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Abstract
Simulating large molecular systems over long
timescales requires force fields that are both accu-
rate and efficient. In recent years, E(3) equivariant
neural networks have lifted the tension between
computational efficiency and accuracy of force
fields, but they are still several orders of magni-
tude more expensive than established molecular
mechanics (MM) force fields. Here, we propose
Grappa, a machine learning framework to predict
MM parameters from the molecular graph, em-
ploying a graph attentional neural network and a
transformer with symmetry-preserving positional
encoding. The resulting Grappa force field outper-
formstabulated and machine-learned MM force
fields in terms of accuracy at the same compu-
tational efficiency and can be used in existing
Molecular Dynamics (MD) engines like GRO-
MACS and OpenMM. It predicts energies and
forces of small molecules, peptides, RNA and —
showcasing its extensibility to uncharted regions
of chemical space — radicals at state-of-the-art
MM accuracy. We demonstrate Grappa’s trans-
ferability to macromolecules in MD simulations
from a small fast folding protein up to a whole
virus particle. Our force field sets the stage for
biomolecular simulations closer to chemical ac-
curacy, but with the same computational cost as
established protein force fields.

1. Introduction
In recent years, advances in geometric deep learning have
led to the development of highly accurate machine learned
force fields, reshaping the field of computational chemistry
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and Molecular Dynamics (MD) simulations. E(3) equivari-
ant neural networks (Musaelian et al., 2022; Batatia et al.,
2023; Unke et al., 2022; Schütt et al., 2021) are capable
of predicting energies and forces of small molecules to
great accuracy with lower computational cost than quan-
tum mechanical (QM) methods. However, these models are
several orders of magnitude more expensive than Molecu-
lar Mechanics (MM) force fields, which employ a simple
physics-inspired functional form to parametrize the poten-
tial energy surface of a molecular system, hence trading off
accuracy in favor of efficiency. For MD simulations of large
systems such as proteins and polynucleotides, MM force
fields are well established and widely used. Established MM
force fields rely on lookup tables with a finite set of atom
types characterized by chemical properties of the atom and
its bonded neighbors for parameterization. Recently, the
Espaloma approach (Wang et al., 2022) has demonstrated
that machine learning can be used to increase the accuracy
of MM force fields by learning to assign parameters based
on a graph representation of the molecule with chemical
properties that rely on expert knowledge, such as orbital
hybridization states or formal charge, as input features.

In this work, we propose a novel machine learning frame-
work, Grappa (Graph Attentional Protein Parametrization),
to learn MM parameters directly from the molecular graph,
improving accuracy on a broad range of chemical space
and eliminating the need for hand-crafted features. Grappa
employs a graph attentional neural network to construct
atom embeddings capable of representing chemical environ-
ments based on the 2D molecular graph, followed by a trans-
former (Vaswani et al., 2023) with symmetry-preserving po-
sitional encoding. Since MM parameters only have to be pre-
dicted once per molecule, Grappa can be incorporated into
highly optimized MM engines such as GROMACS (Abra-
ham et al., 2015) and OpenMM (Eastman et al., 2013). This
allows energy and force evaluations with the same computa-
tional cost as traditional force fields, at state-of-the-art MM
accuracy.

We show that Grappa outperforms traditional MM force
fields and the machine-learned MM force field Espaloma
on the Espaloma dataset (Takaba et al., 2023), which con-
tains over 14,000 molecules and more than one million
states, covering small molecules, peptides and RNA. Since
Grappa uses no hand-crafted chemical features, it can be

1



extended to uncharted regions of chemical space, which we
demonstrate on the example of peptide radicals. Grappa is
transferable to individual macromolecules and assemblies
such as proteins and viruses, which exhibit similar dynamics
as established force fields. Starting from an unfolded initial
state, MD simulations of small proteins parametrized by
Grappa recover experimentally determined folding struc-
tures of small proteins, suggesting that Grappa captures the
physics underlying protein folding. We demonstrate the
efficiency of Grappa, which is inhereted from MM, by simu-
lating a system of one million atoms with the proposed force
field on a single GPU, with a similar number of timesteps
per second as a highly performant E(3) equivariant neural
network (Musaelian et al., 2022) on over 4,000 GPUs.

1.1. Molecular Mechanics

In MM, the potential energy of a system with a given molec-
ular graph is expressed as a sum of contributions from dif-
ferent interactions. Bonded interactions are described by
functions of E(3)-invariant internal coordinates such as the
lengths rij of bonds between two atoms, angles θijk be-
tween three consecutive atoms and dihedrals ϕijkl of two
planes spanned by four atoms. For the dihedrals, one consid-
ers interactions between four atoms that are either consecu-
tively bonded (torsions) or where three atoms are bonded to
a central atom (impropers), which do not reflect an indepen-
dent degree of freedom but are used to maintain planarity of
certain chemical groups. One commonly uses harmonic po-
tentials for bond stretching and angle bending and a periodic
function for the dihedral potential. The potential energy of
all interactions along bonds then is given by

Ebonded (x) =
∑

(ij)∈bonds

kij(rij − r(0)ij )2

+
∑

(ijk)∈angles

kijk(θijk − θ(0)ijk)
2

+
∑

(ijkl)∈dihedrals

nperiodicity∑
n=1

kijkl cos(nϕijkl), (1)

with the equilibrium values (of bonds and angles) r(0)ij and

θ
(0)
ijk, and the force constants kij , kijk and kijkl, as the set

of MM parameters, which we denote as

ξ ≡
{
ξ
(l)
ij...| l ∈ {bonds, angles, torsions, impropers}

}
. (2)

For the periodic dihedral potential, a common choice is a
Fourier series with the constraint that the dihedral potential
is extremal at and symmetric around zero, which eliminates
the need for sine terms. Additionally, atom pairs that are not
included in such N-body bonded interaction terms contribute
to the potential energy through pairwise nonbonded inter-
action, typically described by Lennard-Jones and Coulomb
potentials.
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Figure 1: Grappa predicts MM parameters in two steps.
First, atom embeddings are predicted from the molecular
graph with a graph neural network. Then, transformers with
symmetric positional encoding followed by permutation in-
variant pooling maps the embeddings to MM parameters
with desired permutation symmetries. Once the MM pa-
rameters are predicted, the potential energy surface can be
evaluated with MM-efficiency for different spatial confor-
mations.

Traditional MM force fields define a finite set of atom types
determined by hand-crafted rules, which are used to assign
the free parameters {kij , r(0)ij , . . .} based on lookup tables
for possible combinations of atom types. In Grappa, we
replace this scheme by learning the parameters from the
molecular graph directly, which allows for a more flexible
and transferable description of the potential energy surface.

A fundamental limitation of standard MM is the assumption
of a constant molecular graph topology, which is enforced
by the use of harmonic bond potentials. While this restricts
accuracy and prohibits the description of bond-changing
chemical reactions, the physical interpretability of the poten-
tial energy function ensures that simulated systems remain
stable, even in states that are poorly described by the force
field.

