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Abstract001

Multimodal large language models (MLLMs),002
built on large-scale pre-trained vision towers003
and language models, have shown great capa-004
bilities in multimodal understanding. However,005
most existing MLLMs are trained on single-006
turn vision question-answering tasks, which do007
not accurately reflect real-world human conver-008
sations. In this paper, we introduce MMDiag,009
a multi-turn multimodal dialogue dataset. This010
dataset is collaboratively generated through de-011
liberately designed rules and GPT assistance,012
featuring strong correlations between questions,013
between questions and images, and among014
different image regions; thus aligning more015
closely with real-world scenarios. MMDiag016
serves as a strong benchmark for multi-turn017
multimodal dialogue learning and brings more018
challenges to the grounding and reasoning ca-019
pabilities of MLLMs. Further, inspired by020
human vision processing, we present Diag-021
Note, an MLLM equipped with multimodal022
grounding and reasoning capabilities. Diag-023
Note consists of two modules (Deliberate and024
Gaze) interacting with each other to perform025
Chain-of-Thought and annotations respectively,026
throughout multi-turn dialogues. We empiri-027
cally demonstrate the advantages of DiagNote028
in both grounding and jointly processing and029
reasoning with vision and language informa-030
tion over existing MLLMs.031

1 Introduction032

In recent years, large language models (LLMs)033

have achieved remarkable advances in various nat-034

ural language applications, including chatbots (Bai035

et al., 2023a; Achiam et al., 2023; Reid et al., 2024),036

programming assistants (Cursor, 2024), and rhetor-037

ical aides (DeepL, 2024). The success has further038

spurred the development of multimodal large lan-039

guage models (MLLM) (Liu et al., 2024b; Zheng040

et al., 2025). However, most existing MLLMs are041

trained as single black-box systems to handle mul-042

timodal instructions, often struggling with inaccu- 043

racies and hallucinations, especially in complex 044

multi-turn dialogues (Tan et al., 2024; Zheng et al., 045

2024). We hypothesize such challenges arise from 046

the MLLM’s difficulty in maintaining focus on tar- 047

get regions throughout the conversation, especially 048

for high-resolution images with overly long visual 049

tokens. In this paper, we seek to address these is- 050

sues by moving beyond a black-box approach to an 051

explicit target-grounding solution. Here, we sum- 052

marize two key goals for multi-turn multimodal dia- 053

logue learning: ❶ “saliency tracking”, where mod- 054

els must keep tracking different relevant regions 055

over the course of the dialogue, and ❷ “saliency 056

recall”, where models need to consistently retain 057

focus on the same critical information across multi- 058

ple question-answering (QA) rounds. For example, 059

in the dialogue illustrated in Figure 1, completing 060

the Minigrid (Chevalier-Boisvert et al., 2023) task 061

requires the MLLM to accurately locate both the 062

agent (i.e.“red triangle”) and the target (i.e.“purple 063

key”) to answer the initial question. The following 064

question then builds upon this information, requir- 065

ing the MLLM to reason about the agent’s starting 066

position based on the previously identified location 067

of the key. This example illustrates the need for sus- 068

tained and explicit grounding to multiple specific 069

visual details in multi-turn multimodal dialogue. 070

To achieve these two goals, we draw inspiration 071

from how humans maintain focus while studying. 072

For instance, when working through documents, 073

people may lose concentration, but can quickly re- 074

focus by using simple techniques such as jotting 075

down notes or highlighting key points. Even basic 076

marks, such as circling or underlining, can signifi- 077

cantly enhance focus without requiring elaborate 078

explanations. These visual cues guide attention, 079

making it easier to track, recall, and revisit im- 080

portant information. In contrast, existing MLLMs 081

lack such tracking capabilities, prompting us to 082

ask: “Can an MLLM be designed to equip similar 083
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(b)

(a) Human Input: 
What should the red triangle agent do if it 
wants to pick up the purple key?

MLLM Reasoning I

MLLM Output: 
The agent should first turn back, go forward
four times, turn back and move one step 
forward to pick up the purple key.

To achieve this goal, we should first locate 
the red triangle agent.
Then, we need to find the purple key. 
Finally, we should plan the path for the agent.

Human Input: 
After that, What should the agent do next if 
it wants to reach the red ball below the 
purple key?

MLLM Reasoning II

MLLM Output: 
To reach the red ball below the purple key, 
the agent should go straight down to reach 
that  red ball.

To achieve this goal, we should first locate 
the red triangle agent.
Since the agent is located at the place it 
reached the last step, we should focus on the
same region at the last step.
Then, we need to find the red ball below the 
purple key. 
Finally, we should plan the path for the agent.

Figure 1: Multi-turn multimodal dialogue: (a) Saliency
tracking. The MLLM needs to focus on both the red
triangle agent and the purple key, which scatter on the
image, to answer the question correctly. (b) Saliency
recall. The MLLM needs to retain focus on the region
where the agent will stop after the last question.

attention-guiding abilities? If so, what would that084

model design entail?”085

To answer this question, we first review existing086

tuning methods for MLLMs and identify a critical087

gap: the lack of quality multi-turn multimodal QA088

datasets that adequately reason over both visual089

and text information. Existing datasets, such as090

MMDU (Liu et al., 2024c) and SciGraphQA (Li091

and Tajbakhsh, 2023), primarily consist of single-092

turn QA pairs, where most questions can be an-093

swered independently without relying on prior con-094

text. To bridge this gap, we introduce a novel095

dataset, MMDiag, designed as a foundational096

benchmark for challenging multi-turn multimodal097

dialogue. This dataset offers visually detailed098

multi-turn dialogues across a range of scenarios.099

Furthermore, recent studies have introduced var-100

ious modules to help keep focus in multi-turn mul-101

timodal dialogues. However, these methods either102

“zoom in” to progressively narrow focus areas with103

the aid of external grounding and OCR tools (Qi104

et al., 2024), or identify a single region of interest105

per question before generating an answer (Shao106

et al., 2024). These approaches lead to severe limi-107

tations: the zoom-in method restricts the focus to108

smaller regions, potentially missing broader con-109

text, while the single-region method isolates spe-110

cific areas, overlooking multiple relevant details111

that could enrich responses. To address these lim-112

itations, we propose DiagNote, a model designed 113

to enhance focus and reasoning in multi-turn mul- 114

timodal dialogue. DiagNote comprises two main 115

modules: Deliberate and Gaze. The Deliberate 116

module guides the Gaze module in dynamically 117

adjusting regions of visual focus, while the Gaze 118

module highlights crucial areas for subsequent pro- 119

cessing by the Deliberate module. These two mod- 120

ules interact across multiple dialogue turns, emulat- 121

ing human visual processing to produce an answer 122

accompanied by optional reasoning and grounding 123

steps. Through this interactive mechanism, Diag- 124

Note can achieve more effective reasoning with 125

multimodal information, resulting in accurate and 126

context-aware responses throughout dialogues. 127

Our main contributions are summarized as fol- 128

lows: ❶ To address the need for robust multi- 129

modal grounding and reasoning, we build a new 130

large-scale multi-turn multimodal dialogue dataset 131

– MMDiag – across several QA scenarios (e.g.daily 132

life and tabular data), using rule-based searching 133

and GPT-4o-mini (OpenAI) capabilities. ❷ In- 134

spired by human visual processing, we propose 135

DiagNote and its two key modules – Deliberate 136

and Gaze – to enhance the model’s capacity for 137

multimodal information integration and reasoning. 138

❸ We evaluate DiagNote’s reasoning and ground- 139

ing abilities on MMDiag and other benchmarks 140

and the results demonstrate that the introduction 141

of MMDiag and DiagNote significantly improves 142

performance in multimodal conversations, while 143

the MMDiag itself can also serve as a more chal- 144

lenging benchmark for this area. 145

2 Related Work 146

2.1 Multimodal Large Language Models 147

The introduction of Transformers (Vaswani et al., 148

2017; Liu et al., 2021) and large-scale training has 149

significantly advanced model capabilities, enabling 150

powerful vision encoders (Radford et al., 2021a) 151

and large language models (LLMs)(Chiang et al., 152

2023; Touvron et al., 2023). Building on these 153

foundations, multimodal large language models 154

(MLLMs)(Liu et al., 2024b; Zheng et al., 2024) 155

have achieved strong performance across diverse 156

tasks, with promising applications in VR/AR and 157

game agents (Xu et al., 2024; Feng et al., 2024). 158

MLLMs typically comprise three core compo- 159

nents: modality encoders, modality interfaces, and 160

LLMs (Yin et al., 2023). The encoders and LLMs 161

handle visual and linguistic inputs separately, while 162
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interfaces align non-language modalities with the163

