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Abstract

Despite the widespread use of Transformer-001
based text embedding models in NLP tasks,002
surprising “sticky tokens” can undermine the003
reliability of embeddings. These tokens, when004
repeatedly inserted into sentences, pull sentence005
similarity toward a certain value, disrupting006
the normal distribution of embedding distances007
and degrading downstream performance. In008
this paper, we systematically investigate such009
anomalous tokens, formally defining them010
and introducing an efficient detection method,011
Sticky Token Detector (STD), based on012
sentence and token filtering. Applying STD013
to 37 checkpoints across 12 model families,014
we discover a total of 770 sticky tokens.015
Our analysis reveals that these tokens often016
originate from special or unused entries in the017
vocabulary, as well as fragmented subwords018
from multilingual corpora. Notably, their019
presence does not strictly correlate with model020
size or vocabulary size. We further evaluate021
how sticky tokens affect downstream tasks like022
clustering and retrieval, observing significant023
performance drops of up to 50%. Through024
attention-layer analysis, we show that sticky025
tokens disproportionately dominate the model’s026
internal representations, raising concerns about027
tokenization robustness. Our findings show028
the need for better tokenization strategies and029
model design to mitigate the impact of sticky030
tokens in future text embedding applications.031

� https://anonymous.4open.science/r/St032
ickyToken-6C6E/033

1 Introduction034

Dense vector representations of text, often called035

text embeddings, capture semantic content and036

power a wide range of downstream applications,037

such as retrieval, classification, clustering, and038

semantic similarity tasks (Mikolov et al., 2013;039

Devlin et al., 2018; Gao et al., 2024; Liu et al.,040

2024; Lewis et al., 2021; Muennighoff et al., 2023).041

In recent years, Transformer-based embedding042
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Figure 1: An example illustrating how a sticky token

affects sentence cosine similarity in text embedding

models.

models have become increasingly prominent due 043

to their high performance, including BERT (Devlin 044

et al., 2018), T5 (Raffel et al., 2020), and large 045

language models (LLMs) (BehnamGhader et al., 046

2024; Muennighoff et al., 2024). Crucially, these 047

models depend on tokenization to convert text into 048

subword units. 049

Despite ongoing efforts to refine tokenization 050

algorithms (Sennrich et al., 2016; Kudo and 051

Richardson, 2018; Kudo, 2018; Schmidt et al., 052

2024), anomalous token behaviors still emerge. 053

For example, “glitch tokens” (BehnamGhader 054

et al., 2024; Muennighoff et al., 2024) can exhibit 055

unintended effects on language model outputs. 056

More recently, Kaggle (2024) reported another 057

surprising behavior: inserting certain tokens can 058

make two sentences appear more similar than they 059

actually are. As illustrated in Figure 1, repeatedly 060

appending the token lucrarea to an unrelated 061

sentence yields a noticeable increase in its similarity 062

to a reference sentence when using ST5 (Ni et al., 063

2021a). This suggests the existence of a novel class 064

of anomalous tokens that not only alters embedding 065

distributions but also can degrade downstream 066

performance in real-world tasks. However, no 067

systematic study has yet investigated how these 068

tokens operate, how to detect them, and how they 069

affect embedding-based applications. 070
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In this paper, we conduct an in-depth exploration071