2. Grappa
Inspired by the atom typing with hand-crafted rules in tradi-
tional MM force fields and in analogy to Wang et al. 2022,
Grappa first predicts d-dimensional atom embeddings,

ν = {νi ∈ Rd|i ∈ V}, (3)
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which can represent local chemical environments that are
encoded in the structure of the molecular graph G = (V, E),
where the set of nodes V represents the atoms and the set of
edges E represents the bonds. In a second step (Figure 3),
for each interaction type l MM parameters ξ(l) are predicted
from the embeddings of the atoms involved in the respective
energy contribution,

ξ
(l)
ij... = ψ(l) (νi, νj , . . .) , (4)

using a transformer ψ(l) that is invariant under certain per-
mutations. With the energy function of MM, the predicted
parameter set ξ defines a potential energy surface, which
can finally be evaluated for different spatial conformations
x of the molecule,

E(x) = EMM (x, ξ) . (5)

Since the mapping from molecular graph to energy is dif-
ferentiable with respect to the model parameters and spatial
positions, it can be optimized on predicting QM energies
and forces end-to-end. Notably, the machine learning model
does not depend on the spatial conformation of the molecule,
thus it has to be evaluated only once per molecule and the
computational cost of each subsequent energy evaluation is
given by the MM energy function.

Grappa currently only predicts bonded MM parameters
since we expect that nonbonded interactions are not cov-
ered sufficiently by the monomeric datasets used for train-
ing, rendering the nonbonded parameters underdetermined.
The nonbonded parameters are taken from established MM
force fields that can reproduce solute interactions and melt-
ing points, which we expect to be strongly dependent on
nonbonded interactions.

2.1. Permutation symmetries in MM

For the mapping from atom embeddings ν to MM parame-
ters, we postulate certain permutation symmetries that the
model should respect. To derive these symmetries, we con-
sider the energy function of MM as a decomposition into
contributions from subgraphs of the featurized molecular
graph that correspond to bonds, angles, torsions and im-
proper dihedrals. We demand invariance of the energy con-
tribution under node permutations that induce isomorphisms
of the respective subgraph. For bonds, angles and torsions,
these permutations leave the respective spatial coordinate in-
variant, thus we can simply achieve invariance of the energy
contribution by demanding invariance of the MM parame-
ters,

ξ
(bond)
ij = ξ

(bond)
ji , (6)

ξ
(angle)
ijk = ξ

(angle)
kji , (7)

ξ
(torsion)
ijkl = ξ

(torsion)
lkji . (8)

For improper dihedrals, however, not all subgraph isomor-
phisms leave the dihedral angle invariant and demanding
parameter invariance under those permutations would lead
to an energy contribution that is not invariant. In Grappa,
we solve this problem by decomposing the improper torsion
contributions into three terms, as described in A.4.

2.2. The Grappa architecture

Tuple of
Atom Embeddings Interaction Subgraph

Nodewise Linear
Symmetric

Positional Encoding

Layer Norm Permute, Concat

Multihead
Attention Feed-Forward

Layer Norm Sum

Nodewise
Feed-Forward To Interval

Interaction Parameters

+

+
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Figure 2: Architecture of the symmetric transformer: Atom
embeddings are equipped with a permutation invariant posi-
tional encoding determined by the subgraph they represent.
They are then passed through n = 3 permutation equivari-
ant transformer layers, symmetry-pooled and mapped to the
possible range of the respective parameter.

To predict atom embeddings from the molecular graph,
Grappa employs a graph attentional neural network inspired
by the transformer architecture (Vaswani et al., 2023). Multi-
head dot-product attention on graph edges (Veličković et al.,
2018) is followed by nodewise feed-forward layers. We
use residual connections (He et al., 2015) and layer normal-
ization (Ba et al., 2016), which has been demonstrated to
enhance the expressivity of the attention layer (Brody et al.,
2023).

For the map from these embeddings to MM parameters, it is
desirable to use an architecture that respects the permutation
symmetries (Eqs. 6 - 8) by design, constraining the space
of possible models to those that are physically sensible. In
the spirit of equivariant machine learning, we use permuta-
tion equivariant layers followed by final symmetric pooling.
However, since we do not require invariance under all per-
mutations but only under permutations as defined in Eqs. 6
- 8, we can increase expressivity by allowing the model to
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break symmetries that are not required.

Following these considerations, we use a transformer archi-
tecture based on multi-head dot-attention with a positional
encoding that is invariant under the required symmetries but
can break others. For example for angles, this positional
encoding is given by

(νi, νj , νk) 7→ (νi ⊕ 0, νj ⊕ 1, νk ⊕ 0) , (9)

where the ⊕ operation appends the respective value to the
node feature vector, making it invariant under ijk → kji
but not under e.g. ijk → jik. After these equivariant layers,
we apply a multilayer perceptron (MLP) on the concatenated
permuted node embeddings and sum over the desired set of
permutations P ,

zij... =
∑
σ∈P

MLP
([
νσ(i), νσ(j), . . .

])
, (10)

defining a symmetry pooling operation with P-invariant
output. We call this combination of permutation invariant
positional encoding with permutation equivariant layers and
symmetric pooling the symmetric transformer, which is il-
lustrated in Figure 2. The symmetric transformer can be gen-
eralized to permutation symmetries of arbitrary subgraphs
by using the eigenvectors of the graph Laplacian (Yun et al.,
2020) as positional encoding.

Finally, we map to the range of physically sensible parame-
ters, e.g. (0,∞) for bond and angle force constants or (0, π)
for equilibrium angles θ(0). To this end, we use scaled
and shifted versions of ELU and the sigmoid function as
described in A.2.3. While one could also use the exponen-
tial for mapping to (0,∞), ELU’s linear behaviour towards
large inputs is favorable for producing stable gradients dur-
ing optimization. With the scaling we ensure that a normally
distributed output of the neural network is mapped to a dis-
tribution with mean and standard deviation that is suitable
for the respective MM parameter, which can be seen as a
normalization technique (Ba et al., 2016). For predicting
dihedral parameters ξijkl, we use a sigmoid gate, which
allows the model to supress dihedral modes that are not
needed.

As input feature, we use one-hot encodings of the atomic
number, the number of neighbors of the respective node and
membership in loops of length 3 to 8, which can be directly
calculated from the molecular graph. The assignment of
nonbonded MM parameters is done using a traditional force
field of choice. Since the bonded parameters predicted by
Grappa may depend on the scheme by which nonbonded
parameters are assigned, we pass the partial charge of each
atom as input feature to Grappa, which also allows to en-
code the total charge of a molecule without breaking graph
symmetries as one would potentially do by using the formal
charge instead.

Molecular Graph Positions
QM Energy
QM Force

Grappa

MM Parameters

MM Energy
Functional

Pred. Energy
Pred. Force

Loss

Positions

Pred. Energy
Pred. Force

QM Energy
QM Force

Backprop.

Inference

Figure 3: Grappa predicts one set of parameters per
molecule. With the MM energy functional (Eq. 5), the
parameters can be mapped to energies and forces of given
states, whose deviation from the ground truth is minimized
during training. State-specific quantities are represented in
orange, molecule-specific quantities are represented in grey.

2.3. Training

We train Grappa to minimize the mean squared error (MSE)
between QM energies EQM and forces −∇xEQM, whose
contribution we weight by the hyperparameter λF , and its
prediction, E and ∇xE respectively, which includes the
non-learnable nonbonded contribution. At the start of train-
ing, we also include the deviation of predicted bond, angle
and torsion MM parameters to those of a given traditional
force field, weighted by λtrad and, for regularization, the L2
norm of dihedral MM parameters ξ(dih)

ijkl , weighted by λdih as
in (Takaba et al., 2023). That is, we use the loss function

L = MSE (E,EQM) + λF MSE (∇xE,∇xEQM)

+λMMMSE (ξ,ξtrad) + λdih
∥∥ξ(dih)

∥∥2
2
. (11)

Since MM can only predict energy differences of states,
not formation energies, we subtract the mean of target and
predicted energies for each molecule. As shown previously
for other machine learned force fields (Schütt et al., 2017;
2021), we find training on forces −∇rE in addition to ener-
gies important also in our setting, for two reasons. First, the
energy is a global, pooled quantity and thus less expressive
than the forces, which are local and by a factor of 3N more
numerous. Second, as shown in (Czarnecki et al., 2017),
learning derivatives of the target with respect to the input
can lead to improved generalization and data efficiency,
effectively smoothing the learned potential energy surface.