language space. Some models further incorporate164

generators to produce other modalities, such as ac-165

tions (Driess et al., 2023) or images (Zheng et al.,166

2024). Training MLLMs usually involves two167

stages. The first aligns vision and language via pre-168

training on large-scale image-caption datasets (Liu169

et al., 2024b; Schuhmann et al., 2022; Changpinyo170

et al., 2021). The second fine-tunes models on tasks171

like visual question answering (VQA)(Liu et al.,172

2024b; Singh et al., 2019) to enhance instruction-173

following abilities. This two-stage pipeline under-174

pins many state-of-the-art models, including PALI-175

X(Chen et al., 2023), Qwen-VL (Bai et al., 2023b),176

and LLaVA (Liu et al., 2024b), serving as a foun-177

dation for recent MLLM advances.178

2.2 Grounding and Reasoning Benefit179

MLLMs180

MLLMs benefit from language models’ in-context181

learning (Brown, 2020) and Chain-of-Thought182

(CoT) (Wei et al., 2022) for generalization and rea-183

soning. However, MLLMs sometimes rely exces-184

sively on LLM components, leading to overlooking185

visual details and hallucinations. To address these186

limitations, Qi et al. (2024) introduce “Chain of187

Manipulations”, allowing MLLMs to perform rea-188

soning with external grounding and OCR models,189

which enable incremental task-solving. Although190

this approach improves performance, it is limited191

to zooming in on specific areas and may miss key192

scattered details. Similarly, Shao et al. (2024) en-193

hance performance by focusing on a single region194

of interest per question. However, a single ground-195

ing and reasoning round is often insufficient for196

complex problems. To overcome these challenges,197

we propose two modules: Deliberate for reasoning198

and Gaze for grounding, enabling multiple rounds199

of reasoning. This iterative approach allows for200

better problem-solving by refining both grounding201

and reasoning across interactions, making it more202

effective in handling complex tasks, like multi-turn203

multimodal QAs.204

2.3 Multi-Turn Multimodal Dialogue205

Multi-turn dialogue involves sustained interaction206

between a human and an MLLM-based agent,207

spanning casual exchanges (Shuster et al., 2018),208

feedback-driven refinement (Chen et al., 2024c),209

cooperative tasks (Chen et al., 2024a), and struc-210

tured QA scenarios (Lin et al., 2014; Singh et al.,211

2019), which is our focus. In language-only dia-212

logues, a key challenge lies in handling question 213

interdependence, where earlier answers serve as 214

context for later queries. Introducing visual input 215

adds complexity: the model must ❶ integrate lan- 216

guage context, ❷ align it with visual input, and ❸ 217

cope with diminishing visual focus in extended di- 218

alogues. Dialogues with independent questions re- 219

duce the task to single-turn QA. Existing multi-turn 220

datasets (Das et al., 2017; Liu et al., 2024c; Li and 221

Tajbakhsh, 2023) often feature weakly connected 222

QA pairs. Seo et al. (2017) include spatial reason- 223

ing but with simple tasks, while Tian et al. (2024) 224

address referential challenges by rule-based word 225

substitution (e.g., it), which harms coherence and 226

introduces ambiguity. Our method overcomes these 227

issues by first generating correlated QA drafts with 228

rules, then refining them using GPT-4o-mini (Ope- 229

nAI), resulting in a more realistic and complex 230

multimodal, multi-turn dialogue dataset. 231

3 MMDiag: A New Benchmark for 232

Multi-Turn Multimodal Dialogue 233

In the following section, we first motivate the 234

choice of three scenarios: everyday, tabular, and 235

Minigrid. Next, we illustrate how to construct the 236

QA pairs for our MMDiag dataset. We then ex- 237

plain the evaluation process in Section 3.3. Finally, 238

we compare MMDiag with existing multimodal 239

dialogue datasets in Section 3.4. Examples of QA 240

pairs are given in Appendix A.2. Both MMDiag 241

and its generation code will be publicly released. 242

3.1 Chosen Scenarios 243

The three selected scenarios — Everyday, Tabular, 244

and Minigrid — are chosen to evaluate distinct yet 245

complementary challenges in multimodal reason- 246

ing. Everyday scenes test common-sense under- 247

standing and multi-turn interactions, reflecting real- 248

world AI applications. Tabular scenarios require 249

structured data comprehension and numerical rea- 250

soning, which many MLLMs struggle with. And 251

Minigrid focuses on spatial reasoning and planning, 252

essential for navigation and decision-making. This 253

diverse selection ensures a comprehensive assess- 254

ment of multimodal understanding. Empirically, 255

all three settings pose significant challenges even 256

for state-of-the-art models like GPT-4o (Figure 3), 257

with notable failures, such as Visual CoT’s inabil- 258

ity to generate positive grounding predictions in 259

Tabular tasks (Table 2). 260

3



Dataset QA Scale GND Scale Generation Process Average Turns Multi-Turn Multi-Region Dialogue Correlation

CB-300k (Tian et al., 2024) 463k 254k GPT-4/Rule-based 5.49 ✓ ✗ ⃝
Visual CoT (Shao et al., 2024) 438k 438k GPT-4/OCR 1 ✗ ✗ ✗

CoM (Qi et al., 2024) 76k - GPT-4/Tree-Search/Human 1 ✗ ⃝ ✗

MMDU (Liu et al., 2024c) 410k - LLM-filtered/GPT-4o 9 ✓ ✗ ✗

MMDiag 639k 1139k Graph-search/OCR/GPT-4o-mini 2.19 ✓ ✓ ✓

Table 1: Comparison between MMDiag and other multimodal dialogue datasets. ⃝: Features are considered, but
implemented weakly.

What is on the shelf?

There are dishes 
on the shelf.

Could you describe 
them in detail?

Dialogue Context

Image

Buffer

Deliberate
Step
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Query

Bounding
Box
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Step One

Gaze
Module
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Module

Deliberate
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Module
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BBox
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Step Fin-1
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Step Fin

They are white 
in color, 

made of plastic, 
and 

stacked together.

Final_Ans
Deliberate
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The 'them' refers to the dishes 
from the previous question. 
We should first locate dishes.

Bounding
Box

dishes [44,56,116,148]

Gaze
Query

Gaze
Query

Deliberate
Step Two

Buffer

Figure 2: Model architecture of DiagNote. Regions with blue backgrounds represent a deliberation step and the
interaction between the Deliberate and Gaze modules. At each turn, the Deliberate module processes the original
image, dialogue context, and buffers from both modules. It produces two outputs: (1) a Deliberate step, stored in
the Deliberate buffer, and (2) a Gaze query, which is processed by the Gaze module. The resulting bounding boxes
are then stored in the Gaze buffer.

3.2 Dataset Curation261

Everyday Scene Subset. The source dataset (Kr-262

ishna et al., 2017) includes 108K images with de-263

tailed annotations, allowing us to construct a di-264

rected graph G = (V, E) for each image, where265

V are objects and E are their relationships. Each266

QA pair is represented as a subgraph Gqa =267

(Vqa, Eqa), containing nodes and edges involved in268

either question or answer. If a QA pair shares no269

nodes or edges with others, it is considered inde-270

pendent, as it doesn’t add to dialogue complexity271

or rely on cross-QA information. We extend QA272

pairs into multi-turn QAs by building a subgraph273

pattern M =
⋃n

i=1 Gqai, ensuring each Gqai over-274

laps with at least one other (i.e., ∃j ̸= i such that275

Vqai ∩Vqaj ̸= ∅), so answering any pair depends276

on others. Subgraph matching is then used to iden-277

tify instances of M in G, enabling the generation of278

diverse multi-turn QAs. We use GPT-4o-mini (Ope-279

nAI) to produce natural questions, answers, and280

reasoning steps, along with ground-truth object lo-281

cations. The prompt is detailed in Appendix A.1.282

Tabular Scene Subset. This subset is sourced from283

ChartQA (Masry et al., 2022), which contains 18K284

real-world charts and 23.1K human-authored QA285

pairs. As ChartQA consists only of single-turn QA,286

it does not meet our multi-turn dialogue require-287

ments. To generate multi-turn question answering,288

we use GPT-4o-mini, primarily relying on chart289

images due to the questionable reliability of table-290

type metadata. To ensure interrelated dialogues, 291

where certain regions are referenced as pronouns to 292

increase complexity, we explicitly emphasize this 293

requirement in the prompt. However, GPT-4o-mini 294

struggles with maintaining this structure, requir- 295

ing supplementary prompts to guide generation 296

more effectively. Details on the prompt design are 297

provided in Appendix A.1. Finally, we use Easy- 298

OCR (JaidedAI, 2024) to match keywords with 299

corresponding chart regions, enabling generation 300

of bounding boxes for relevant areas. 301

Minigrid Scene Subset. Minigrid (Chevalier- 302

Boisvert et al., 2023) is a Gymnasium-based (Tow- 303

ers et al., 2024) collection of 2D grid-world en- 304

vironments with goal-oriented tasks. The agent, 305

represented as a triangular figure with a discrete ac- 306

tion space, navigates maze-like maps and interacts 307

with objects such as doors, keys, and boxes. These 308

tasks test the model’s ability to focus on image de- 309

tails, spatial reasoning, and action planning, with 310

some requiring numerous steps to complete, mak- 311

ing them particularly challenging. To construct this 312

subset, we use Minigrid and BabyAI (Chevalier- 313

Boisvert et al., 2019) to generate grid worlds, tasks, 314

and step-by-step action plans, which are formatted 315

as prompts for GPT-4o-mini. Further details on 316

environment generation and prompt design are in 317

Appendix A.1. 318

Common Visual-Text Subset. To enable MLLMs 319

with robust capabilities to answer the question, we 320
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also add additional visual-text pairs with high qual-321