of these unusual “sticky tokens.” Through072

preliminary experiments, we find that while073

such tokens sometimes raise similarity between074

sentences, their primary tendency is to “pull”075

sentence pairs toward a particular similarity076

value—often the mean similarity in the model’s077

token-embedding space. Consequently, they078

reduce variance in similarity without regard to the079

underlying semantics of the texts.080

To address this problem, we formally define081

sticky tokens and propose an efficient detection082

approach, Sticky Token Detector (STD), based083

on filtering both sentence pairs and candidate084

tokens. We apply STD to 37 models spanning085

12 prominent model families and uncover a total086

of 770 sticky tokens. Our results reveal that087

sticky tokens frequently stem from special or088

unused tokens, as well as subword fragments089

in multiple languages; their prevalence does not090

strictly correlate with model size or vocabulary size.091

Furthermore, we show that inserting these tokens092

causes notable performance drops in downstream093

tasks: for instance, retrieval accuracy on NFCorpus094

can fall by over 50% for certain models. A layer-095

wise attention analysis suggests that sticky tokens096

disrupt normal attention patterns, overshadowing097

other parts of the input sequence.098

Our findings highlight a largely overlooked099

tokenization issue in text embedding models. We100

hope this work will spark future research on101

designing robust tokenizers andmodel architectures102

that mitigate the effects of sticky tokens, ultimately103

leading to more reliable embedding-based NLP104

systems.105

2 Related work106

Tokenization plays a crucial role in modern NLP107

systems, yet it can also introduce problematic108

behaviors (Wang et al., 2024a; Mielke et al., 2021).109

Popular subword tokenization methods, including110

Byte-Pair Encoding (BPE) (Sennrich et al., 2016),111

WordPiece (Kudo and Richardson, 2018), and112

Unigram (Kudo, 2018), have been widely adopted113

in large-scale text processing pipelines. Despite114

their advantages in handling vocabulary size and115

rare words, thesemethods can still yield undesirable116

outcomes, such as splitting meaningful terms into117

unintuitive fragments or creating tokens that rarely118

occur in the training data (Karpathy, 2024; Chai119

et al., 2024).120

In LLMs, recent research has highlighted a 121

variety of unexpected token-level anomalies. For 122

instance, Land and Bartolo (2024) identify “under- 123

trained” tokens in LLMs, while Li et al. (2024), 124

Zhang et al. (2024), andWu et al. (2024) investigate 125

so-called “glitch tokens” that exhibit abnormal 126

behaviors due to incomplete or skewed pre-training 127

coverage. These studies explore detection methods 128

and propose strategies to mitigate the harmful 129

effects of such tokens on model outputs. However, 130

their primary focus lies in LLMs, leaving the 131

anomaly space of text embedding models largely 132

unexplored. 133

3 Problem Formulation 134

In this section, we first explore how certain 135

anomalous tokens differ from normal tokens by 136

observing their influence on sentence similarity. 137

Then, based on our findings, we formally define 138

these tokens. 139

3.1 Anomalous Behavior 140

Certain tokens have been identified in previous 141

work (Kaggle, 2024) as behaving unusually. For 142

example, </s> and lucrarea in the ST5-base 143

model were reported to increase pairwise sentence 144

similarity in some cases. However, beyond 145

these observations, there has been no detailed or 146

systematic study of such anomalous tokens. 147

Figure 2 shows a typical example of this behavior 148

in the ST5-base model. We randomly sampled 149

1,000 sentences from Wikipedia and computed 150

pairwise cosine similarity. We then selected 151

sample pairs at intervals of 0.02 (from the sorted 152

similarity list) and added either a normal token 153

(e.g., and; Figure 2a) or an anomalous token ( 154

lucrarea; Figure 2b) to one sentence in each pair, 155

repeating the token multiple times. We found that 156

repeatedly adding the anomalous token lucrarea 157

consistently “pulls” the pairwise similarity to a 158

value near the median of the distribution, which 159

also aligns with the mean pairwise similarity among 160

token embeddings for ST5-base (Figure 2c).1 161

On the other hand, adding a normal token 162

like and has a much smaller impact on sentence 163

similarity.2 Interestingly, while anomalous tokens 164

1In Figure 2b, the median of the sentence similarity curve
for ST5-base is about 0.8. This matches the mean pairwise
similarity of the model’s token embeddings (also around 0.8)
shown in Figure 2c.

2More results for additional tokens and insertion patterns
are in the Appendix A and B.
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(a) Normal token: and (b) Sticky token: lucrarea (c) Similarity distribution

Figure 2: Sentence cosine similarity trends and similarity distributions for various tokens and text embedding models.

(a) and (b) compare the impact of adding multiple occurrences of a normal token ( and) vs. a sticky token ( lucrarea)

to one sentence in each randomly selected sentence pair using the ST5-base model. We sample sentence pairs

from Wikipedia, compute their similarity, then plot how the similarity changes as we add more tokens. The line

plots show the relationship between the number of added tokens and sentence cosine similarity, while the boxplots

show the quartiles of the final similarity values. (c) displays the distribution of token/word-embedding similarities

for different models. We use token embeddings as a surrogate for text embeddings because both share the same

embedding space. For more examples of other tokens and results on additional models, please check Appendix A.

can sometimes increase sentence similarity (as165

noted in previous observations), this does not166

always happen. Their influence does not have to167

be strictly monotonic, and not all sentence pairs are168

affected in the same way.169

3.2 Formalization170

Let E : S → Rd be a text embedding model171

mapping a sentence s ∈ S to a d-dimensional vector172

E(s). We can write S as Vm, where V is the set of173

all tokens in the vocabulary. We measure distance174

between embeddings using common metrics such175

as Lp-norm or cosine distance.3 Let D(s1, s2)176

denote the distance between E(s1) and E(s2). A177

smaller distance indicates higher similarity.178

Anomalous tokens are first noticed when inserted179

into existing sentences (Kaggle, 2024). Inserting180

a token t into a sentence s can happen in different181

ways, including (1) repeatedly adding t at the182

beginning (prefix), (2) repeatedly adding t at183

the end (suffix), or (3) adding t at random184

positions4. We denote these operations with I =185

{Ipre, Isuf, Iran}. Each I ∈ I takes as input186

(s, t, n) and produces a new sentence containing187

n insertions of t at positions determined by the188

specific insertion strategy.189

As shown in Figure 2b, anomalous tokens tend190

to pull sentence similarity toward the mean of the191

model’s token-similarity distribution if they are192

inserted repeatedly. In other words, they reduce193

the distance between the pairwise similarity of two194

3Here, “sentence similarity/distance” and “token
similarity/distance” both refer to comparisons in the
embedding space.

4Appendix B for other insertion methods.

arbitrary sentences and this mean value, or they 195

decrease the variance of that similarity distribution. 196

We name these sticky tokens and formally define 197

them as follows: 198

Definition 1. Given a text embedding model E 199

and u, the mean pairwise similarity of its token 200

embeddings, a token t is called a sticky token if, 201

for all s1, s2 ∈ S and for all I ∈ I, we have: 202∣∣D(s1, I(s2, t, n))− u
∣∣ ≤ ε. 203

Here, n and ε are parameters chosen based 204

on how much change in sentence similarity 205

is considered significant by the model’s users. 206

Different values of ε or n will identify different 207

sets of sticky tokens. In practice, S should be large 208

and diverse, covering many syntactic structures, 209

semantic meanings, and domain contexts to ensure 210

the robustness of the evaluation. 211

4 Methodology 212

Based on the concept of sticky tokens in 213

Definition 1, we propose STD to detect these tokens 214

in a given text embedding model. As shown in 215

Figure 3, STD takes two inputs: the target text 216

embedding model and a set of sentences. It outputs 217

a list of sticky tokens from the model’s vocabulary. 218

A direct application of Definition 1 would 219

require checking pairwise-similarity changes for 220

every possible sentence pair and every token, which 221

can be very costly. However, the examples in 222

Figure 2 suggest that focusing on only part of the 223

sentence pairs is enough to distinguish sticky tokens 224

from normal ones. For instance, sticky tokens 225

usually pull sentence similarity towards the overall 226
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Figure 3: The framework of STD to detect sticky tokens.

mean of the model’s token-similarity distribution227

(especially for sentence pairs with initial similarity228

below that mean). Building on this insight, we229

adopt a more efficient detection strategy with four230

main steps:231

1. Sentence Pair Filtering: Filter out sentence232

pairs whose initial similarity is already above233

the mean of the distribution.234

2. Token Filtering: Remove tokens that are235

undecodable, unreachable, or otherwise236

invalid.237

3. Shortlisting via Sticky Scoring: Compute a238

“sticky score” for each candidate token to239

create a shortlist.240

4. Validation: Verify that the shortlisted tokens241

truly satisfy the formal definition of a sticky242

token (Definition 1).243

4.1 Sentence Pair Filtering244

Figure 2 shows that sticky tokens have a clear245

impact on sentences whose initial similarity is246

below the mean similarity (u) of the token247

embedding space.5 To reduce the search space,248

we only keep those pairs
(
s1, s2

)
in the set S s.t.249

D
(
E(s1), E(s2)

)
> u.250

We call this filtered setPf . By focusing on sentence251

pairs with relatively lower similarity, we can check252

whether a token consistently pulls their similarity253

closer to u.254

4.2 Token Filtering255

We also remove certain tokens that the model256

cannot decode or handle properly. In particular,257

we discard:258

5The way we compute u is discussed in Appendix D.1.