Details on the training procedure and hyperparameters can
be found in A.3.
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3. Results
3.1. Grappa is state-of-the-art

To demonstrate that Grappa is the current state-of-the-art
MM force field in terms of accuracy, we train and evaluate
a Grappa model on the dataset reported in the follow-up
paper (Takaba et al., 2023) to Espaloma, which contains
17,427 unique molecules and over one million conforma-
tions. Our training and test partition is identical with the
one from Espaloma, where the molecules were divided into
80% training, 10% validation and 10% test set, based on iso-
meric SMILES strings. The dataset covers small molecules,
peptides and RNA with states sampled from the Boltzmann
distribution at 300 K and 500 K, from optimization trajecto-
ries and from torsion scans. The nonbonded contribution is
calculated using the OpenFF-2.0.0 force field (Boothroyd
et al., 2022) and partial charges from the AM1-BCC method,
as in Espaloma. We train the model for 1,000 epochs on an
A100 GPU, which takes about one day.

For all types of molecules, Grappa outperforms established
MM force fields and Espaloma in terms of energy and force
accuracy on Boltzmann-sampled states as shown in Table 1
and Figure 4a. While the Boltzmann samples are the more
relevant benchmarking data for using Grappa in MD simu-
lations, we also compare performance on torsion scans and
optimization trajectories (Table A6). There, we find Grappa
and Espaloma to be competitive, while Grappa is more ac-
curate for forces and less accurate for energies. Grappa also
outperforms the baselines if only trained on a fraction of
Espaloma’s training set (Figure A10), indicating high data
efficiency. Chemical properties based on expert knowledge,
e.g. hybridization and aromaticity, have long been used to
assign MM parameters (He et al., 2020; Boothroyd et al.,
2022). We show that accurate MM parameters can be pre-
dicted directly from the molecular graph, without relying
on hand-crafted input features.

3.2. Grappa is extensible across chemical space

If a certain kind of chemistry is not part of the training set
of a machine learned force field, predictions can go awry.
While the current datasets already cover a significant part of
chemical space, extensions should be straightforward and
acessible. To demonstrate Grappa’s extensibility, we train
it on the Grappa-1.3 dataset, which includes dipeptides
sampled at 300 and 1000 K, N- and C-terminal amino
acids, dipeptides containing the non-standard residues
hydroxyproline and DOPA (dihydroxyphenylalanine),
and, demonstrating Grappa’s capability to parametrize
rather uncommon molecules, peptide radicals, which play
a role in enzyme catalysis (Lebrette et al., 2023) and as
mechanoradicals (Zapp et al., 2020).

To create these additional datasets, we calculate DFT en-
ergies and gradients of states that were sampled from MD
simulations performed with traditional force fields at 300 K
and 1000 K, where we increase the temperature to 1000 K
in between the samplings of 300 K-states to enrich confor-
mational diversity, as described in A.5.

In Table 2, we report Grappa’s accuracy on the Grappa-
1.3 dataset. Again, Grappa outperforms the baselines
Amber99SB-ILDN and Gaff-2.11 on all peptide datasets,
also for states sampled at 1000 K, indicating that Grappa
is robust under conformational perturbations that lead to
out-of-equilibrium states. For the radical peptides, there
is no baseline since, to the best of our knowledge, Grappa
is the first MM force field that covers this part of chemi-
cal space. On the other datasets from Espaloma, Grappa
remains competitive, as can be seen in Table A7.

The extension to the Grappa-1.3 dataset indicates that
Grappa can learn new chemistries accurately without neg-
atively affecting the performance on the original datasets.
Due to Grappa’s limited complexity of input features – only
connectivity, atomic numbers and partial charges – the chem-
ical space accessible for parameterization is vast. As long
as a molecule has a fixed connectivity and the MM energy
functional is a reasonable approximation, Grappa can be
trained to predict parameters for it.

3.3. Grappa is compatible with multiple nonbonded
parameter schemes

Grappa-1.3 is trained to predict bonded parameters that are
compatible with partial charges from AM1-BCC, ff99SB
and CHARMM36. Table 3 shows that, in combination with
all of these charge models, Grappa-1.3 can predict energies
and forces of dipeptides to higher accuracy than established
force fields (Table 2). Also for partial charges from ff99SB
with additional Gaussian noise of scale 0.1 e, Grappa-1.3
is able to predict energies and forces accurately, indicating
that the model is robust under small changes in the partial
charges and that Grappa can thus be used in combination
with charge models that are not present in the training data.
This can be partly attributed to the fact that, on the datasets
considered, nonbonded interactions contribute only a small
fraction to the total interaction. For learning or evaluating
the quality of nonbonded parameters by accuracy of energies
and forces, we expect datasets that include intermolecular
interactions to be more suitable.

3.4. Grappa can be combined with established force
fields

Grappa’s modular formulation allows for learning only a
certain type of interaction while keeping the others fixed to
those of an established force field. To quantify the improve-
ment of Grappa over the widely used protein force field
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Dataset Test Mols Confs Grappa Espaloma Gaff-2.11 ff14SB, Mean
RNA.OL3 Predictor

SPICE-Pubchem 1411 60853 Energy 2.3 2.3 4.6 18.4
Force 6.1 6.8 14.6 23.4

SPICE-DES-Monomers 39 2032 Energy 1.3 1.4 2.5 8.2
Force 5.2 5.9 11.1 21.3

SPICE-Dipeptide 67 2592 Energy 2.3 3.1 4.5 4.6 18.7
Force 5.4 7.8 12.9 12.1 21.6

RNA-Diverse 6 357 Energy 3.3 4.2 6.5 6.0 5.4
Force 3.7 4.4 16.7 19.4 17.1

RNA-Trinucleotide 64 35811 Energy 3.5 3.8 5.9 6.1 5.3
Force 3.6 4.3 17.1 19.7 17.7

Table 1: Accuracy of Grappa, Espaloma 0.3 (Takaba et al., 2023) and established MM force fields on test molecules of
the Espaloma dataset. We report the RMSE of centered energies in kcal/mol and the componentwise RMSE of forces
in kcal/mol/Å, uncertainties can be found in Table A6. Gaff-2.11 (He et al., 2020) is a general-purpose force field,
ff14SB (Maier et al., 2015) is an established protein force field and RNA.OL3 (Zgarbová et al., 2011) is specialized to RNA.
The SPICE-Pubchem and SPICE-DES-Monomers datasets, containing small molecules, along with the dipeptide dataset,
are subsets of the SPICE dataset (Eastman et al., 2023). The RNA datasets feature trinucleotide states calculated with the
B3LYP-D3BJ functional.
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Figure 4: (a) Comparison of energy predictions of Grappa-1.3 and the established force fields Gaff-2.11, ff99SB-
ILDN (Lindorff-Larsen et al., 2010) and RNA.OL3 for test molecules from Espaloma’s SPICE-Pubchem, SPICE-Dipeptide
and RNA-Trinucleotide datasets; force predictions are depicted at A12. (b) The two first principal components u1 and u2 of
predicted atom embeddings from the Espaloma test dataset can be related to a combination of the main group and period in
the periodic table of elements. Lines of constant main group or period are represented by approximate diagonals in latent
space.