ity from previous works (Liu et al., 2024b) to en-322

hance their instruction-following ability.323

3.3 Multi-Turn Multimodal Dialogue324

Evaluation325

MMDiag outputs three components: reasoning326

process, grounded key regions, and final answers,327

which we evaluate separately. For the reasoning328

and answers—both in natural language and vari-329

able in phrasing—we follow standard practice by330

inputting images, questions, ground-truth and gen-331

erated answers into a strong MLLM for scoring. To332

avoid evaluation bias, we use Gemini-1.5-Pro (Reid333

et al., 2024) instead of GPT-4o-mini (OpenAI),334

which was used in dataset generation. Following335

prior work (Lee et al., 2024; Stureborg et al., 2024;336

Chen et al., 2024b), we adopt “ad-hoc” reasoning-337

based scoring across five categories on a 0–10 scale338

for consistency and interpretability; the full prompt339

is in Appendix A.3. We also evaluate grounding340

using key region queries and bounding boxes, form-341

ing a GND subset. As these queries often describe342

objects or regions with detailed attributes and rela-343

tions, the subset effectively assesses grounding for344

complex cases. Grounding accuracy is measured345

via Intersection over Union (IoU).346

3.4 Multimodal Dialogue Datasets347

Comparison348

We compare MMDiag with prior datasets designed349

for vision-language understanding and reasoning.350

As shown in Table 1, MMDiag is the first to feature351

multi-turn, multi-region dialogues with strong QA352

dependencies, reinforced by a thorough generation353

process. In contrast, datasets like CB-300k (Tian354

et al., 2024) and MMDU (Liu et al., 2024c) lack355

mechanisms to enforce such dependencies, reduc-356

ing multi-turn dialogues to mere concatenations357

of independent QA pairs. Although MMDiag has358

relatively short dialogues, the inherent dependence359

between turns presents significant challenges for360

MLLMs, including GPT-4o, as demonstrated in361

Figure 3. The grounding and QA test splits include362

1,000 unseen images and QA pairs, respectively.363

4 DiagNote364

In this section, we introduce our proposed Diag-365

Note and its training process. Using two essential366

modules named Deliberate and Gaze, DiagNote is367

trained on the train split of MMDiag to meet the368

requirements for multi-turn multimodal dialogue,369

which provides capabilities of stepwise reasoning 370

and grounding corresponding salient visual regions 371

for each dialogue. 372

4.1 Model Architecture 373

The overall framework of our model is illustrated in 374

Figure 2. We adopt the same architecture, LLaVA- 375

1.5 (Liu et al., 2024b,a), for both the Deliberate 376

and Gaze modules, with no shared parameters. To 377

leverage the generalization capability of MLLMs, 378

we avoid using dedicated grounding models such 379

as Grounding DINO (Liu et al., 2023) for the Gaze. 380

Each module consists of an LLM backbone, a pre- 381

trained ViT (Radford et al., 2021b) as vision en- 382

coder, and an MLP projection for vision-language 383

alignment, with distinct parameters for the two 384

modules. Given an image Iv and a dialogue of 385

T turns
(
I1q, I

1
a, · · · , ITq , ITa

)
, where Itq and Ita de- 386

note the t-th question and answer, the model per- 387

forms multi-step interactions between Deliberate 388

and Gaze at each turn to generate the answer Ita. 389

At turn t, given question Iqt, the Deliberate mod- 390

ule D takes the image Iv and dialogue context 391

Ct =
(
I1q, I

1
a, · · · , It−1

q , It−1
a , Itq

)
to produce a De- 392

liberate step St
1 and a Gaze query Qt

1, stored in 393

buffers Bt
d and Bt

g respectively. The GazeG then 394

outputs bounding box ot1 based on Qt
1, also stored 395

in Bt
g. In each subsequent round i, the Deliber- 396

ate receives Iv, context Ct, Gaze buffer Bt
g, and 397

Deliberate buffer Bt
d to generate new St

i and Qt
i, 398

while Gaze returns oti. The process repeats until 399

the Deliberate outputs ‘END’ as query QFin− 1t, 400

indicating that the Deliberate and Gaze back-and- 401

forth process is complete. 402

Finally, the image, the dialogue context, and 403

all the buffers are fed into the Deliberate mod- 404

ule D to produce the final answer St
Fin (i.e., Ita) 405

and the Gaze query Qt
Fin. The Gaze module G 406

then provides the bounding box of the salient area 407

otFin for the t-th dialogue turn. The final output 408

is St
Fin, along with the optional key region bound- 409

ing box otFin, as well as the Deliberate process 410(
St
1, · · · ,St

Fin−1

)
, if required. The final answer Ita 411

is then appended to the dialogue context for the 412

next dialogue turn. 413

4.2 Model Training 414

The training process of both Deliberate and Gaze 415

modules follows that of LLaVA, and DiagNote pro- 416

vides two prompt templates pd and pg for Delib- 417

erate and Gaze respectively. At the i-th round of 418

Deliberate and Gaze for Question Itq, the instruc- 419
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Model Train Data
MMDiag GND Testset GND Dataset

Average
Everyday Tabular Minigrid MSCOCO RefCOCO

Grounding DINO (Liu et al., 2023) - 0.384 0.001 0.209 0.715 0.469 0.356
LLaVA (Liu et al., 2024b) LCS558K+Mixed665K 0.237 0.006 0.142 0.365 0.414 0.233
Visual CoT (Shao et al., 2024) VisCoT 0.220 0.003 0.160 0.321 0.362 0.213

DiagNote COCO 0.307 0.008 0.199 0.662 0.765 0.388
DiagNote MMDiag 0.369 0.466 1.0 0.259 0.257 0.471
DiagNote MMDiag + COCO 0.399 0.487 0.988 0.624 0.742 0.648
DiagNote MMDiag + COCO + VisCoT 0.433 0.281 0.910 0.662 0.837 0.625

Table 2: Comparison results with existing MLLMs on Grounding benchmarks (GND) to demonstrate the challenging
characteristics of our dataset MMDiag. We use Intersection over Union (IoU) as the evaluation metric.

tion Rindi for the Deliberate module is:420

Rindi =


pd
(
Iv,C

t
)
, i = 1

pd
(
Iv,C

t,Bt
g,B

t
d

)
, 1 < i < Fin

pd
(
Iv,C

t,Bt
g,B

t
d,Fin

)
, i = Fin,

(1)421

where Bt
d =

(
St
1, · · · ,St

i−1

)
and Bt

g =422 (
Qt

1, · · · ,Qt
i−1

)
. The instruction Ringi for the423

Gaze module is:424

Ringi = pg
(
Iv,Q

t
i

)
, i ≤ Fin, i ̸= Fin− 1.

(2)425

We fine-tune the LLM on the prediction tokens,426

utilizing the auto-regressive training objective to427

optimize. We compute the probability of the target428

output Routxi with length L at i-th round by:429

p (Routxi | Rinxi ) =

L∏
l=1

pθx

(
rl | Rinxi ,Routx,<l

)
,

where x ∈ {d, g}.
(3)

430

θx is the trainable parameters of Deliberate and431

Gaze modules respectively, with x ∈ {d, g}. Rinxi432

are input tokens of i-th round of the Deliberate433

and Gaze interaction process. Routx,<l are answer434

tokens before the current prediction token rl.435

Our Deliberate and Gaze modules take LLaVA-436

1.5 as base models. For the Gaze module, since437

grounding such salient areas as words and ob-438

jects with detailed descriptions is quite challenging,439

we first fine-tune it with an additional grounding440

dataset, and then fine-tune Deliberate and Gaze441

modules together. We combine the fine-tuning442

dataset from LLaVA (Liu et al., 2024b) with the443

grounding split of MMDiag to generate the ground-444

ing dataset; and we also combine the fine-tuning445

dataset from LLaVA with the training split of the446

MMDiag dataset to generate the entire training447

dataset. For data points in LLaVA, DiagNote does448

not add Deliberate prompts for the Deliberate mod- 449

ule, thus instructing the Deliberate module to main- 450

tain the ability to output answers in general format. 451

5 Experiments 452

5.1 Implementation Details 453

We use LLaVA-1.5-7B (Liu et al., 2024a) as the 454

foundation model for both Deliberate and Gaze 455

modules, with CLIP-ViT-Large-Patch14-336 (Rad- 456

ford et al., 2021b) as vision tower. Training is con- 457

ducted on 8 × A800 GPUs with a learning rate of 458

2e-5. Deliberate and Gaze are optimized separately 459

via supervised learning with ground-truth outputs 460

per round. During inference, the Gaze module sig- 461

nals reasoning completion by outputting “END” for 462

turn Tx (Table 4), with the round number dynami- 463

cally determined by DiagNote. Additional training 464

details are provided in the Appendix B,C. 465

5.2 Results on MMDiag 466

5.2.1 Visual Grounding 467

This section focuses on how the MMDiag dataset 468

enhances grounding performance in MLLMs. 469

Grounding is essential for enabling MLLMs to 470

attend to salient regions and reveal the reason- 471

ing process, rather than acting as black boxes. 472

We evaluate DiagNote on standard grounding 473

(GND) benchmarks (Lin et al., 2014; Kazemzadeh 474

et al., 2014; Tian et al., 2024) and the MMDiag 475

GND benchmark, using average IoU scores, as 476

shown in Table 2. Compared to benchmarks 477

like MSCOCO, DiagNote shows a notable per- 478

formance drop on MMDiag, indicating its higher 479

difficulty. Existing models like Visual CoT, de- 480

spite incorporating region-based attention, perform 481

poorly on GND tasks—e.g., scoring -0.394 vs. 482

Grounding DINO on MSCOCO and underperform- 483

ing LLaVA—revealing their limited robustness in 484

grounding relevant image areas. In contrast, Diag- 485
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Model Gaze Train Data
MMDiag