• Undecodable tokens: These contain invalid 259

characters or cannot be decoded into readable 260

text. 261

• Unreachable tokens: These cannot be 262

reproduced by decoding and re-encoding (the 263

token ID changes and is not mapped back to 264

the original ID). 265

• Special tokens: These are tokens used by 266

the model for special purposes (e.g., [CLS], 267

[SEP], or </s>). 268

We denote the remaining valid token set as V∗, 269

which we use in the following steps.6 270

4.3 Shortlisting Tokens with Sticky Scores 271

After filtering the sentence pairs and the vocabulary, 272

we need to identify which tokens in V∗ behave 273

like sticky tokens. A naive way to do this would 274

be to test each token on every pair in Pf , but that 275

can still be expensive. Instead, we work with a 276

smaller, randomly sampled subset of Pf to compute 277

a “sticky score” that helps us shortlist the most 278

likely sticky tokens. 279

Measuring Influence. Suppose we have k 280

sampled sentence pairs, 281

pj ∈ Pf , pj =
(
sj1, s

j
2

)
, 282

and let I be an insertion operation (e.g., prefix, 283

suffix, or random insertion). For each token t, we 284

insert it multiple times into one sentence of the pair 285(
sj1, s

j
2

)
. We then calculate 286

∆j
(t,I) = D

(
E(sj1), E(I(sj2, t, n))

)
− D

(
E(sj1), E(sj2)

)
. 287

This value ∆j
(t,I) represents how much the 288

similarity changes when token t is inserted. 289

6Appendix D.2 for more details on these categories.
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Sticky Score. We summarize these changes290

across all sampled sentence pairs in two ways:291

• M+
(t,I): the total amount of positive changes292

in similarity.293

• M−
(t,I): the total amount of negative changes294

in similarity.295

We also track the frequencies F+ and F−, which296

are the percentages of pairs that show positive and297

negative changes, respectively. Finally, we include298

D(s1, t) to account for how semantically close t299

is to the sentence (which might inflate similarity300

artificially).301

Putting these together, we define a sticky score:302

SSI(t) =
M+

(t,I) + αF+
(t,I) + D(s1, t)

M−
(t,I) + β F−

(t,I) + γ
,303

where α, β, γ are small positive constants to304

balance magnitude vs. frequency. Then we305

aggregate across all insertion operations and306

sampled pairs to get a final score:307

SS(t) =
∑
I∈I

∑
p∈Pf

SSI(t).308

Tokens that rank in the top 2% of SS(t) form our309

shortlist of potential sticky tokens.310

4.4 Validation of Shortlisted Tokens311

Finally, we check each shortlisted token to confirm312

it meets the formal definition of a sticky token313

(Definition 1). Here, we use all sentence pairs314

in Pf rather than just a small subset. As shown315

in Algorithm 1, each candidate token is inserted316

into many pairs in multiple ways (prefix, suffix, or317

random). We then measure whether the distance to318

u remains below a threshold ε, reflecting that the319

token truly “pulls” similarity to that mean.320

Since different embedding models have different321

value ranges and distributions, we propose an322

adaptive threshold in Algorithm 2 to pick ε. This323

helps adjust to model-specific characteristics and324

ensures that detected tokens really exhibit the325

distinctive behavior of sticky tokens.326

5 Evaluation327

In this section, we apply STD (Section 4) to328

find sticky tokens in well-known text embedding329

models. We also examine how the presence of these330

tokens affects downstream tasks and investigate331

potential reasons for their anomalous behavior.332

5.1 Evaluation Setup 333

Dataset. We use the Semantic Textual Similarity 334

(STS) datasets as our collection S, since they 335

naturally include sentence pairs. Specifically, 336

we take STS datasets from the Massive Text 337

Embedding Benchmark (MTEB) 7 (Muennighoff 338

et al., 2023), including STS12, STS13, STS14, 339

STS15, STS16, STS17, STS22, STSBenchmark, 340

BIOSSES, and SICK-R (Agirre et al., 2012, 2013, 341

2014, 2015, 2016). 342

Target Text Embedding Model. We evaluate 343

a diverse range of 12 text embedding model 344

families published between 2019 and 2025, 345

including Sentence-BERT (Reimers and Gurevych, 346

2019), SimCSE (Gao et al., 2022), Sentence- 347

T5 (Ni et al., 2021a), GTR (Ni et al., 2021b), 348

Instructor (Su et al., 2023), E5 (Wang et al., 349

2024b,c), BGE (Xiao et al., 2024), AnglE (Li and 350

Li, 2024), Nomic (Nussbaum et al., 2025), GTE (Li 351

et al., 2023), GritLM (Muennighoff et al., 2024), 352

and SFR (Yavuz et al., 2024). A detailed overview 353

of each model is given in Appendix E. 354

Hyperparameter. From Definition 1 and 355

Section 4.3, we must choose (i) n, the number of 356

times each token is inserted, (ii) k, the number of 357

sentence-pair samples, and (iii) ε, the threshold for 358

verifying stickiness. Through ablation studies,8 we 359

pick n = 8 and k = 5. Specific threshold values ε 360

for each model are provided in Appendix E. 361

5.2 Experimental Results 362

Table 1 lists each model’s size, along with the 363

number of detected sticky tokens and a few token 364

examples. We first discuss general trends, followed 365

by observations unique to specific model families. 366

5.2.1 General Observations 367

We discover a total of 770 sticky tokens across 368

37 model checkpoints. The number of verified 369

sticky tokens depends on both the model family 370

and the size of the tokenizer’s vocabulary. Overall, 371

the percentage of sticky tokens (among all short- 372

listed candidates) ranges from 0.4% to 5.3%, 373

corresponding to 0.006% to 1% of the total 374

vocabulary. This suggests that STD and shortlisting 375

steps are efficient. 376

We also find that the forms of these tokens vary 377

significantly among different model families: 378

7https://huggingface.co/mteb
8Appendix E.
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Model Model Size Vocab Size Filter Passed Candidate Validated Examples

all-MiniLM-L6-v2 23M 30522 23699 474 21 （, h₂o, [CLS], ₂,gambia
all-mpnet-base-v2 109M 30527 23700 474 24 00 ,た,「, т, ←

sup-simcse-bert-base-uncased 109M 30522 23699 474 22 203, ?, [SEP],ロ,り
sup-simcse-bert-large-uncased 335M 30522 23699 474 11 ’, ;, contestants, accidental, ɔ, ]

sup-simcse-roberta-base 125M 50265 49894 998 27 Ġthere, </s>, âĢĵâĢĵ, ĠâĢĶ, ĠÂŃ, .âĢĶ, ÂŃ, Ġï¿½, âĢİ

sup-simcse-roberta-large 355M 50265 49894 998 15 ĠâĢĭ, Ġ?, .-, Ġschematic, )].