Amber ff99SB-ILDN (Lindorff-Larsen et al., 2010), we
train Grappa models that predict only certain types of MM
parameters and evaluate their accuracy in Table 4. While for
each contribution, replacing the ff99DB-ILDN parameters
with those predicted by Grappa improves the accuracy, the
bond and angle contributions have the most potential for
improvement.

3.5. Grappa is interpretable

MM parameters In the classical mechanics potential
functions used in MM, a physical meaning can be attributed
to parameters. Hence, badly assigned parameters could be
noticeable, e.g. if a bond is much shorter or stiffer than
bonds between similar atoms or the amplitude of a proper
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Dataset Test Mols Confs Grappa Espaloma Gaff-2.11 ff99SB-ILDN Mean
Predictor

SPICE-Dipeptide 67 2592 Energy 2.4 3.1 4.5 19.1
Force 5.4 7.8 12.9 38.4

Dipeptides-300K 72 3600 Energy 2.6 4.5 4.1 7.8
Force 5.9 10.9 11.8 43.7

Dipeptides-1000K 72 2160 Energy 5.4 8.6 8.5 18.9
Force 11.6 16.1 17.8 74.3

Non-Capped-Peptides 10 500 Energy 2.2 4.2 4.0 7.2
Force 6.1 12.1 12.6 45.8

Radical-Dipetides 28 272 Energy 3.3 8.7
Force 6.8 41.3

Table 2: Accuracy of Grappa-1.3 with nonbonded parameters from ff99SB, Espaloma 0.3 (Takaba et al., 2023) and
established MM force fields on a subset of test molecules from the Grappa-1.3 dataset. The performance on small molecules
and RNA is similar to the one reported in Table 1 and can be found in Table A7. As in Table 1, we report the RMSE of
centered energies in kcal/mol and the componentwise RMSE of forces in kcal/mol/Å.

Charge Model Energy RMSE Force RMSE
ff99SB 2.55 ± 0.05 5.85 ± 0.06
CHARMM36 2.58 ± 0.07 6.01 ± 0.07
AM1-BCC 2.79 ± 0.07 6.13 ± 0.07

Table 3: Test accuracy of Grappa-1.3 on the
Dipeptides-300K dataset in kcal/mol(/Å) with sets of
nonbonded parameters obtained from ff99SB,
CHARMM36 and AM1-BCC charges with
Lennard-Jones parameters from the OpenFF-2.2.0
force field.

Learnable contribution RMSE [kcal/mol(/Å)]
Bond Angle Dihedral Energy Force
✓ ✓ ✓ 2.5 5.9
✓ ✓ 3.0 6.1
✓ 3.9 7.4

✓ 3.8 9.2
✓ 3.5 11.0

4.1 11.8

Table 4: Test accuracy of Grappa models that predict
MM parameters for different interaction types. For
the non-learnable types, MM parameters are taken
from ff99SB-ILDN. The models are trained on the
Dipeptides-300K and -1000K datasets and evaluated
on Dipeptides-300K with ff99SB partial charges.

dihedral is untypically high. Apart from exposing the param-
eters in the simulation files, Grappa also provides figures of
the parameter distributions and, if available, comparisons to
parameters from an established force field upon parametriza-
tion. For the case of the protein ubiquitin considered in

section A.6.1, parameter distributions and a comparison to
ff99-SBILDN are depicted in Figure A11. While the es-
tablished protein force field and Grappa-1.3 predict similar
bond distances, we observe deviations for other types of
parameters.

Latent space To generalize across the broad range of
chemical space covered by the training set, Grappa has to
learn highly informative atom embeddings that capture the
local environment in the molecular graph. For interpret-
ing this latent representation, we apply a two-dimensional
principal component analysis on a set of predicted atom
embeddings (3) of test molecules (Figure 4b). It turns out
that the two principal components can be related to main
group and period of the periodic table of elements, whose
structure is learned implicitly by Grappa.

4. Force field validation
Especially for large biomolecules, force fields are not only
required to predict energies and forces as accurately as pos-
sible, but their predictions should behave in such a way that
certain macroscopic properties such as stability and con-
sistency with experimentally determined folding states are
fulfilled in MD simulations. Grappa is well suited to over-
come the gap between empirically validated, established
protein force fields and machine learned force fields.

In this section, we demonstrate that Grappa is on par with
established force fields when it comes to MD simulations
of proteins over timescales of hundreds of nanoseconds and
that it captures the physics that cause stability of protein
folds. All simulations mentioned in this section were per-
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formed with GROMACS, for which the Grappa package1

provides a command line interface, briefly described in A.1.
Using this interface (or a similar one for OpenMM), large
biomolecular systems with over 100,000 atoms are parame-
terized within minutes on a CPU (Figure A6).

4.1. Grappa keeps large proteins stable during MD

A key quality check for a protein force field is if a native
protein structure remains stable over time during an MD
simulation. QM methods and E(3) equivariant neural net-
works suffer from the problem that while their end-to-end
predictions are accurate, they might fail in yielding stable
simulations because of diverging gradients of the potential
energy surface when extrapolating beyond regions covered
by the training dataset. Particularly over long timescales, the
system might drift out of the range of validity of the model
and small errors might accumulate, leading to instabilities
of the system and a potential crash of the simulation. MM
with its interpretable, physics-inspired energy function, with
parameters which are conformation-independent, ensures
a higher degree of stability, and we indeed did not observe
simulation crashes.

However, since it is not ensured a priori that macrostates
such as protein folds remain stable during MD, we next
assess Grappa’s capability of keeping protein folds close
to their experimentally determined structure. As example
system, we use ubiquitin (PDB ID: 1UBQ), which is a
protein with 76 amino acids whose fold contains a beta-
sheet and an alpha-helix. We perform a 200 nanoseconds
MD simulation of ubiquitin in aqueous solution with Grappa
and Amber ff99SB-ILDN (Lindorff-Larsen et al., 2010), for
which details are given in A.6.1. We find that the C-alpha
RMSD from the initial state is bounded by about 4 Å in
200 ns simulation with both Grappa and Amber ff99SB-
ILDN (Figure 5c), indicating that the folded state of the
protein is stable. Structural fluctuations on timescales of up
to 2 ns are of similar magnitude (Figure 5b).

4.2. Grappa is orders of magnitude more
resource-efficient than E3 equivariant models

Efficiency of force fields is crucial; otherwise the com-
putational cost for simulating large systems on long
timescales can prohibit their application in simulations
of many systems of interest. To demonstrate Grappa’s
efficiency, which it inherits from molecular mechanics, and
to showcase its capability of jointly parametrizing RNA
and proteins, we simulate the virus STMV (The Amber
Project, 2023) in solution – a system with approximately
one million atoms, visualized in Fig. A9 (a).

1https://github.com/graeter-group/grappa

Figure 5: (a) The protein ubiquitin with color-coded se-
quence position. (c) The mean C-alpha root mean square
deviation (RMSD) and its 25th and 75th percentile of 1000
random pairs of frames that are separated by the time dif-
ference ∆t. (b) C-alpha RMSD from the initial state during
MD simulation of ubiquitin in water with Grappa.