AverageEveryday Tabular Minigrid

reasoning answer reasoning answer reasoning answer

LLaVA (Liu et al., 2024b) ✗ LCS558K+Mixed665K 2.55 4.85 1.00 1.28 2.29 0.42 2.21
CogCoM (Qi et al., 2024) ✗ - 3.05 5.45 0.50 1.25 0.53 0.96 2.20
Visual CoT (Shao et al., 2024) ✗ VisCoT 4.15 4.90 1.23 1.95 1.09 2.50 2.81

DiagNote ✗ MMDiag 4.25 4.95 3.61 4.20 4.95 4.27 4.32
DiagNote ✓ MMDiag 5.82 6.15 3.95 4.05 5.10 4.15 4.92
DiagNote ✓ MMDiag+COCO 6.35 5.97 3.95 4.30 5.75 4.93 5.18
DiagNote ✓ GT 6.85 5.80 6.32 7.76 7.37 9.15 7.00

Table 3: Comparison of the evaluation score with baselines to validate the Gaze module, we use Gemini-1.5-Pro
to evaluate the performance of the reasoning process and the final answer. The evaluation process is detailed
in Section 3.3.

Model
Tabular

Reasoning Answer

T1 T2 T3 T4 T1 T2 T3 T4

CogCoM 0.55 0.91 1.15 0.67 1.75 0.73 0.85 0.35
Visual CoT 1.50 1.05 1.33 1.02 1.86 1.24 1.03 0.88
LLaVA 2.34 0.35 1.00 0.58 1.42 0.50 0.97 0.50

w/o Gaze 4.01 3.05 2.15 1.66 3.47 2.03 1.65 1.63
with Gaze 3.86 3.34 2.31 2.53 3.25 2.65 2.17 1.98

Table 4: The Gemimi-1.5-Pro evaluation of the reason-
ing process and the final answer, scaling to 0-10, at turns
1 to 4 under the tabular scenario, where T∗ denotes the
∗-th turn in the dialogue.

Note—trained on limited GND annotations from486

MMDiag and MSCOCO—achieves clear improve-487

ments on MSCOCO and RefCOCO, and outper-488

forms others across all MMDiag subsets. Impor-489

tantly, MSCOCO is used solely to enhance ground-490

ing, and we deliberately restrict GND data size491

to avoid scale bias. As shown in Row 4, training492

solely on MSCOCO leads to the weakest perfor-493

mance, underscoring the necessity and advantages494

of MMDiag.495

5.2.2 Multi-Turn Reasoning496

We evaluate our model’s multi-turn reasoning ca-497

pabilities using the MMDiag benchmark. Beyond498

final answer correctness, the evaluator also assesses499

the coherence and logic of the reasoning process500

within the Deliberate module, with detailed results501

in Table 3. “GT” denotes settings where the Delib-502

erate receives ground-truth inputs during reasoning,503

serving as an upper bound. Other settings use Gaze504

queries generated by DiagNote, preventing infor-505

mation leakage. As expected, the GT setting signif-506

icantly outperforms others, highlighting room for507

improvement. To validate the effectiveness of our508

proposed module, we observe that Gaze improves509

performance on specific reasoning tasks. For ex-510

ample, in everyday scenarios, models with Gaze 511

achieve higher accuracy, showing enhanced focus 512

and reasoning accuracy. When similar objects dif- 513

fer in location or attributes, the model may fail to 514

identify the referenced one. Annotating the target 515

in the image helps the model maintain focus and 516

avoid such errors as reasoning progresses. 517

We further compare DiagNote with CogCoM (Qi 518

et al., 2024) and Visual CoT (Shao et al., 2024), 519

which also handle region-focused multimodal dia- 520

logue. DiagNote shows notable advantages, espe- 521

cially in tabular and Minigrid scenarios, reflecting 522

the dataset’s complexity and strengths of two mod- 523

ules. Table 4 shows a breakdown of tabular results 524

across dialogue rounds: DiagNote consistently out- 525

performs others in rounds two through four, un- 526

derscoring its strength in long-context reasoning. 527

Gaze brings more noticeable gains in longer dia- 528

logues (e.g.T3,4), further validating its benefit for 529

extended multimodal understanding. Note that Ta- 530

ble 3 includes QA pairs of lengths 2–4, while Ta- 531

ble 4 focuses only on 4-turn dialogues. 532

5.3 Qualitative Results. 533

In this section, we provide additional grounding 534

and reasoning examples of DiagNote. More visual- 535

ization results can be found in Appendix D,F. 536

Visual Grounding. The Gaze module offers both 537

grounding and OCR capabilities across diverse 538

scenarios. As illustrated in Figure 4b, Ground- 539

ing DINO (Liu et al., 2023) struggles in complex 540

scenes where multiple objects of the same cate- 541

gory exist with different attributes or relationships, 542

therefore often failing to locate the target object 543

precisely. In contrast, DiagNote’s Gaze module 544

effectively manages such situations, as shown in 545

Figure 4a. Additionally, when faced with tasks re- 546

quiring text recognition, the Gaze module exhibits 547
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Question': 'How can the agent go to the yellow box?

The provided image depicts a grid world, with gray squares representing 
impassable walls, black squares as the background color, and the agent repre-
sented as a red triangle, with its pointed tip indicating the initial direction it is 
facing. Various squares may contain different objects such as colored balls, 
keys, boxes, and doors.

To help the agent (the red triangle) reach the yellow 
box, you can follow these steps:

1. Identify the Agent's Position: The agent starts in the 
bottom left corner of the grid.

2. Determine the Position of the Yellow Box: The 
yellow box is located in the middle column, second 
row from the top. 

3. Plan the Path:
▪ Move up to the square directly above the agent.
▪ Move up again to the next row.
▪ Move right to the middle column.
▪ Finally, move up to reach the yellow box.

This path avoids impassable walls and allows the 
agent to reach the yellow box efficiently.

CoT: 

1. To start, we need to identify the agent's current 
position.

2.  Next, we need to locate the yellow box, which is 
the target. 

3. To reach the yellow box, the agent should move 
right. 

4. Then, the agent should move forward toward the 
yellow box. 

5. Finally, the agent needs to move forward one more 
time to reach the yellow box.

Final_Ans: The agent should move right, then forward 
twice to reach the yellow box.

1

2

3

4
5

1

2

3
4

5

6

Figure 3: Comparison for an example of the Minigrid scenario, one of the subsets in MMDiag. We give DiagNote
and GPT-4o the same environmental description and question. DiagNote focuses on the key regions and gives the
correct reasoning process and the final answer. In contrast, GPT-4o fails to locate the object and thus gives the wrong
answer. Examples for the MMDiag subsets of everyday scenarios and tabular scenes can be found in Appendix F.