sentence-t5-base 110M 32100 32097 642 21 </s>, lucrarea,<extra_id_18>,▁grains,▁photographed

sentence-t5-large 336M 32100 32097 642 30 </s>,▁»., <extra_id_27>,▁Comment,▁Ribbon

sentence-t5-xl 1242M 32100 32097 642 34 </s>, <extra_id_0>, <extra_id_27>,▁velvet,▁context

sentence-t5-xxl 4866M 32100 32097 642 22 </s>,▁consacré, <extra_id_27>,▁hashtag,▁hello

gtr-t5-base 110M 32100 32097 642 16 </s>, lucrarea,▁Someone, <extra_id_26>,▁happened

gtr-t5-large 336M 32100 32097 642 14 ▁»., </s>, <extra_id_27>, <extra_id_25>,▁supposed

gtr-t5-xl 1242M 32100 32097 642 15 </s>, <extra_id_0>, <extra_id_9>, <extra_id_27>,▁badly

gtr-t5-xxl 4866M 32100 32097 642 7 </s>,▁consacré,▁shortly, Pourtant,▁indeed

instructor-base 110M 32100 32097 642 12 </s>, lucrarea, <extra_id_26>,▁somewhere, <extra_id_19>

instructor-large 336M 32100 32097 642 32 </s>,▁»., <extra_id_27>,▁waiting,▁exhausted

instructor-xl 1242M 32100 32097 642 8 </s>, <extra_id_0>, <extra_id_9>, <extra_id_27>,▁apparently

e5-small 33M 30522 23699 474 17 [SEP], exhibiting, occurring, pretended, behaved

e5-base 109M 30522 23699 474 21 generating, absorbing, heating, carpet, human

e5-large 335M 30522 23699 474 21 ⇄,扌, [SEP],∅,𤣩
e5-mistral-7b-instruct 7111M 32000 31747 635 31 ▁sont,▁peut,▁много, жду,▁испо

bge-small-en-v1.5 33M 30522 23699 474 18 [, m³, ð, [PAD], [SEP]

bge-base-en-v1.5 109M 30522 23699 474 20 neighbouring,？, witnessed, granting,。
bge-large-en-v1.5 335M 30522 23699 474 15 actively, intended, intercepted, intentional, uploaded

UAE-Large-V1 335M 30522 23699 474 14 [SEP], ɔ, ո, occurring, having

nomic-embed-text-v1 137M 30522 23699 474 12 [CLS], [MASK], ¦, polling,勝
nomic-embed-text-v1.5 137M 30522 23699 474 9 [CLS], [MASK], [SEP], cerambycidae,～
gte-small 33M 30522 23699 474 15 [SEP], [CLS], treacherous, 2nd, peacefully

gte-base 109M 30522 23699 474 18 [SEP], [MASK], hotspur, [CLS], aroused

gte-large 335M 30522 23699 474 18 1,ٹ st, 30th, mcgrath, rendering

gte-base-en-v1.5 137M 30522 23699 474 20 [CLS],[PAD], ∞, ₃, ■,⊕,⇌,ᄌ, ℓ, ∩,𤣩,龸
gte-large-en-v1.5 434M 30522 23699 474 17 扌, multiplied, ː,∧, ʑ
gte-Qwen2-1.5B-instruct 1543M 151643 147848 2326 5 Ġthru, Ġgifted, Ġupfront, Ġportraying, Ġawkward

gte-Qwen2-7B-instruct 7069M 151643 147848 2957 103 Ġanon, Ġcommenting, Ġsolver, ĠChecking, ĠSteering

GritLM-7B 7111M 32000 31747 635 17 ▁adventures,▁promoting,▁nine,▁folks,▁village

SFR-Embedding-2_R 7111M 32000 31716 444 2 zeichnet,▁scales

SFR-Embedding-Mistral 7111M 32000 31716 635 46 ▁которы,▁годи,▁Jahrhund,▁который,▁которых

Table 1: Statistics and validated sticky tokens of target models. The column Validated represents the number of

validated sticky tokens. Examples are manually chosen based on readability, similarity across the models, and also

representativeness. Note that some leading characters (e.g., ▁ or Ġ) are utilized by tokenizers to indicate spaces or

word boundaries.

• Models from the same family often share sticky379

tokens.380

• There is no direct or consistent correlation381

between model size/vocabulary size and the382

count of sticky tokens.383

• Unused or special tokens frequently appear in384

the sticky token set.385

Below are some more specific examples.386

Special and Control Tokens. Many models387

include special tokens for certain functionalities,388

such as marking start/end of sequences or389

separating segments. We observe that:390

• About 8% (62 tokens) of the 770 sticky391

tokens belong to this category, including </s>,392

[CLS], [SEP], [MASK], [PAD].393

• Some unused tokens (e.g., <extra_id_18>,394

<extra_id_27>) also appear as sticky tokens.395

• Certain tokens like </s> and <extra_id_27> 396

show up many times (12 and 8, respectively) 397

across multiple T5-based checkpoints. 398

These observations hint that special tokens might 399

unintentionally confuse the model’s embedding 400

space, although the reasons remain to be explored 401

in future work. 402

Multilingual and Non-ASCII Fragments. 403

About 22.2% (171 tokens) of detected sticky 404

tokens contain characters beyond the standard 405

English alphabet. Examples include: 406

• Cyrillic fragments ( т, х, ра, ци), 407

• CJK tokens (う, 治, 水, ロ), 408

• Arabic subwords ( ٹ,ر ), 409

• combining diacritics ( ˈ, ː, ᵒ), 410

• mathematical symbols ( ³, ∩, ∞). 411
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In many cases, these tokens appear as single412