A recently proposed machine learned force field relying
on an E(3) equivariant neural network with state-of-the-art
accuracy and efficiency, Allegro (Musaelian et al., 2022),
has been shown to be capable of performing near-quantum-
accuracy simulations of systems of unprecedented size. This
is achieved by using a strictly local architecture, which
allows parallelization across thousands of GPUs. Since
they are not constrained by the energy functional of MM,
E3 equivariant models like Allegro, NequIP (Batzner et al.,
2022) or MACE (Batatia et al., 2023) have greatly improved
accuracy but are orders of magnitude more expensive than
MM force fields like Grappa.

For the system at hand, Allegro achieves a performance of
106 timesteps per second on 4,000 A100 GPUs (Kozinsky
et al., 2023). For Grappa, at reduced accuracy and incapable
of describing topological changes directly, we measure a
performance of 101 timesteps per second on a single A100
GPU in GROMACS (Abraham et al., 2015) without system-
specific optimizations.

5. Conclusions
With Grappa, we propose a machine learning framework
for molecular mechanics force fields with state-of-the-art
accuracy that can be used seamlessly in established MD
engines. Our experiments show that Grappa is transferable
to large biomolecules like proteins and viruses, which sets
the stage for large scale simulations at improved accuracy,
with the same computational efficiency as established MM
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force fields.

Unlike most traditional MM force fields, Grappa is not spe-
cialized to a certain chemical species, but offers consistent
parameterization of molecules with different chemistries,
such as a wide range of small molecules, peptides and nu-
cleotides, with a single model at a higher level of accuracy
than previous MM force fields. Grappa not only enhances
existing parameter sets, but also reaches previously inacce-
sible regions of chemical space, such as non proteinogenic
amino acids or protein radicals.

Since current state-of-the-art E(3) equivariant neural net-
work potentials like Allegro are several orders of magnitude
more expensive than molecular mechanics, we regard ma-
chine learned molecular mechanics approaches like Grappa
as suitable method for simulating large systems, especially
if computational ressources are limited or when it is not nec-
essary to simulate all parts of a system at quantum accuracy.

6. Outlook
While Grappa achieves high computational efficiency
through molecular mechanics, it also inherits its fundamen-
tal limitations, including restricted accuracy and the inability
to directly describe chemical reactions. However, Grappa is
well suited for efficient reparametrization of large molecules
that undergo local topological changes induced by chemical
reactions, e.g. in kinetic Monte Carlo simulations (Ren-
nekamp et al., 2020). This is due to both, Grappa’s finite
field-of-view, which ensures locality on the molecular graph,
as well as the lack of hand-crafted chemical features, which
allows to apply the parametrization to cut-out regions of
molecules.

Grappa is a general and versatile framework to obtain MM
parameters for a broad range of molecules and can be seam-
lessly extended to new chemistries. To this end, the Grappa
package implements workflows for retraining on the pro-
vided and custom new datasets.

While we consider the consistency with established non-
bonded parameters an advantage of Grappa, an extension of
the framework to nonbonded parameters is a straightforward
next step. It would render Grappa fully independent from
traditional MM force fields and could potentially improve
its accuracy further.

7. Reproducibility statement
Grappa is released as open source software under the GNU
General Public License v3.0 2 along with the Grappa dataset
and SMILES strings used for the train-val-test partition and
configuration files to reproduce Table 1 and Table 2.

2https://github.com/graeter-group/grappa.

Repositories for reproducing the MD simulations 3 and
creating the Grappa-1.3 datasets 4 are publicly available.
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A. Appendix
A.1. The Grappa package

Grappa utilizes PyTorch (Paszke et al., 2019) and
DGL (Wang et al., 2020) in its implementation.

The package is released as open source software under the
GNU General Public License v3.0 and is available at
https://github.com/graeter-group/grappa and
on pypi,

pip install grappa-ff

It brings a command line interface to reparametrize a GRO-
MACS topology file obtained from a traditional force field:

grappa_gmx -f topol.top -o new_topol.top

For OpenMM, we provide a class that can be used to
reparametrize a system with Grappa:

from grappa import OpenmmGrappa

# use a traditional OpenMM forcefield
# to obtain a system from your topology
top, system = ...

# download a pretrained grappa model
ff = OpenmmGrappa.from_tag(’grappa-1.3’)

# re-parametrize the system using grappa
system = ff.parametrize_system(system, top)

# continue with usual workflow

Pretrained released models can be accessed by using a tag;
the model weights are downloaded automatically from the
respective release on GitHub. Released models also contain
a dictionary with results on test datasets, a list of identifiers
for molecules used for training and validation and a configu-
ration file to reproduce training on the same dataset. Further
details on the package can be found on GitHub.

A.2. Model architecture

In this section, we provide a detailed description of the ar-
chitecture of Grappa, including the graph attentional neural
network and the symmetric transformer.

A.2.1. GRAPH ATTENTIONAL NEURAL NETWORK

Grappa’s graph attentional neural network (Figure A7) is
a modification of the transformer architecture (Vaswani
et al., 2023) for graphs, similar to the Graph Transformer
Network (Yun et al., 2020), but e.g. omits the locality-
breaking graph Laplacian eigenvectors as positional encod-
ing. Instead, we encode the graph structure by constrain-
ing the attention mechanism to edges of the graph as in
GAT (Veličković et al., 2018), which enforces locality: In
each attention update only neighboring nodes can influence

Figure A6: For molecules with up to 300,000 atoms, the
runtime of a parameterization with the Grappa package in
CPU mode is largely due to overhead. Due to its finite field-
of-view, parametrizations can also be parallelised across
several nodes by splitting the molecular graph into sub-
graphs if necessary.

each other. We use a multi-head dot-product attention mech-
anism and a 2-layer MLP as feed-forward network, where
the hidden feature dimension is four times the node feature
dimension.

After initializing the node features νi as described below,
we apply a single nodewise linear layer followed by an
exponential linear unit (ELU) (Clevert et al., 2016),

νi ← ELU (Wνi + b) , W ∈ Rd×din , b ∈ Rd, (12)

Then, we apply LGNN graph attentional layers, each of
which is given by

νi ← LayerNorm(νi), (13)

e
(k)
ii′ =

(
W (k)νi

)
·
(
W (k)νi′

)
, (14)

att(k)ii′ =
exp

(
e
(k)
ii′

)
∑

n∈N (i) exp
(
e
(k)
in

) , (15)

V
(k)
i =

∑
i′∈N (i)

att(k)ii′ W
(k)νi′ , (16)

Vi ←
(
WOConcat

[
V

(1)
i , . . . , V

(Nheads)
i

])
, (17)

νi ← LayerNorm(Vi) + νi, (18)
νi ← ELU (W2 ELU (W1νi + b1) + b2) + νi, (19)

where N (i) is the set of neighbors of node i including the
node itself, (k) denotes the attention head and where the
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Figure A7: Grappa’s graph attentional neural network as
described in Section A.2.1.

weights

W (k) ∈ Rd×d/Nheads , (20)

WO ∈ Rd×d, (21)

W1 ∈ R4d×d, (22)

W2 ∈ Rd×4d. (23)

and biases b1, b2 are learnable and independent for each
layer. We use dropout (Srivastava et al., 2014) on the node
feature update in (18) and (19). Finally, we project onto the
output dimension demb by a linear layer,

νi ←Wνi,W ∈ Rdemb×d. (24)

As initial node features we choose a one-hot encoding of
the atomic number, a one-hot encoding of whether the node

is in a loop, a one-hot encoding of the potential loop size
and the degree of the node. Since Grappa only predicts
bonded parameters, we have to ensure consistency with
the nonbonded parameters from the traditional force field,
which is why we one-hot encode the traditional force field
used for the nonbonded contribution of the respective state
if we train on a dataset that contains data from different
nonbonded methods. We also include the partial charges (the
scalar value concatenated with a 16-dimensional binning
between -2e and 2e) as node input features, which allows us
to describe differently charged conformations of the same
molecule without resorting to global or graph-symmetry
breaking features like the formal charge.