(a) DiagNote (b) Grounding DINO

Figure 4: A grounding comparison between Grounding
DINO and DiagNote’s Gaze module , with the Gaze
query “pink and white sign”. In (a), the red bounding
box represents the ground-truth answer, while the blue
one indicates the output generated by the Gaze module
in DiagNote. In (b), the red bounding boxes show the
outputs produced by Grounding DINO.

more robust OCR capabilities, accurately identify-548

ing and localizing specific keywords.549

Multi-Turn Reasoning. With the incorporation550

of the Gaze module, our model can also more ef-551

fectively focus on fine-grained details distributed552

across the image, offering a clear advantage in tasks553

that demand cohesive reasoning across both visual554

and linguistic information. As shown in Figure 3,555

a comparison between our DiagNote and GPT-4o556

within a simple Minigrid environment highlights557

this benefit. Despite detailed descriptions provided558

in the prompt, GPT-4o struggles with completing a559

short-range, single-subgoal task, underscoring the560

strengths of our dataset and methodology.561

5.4 Ablation Study562

We observe a counterintuitive performance trend563

when comparing DiagNote with and without the564

Gaze module. To analyze its impact, we fine-tune565

DiagNote and Visual CoT on MMDiag and confirm566

Gaze’s effectiveness. However, its gains are lim-567

ited, likely due to low-resolution image inputs. Fail-568

ure cases show that when dialogues reference tiny569

key regions (under 0.2% of the image), Gaze often 570

produces inaccurate bounding boxes, confusing the 571

Deliberate module. The CLIP-ViT-Large-Patch14- 572

336 encoder further limits resolution, contributing 573

to errors. On standard multimodal benchmarks, Di- 574

agNote performs comparably or slightly lower, as 575

it targets complex multi-region dialogues without 576

in-domain training data. Ablation details are in 577

Appendix E. 578

6 Conclusion 579

In this paper, we focus on a key challenging task 580

scenario for MLLMs—multi-turn multimodal dia- 581

logue. To address it, we first introduce a specially 582

designed dataset, MMDiag, where accomplishing 583

tasks requires properly integrating visual informa- 584

tion across different regions of an image and con- 585

necting multimodal information across various QA 586

pairs. This setting closely resembles natural conver- 587

sations and poses significant challenges to current 588

MLLMs. To solve this, we construct MMDiag 589

across three distinct scenarios—everyday, tabular, 590

and Minigrid—using a combination of rule-based 591

methods and GPT-4o-mini to ensure robustness and 592

diversity. Experimental results highlight challenges 593

posed by MMDiag. Therefore, we propose Diag- 594

Note, an MLLM inspired by human visual process- 595

ing, composed of two modules: Gaze and Delib- 596

erate. Deliberate performs reasoning step by step, 597

with the assistance of Gaze, which provides anno- 598

tations of salient regions to focus on. Experiments 599

show that DiagNote enhances both grounding and 600

reasoning capabilities, effectively addressing MM- 601

Diag challenges. We hope our work helps advance 602

the development of more intelligent MLLMs. 603
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Limitations604

Although MMDiag contains diverse data, our meth-605

ods can be expected to generate even more sce-606

narios and complex questions, resulting in even607

more challenging datasets for multi-turn multi-608

modal dialogue. Larger sub-graph patterns can609

be used to search for longer and more complex610

dialogues. While qualitative results and case stud-611

ies demonstrate the effectiveness of our approach,612

there remains considerable room for improvement.613

The potential performance drops with the intro-614

duction of Gaze module may stem from failures615

in queries involving extremely tiny objects. Fine-616

tuning Gaze to abstain from answering when un-617

certain or replacing the vision encoder backbone618

may enhance its robustness. Further exploration of619

training paradigms and model architecture could620

also potentially lead to enhanced performance.621
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A Dataset851

We use GPT-4o-mini (OpenAI) to generate our852

MMDiag dataset. Our dataset mainly consists of853

three parts: everyday scenes, tabular scenes, and854

Minigrid settings. We adopt different prompts for855

the generation of datasets under different scenes.856

A.1 Dataset Collection857

We design prompts for different scenarios, and the858

same devising ideas can be used in other scenarios859

for data collection.860

Everyday Scenes. For everyday scenes, we gener-861

ate our dataset from the Visual Genome dataset (Kr-862

ishna et al., 2017). Since the original dataset has863

human-annotated attributes and relationship data,864

we extract the subsets that represent the QA pairs865

and feed them to GPT-4o-mini to generate corre-866

sponding dialogues. Figure 5,6,7 show several ex-867

ample prompts.868

Please generate a new list based on a dictionary (`dict`) structured as follows:
[Image_Dict]

The resulting list should be structured as follows:
[Result_Dict]

### Explanation:

There are two dictionaries in the generated list. 

- The first dictionary's question is based on the relation to the first object in the `an-
swer`. The first two items in the `CoT` (Chain of Thought) list correspond to the first list 
in `gnd`, breaking the question down into two steps of grounding reasoning. The final 
`CoT` item provides a complete and concise answer to the question.
- The second dictionary’s question refers to the attributes of the object from the first 
question's answer and is presented using a pronoun. The first `CoT` item deduces the 
referent, the second extracts the attribute information, and the last item provides a 
complete and concise answer to the question. The `Question` and `CoT` answers 
should be diverse and natural. The `Query` contains a concise, detailed description of 
the object in that step, and `Bbox` includes the object's coordinates from `obj_info`.

Only output the dict in JSON format.

**IMPORTANT**: The order of objects in the CoT reasoning should follow the order of 
objects in the `gnd` list.

Human:{Current_Image_Dict}

Figure 5: The first example prompt for generating data
samples in everyday scenes.

Tabular Scenes. For tabular scenes, we generate869

our dataset from the ChartQA dataset (Masry et al.,870

2022). In general, we use different types of graphs871

to capture various visualization intuitions, provid-872

ing corresponding chart examples in the prompts.873

Figure 8 illustrates the main structure of the prompt,874

while Figure 9,10,11 show examples for line, pie,875

and bar charts, respectively.876

Minigrid Settings. For Minigrid settings,877

we generate our dataset from the Minigrid878

database (Chevalier-Boisvert et al., 2023). Since879

we observe that GPT-4o-mini struggles to solve the880

mission without ground-truth planning, we first use881

BabyAI (Chevalier-Boisvert et al., 2019) to collect882

the plan needed to complete the mission for each883

environment generated by the Minigrid database.884

Please generate a new `dict` based on the provided one. The provided `dict` is struc-
tured as follows:
[Image_Dict]

The generated `dict` should look like this:
[Result_Dict]

### Explanation:

- The `Question` should be generated based on the `relation` predicates and the `attri-
butes` of the last object in the `gnd`.
- The `CoT` (Chain of Thought) list's first three entries MUST correspond to the `gnd` 
objects list, which break the problem into three steps of grounding reasoning. The 
`Query` MUST correspond to the `gnd` objects list.
- The fourth item in the `CoT` list refers to the attributes of the target object.
- The last `CoT` entry provides a concise final answer to the question.
- The `Question` and `CoT.Ans` should be varied and natural. `Query` is a brief, specif-
ic description of the object, while `Bbox` corresponds to the object’s `coordinates` in 
`obj_info`.

Only output the dict in JSON format.

**IMPORTANT**: The order of objects in the CoT reasoning should follow the order of 
objects in the `gnd` list.

Human:{Current_Image_Dict}

Figure 6: The second example prompt for generating
data samples in everyday scenes.

Please generate a new `dict` based on the given one. The provided `dict` is structured 
as follows:
[Image_Dict]

The new `dict` should follow this structure:
[Result_Dict]

### Explanation:

- The first `dict` asks a question based on the first object in the `relation[0]` and uses 
the first object from the `answer`. The `CoT` list contains step-by-step reasoning, 
aligning with the first item in `gnd`, breaking the problem into two steps of grounding 
reasoning. The final item in the `CoT` list provides a simple and concise answer to the 
question.
- The second `dict` asks about the attributes of the object answered in the first ques-
tion, referring to it with a pronoun. The first `CoT` item infers the referred object, the 
second item extracts the attributes, and the final item provides a full, concise answer.
- The third `dict` asks a question about the related object from `relation[1]`, again refer-
ring to it with a pronoun. The `CoT` steps involve reasoning to identify the referred 
object and then the related object, ending with a complete, concise answer.

**IMPORTANT**: The order of objects in the CoT reasoning must match the order of 
objects in the `gnd` list.

Human:{Current_Image_Dict}

Figure 7: The third example prompt for generating data
samples in everyday scenes.

We then combine the positions of all objects with 885

the mission and plan, as shown in Figure 12, and 886

feed them to GPT-4o-mini. For details, Minigrid 887

creates environments based on specific constraints, 888

saving grid world data as both rendered images 889

and lists of special objects with bounding boxes. 890

BabyAI then identifies feasible solutions by ana- 891

lyzing the agent’s field of view and determining 892

subgoal-aligned actions. To simplify QA genera- 893

tion, we make the entire grid world visible, allow- 894

ing MLLMs to guide the agent from a top-down 895

perspective. GPT-4o-mini then generates natural 896

questions, reasoning steps, key region queries, and 897

concise final answers. The prompt structure is il- 898

lustrated in Figure 13. 899

A.2 Dataset Format 900

Examples of the final MMDiag dataset are shown 901

in Figure 14,15,16. Figure 14a,15a,16a display 902
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Please generate a new list based on the provided chart and table data. The main 
reference should be the chart content, as the table content might contain errors. The 
format of the new list should be similar to the following example:
[QA_and_CoT]

This list consists of two dictionaries corresponding to two rounds of Q&A. Each ques-
tion is based on the chart, providing a reasoning process and an answer. The CoT 
(Chain of Thought) consists of multiple steps with "Ans" representing the answer 
broken down into steps, and "Query" indicating the key terms in the chart relevant to 
that step. The final step of CoT provides a complete and concise answer to the ques-
tion, and the "Query" highlights the key terms in the chart that are relevant to the ques-
tion.