characters or subword segments detached from their413

usual context, likely due to multilingual training414

data and Byte Pair Encoding (BPE). For instance,415

▁ч (a Cyrillic prefix) and ▁släktet (Swedish for416

“the genus”) may lose important contexts. This417

suggests sticky tokens can emerge from limited non-418

English coverage during pre-training.419

5.2.2 Model-Specific Observations420

This section presents model-specific observations421

on sticky tokens. Our analysis reveals variations in422

the prevalence and characteristics of sticky tokens423

across various models, underscoring the influence424

of tokenizer design and model scale.425

T5-Based Models. The T5 family (sentence-426

t5, gtr-t5, instructor) exhibits consistent patterns427

associated with its SentencePiece tokenizer (Kudo428

and Richardson, 2018) (vocab_size=32,100). All429

variants include the end-of-sequence token </s> as430

a sticky token. Larger T5 models show a non-linear431

correlation between the number of parameters and432

the frequency of sticky tokens. For instance,433

sentence-t5-xl (1.2B) contains 34 sticky tokens, the434

highest among T5 variants, while sentence-t5-xxl435

(4.8B) reduces this to 22. Some unused tokens,436

such as special tokens (e.g., <extra_id_27> in437

8 out of 11 T5-based models) and non-English438

fragments ( lucrarea, _consacré), appear frequently439

in sticky token lists. These may be residuals from440

the model’s pre-training phase. Notably, instructor-441

xl (1.2B) shows the lowest sticky token count442

(8 tokens), suggesting improved token robustness443

after post-training adjustments.444

BERT/RoBERTa Derivatives. Models using445

BERT-style tokenizers (Devlin et al., 2018; Liu446

et al., 2019) (vocab_size ≈ 30k–50k) exhibit an447

inverse correlation between sticky token counts448

and model parameter size. For example, sup-449

simcse-bert-large-uncased (335M) contains only450

11 sticky tokens (e.g., ’, ;, ɔ), while all-451

mpnet-base-v2 (109M) has 24 sticky tokens.452

RoBERTa models (Liu et al., 2019) display distinct453

characteristic: sup-simcse-roberta-base (125M)454

includes 27 sticky tokens, primarily consisting of455

malformed subwords (e.g., âĢĵâĢĵ, ĠâĢĶ), while456

its 355M-parameter counterpart includes only 15457

sticky tokens, retaining punctuation-related tokens458

such as Ġ?) and .).459

LLM-based Models. Other LLM-based Models 460

with 7B parameters show notable variations on the 461

number of sticky tokens. For example, GritLM- 462

7B exhibits common sticky token counts (17, 463

e.g., _adventures, _young), while gte-Qwen2- 464

7B-instruct stands out with 103 sticky tokens, the 465

highest count observed, including frequent verb 466

participles ( Ġcommenting, Ġfixing) and technical 467

terms ( Ġsyncing, Ġtaxable). In contrast, SFR- 468

Embedding-Mistral (7B) encounters significant 469

problems in processing non-English tokens. For 470

example, 46 sticky tokens of it are composed of 471

Cyrillic subwords ( _которы). These observations 472

suggest that there is no consistent pattern between 473

the presence of sticky tokens and model scale or 474

vocabulary size. 475

Multilingual and Domain-tuned Models. 476

Multilingual models reveal cross-script 477

vulnerabilities. For example, E5-mistral-7B- 478

instruct contains 31 sticky tokens across 7 scripts 479

(e.g., Cyrillic ▁ст, Hebrew .(ץ Smaller models, 480

such as UAE-Large-V1 (335M), have problems 481

on script-specific partial tokens (e.g., і, ʊ, .(א 482

Domain-tuned models show task-specific issues. 483

For example, medical terms like Cerambycidae 484

appear as sticky tokens of nomic-embed-text-v1.5 485

while numerical ordinal tokens (e.g., 3a, 55th) 486

frequently appear in the sticky token list of 487

GTE-family models. These findings indicate that 488

multilingual capabilities and domain-specific 489

fine-tuning may lead to the emergence of sticky 490

tokens. 491

5.3 Impact on Downstream Tasks 492

This section we aim to investigate the impact of 493

sticky tokens on downstream tasks. 494

Method. We use a curated 15-task subset from 495

MTEB benchmark (Muennighoff et al., 2023) as 496

the datasets. For each model, we insert previously 497

verified sticky tokens (Section 5.2) or randomly 498

chosen normal tokens into sentences or paragraphs 499

within the datasets9. 500

Results Table 2 shows the partial results10 501

of our evaluation on clustering and retrieval 502

tasks. Compared with normal tokens, sticky 503

tokens demonstrate significantly higher 504

destructiveness. For instance, for the ST5- 505

base model, inserting normal tokens shows 506

9Appendix F for datasets and method details.
10Table 9 for the full results.
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Categories → Clustering Retrieval

Datasets →
Biorxiv

Clustering

Medrxiv

Clustering

TwentyNewsgroups

Clustering
SciFact ArguAna NFCorpus

sentence-t5-base 23.11 26.03 49.27 45.76 44.84 28.64

w/ normal token 20.04 25.06 37.17 44.58 45.41 28.48

w/ sticky token 15.02 20.41 35.38 26.76 42.14 13.65

instructor-base 26.40 28.38 52.77 57.88 51.18 30.76

w/ normal token 18.05 23.13 50.64 57.70 47.45 29.77

w/ sticky token 26.05 26.55 50.55 43.47 47.03 23.11

e5-base 29.92 27.67 43.75 71.88 53.03 37.09

w/ normal token 28.94 26.51 22.15 71.36 51.13 37.15

w/ sticky token 27.02 24.92 20.00 70.95 49.14 37.01

simcse-bert-base 25.70 25.85 31.67 33.89 39.56 13.49

w/ normal token 25.11 25.19 28.40 33.66 36.79 13.45

w/ sticky token 24.80 25.17 29.22 29.89 38.38 8.84

UAE-Large-V1 37.24 31.18 51.72 73.91 66.15 37.61

w/ normal token 35.79 30.96 40.48 74.51 63.67 37.70

w/ sticky token 35.98 30.94 47.20 72.63 63.48 37.79

Table 2: Results on Downstream Tasks. We present the

performance of four models, comparing their baseline

results with sticky tokens and normal tokens.

minimal degradation (SciFact: 45.76→44.58,507

Δ-2.6%; NFCorpus:28.64→28.48, Δ-0.56%),508

while inserting sticky tokens cause a significant509

degradation (SciFact: 45.76→26.76, Δ-41.5%;510

NFCorpus: 28.64→13.65, Δ-52.3%). Furthermore,511

lightweight models suffer catastrophic degradation512

from sticky tokens (sentence-t5-base on Biorxiv513

clustering: 23.11→15.02, Δ-35.0%), while larger514

models like UAE-Large-V1 maintain robustness515

(SciFact retrieval: 73.91→72.63, Δ-1.7%). Our516

experiments reveal that sticky tokens significantly517

degrade performance across downstream tasks.518

5.4 Explainability of Causes519

We conduct a preliminary analysis to explore520

the underlying causes of the phenomenon. We521

compare the observed attention patterns and522

analyze layer-wise divergence between sticky523

tokens and normal tokens. Experiments are524

conducted on 1k Wikipedia sentences appended525

with either sticky tokens (e.g., </s>) or normal526

tokens. Here, we present the results obtained with527

the ST5-base model.528

Attention Pattern Disparity. For each sequence529

and attention head, the attention weights at the530

position of the added token are extracted from the531

corresponding column vector of the attention score532

matrix11. This reflects how the token is attended533

to by the others in the sequence. As illustrated in534

Figure 4 left, when sticky tokens are appended to535

sentences, their attention weights in intermediate536

layers concentrate disproportionately in high-537

value ranges (e.g., weights>0.4), whereas normal538

tokens follow a smoother, more Gaussian/Normal539

distribution. This suggests that sticky tokens540

dominate the model’s attention and disrupt the541

balanced contextual representation of input texts.542

11Appendix G for further details.
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(left) and Wasserstein distance and KL divergence

of the probability distributions between glitch tokens

and normal tokens in different intermediate layers

of ST5_base model (right). Sticky tokens (red)

exhibit higher frequency in high-attention regions (>0.4)

compared to normal tokens (blue).