A.2.2. SYMMETRIC TRANSFORMER

The graph attentional neural network is followed by four
(parallel) symmetric transformers (Figure 2), one for each
type of interaction, that is one for bond, one for angle, one
for torsions and one for improper dihedral parameters. For
each interaction (e.g. for each angle in the molecular graph),
the node embeddings of the atoms involved is mapped to
a set of respective MM parameters (e.g. equilibrium angle
and force constant).

As described in Section 2.2, we add a symmetric positional
encoding to the node features, as in (9), that is invariant un-
der the desired set of permutations but can break symmetries
that are not necessary to make the model more expressive
while keeping equivariance under the permutations that we
use for invariant pooling (10) later on. From the symmetries
Eqs. 6-8, and from the considerations for improper dihe-
drals in Section A.4, we can derive the following positional
encodings

PEangle = (0, 1, 0), (25)
PEtorsion = (0, 1, 1, 0), (26)

PEimproper = (0, 1, 1, 0). (27)

The bond positional encoding is not needed because the
permutations of the bond parameters are the full group S2

and there is no symmetry that needs to be broken. For
torsions and impropers, the positional encoding does not
break all unnecessary symmetries, for example the symme-
try ijkl → ljki is still present with positional encoding,
and will be broken later.

We then apply a transformer acting one nodes that repre-
sent the atoms involved in the interaction, that is, after a
projection on features of dimension dT ,

νi ← ELU (Wνi + b) , W ∈ RdT×demb , b ∈ RdT , (28)

we apply LT transformer layers, each of which is given
by scaled dot-product attention with NT-heads heads and a
2-layer MLP with hidden dimension 4dT , skip connections,
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dropout and layer normalization as in the original trans-
former architecture (Vaswani et al., 2023).

We then apply a symmetry pooling operation by passing
permuted versions of concatenated node embeddings to a
Lpool-layer MLP with hidden dimension dpool and summing
over all permutations σ in the respective symmetry group
P ,

zij... =
∑
σ∈P

MLP
([
νσ(i), νσ(j), . . .

])
, (29)

The two dimensional scores zij for bonds and zijk for angles
are finally mapped to the range of the respective set of MM
parameters by scaled and shifted versions of ELU and the
sigmoid function,

kij = ToPos (zij, 0) , (30)

r
(0)
ij = ToPos (zij, 1) , (31)

kijk = ToPos (zijk, 0) , (32)

θ
(0)
ijk = ToRange(0,π) (zijk, 0) , (33)

where ToPos and ToRange(0,π) are defined in Section A.2.3
and z..., n denotes the n-th entry of the score vector z.... For
dihedral force constants, the 2nperiodicity dimensional scores
zijkl are fed through a sigmoid gate to make the model more
expressive for small force constants,

kijkl,m = zijkl, 2m+1 × sigmoid (zijkl, 2m) . (34)

A.2.3. SCALING OF NEURAL NETWORK OUTPUTS

To map the scores predicted from the model to the range
of the respective MM parameter, we use scaled and shifted
versions of the sigmoid function for mapping to a speci-
fied interval and of ELU for mapping to positive values.
We choose these functions because they are differentiable
and, in contrast to the exponential, only grow linearly for
large inputs, which can help to stabilize training. To allow
the model to predict scores that are of order unity, or ap-
proximately normally distributed, we choose the scaling
and shifting parameters in such a way that a normally dis-
tributed input would lead to an output distribution whose
mean and standard deviation are close to a given target mean
µ and standard deviation σ. We choose this target standard
deviation by calculating mean and standard deviation of
traditional MM force field parameters on a given subset of
the training data, except for equilibrium angles, where we
restrict µ to π/2.

For mapping to positive values, we use

ToPos[µ, σ] (z) = σ
(

ELU
(µ
σ
+ x− 1

)
+ 1

)
, (35)

and for mapping to a specified interval (0, γ), we restrict

ourselves to the case µ = γ/2 use

ToRange[γ/2, σ](0,γ) (z) = γ sigmoid
(
4σ

γ
x

)
. (36)

We can see that the mean and standard deviation of the
output are indeed close to the target mean and standard
deviation if we consider the asymptotic behavior of the
sigmoid function and ELU as their input approaches zero,

ELU(x) ∼ x+O
(
x2

)
as x→ 0, (37)

sigmoid(x) ∼ 1

2
+
x

4
+O

(
x2

)
as x→ 0, (38)

which follows from the Taylor expansion of the ELU and
sigmoid functions around zero. Thus, using that z has van-
ishing mean and unit standard deviation, we have indeed, to
first order in z,

< ToRange (z) > ≈ γ (1/2 + 4σ/γ < z >) = γ/2

and

Var [ToRange (z)] ≈< γ2
(
1/2 +

σ

γ
z

)2

> −γ2/4

= γ2
(
1/4 +

σ

γ
< z > +σ2/γ2 < z2 > −1/4

)
= σ2.

For mapping to positive values, we expand ELU in µ/σ −
1 + z around zero, which is reasonable if µ/σ ≈ 1, and
find in analogy that target mean and standard deviation are
recovered to first order in µ/σ − 1 + z.

A.3. Hyperparameters and training details

For all models discussed in this work, we use the hyper-
parameters listed in Table A5 and a dihedral periodicity of
nperiodicity = 3. All relative weights between energies, forces
and MM parameters rely on units formed by kcal/mol, Å
and radian. We train the models using the Adam (Kingma &
Ba, 2017) optimizer with ϵ = 10−8, β1 = 0.9, β2 = 0.999.

First, we train for 2 epochs on traditional MM parameters
only, which can be interpreted as a form of pretraining
that is efficient in bringing the model in a state where the
gradients of the QM-part of the loss functions are infor-
mative. We start the training on energies and forces with
λtrad = 10−3, which we set to zero after 100 epochs, pre-
venting the model from converging towards unphysical local
minima of the QM-part of the loss function. When changing
weights of terms of the loss function as described above, we
re-initialize the optimizer with random moments and apply
a warm restart (Loshchilov & Hutter, 2017), during which
we linearly increase the learning rate in 500 training steps
to decorrelate the optimizer state from the gradient updates
of the previous loss function. Besides pretraining on tradi-
tional MM parameters directly, we have found penalizing
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Hyperparameter Variable Value

Graph Neural Network

Layers LGNN 7
Hidden dimension d 512
Attention heads Nheads 16
Embedding dimension demb 256
Dropout probability 0.3

Symmetric Transformer

Transformer layers LT 3
Transformer hidden dim dT 512
Attention heads NT-heads 8
Pooling layers Lpool 3
Pooling hidden dim dpool 256
Dropout probability 0.5

Training setup

Learning rate 1.5× 10−5

Molecules per batch 32
States per molecule 32
Force weight λF 0.8
Dihedral L2 weight λdih 10−3

Traditional MM weight λtrad 0

Table A5: The hyperparameters used for training the Grappa
models in this work.

large torsion and improper force constants ξ(dih) to benefit
generalizability across conformational space.