The Question and CoT answers should be diverse and natural.

**Important**: The second question should refer back to the answer from the first 
question, meaning that you can’t answer the second question unless you know the 
answer of the first question. The answer of the first question is presented using a pro-
noun in the second question, and shouldn’t appear in the second question.
You only need to output the list in JSON format.

Human:{Current_QA_and_CoT}

Figure 8: The prompt structure to generate samples in
tabular scenes.

[
    {
        "Question": "In which year did the highest percentage of voters care about the 
election outcome, and what was the percentage?",
        "CoT": [
            {
                "Ans": "To solve this, we should first find the highest point of the brown line, 
which is 83.",
                "Query": "83"
            },
            {
                "Ans": "Next, we can identify that this occurred in 2020.",
                "Query": "2020"
            },
            {
                "Ans": "In 2020, 83% of voters cared the most about the election result.",
                "Query": "83"
            }
        ]
    },
    {
        "Question": "What percentage of voters didn't care about the election result four 
years before that year?",
        "CoT": [
            {
                "Ans": "The referenced year is 2020 from the previous question, and four 
years earlier would be 2016.",
                "Query": "2016"
            },
            {
                "Ans": "The yellow line in 2016 indicates a value of 22.",
                "Query": "22"
            },
            {
                "Ans": "In 2016, 22% of voters did not care about the election outcome.",
                "Query": "22"
            }
        ]
    }
]

Figure 9: The question-answer (QA) and Chain-of-
Thought (CoT) examples for line charts.

the original images from the source datasets and903

environments, while Figure 14b,15b,16b show the904

data format of MMDiag generated by GPT-4o-mini905

and standardized according to specific rules.906

A.3 Evaluation907

Since GPT-4o-mini contributes to generating our908

datasets, we use Gemini-1.5-Pro (Reid et al., 2024)909

for evaluation. There are multiple reasons for910

choosing it for this task: answer formatting and911

the Chain of Thought (CoT) processes may be di-912

verse, making a simple similarity score insufficient913

for evaluation. Additionally, recent works (Liu914

et al., 2024b; Zheng et al., 2024) commonly ap-915

ply LLMs for judgment. We provide the MLLM916

with images, ground-truth answers, and generated917

[
    {
        "Question": "What did most Americans favor when it comes to spending on polic-
ing, and what was the percentage?",
        "CoT": [
            {
                "Ans": "To solve this, we should first locate the largest part of the pie chart, 
which is 42%.",
                "Query": "42"
            },
            {
                "Ans": "Next, we can see that this part represents people who favored main-
taining the same level of spending on policing.",
                "Query": "Stay about the same"
            },
            {
                "Ans": "The largest group, with 42%, favored maintaining current spending 
levels on policing.",
                "Query": "42"
            }
        ]
    },
    {
        "Question": "How does this group compare to those who favored reduced spend-
ing?",
        "CoT": [
            {
                "Ans": "This group refers to the one mentioned in the previous answer, 
which represents 42%.",
                "Query": "42"
            },
            {
                "Ans": "Now, we need to compare it with those who favored reduced spend-
ing, indicated by the label 'Decreased'.",
                "Query": "Decreased"
            },
            {
                "Ans": "The portion of people who favored reduced spending is represented 
by the purple section of the pie chart, at 25%.",
                "Query": "25"
            },
            {
                "Ans": "The difference in percentage is 42 - 25 = 17.",
                "Query": ""
            },
            {
                "Ans": "This group is 17 percentage points larger than those who favored 
reduced spending.",
                "Query": "17"
            }
        ]
    }
]

Figure 10: The question-answer (QA) and Chain-of-
Thought (CoT) examples for pie charts.

responses, and ask it to score the accuracy of the 918

generated answers across five categories. We notice 919

that the MLLM provides more reasonable rankings 920

when asked to explain the ‘ad-hoc’ reason before 921

their final score. As a result, we include this rea- 922

soning step in the prompt, as shown in Figure 17. 923

B DiagNote 924

Our DiagNote consists of two MLLMs, one for De- 925

liberate, and one for Gaze. For each input question, 926

DiagNote appends buffer information and queries 927

to the respective prompts for Deliberate and Gaze. 928

For images from Minigrid, a description of the 929

Minigrid environment, as shown in Figure 20, is 930

included in both training and testing. The remain- 931

ing components of the Deliberate prompt and Gaze 932

prompt are consistent across all three scenes. 933

Deliberate Prompt. For deliberating, Diag- 934

Note provides the dialogue context and Chain of 935

Thought (CoT) history for the current question in 936

the prompt, as shown in Figure 21. When the 937

‘END’ token appears in the latest ‘Query’ from 938

the Deliberate module, signaling the end of the 939

CoT process, DiagNote provides a new prompt, as 940
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[
    {
        "Question": "Which region had the second smallest consumption of Ozone-De-
pleting Substances in tonnes in 1998?",
        "CoT": [
            {
                "Ans": "To solve this, we first need to find the second smallest consumption 
in tonnes, which is 143 tonnes.",
                "Query": "143 tonnes"
            },
            {
                "Ans": "Next, we can determine that this bar refers to Malta.",
                "Query": "Malta"
            },
            {
                "Ans": "In 1998, Malta had the second smallest consumption of Ozone-De-
pleting Substances, with 143 tonnes.",
                "Query": "143 tonnes"
            }
        ]
    },
    {
        "Question": "How many times greater was the highest consumption of Ozone-De-
pleting Substances compared to that region?",
        "CoT": [
            {
                "Ans": "The region in question is Malta, with 143 tonnes.",
                "Query": "143 tonnes"
            },
            {
                "Ans": "The highest consumption to compare it with is 2,262 tonnes.",
                "Query": "2,262 tonnes"
            },
            {
                "Ans": "The ratio is calculated as 2,262 / 143 = 15.8.",
                "Query": ""
            },
            {
                "Ans": "The region with the highest consumption used 15.8 times more 
Ozone-Depleting Substances than Malta.",
                "Query": ""
            }
        ]
    }
]

Figure 11: The question-answer (QA) and Chain-of-
Thought (CoT) examples for bar charts.

shown in Figure 22, to the Deliberate module for941

generating the final answer.942

Gaze Prompt. For gazing, DiagNote extracts the943

‘Query’ from the output of the Deliberate module944

and provides it to the Gaze module along with the945

prompt shown in Figure 23. The output from the946

Gaze module, which includes the bounding box of947

the query, is then saved in the Deliberate buffer to948

support the next turn of Deliberating.949

C Implementation950

The detailed parameters of implementation are951

shown in Table 5,6.952

D Qualitative Comparison of Grounding953

Figure 18,19 show a comparison of grounding abil-954

ity between DiagNote and Grounding DINO (Liu955

et al., 2023). As illustrated in Figure 18b, Ground-956

ing DINO struggles with grounding tasks involving957

Optical Character Recognition (OCR). In contrast,958

DiagNote leverages the generalization capability959

of LLMs, enabling it to effectively locate the tar-960

get words, as shown in Figure 18a. Figure 19b961

illustrates that Grounding DINO fails to handle ob-962

jects with attributes. Although the grey key has a963

marginally higher confidence, accurately locating964

the ‘grey’ key in the image confuses Grounding965

{
    "mission": "open the grey door, then open the green door",
    "object": {
        "grey door": "[256, 320, 288, 352]",
        "red triangle agent": "[288, 288, 320, 320]",
        "green door": "[320, 288, 352, 320]"
    },
    "plan_list": [
        [
            "Actions.left",
            "(GoNextToSubgoal: grey door None, reason: Open)"
        ],
        [
            "Actions.forward",
            "(GoNextToSubgoal: grey door None, reason: Open)"
        ],
        [
            "Actions.left",
            "(GoNextToSubgoal: grey door None, reason: Open)"
        ],
        [
            "Actions.toggle",
            "(OpenSubgoal)"
        ],
        [
            "Actions.left",
            "(GoNextToSubgoal: green door None, reason: Open)"
        ],
        [
            "Actions.forward",
            "(GoNextToSubgoal: green door None, reason: Open)"
        ],
        [
            "Actions.toggle",
            "(OpenSubgoal)"
        ]
    ]
}

Figure 12: The mission and plan input example of Min-
igrid settings.

Based on the provided image and the given mission and object information, generate 
a new dict. The provided image is a grid world, where gray squares represent impass-
able walls, black squares are the background color, and the agent is a red triangle, 
with the pointed tip indicating the initial direction the agent is facing. Different squares 
may contain various objects such as colored balls, keys, boxes, doors, etc. The mis-
sion provides the task that the agent needs to accomplish, the plan list provides the 
action and subgoal for each step, and the object provides the coordinates of these 
objects. The format of mission and object is as follows:
[Mission_and_Plan]

The format of the new dict should be similar to the following example:
[QA_and_CoT]

Each dict should consist of a Question, a CoT (Chain of Thought) process, and a 
Final_Ans. The Question is generated based on the mission. The CoT consists of 
multiple steps, where each step has "Ans" for the explanation ,"Query" for identifying 
the key elements in the image relevant to that step and "Bbox" for the coordinates of 
the object in "Query". The Final_Ans provides a clear and concise solution to the ques-
tion, with the "Query" highlighting the key terms in the image corresponding to the 
solution.