Layer-Wise Amplification of Anomalies. The 543

Wasserstein distance (Vaserstein, 1969) between 544

the attention patterns of sticky and normal tokens 545

(Figure 4 right) further elucidates how anomalies 546

propagate across layers. In early layers (1–6), 547

the divergence remains moderate, indicating 548

that shallow processing retains some robustness. 549

However, from mid to late layers (6–12), the 550

distance increases, peaking at the final layers. This 551

reflects a compounding effect: minor irregularities 552

in early layers are progressively amplified as deeper 553

layers integrate higher-order semantic features. 554

For text embedding models, the amplification 555

disrupts the hierarchical abstraction of semantics. 556

The anomalous intermediate results caused by 557

sticky tokens are not uniformly distributed across 558

all layers of the model but are concentrated and 559

amplified in specific key layers. 560

6 Conclusion 561

In summary, STD successfully detects 770 562

sticky tokens in 37 text embedding models and 563

demonstrates that these tokens can significantly 564

degrade downstream performance on tasks such as 565

clustering and retrieval. Through comprehensive 566

experiments, we show that sticky tokens often 567

stem from special or unused tokens and subword 568

fragments from multiple languages, suggesting 569

that tokenizer design and pre-training coverage 570

both play important roles. We further provide 571

evidence of how these tokens cause anomalies in the 572

attention layers, amplifying small irregularities into 573

major distortions of final sentence representations. 574

Our findings encourage future work on designing 575

more robust tokenization schemes and model 576

architectures to mitigate the effect of sticky tokens. 577
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7 Limitations578

Although our definition of sticky tokens is as579

detailed as possible, and our pipelines for detecting580

sticky tokens on different models are also effective,581

they still have some significant limitations.582

Most notably, we assume that sticky tokens583

uniformly ”pull” similarity or distance toward the584

token embedding mean. However, models with585

non-Gaussian token similarity distributions (Li586

et al., 2020; Su et al., 2021)(Model with isotropic587

embedding space 12) or task-specific embeddings588

might require tailored detection criteria. It remains589

unclear whether these models exhibit abnormal590

features akin to sticky token properties. Future591

research on model interpretability could refine our592

deeper understanding of model embedding space593

and sticky token phenomenon, and lead to more594

effective detection methods.595

Secondly, while we identify the anomalous596

phenomenon and its downstream impacts, we597

do not propose concrete solutions to mitigate598

sticky tokens (e.g., tokenizer retraining, embedding599

space regularization). Our experiments involve600

inserting tokens at fixed positions (prefix, suffix,601

or random) with a predefined repetition count.602

While we also examined why alternative insertion603

methods, such as deletion or replacement, were not604

incorporated, our analysis did not extend to more605

complex adversarial scenarios. These scenarios606

could include advanced strategies like interleaving607

tokens or context-aware placement, which were not608

evaluated in this study.609

Finally, the scope of detection of our work is610

limited to focusing on open source text embedding611

models, which often use byte-pair encoding based612

tokenization. However, the detection results may613

differ for certain closed-source models, such as614

OpenAI’s text-embedding series, or models that615

utilize Unigram based tokenization. Additionally,616

obtaining the vocabulary for these models presents617

a significant challenge.618
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A Symptom Across Models 874

Similar to the issue of anomalous tokens observed 875

in the ST5-base model with lucrarea, we provide 876

further random examples of these anomalous 877

tokens across various models to illustrate the 878

prevalence of this phenomenon across different 879

models. The experimental setup remains consistent 880

with Section 3.1, i.e.: We also randomly sampled 881

1,000 sentences from Wikipedia and computed 882

pairwise cosine similarity. We then selected 883

sample pairs at intervals of 0.02 (from the sorted 884

similarity list) and added anomalous token to 885

one sentence in each pair, repeating the token 886

multiple times. We found that repeatedly adding the 887

anomalous token consistently “pulls” the pairwise 888

similarity to a value near the median of the 889

distribution, which also aligns with the mean 890

pairwise similarity among token embeddings for 891

corresponding model(Figure 12). 892

The results of the phenomenon are shown in 893

Figure 5, 6, 7, 8, and 9, and For more examples, 894

please refer to our repository. 895
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Figure 5: bge-base-en-v1.5 + token: www

Figure 6: gte-base-en-v1.5 + token: 龸

Figure 7: sup-simcse-bert-base-uncased + token: [SEP]

Figure 8: UAE-Large-V1 + token: [SEP]

Figure 9: instructor-base + token: lucrarea
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Figure 10: Inserting method of token into sentences

B Alternative Insertion Methods: 896

Deletion or Replacement 897

The method we define in Section 3.2 tokens into 898

sentences is as follows: As illustrated in Figure 10, 899

inserting a token t into a sentence s can happen 900

in different ways, including (1) repeatedly adding 901

t at the beginning (prefix), (2) repeatedly adding 902

t at the end (suffix), or (3) adding t at random 903

positions. Real-world scenarios might involve 904

more sophisticated insertion strategies. Here we 905

discuss why not use the deletion or replacement 906

operations. 907

First, deletion is the inverse operation of 908

addition. Since sticky tokens are relatively rare, 909

it is challenging to gather a sufficient number of 910

sentences that naturally contain them. 911

Secondly, replace one token in a sentence 912

with another token, which is equivalent to a 913

delete operation and an add operation. This will 914

result in the semantics of the original sentence 915

being equivalent to multiple changes. As shown 916

in Figure 11, the experimental setup remains 917

consistent with Section 3.1. By employing the 918

replacement operation to introduce tokens into the 919

sentence, it becomes evident that the transition in 920

sentence similarity is less smooth compared to the 921

pattern observed in Figure 2b. This shows that 922

compared with one addition, the semantic changes 923

caused by substitution are too large and are not 924

the most basic unit of semantic changes. For the 925

simplicity of modeling, as well as universality, 926

12
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Figure 11: Effect of Token Replacement on Sentence

