generated data point from ChartQA in JSON format.
The bounding boxes of the queries are generated using
EasyOCR (JaidedAl, 2024) and thus are not shown in
the example.



( You are an evaluator. Your task is to assess the given answer based on its accuracy in )
response to the provided picture, related question, and the ground truth answer. Your
evaluation should be based on ad-hoc reasoning. First, provide a detailed reasoning

(a) the original image for your judgment, then explicitly state the final category in the format:

Reason: ... Judgment: ...

Use the following five categories for your judgment:

Incorrect: The answer is entirely wrong or unrelated.

Partially Correct: The answer contains some relevant elements but is mostly incorrect.

": "BabyAl-OpenDoorsOrderN4-v0_185", Me(dit:m_: The answer captures partial correctness but lacks significant details or has
"QA_pairs": notable inaccuracies.
~-Qggsﬁon low can the agent open the green door first, and then open the grey Almost Correct: The answer is mostly accurate but has minor errors or omissions.
door?", Correct: The answer is fully accurate and aligns well with the ground truth.
"CoT" [ [Please give a detailed Chain-of-Thought process.]
"Ans": "To solve this, we first need to locate the agent's position.”, Question: {Question}
" red triangle agent",
"Bbox": [288, 224,9320,9256] Ground Truth Answer: {GroundTruthAnswer}
L Given Answer: {GivenAnswer} )
ext, we need to find the green door.",
green door",
G il ses i Figure 17: The evaluation prompt structure given to

. . T
"Ans": "To open the green door, the agent should move forward, then turn right, Gemlnl-l .S-PI'O. The content in [] 18 added When the
move forward again, and finally toggle to open the door.", COT process iS eVa]uated

"Query": "green door",
"Bbox": [256, 160, 288, 192]
b
"Ans": "Now, we need to locate the grey door.",
"Query": "grey door",
"Bbox": [288, 320, 320, 352]

"Ans": "To go to the grey door, the agent should turn right, move forward, turn
right again, and move forward several times to reach the grey door, then toggle to
open it.",

"Final_Ans": "The agent first needs to move forward, turn right, move forward
again to open the green door. Then, it should turn right, move forward, turn right again,
move forward several times, and finally open the grey door.",

"Query": "grey door",

"Bbox": [288, 320, 320, 352]

}
1

Image": "BabyAl_frame_0_with_action_full_obs_with_attr/BabyAl-OpenDoor-
sOrderN4-v0/185.jpg"
}

}

(b) the sample format

Figure 16: One example of the original image and the
generated sample from Minigrid in JSON format.
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cyprus

04.2%

B Collapse statistic B Collapse slatistic

(a) DiagNote (b) Grounding DINO

Figure 18: The grounding comparison between Grounding DINO and the Gaze module of DiagNote in Tabular
Scene. The grounding query is “Cyprus”. The red bounding box in (a) is the ground-truth answer, while the blue
one is the bounding box generated by our Gaze module. The red bounding box in (b) is the output of Grounding
DINO.

(a) DiagNote (b) Grounding DINO

Figure 19: The grounding comparison between Grounding DINO and the Gaze module of DiagNote in Minigrid
Scene. The grounding query is “grey key”. The blue bounding box in (a) is generated by the Gaze module of
DiagNote, which overlaps the ground-truth red bounding box. Meanwhile, the red bounding box in (b) is the output
of Grounding DINO.
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The provided image depicts a grid world, with gray squares representing impassable
walls, black squares as the background color, and the agent represented as a red
triangle, with its pointed tip indicating the initial direction it is facing.

Various squares may contain different objects such as colored balls, keys, boxes, and
doors.

Figure 20: The description of Minigrid Scene added to
the prompts.

This is the context, which includes the previous questions and answers related to the
image.
{Context}

Current problem and its reasoning process (CoT) includes reasoning, focused objects,
and their bounding boxes (bbox):
{Question_and_CoT}

Please provide the detailed reasoning process and focused objects for the question in
dictionary form, outputting one dictionary in the following format each time: {{'Ans": ,
'Query": }}. Here, Ans represents the current reasoning step, and Query indicates the
object of focus. If the reasoning is complete, set ‘Query’ to END.

- J

Figure 21: The prompt structure of the Deliberate mod-
ule when the last Query output of the Deliberate module
is not ‘END’.

Vs
This is the context, which includes the previous questions and answers related to the
image.

{Context}
Current problem and its complete reasoning process (CoT) includes reasoning,
focused objects, and their bounding boxes (bbox):
{Question_and_CoT}
Please provide a concise answer to the question in dictionary form, outputting a dictio-
nary in the following format: {{'Final_Ans"., 'Query". }}, where Final_Ans is the concise
answer to the question, and Query is the core object of focus in the image related to
the question.
(. J

Figure 22: The prompt structure of the Deliberate mod-
ule when the last Query output of the Deliberate module
is ‘END’.

Please refer to the image and provide the exact rectangular coordinates of the
{Query} in the format of a four-dimensional integer array [x1, y1, x2, y2], where x1 and
y1 represent the coordinates of the top-left corner of the rectangle, and x2 and y2
represent the coordinates of the bottom-right corner.

Figure 23: The prompt structure of the Gaze module.

Which country had the highest rate per million

i
Quest population in 2019?

To find the highest rate in 2019,
we look at the values for that year.

Deliberate One

Bounding Box

o g @ 20

Figure 24: The second example of comparison between
different MLLMs under everyday scenes.

Input Image

Questions

What are placed above them?

There are two orange plates in front of the girl.

There are two cups placed above the orange plates.

LLaVA-1.5-13B

There are two orange plates in front of the girl.

Visual CoT

CogCoM

The image captures a lively scene in a restaurant. A
family of four is seated at a table, their attention directed
towards the young boy who sits between them. He's
engaged with his food, holding a fork and spoon in his
hands as he enjoys his meal. \n\nThe table is adorned
with plates filled with various dishes, each one adding to
the vibrant color scheme of the room. There are glasses
on the table, perhaps used for drinking or serving. \n\nin
the background, you can see other diners, suggesting
that this is not just a family outing but also an event
where others are present. The walls are painted in a
warm yellow hue, providing a wel ing phere

to all those who enter.\n\nOverall, the image paints a
picture of a happy moment shared by a family in a cozy
setting.

There are two orange plates in front of the girl.

The two white plates are placed above the orange plates.

DiagNote

Figure 25: The first example of comparison between
different MLLMs under everyday scenes.



Input Image

Questions

LLaVA-1.5-13B

Visual CoT

CogCoM

DiagNote

What is he holding in hands?

The man with the headband is wearing jeans.

The man with the headband is holding a beer in one
hand and a frisbee in the other hand.

The man with the headband is wearing jeans.

The man with the headband is holding a beer in one
hand and a frisbee in the other hand.

g a can of beer.

The trousers worn by the man with the headband are jeans.

He is holding a green can in his hands.

Figure 26: The second example of comparison between
different MLLMs under everyday scenes.
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