Ensure the Question, CoT answers, and Final_Ans are diverse and natural.
The Bbox should contains all the bounding boxes of the Query.
Output the dict in JSON format only.

Human:{Current_QA_and_CoT}

Figure 13: The prompt structure to generate data sam-
ples in Minigrid settings.

DINO. In contrast, DiagNote accurately identifies 966

the grey key in Figure 19a, which aids the subse- 967

quent actions of the Deliberate module. 968

E Ablation Study 969

We observe a counterintuitive performance trend 970

in Table 3 in the main paper: Gaze provides only 971

limited performance gains and, in some cases, even 972

reduces performance, particularly in tabular and 973

Minigrid scenarios. As shown in Figure 24, Gaze 974

incorrectly identifies the bounding box for a critical 975

but tiny piece of information—the year 2019—mis- 976

leading Deliberate to focus on the wrong color bar. 977

This issue accounts for most failure cases. 978

To further analyze this, we evaluate the propor- 979
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hyper-parameters value

deepspeed zero3
base model LLaVA-1.5-7B
conversation template Vicuna v1
vision tower CLIP-ViT-Large-

Patch14-336
modality projector type mlp2x_gelu
image aspect ratio pad
training epochs 1
training batch size 16
learning rate 2e-5
weight decay 0
warm-up ratio 0.03
model max length 2048
data loader workers 4

Table 5: The implementation details of the Deliberate
module.

tion of tiny key regions across different scenarios in980

MMDiag (Table 9). In tabular and Minigrid scenes,981

nearly all key regions occupy less than 3% of the982

total image area, making them particularly chal-983

lenging for Gaze to detect accurately. To mitigate984

this, we curate an alternative test dataset for tabular985

scenes, excluding questions that require attention986

to extremely small regions. We then fine-tune Vi-987

sual CoT and DiagNote with MMDiag and evaluate988

them on this revised tabular split. As shown in Ta-989

ble 7, Gaze’s impact becomes more pronounced.990

Table 8 demonstrates that DiagNote performs com-991

parably or slightly lower on standard multimodal992

benchmarks, as it targets complex multi-region dia-993

logues without in-domain training data.994

F Qualitative Comparison of Multi-Turn995

Multimodal Dialogue996

We present several cases comparing models in ev-997

eryday scenarios and tabular scenes. Figure 25,26998

show examples from unseen everyday scenarios. In999

Figure 25, CogCoM (Qi et al., 2024) completely1000

fails to answer the two-turn questions correctly.1001

Despite the assistance of the counting expert, Cog-1002

CoM is unable to answer the first counting question.1003

Although LLaVA-1.5-13B (Liu et al., 2024a) and1004

Visual CoT (Shao et al., 2024) can answer the first1005

questions accurately, both encounter hallucinations1006

hyper-parameters value

deepspeed zero3
base model LLaVA-1.5-7B
conversation template Vicuna v1
vision tower CLIP-ViT-Large-

Patch14-336
modality projector type mlp2x_gelu
layer selected for -2

fine-tuning vision tower
image aspect ratio pad
training epochs 1
training batch size 32
learning rate 2e-5
weight decay 0
warm-up ratio 0.03
model max length 2048
data loader workers 4
fine-tune vision tower True/False

Table 6: The implementation details of the Gaze mod-
ule.

Model Fine-tuning Data Gaze T1 T2 T3 T4

Visual CoT-13B MMDiag - 2.00 1.43 0.40 0.95
DiagNote-14B MMDiag ✗ 3.15 2.35 1.78 1.23
DiagNote-14B MMDiag ✓ 4.20 3.10 2.55 1.95

Table 7: Tabular scenes results of MLLMs fine-tuned
on MMDiag, using the same evaluation metrics as the
previous evaluation.

Benchmark MMBench MM-Vet RefCOCO+ RefCOCOg

DiagNote-14B 63.7 28.5 0.834 0.775

Table 8: DiagNote performance on general datasets.

Scenario ≤ 0.2% ≤ 1% ≤ 3% ≤ 5% ≤ 10%

Everyday 7.57% 27.62% 47.99% 57.49% 69.91%
Tabular 87.17% 99.24% 99.80% 99.92% 100%

Minigrid 6.98% 66.61% 96.99% 99.41% 100%

Table 9: MMDiag tiny key regions percentage.

when responding to the second question, mistak- 1007

enly identifying white plates as cups and bowls, 1008

respectively. In contrast, our DiagNote performs 1009

well on both questions, demonstrating the effec- 1010

tiveness of the Gaze module in ensuring DiagNote 1011

stays grounded in visual details. In Figure 26, Cog- 1012

CoM fails to provide a clear answer to the first 1013
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question, instead offering a confusing single word1014

‘jean’. Again, LLaVA-1.5-13B and Visual CoT an-1015

swer the first question correctly, but imagine the1016

man was holding a frisbee. Both CogCoM and1017

DiagNote understand the context, with DiagNote1018

accurately describing the can based on the visual1019

details. In contrast, CogCoM mistakenly assumes1020

it is a can of beer, which may not be the case.1021

Questions

What percentage of LGBT Americans consider religion 
to be very important in their lives?

In comparison, how much does the percentage change 
of those who consider religion to be less important?

According to the survey, do more LGBT Americans tend 
to be religiously affiliated or not?

Input Image

According to the Pew Research Center, 17% of LGBT 
Americans consider religion to be very important 
in their lives.

In comparison, 34% of LGBT Americans consider 
religion to be less important in their lives.

The survey shows that a majority of LGBT Americans 
are religiously affiliated, with 34% being religiously 
affiliated and 44% being unaffiliated.

LLaVA-1.5-13B

Visual CoT

17%

1%

Not

CogCoM The percentage of those who consider religion to be 
less important has increased from 34% to 50%.

Based on the data provided by Pew Research Center, 
17% of LGBT Americans consider religion to be very 
important in their lives.

The survey shows that more LGBT Americans tend to 
be religiously affiliated than not.

DiagNote
Therefore, the percentage of those who consider 
religion less important is 17 percentage points higher 
than those who consider it very important.

Thus, 17% of LGBT Americans consider religion to be 
very important in their lives.

Thus, more LGBT Americans tend to be religiously 
affiliated than not.

Figure 27: One example of comparison between differ-
ent MLLMs under tabular scenes.

Figure 27 presents examples of unseen tabular1022

scenes. All models answer the first question cor-1023

rectly. However, Visual CoT provides a completely1024

incorrect answer to the second question, while Cog-1025

CoM introduces an unfounded ‘50%’. LLaVA-1.5-1026

13B correctly identifies the visual detail ‘34%’, but1027

overlooks the keyword ‘change’ in the question,1028

which requires a calculation between two percent-1029

ages. Only DiagNote answers the question pre-1030

cisely. The final question requires the models to1031

understand the entire pie chart. The model should1032

compare the sum of two parts on the right side of1033

the pie chart with the left part to obtain the final1034

answer ‘yes’. Visual CoT fails to provide this cor-1035

rect answer, and LLaVA-1.5-13B misinterprets the1036

unaffiliated percentage and derives an incorrect af-1037

filiated percentage. Both CogCoM and DiagNote1038

reach the right conclusion. Overall, DiagNote per-1039

forms well on all questions, demonstrating its abil-1040

ity to focus on both visual and language details and1041

to comprehend the full picture the chart conveys.1042

This strong ability can be attributed to the Gaze1043

and Deliberate structure, which enables it to zoom1044

in on specific details while integrating multimodal 1045

information for a holistic understanding. 1046
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(a) the original image

{
  "QA_pairs": [
    {
      "Question": "What's the woman holding?",
      "CoT": [
        {
          "Ans": "To address this question, we should first identify the woman.",
          "Query": "woman",
          "Bbox": [211, 46, 478, 255]
        },
        {
          "Ans": "Next, we can observe that she is holding a cup.",
          "Query": "END"
        },
        {
          "Final_Ans": "The woman is holding a cup.",
          "Query": "cup",
          "Bbox": [309, 118, 338, 154]
        }
      ]
    },
    {
      "Question": "Could you describe it in detail?",
      "CoT": [
        {
          "Ans": "The 'it' in the question refers to the cup from the previous question, so 
we first need to locate the cup.",
          "Query": "cup",
          "Bbox": [309, 118, 338, 154]
        },
        {
          "Ans": "We can see that the cup is made of paper.",
          "Query": "END"
        },
        {
          "Final_Ans": "The cup is a paper cup.",
          "Query": "cup",
          "Bbox": [309, 118, 338, 154]
        }
      ]
    }
  ],
  "image": "2353699.jpg",
  "question_id": 16
}

(b) the sample format

Figure 14: One example of the original image and the
generated sample from Visual Genome in JSON format.