Similarity. This figure illustrates the impact of replacing

tokens in sentences with the sticky token lucrarea on

sentence similarity, as measured using the ST5-base

model. Sentence pairs were randomly selected from

Wikipedia, and their similarity was computed before

and after the replacement of multiple lucrarea tokens.

we do not consider including delete and replace927

operations into definition of insertion method I.928

C Conjecture of Explanation929

Conjecture: Anisotropic embedding space930

makes sticky token possible We first provide931

partial background knowledge about the spatial932

properties of context embedding space, and then933

propose a conjecture for the potential reason why934

the sticky token exists in text embedding models.935

Isotropy refers to the property that embeddings936

are uniformly distributed around the origin.937

Previous studies (Wang et al., 2019; Arora938

et al., 2017; Fuster Baggetto and Fresno, 2022)939

demonstrate that Transformer-based models940

typically produce anisotropic embedding spaces.941

The geometric interpretation of anisotropy is that942

the word representations all occupy a narrow cone943

in the vector space rather than being uniform944

in all directions; the greater the anisotropy, the945

narrower this cone (Mimno and Thompson, 2017;946

Ethayarajh, 2019). This phenomenon has been947

empirically observed in pre-trained Transformers948

like BERT and GPT-2 (Machina and Mercer,949

2024).950

We also construct a simple empirical experiment951

to demonstrate the anisotropic context embedding952

space of mainstream text embedding models. we953

use word embeddings as a surrogate because words954

and contexts share the same embedding space. If955

the word embeddings exhibits some misleading956

properties, the context embeddings will also be957

problematic, and vice versa. We first extract the958

vocabulary of the model, then take each token959

in the dictionary as a separate sentence and gets960

Figure 12: Similarity distribution for different

text embedding models’ vocabulary tokens. we

use token/word embeddings as a surrogate of text

embeddings because words and contexts share the same

embedding space.

its embeddings. Finally we compute the pairwise 961

similarity between embeddings, and the results are 962

presented in Figure 2c. For more models, the mean 963

values and standard deviations of cosine similarity 964

across vocabulary embeddings are presented in 965

Table 3. 966

Previous research has demonstrated that if word 967

representations are isotropic (i.e., directionally 968

uniform), then the average cosine similarity 969

between words would be 0 (Arora et al., 2017; 970

Ethayarajh, 2019). The closer this average is 971

to 1, the more anisotropic the representations. 972

As illustrated in Figure 2c, we observe that 973

the similarity distributions for most models 974

follow a Gaussian distribution with a non- 975

zero mean, indicating that these models exhibit 976

anisotropic embedding spaces. Additionally, it is 977

noteworthy that the mean of the ST5-Base model’s 978

similarity distribution is very close to the sentences 979

similarities’ median value of 0.8, as depicted in 980

Figure 2 in Section 3.1. This suggests that the 981

sticky token is likely pulling sentence pairs toward a 982

dominant direction in the embedding space. Based 983

on the above observations, we propose a conjecture 984

to explain the existence of sticky tokens: 985

As illustrated in Figure 13, the anisotropy of 986

the model embedding space, indicating that word 987

representations occupy narrow cone-shaped regions 988

in vector space. Sticky tokens tend to pull a 989

sentence toward a specific focal point in the 990

embedding space, potentially the origin. (1) If 991

the sentences are sufficiently far apart, the new 992

distance (orange) is more likely to be shorter than 993

the original distance (yellow). (2) However, if the 994

13



Model Mean Cosine Similarity Standard Deviation

all-MiniLM-L6-v2 0.1998 0.1068

all-mpnet-base-v2 0.1876 0.0885

bge-base-en-v1.5 0.5254 0.0673

bge-large-en-v1.5 0.5716 0.0482

bge-small-en-v1.5 0.5694 0.0602

e5-base 0.7430 0.0403

e5-large 0.7311 0.0351

e5-mistral-7b-instruct 0.7354 0.0579

e5-small 0.8306 0.0392

GritLM-7B 0.6271 0.1838

gte-base 0.7647 0.0256

gte-base-en-v1.5 0.3730 0.0892

gte-large 0.7788 0.0218

gte-large-en-v1.5 0.5390 0.0651

gte-Qwen2-1.5B-instruct 0.3510 0.2746

gte-Qwen2-7B-instruct 0.2594 0.2477

gte-small 0.7874 0.0225

gtr-t5-base 0.5155 0.0548

gtr-t5-large 0.5577 0.0451

gtr-t5-xl 0.4824 0.0562

gtr-t5-xxl 0.4774 0.0543

instructor-base 0.8373 0.0234

instructor-large 0.8144 0.0229

instructor-xl 0.5544 0.0488

nomic-embed-text-v1 0.3360 0.0630

nomic-embed-text-v1.5 0.4167 0.0610

sentence-t5-base 0.7959 0.0261

sentence-t5-large 0.7634 0.0281

sentence-t5-xl 0.7167 0.0341

sentence-t5-xxl 0.7362 0.0310

SFR-Embedding-2_R 0.7264 0.0638

SFR-Embedding-Mistral 0.6806 0.0598

sup-simcse-bert-base-uncased 0.5866 0.1110

sup-simcse-bert-large-uncased 0.4512 0.1081

sup-simcse-roberta-base 0.8783 0.0361

sup-simcse-roberta-large 0.4995 0.1039

UAE-Large-V1 0.5052 0.0523

Table 3: The mean values and standard deviations of

cosine similarity across vocabulary embeddings.

sentences are already very close to each other, this995

may negatively impact performance.996

Please note that these are merely some of997

our conjectures, and rigorous validation will be998

required in the future.999

D Methodology Details1000

Based on Definition 1, we provide a detailed1001

description of our proposed method, STD, which1002

is designed to effectively detect sticky tokens1003

in existing text embedding models. As shown1004

in Figure 3, our method takes a target text1005

embedding model and a set of strings as inputs,1006

then reports its sticky tokens of its vocabulary.1007

For the detection, Definition 1 suggests to track1008

sentence pairwise-similarity changes across any1009

pairs for any tokens in a vocabulary, which can1010

be computationally expensive. Figure 2 suggests1011

that actually the influence on just a portion of1012

sentence pairs may be sufficient to differentiate1013

sticky tokens from normal ones. For instance,1014

they obviously and efficiently increase similarity of1015

sentence pairs towards the mean of token pairwise-1016

similarity distribution (whose similarity initially1017

Sent A

Sent B

Sent A

Sent B

Isotropic Anisotropic

vs.