As validation loss, we use a linear combination of the energy
and force root mean squared error (RMSE) on the sub-
datasets (the rows in Table 1), averaged over all sub-datasets,
with a weight of 1 for the energy RMSE and 3 for the force
RMSE to prevent overfitting on a molecule type. We use
this validation loss for early stopping and for learning rate
scheduling. For the model trained on the Espaloma dataset
(Table 1), the validation loss did not improve after 1000
epochs, which corresponds to about 25 hours of training on
an A100 GPU.

A.4. Improper dihedrals

As discussed in Section 2.2, we postulate that the energy
contributions from the different interactions are symmetric
under certain permutations of the embeddings and spatial
positions of the atoms involved. These permutations are
given by the isomorphisms of the respective subgraph that
describes the interaction. In the case of angles, bonds and
torsions, these symmetries are given by Eqs. 6-8, for im-
proper dihedrals, the symmetries are given by all six permu-

i j

(a) Bond

i

j

k

(b) Angle

i
j

k
l

(c) Torsion

i l
k

j

(d) Improper

Figure A8: The subgraphs of the molecular graph that cor-
respond to bonded MM interactions

tations that leave the central atom invariant, as can be seen
from the structure of the subgraphs in Figure A8. For bonds,
angles and torsions, the interaction coordinates distance,
angle and the cosine of the dihedral angle are invariant
under the respective permutations, which is why we can
construct an invariant energy contribution simply by enforc-
ing invariance of the MM parameters under the respective
permutations.

For improper dihedrals, this is not the case, as the dihedral
angle is not invariant under all six permutations mentioned
above and a model with improper force constants that are
invariant under these permutations would not have invariant
improper energy contributions. In Grappa, we solve this
problem by introducing more terms for improper dihedrals.
For example

Eimproper = kijkl cos(ϕijkl) + kjikl cos(ϕjikl), (39)

is invariant under the permutation ijkl→ jikl, which can
be generalized to all six improper permutations. It turns out
that we can reduce the number of additional terms to two by
using another symmetry of the dihedral angle,

cos (ϕijkl) = cos (ϕljki) , (40)

which can be seen from the formula for the dihedral angle
in (Blondel & Karplus, 1996). This symmetry allows us to
identify pairs of terms that are transformed into each other
under the permutation ijkl→ ljki and use a force constant
that is invariant under this permutation,

k
(improper)
ijkl = k

(improper)
ljki . (41)

A.5. Datasets

A.5.1. ESPALOMA DATASET

We reproduce the dataset used to train and evaluate Es-
paloma 0.3 (Takaba et al., 2023) by downloading the pub-
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lished, preprocessed data5. The preprocessing entails filter-
ing out high-energy conformations as detailed in (Takaba
et al., 2023). As in Espaloma, our train-val-test partitioning
procedure relies on the unique isomeric SMILES strings
of the molecules, which are included in the dataset. We
reproduce6 the partitioning from Espaloma 0.37 with the
same random seed.

For the calculation of the RMSE in Table 1 and Table 2,
we subtract the mean predicted energy for each molecule
and for each force field since we are only interested in rela-
tive energy differences (and the mean is the unique global
shift that minimizes the RMSE). For forces, we report the
componentwise RMSE

RMSE ≡

√√√√ 1

3N

N∑
i=1

3∑
j=1

(
fij − f (ref)

ij

)2

as it is done in Espaloma 0.3.

A.5.2. DATASET CREATION

Scripts for the creation of the datasets are publicly available.
8 We use the Amber ff99SB-ILDN (Lindorff-Larsen et al.,
2010) force field for sampling the states and Psi4 (Smith
et al., 2020) for the single point QM calculations. For sam-
pling radical peptide states, we use a preliminary Grappa
model trained on optimization trajectories and torsion scans
of radical peptides. The radical peptides are what we call
hydrogen-atom-transfer (HAT) type radicals, that is, they
are formed by removing a single hydrogen from a peptide.
For the nonbonded contribution, we use the same Lennard-
Jones parameters as for the original peptide and add the
partial charge of the hydrogen in the original peptide to the
heavy atom it was attached to.

A.6. MD simulations

All molecular dynamics simulations are performed with
GROMACS version 2023 (Abraham et al., 2015) using the
Amber ff99SB-ILDN force field (Lindorff-Larsen et al.,
2010) or Grappa-1.3 with Amber ff99SB-ILDN nonbonded
parameters and the TIP3P water model. 2 fs time steps
with LINCS constraints (Hess) on H-bonds were employed.

5https://github.com/graeter-group/grappa/
blob/master/dataset_creation/get_espaloma_
split/load_esp_ds.py

6https://github.com/graeter-group/grappa/
blob/master/dataset_creation/get_espaloma_
split/load_esp_ds.py

7https://github.com/choderalab/
refit-espaloma/blob/main/openff-default/
02-train/joint-improper-charge/
charge-weight-1.0/train.py, commit 3ccc44d

8https://github.com/LeifSeute/
grappa-data-creation

Simulations were run at 300K and 1 bar, maintained by the v-
rescale thermostat (Bussi et al.) and Parrinello-Rahman pres-
sure coupling (Parrinello & Rahman). We apply a Coulomb
and Lennard-Jones cutoff of 1.0ṅm. After system prepa-
ration, energy minimization, NVT and NPT equilibration
simulations are conducted. The code for reproducing the
simulations is publicly available. 9

A.6.1. UBIQUITIN SIMULATIONS

The simulations of ubiquitin (PDB ID: 1UBQ) are evaluated
by calculating a moving average over 0.05 ns of the C-alpha
RMSD to the initial structure (Figure 5b). We also calculate
the statistics of the C-alpha RMSD as function of time differ-
ence between two states. To this end, we sample 1,000 states
from the trajectory for each time difference and calculate the
mean C-alpha RMSD between the states. For the simulation
of STMV, we use the same structure files as (Musaelian
et al., 2022). We use partial charges and Lennard-Jones
parameters of Amber ff99SB-ILDN (Lindorff-Larsen et al.,
2010) for the proteins and of RNA.OL3 (Zgarbová et al.,
2011) for RNA.

A.6.2. STMV VIRUS

For the simulation of STMV referred to in section 4.2,
we use nonbonded parameters from Amber ff99SB and
RNA.OL3 repsectively.

Fig. A9 (b) shows the RMSD of protein C-alpha and
RNA carbon atoms during 30 ns of MD simulation with
Grappa parameters for protein and RNA, which indicates
that Grappa keeps the virus stable. For large scale confor-
mational changes or artificial viral capsid disruption, higher
RMSD values would be expected.

A.7. Learning curve

We provide a learning curve for Grappa, trained on subsets
of the Espaloma dataset, in Fig. A10.

A.8. Grappa’s MM parameters

In Fig. A11, the MM parameters predicted by Grappa and
ff99-SBILDN for the protein ubiquitin are visualized.

A.9. Force accuracy

In analogy to Fig. 4, Grappa’s accuracy for predicted force
components is visualized in Fig. A12.

9https://github.com/LeifSeute/
validate-grappa.
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Figure A9: (a) The virus STMV, containing proteins (blue)
and RNA (red). (b) RMSD of protein C-alpha and RNA
carbon atoms of the virus in solution during a 30 ns MD
simulation with Grappa.