(a) the original image

{
  "QA_pairs": [
    {
      "Question": "What was the average advertisement cost during Super Bowl XXXVI 
(2002)?",
      "CoT": [
        {
          "Ans": "To find the average advertisement cost for Super Bowl XXXVI, we look 
at its specific entry.",
          "Query": "Super Bowl XXXVI (2002)"
        },
        {
          "Ans": "The average cost listed is 2.3 million U.S. dollars.",
          "Query": "END"
        },
        {
          "Final_Ans": "Thus, the average advertisement cost during Super Bowl XXXVI 
was 2.3 million U.S. dollars.",
          "Query": "2.3 million U.S. dollars"
        }
      ]
    },
    {
      "Question": "How much more did the average advertisement cost for Super Bowl 
LV (2021) compared to that event?",
      "CoT": [
        {
          "Ans": "The average advertisement cost for Super Bowl LV is 5.6 million U.S. 
dollars.",
          "Query": "5.6 million U.S. dollars"
        },
        {
          "Ans": "The cost difference can be calculated as 5.6 - 2.3.",
          "Query": ""
        },
        {
          "Ans": "This results in a difference of 3.3 million U.S. dollars.",
          "Query": "END"
        },
        {
          "Final_Ans": "Therefore, the average advertisement cost for Super Bowl LV was 
3.3 million U.S. dollars more than that event.",
          "Query": ""
        }
      ]
    }
  ],
  "image": "two_col_383.png"
}

(b) the sample format

Figure 15: One example of the original image and the
generated data point from ChartQA in JSON format.
The bounding boxes of the queries are generated using
EasyOCR (JaidedAI, 2024) and thus are not shown in
the example.
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(a) the original image

{
  "id": "BabyAI-OpenDoorsOrderN4-v0_185",
  "QA_pairs": {
    "Question": "How can the agent open the green door first, and then open the grey 
door?",
    "CoT": [
      {
        "Ans": "To solve this, we first need to locate the agent's position.",
        "Query": "red triangle agent",
        "Bbox": [288, 224, 320, 256]
      },
      {
        "Ans": "Next, we need to find the green door.",
        "Query": "green door",
        "Bbox": [256, 160, 288, 192]
      },
      {
        "Ans": "To open the green door, the agent should move forward, then turn right, 
move forward again, and finally toggle to open the door.",
        "Query": "green door",
        "Bbox": [256, 160, 288, 192]
      },
      {
        "Ans": "Now, we need to locate the grey door.",
        "Query": "grey door",
        "Bbox": [288, 320, 320, 352]
      },
      {
        "Ans": "To go to the grey door, the agent should turn right, move forward, turn 
right again, and move forward several times to reach the grey door, then toggle to 
open it.",
        "Query": "END"
      },
      {
        "Final_Ans": "The agent first needs to move forward, turn right, move forward 
again to open the green door. Then, it should turn right, move forward, turn right again, 
move forward several times, and finally open the grey door.",
        "Query": "grey door",
        "Bbox": [288, 320, 320, 352]
      }
    ]
  },
  "image": "BabyAI_frame_0_with_action_full_obs_with_attr/BabyAI-OpenDoor-
sOrderN4-v0/185.jpg"
}

(b) the sample format

Figure 16: One example of the original image and the
generated sample from Minigrid in JSON format.

You are an evaluator. Your task is to assess the given answer based on its accuracy in 
response to the provided picture, related question, and the ground truth answer. Your 
evaluation should be based on ad-hoc reasoning. First, provide a detailed reasoning 
for your judgment, then explicitly state the final category in the format:
Reason: ... Judgment: ...
Use the following five categories for your judgment:
Incorrect: The answer is entirely wrong or unrelated.
Partially Correct: The answer contains some relevant elements but is mostly incorrect.
Medium: The answer captures partial correctness but lacks significant details or has 
notable inaccuracies.
Almost Correct: The answer is mostly accurate but has minor errors or omissions.
Correct: The answer is fully accurate and aligns well with the ground truth.
[Please give a detailed Chain-of-Thought process.]

Question: {Question} 

Ground Truth Answer: {GroundTruthAnswer} 

Given Answer: {GivenAnswer}

Figure 17: The evaluation prompt structure given to
Gemini-1.5-Pro. The content in ‘[]’ is added when the
CoT process is evaluated.
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(a) DiagNote (b) Grounding DINO

Figure 18: The grounding comparison between Grounding DINO and the Gaze module of DiagNote in Tabular
Scene. The grounding query is “Cyprus”. The red bounding box in (a) is the ground-truth answer, while the blue
one is the bounding box generated by our Gaze module. The red bounding box in (b) is the output of Grounding
DINO.

(a) DiagNote (b) Grounding DINO

Figure 19: The grounding comparison between Grounding DINO and the Gaze module of DiagNote in Minigrid
Scene. The grounding query is “grey key”. The blue bounding box in (a) is generated by the Gaze module of
DiagNote, which overlaps the ground-truth red bounding box. Meanwhile, the red bounding box in (b) is the output
of Grounding DINO.
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The provided image depicts a grid world, with gray squares representing impassable 
walls, black squares as the background color, and the agent represented as a red 
triangle, with its pointed tip indicating the initial direction it is facing. 

Various squares may contain different objects such as colored balls, keys, boxes, and 
doors.

Figure 20: The description of Minigrid Scene added to
the prompts.

This is the context, which includes the previous questions and answers related to the 
image.
{Context}

Current problem and its reasoning process (CoT) includes reasoning, focused objects, 
and their bounding boxes (bbox):
{Question_and_CoT}

Please provide the detailed reasoning process and focused objects for the question in 
dictionary form, outputting one dictionary in the following format each time: {{'Ans': , 
'Query': }}. Here, Ans represents the current reasoning step, and Query indicates the 
object of focus. If the reasoning is complete, set 'Query' to END.

Figure 21: The prompt structure of the Deliberate mod-
ule when the last Query output of the Deliberate module
is not ‘END’.

This is the context, which includes the previous questions and answers related to the 
image.
{Context}

Current problem and its complete reasoning process (CoT) includes reasoning, 
focused objects, and their bounding boxes (bbox):
{Question_and_CoT}

Please provide a concise answer to the question in dictionary form, outputting a dictio-
nary in the following format: {{'Final_Ans': , 'Query': }}, where Final_Ans is the concise 
answer to the question, and Query is the core object of focus in the image related to 
the question.

Figure 22: The prompt structure of the Deliberate mod-
ule when the last Query output of the Deliberate module
is ‘END’.

Please refer to the image and provide the exact rectangular coordinates of the 
{Query} in the format of a four-dimensional integer array [x1, y1, x2, y2], where x1 and 
y1 represent the coordinates of the top-left corner of the rectangle, and x2 and y2 
represent the coordinates of the bottom-right corner.

Figure 23: The prompt structure of the Gaze module.

Questions Which country had the highest rate per million 
population in 2019?

To find the highest rate in 2019, 
we look at the values for that year.

Query: 2019 values

Bbox: [337, 969, 373, 985]

Deliberate One

Bounding Box

Figure 24: The second example of comparison between
different MLLMs under everyday scenes.

Input Image

Questions
How many orange plates are there in front of the girl?

What are placed above them?

There are two orange plates in front of the girl.

There are two cups placed above the orange plates.
LLaVA-1.5-13B

There are two orange plates in front of the girl.

There are two bowls placed above the orange plates.
Visual CoT

DiagNote
There are two orange plates in front of the girl.

The two white plates are placed above the orange plates.

1
CogCoM

The image captures a lively scene in a restaurant. A 
family of four is seated at a table, their attention directed 
towards the young boy who sits between them. He's 
engaged with his food, holding a fork and spoon in his 
hands as he enjoys his meal. \n\nThe table is adorned 
with plates filled with various dishes, each one adding to 
the vibrant color scheme of the room. There are glasses 
on the table, perhaps used for drinking or serving. \n\nIn 
the background, you can see other diners, suggesting 
that this is not just a family outing but also an event 
where others are present. The walls are painted in a 
warm yellow hue, providing a welcoming atmosphere 
to all those who enter.\n\nOverall, the image paints a 
picture of a happy moment shared by a family in a cozy 
setting.

1

Figure 25: The first example of comparison between
different MLLMs under everyday scenes.
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Questions
What type are the trousers worn by the man with the headband?

What is he holding in hands?

The man with the headband is wearing jeans.

The man with the headband is holding a beer in one 
hand and a frisbee in the other hand.

LLaVA-1.5-13B

The man with the headband is wearing jeans.

The man with the headband is holding a beer in one 
hand and a frisbee in the other hand.

Visual CoT

jean
CogCoM

The man is holding a can of beer.

DiagNote
The trousers worn by the man with the headband are jeans.

He is holding a green can in his hands.

Input Image

Figure 26: The second example of comparison between
different MLLMs under everyday scenes.
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