A.10. Extensive tables

We provide tables for with errors for the full Grappa-1.3 and
Espaloma datasets in Tab. A6 and A7.
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Figure A10: Test RMSE of Grappa (blue), trained on a fraction of the Espaloma-0.3 train dataset, compared with the RMSE
of Espaloma-0.3 (green) trained on the full dataset and the RMSE of established force fields.
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Figure A11: MM parameters for the protein ubiquitin, predicted by Grappa-1.3 and ff99SB-ILDN. The comparison suggests
that Grappa predicts more continuous parameter sets than the tabulated force field ff99SB-ILDN.
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Figure A12: Comparison of gradient predictions of Grappa-1.3 and the established force fields Gaff-2.11, ff99SB-ILDN and
RNA.OL3 for test molecules from Espaloma’s SPICE-Pubchem, SPICE-Dipeptide and RNA-Trinucleotide datasets. For
SPICE-PubChem, five molecules were filtered out because they had unphysically high gradient magnitudes of more than
400 kcal/mol/Å.
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A.11. Detailed report on accuracies

Dataset Test Mols Confs Grappa Espaloma Gaff-2.11 ff14SB, Mean
RNA.OL3 Predictor

BOLTZMANN SAMPLED

SPICE-Pubchem 1411 60853 Energy 2.3 ± 0.1 2.3 ± 0.1 4.6 18.4
Force 6.1 ± 0.3 6.8 ± 0.1 14.6 23.4

SPICE-DES-Monomers 39 2032 Energy 1.3 ± 0.1 1.4 ± 0.3 2.5 8.2
Force 5.2 ± 0.2 5.9 ± 0.5 11.1 21.3

SPICE-Dipeptide 67 2592 Energy 2.3 ± 0.1 3.1 ± 0.1 4.5 4.6 18.7
Force 5.4 ± 0.1 7.8 ± 0.2 12.9 12.1 21.6

RNA-Diverse 6 357 Energy 3.3 ± 0.2 4.2 ± 0.3 6.5 6.0 5.4
Force 3.7 ± 0.04 4.4 ± 0.1 16.7 19.4 17.1

RNA-Trinucleotide 64 35811 Energy 3.5 ± 0.1 3.8 ± 0.2 5.9 6.1 5.3
Force 3.6 ± 0.01 4.3 ± 0.1 17.1 19.7 17.7

TORSION SCAN

Gen2-Torsion 131 21890 Energy 1.7 ± 0.2 1.6 ± 0.3 2.7 4.7
Force 4.0 ± 0.4 4.7 ± 0.6 9.4 5.5

Protein-Torsion 9 6624 Energy 2.2 ± 0.4 1.9 ± 0.2 3.0 3.5
Force 3.8 ± 0.5 3.5 ± 0.3 9.7 5.1

OPTIMIZATION

Gen2-Opt 154 40055 Energy 1.8 ± 0.2 1.7 ± 0.5 3.0 3.9
Force 3.8 ± 0.2 4.5 ± 0.8 9.7 5.1

Pepconf-Opt 55 14884 Energy 3.2 ± 0.3 2.8 ± 0.3 5.1 4.1 6.3
Force 3.6 ± 0.2 4.0 ± 0.4 10.2 10.2 5.3

Table A6: Accuracy of Grappa, Espaloma 0.3 (Takaba et al., 2023) and established MM force fields on test molecules from
the Espaloma dataset. We report the RMSE of molwise-centered energies in kcal/mol and the componentwise RMSE of
forces in kcal/mol/Å. Gaff-2.11 (He et al., 2020) is a general-purpose force field, ff14SB (Maier et al., 2015) is an established
protein force field and RNA.OL3 (Zgarbová et al., 2011) is specialized to RNA. As in Espaloma, we bootstrap the set of test
molecules 1000 times and report mean and standard deviation of the RMSEs.
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Dataset Test Mols Confs Grappa Espaloma Gaff-2.11 ff99SB-ILDN Mean
Predictor

SPICE-PubChem 1411 60853 Energy 2.3 ± 0.1 2.3 ± 0.1 4.6 ± 0.1 18.8
Force 6.1 ± 0.3 6.8 ± 0.1 14.6 ± 0.3 41.3

SPICE-DES-Monomers 39 2032 Energy 1.3 ± 0.1 1.4 ± 0.3 2.5 ± 0.2 8.6
Force 5.3 ± 0.2 5.9 ± 0.5 11.1 ± 0.6 37.4

SPICE-Dipeptide 67 2592 Energy 2.4 ± 0.1 3.1 ± 0.1 4.5 ± 0.1 19.1
Force 5.4 ± 0.1 7.8 ± 0.2 12.9 ± 0.3 38.4

RNA-Diverse 6 357 Energy 3.2 ± 0.2 4.2 ± 0.3 6.5 ± 0.1 6.1
Force 3.7 ± 0.0 4.4 ± 0.1 16.8 ± 0.1 30.2

RNA-Trinucleotide 64 23811 Energy 3.5 ± 0.0 3.8 ± 0.2 6.0 ± 0.1 6.1
Force 3.6 ± 0.0 4.3 ± 0.1 17.0 ± 0.0 31.2

Dipeptides-300K 72 3600 Energy 2.6 ± 0.1 4.5 ± 0.1 4.1 ± 0.1 7.8
Force 5.9 ± 0.1 10.9 ± 0.3 11.8 ± 0.1 43.7

Dipeptides-1000K 72 2160 Energy 5.4 ± 0.1 8.6 ± 0.2 8.5 ± 0.2 18.9
Force 11.6 ± 0.1 16.1 ± 0.2 17.8 ± 0.1 74.3

Non-Capped-Peptides 10 500 Energy 2.2 ± 0.2 4.2 ± 0.4 4.0 ± 0.3 7.2
Force 6.1 ± 0.2 12.1 ± 0.7 12.6 ± 0.5 45.8

Radical-Dipetides 28 272 Energy 3.3 ± 0.3 8.7
Force 6.8 ± 0.2 41.3

OPTIMIZATION

Gen2-Opt 154 29055 Energy 1.7 ± 0.1 1.7 ± 0.5 2.8 ± 0.2 4.2
Force 4.0 ± 0.2 4.5 ± 0.8 9.8 ± 0.3 8.7

Pepconf-Opt 55 9084 Energy 2.8 ± 0.2 2.8 ± 0.3 4.7 ± 0.3 6.5
Force 3.7 ± 0.2 4.0 ± 0.4 10.4 ± 0.3 9.4

TORSION SCAN

Gen2-Torsion 131 19290 Energy 1.7 ± 0.1 1.6 ± 0.3 2.6 ± 0.1 4.7
Force 4.2 ± 0.2 4.7 ± 0.6 9.5 ± 0.4 8.9

Protein-Torsion 9 6024 Energy 1.9 ± 0.2 1.9 ± 0.2 2.9 ± 0.2 3.5
Force 4.2 ± 0.3 3.5 ± 0.3 9.8 ± 0.4 9.0

Table A7: Accuracy of Grappa-1.3 with nonbonded parameters from the AM1-BCC scheme, Grappa with nonbonded
parameters from Amber ff99SB-ILDN, Espaloma 0.3 (Takaba et al., 2023) and established MM force fields on test molecules
of the Grappa-1.3 dataset. We report the RMSE of molwise-centered energies in kcal/mol and the componentwise RMSE of
forces in kcal/mol/Å.
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