√×

Our Conjecture

(1) far (2) close

Sent 1

Sent 2 + sticky

Sent 2 Sent 2 + sticky

Sent 2

Sent 1

Figure 13: Our conjecture about sticky tokens, based on

the anisotropy of the embedding space

is below that mean). From this, we employ 1018

an efficient detection procedure which first filter 1019

sentences to track and then shortlist candidate 1020

tokens. Specifically: 1) Sentence pair filter, filter 1021

out sentence pairs with initial similarity above the 1022

mean of the distribution 1. 2) Token filter, filter 1023

out those undecodeable or unreachable tokens. 3) 1024

Shortlisting, shortlist tokens via sticky scoring. 4) 1025

Validation, validate whether the shortlisted tokens 1026

are indeed sticky ones based on Definition 1. 1027

D.1 Sentence Pair Filter 1028

We observed in Figure 2 that compared with normal 1029

ones, sticky tokens tend to obviously bring closer 1030

those sentences whose initial similarity is below the 1031

mean u of the initial pairwise-similarity distribution 1032

of tokens. 1033

Formally, given a model E, the mean of the 1034

pairwise semantic distance between (embeddings 1035

of) its tokens can be computed as: 1036

u =
2

|V|(|V| − 1)

|V|−1∑
i=1

|V|∑
j=i+1

D(E(ti), E(tj)) 1037

where V denotes the model’s vocabulary, and 1038

ti, tj ∈ V represent distinct tokens. 1039

We can choose such sentence pairs from S to 1040

check whether the influence of a token aligns with 1041

that of sticky tokens via multiple insertion. 1042

We denote the set formed by filtered 1043

sentence pairs as: Pf : Pf = 1044

{(s1, s2) | D(E(s1), E(s2)) > u, s1, s2 ∈ S} 1045
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D.2 Token filter1046

The overall process of our token filter stage is1047

shown in Table 4. The core idea of the token1048

filter module is to classify each token by decoding1049

and then re-encoding it, ensuring it meets specific1050

classification criteria. Specifically, if the tokenizer1051

for somemodels add spaces to the start or does other1052

reprocessing by default, we prepend a special prefix1053

“«” to each token to maintain consistency during1054

the encoding and decoding process. Then, we filter1055

out tokens based on the following categories:1056

• Undecodeable: Tokens that cannot be1057

decoded, usually containing illegal characters.1058

These tokens are usually the result of partial1059

UTF-8 sequences, where a sequence of bytes1060

cannot be properly converted into a Unicode1061

character, due to containing only part of a UTF1062

encoding for a character. This is typical for1063

‘fallback byte’ tokens in the 0x80-0xFF range,1064

can also include tokens with other partial1065

Unicode characters.1066

• Unreachable/Irreversible: i.e., we cannot1067

recover the raw text definitively from the1068

tokenized output. Tokens that cannot1069

be restored to their original token ID1070

through the decoding and re-encoding process,1071

which means they are never the result of1072

tokenizing text. Such tokens are typically1073

the result of tokenizer configuration errors1074

or conflicts between trained and manually1075

added vocabulary. As this test does not work1076

when tokens can not be decoded to a string,1077

we exclude undecodeable tokens from this1078

category.1079

• Special: special tokens are manually1080

predefined symbols used to represent specific1081

meanings or control the model’s behavior,1082

such as [CLS], [SEP], </s>, etc. We identify1083

special tokens using the patterns <...> and [...]1084

and list them separately from unreachable1085

tokens.1086

• Tokens not in any of the other categories,1087

which constitute the vast majority.1088

During the classification process, we first decode1089

each token ID to string. If decoding fails, the token1090

is classified as undecodeable. Next, we encode the1091

decoded string and check if it can be restored to the1092

original token ID. If it cannot, the token is classified1093

as unreachable. If it meets the characteristics of a 1094

special token, it is classified as special. We filter 1095

out undecodeable and unreachable tokens from our 1096

sticky token detection pipeline. 1097

Classification Criteria

Let D : N→ Σ∗ be the tokenizer’s decoding
function and E : Σ∗ → N its encoding function,

where Σ is the Unicode character set.

For a token ID x:

Undecodeable

x ∈ U ⇐⇒ D(x) throws decoding error
Where illegal UTF-8 sequences satisfy:

∃bi ∈ bytes(D(x)) s.t. ¬ValidUTF8(b1:n)

Unreachable

x ∈ R ⇐⇒ D(x) succeeds ∧ E(D(x)) 6= x

Special Tokens

x ∈ S ⇐⇒ D(x) matches patterns 〈·〉 or [·]

Filtering Pipeline

V alidTokens = {x | x /∈ (U ∪R)}

Table 4: Formalizing token classification criteria and

filtering pipeline.

The valid UTF-8 characters in Table 4 can be 1098

summarized as follows: 1099

• 1-byte:b1 ∈ [0x00, 0x7F ] 1100

• 2-byte:b1 ∈ [0xC2, 0xDF ], b2 ∈ 1101

[0x80, 0xBF ] 1102

• 3-byte:b1 ∈ [0xE0, 0xEF ], b2:3 ∈ 1103

[0x80, 0xBF ] 1104

• 4-byte:b1 ∈ [0xF0, 0xF4], b2:4 ∈ 1105

[0x80, 0BF ] 1106

Undecodeable tokens violate these byte constraints. 1107

D.3 Shortlisting with Sticky Scoring 1108

The previous two steps help us reduce the searching 1109

cost of sticky tokens to some extent. Faced with the 1110

filtered tokens and sentence pairs, a straightforward 1111

way to judge which ones in V∗ are sticky is to 1112

track their influence on arbitrary sentence pairs in 1113

Pf . This can still be time-consuming and we opt 1114

to track on some sparsely sampled pairs first, to 1115

shortlist tokens. The core consideration is how to 1116

measure whether the influence a token brings via 1117
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insertion to the sampled sentence pairs aligns with1118

our expectation13 Below we introduce sticky score.1119

Denote the k sampled sentence pairs as: pj ∈1120

Sf , pj = (sj1, s
j
2). Let ∆j

t,I,p = D(sj1, s
j′

2 ) −1121

D(sj1, s
j
2) denote the change in similarity between1122

sj1, s
j
2 after inserting t . For each pair, one1123

of the sentence gets inserted14 with token t via1124

operation I. For example, for sj1, s
j
2, let ∆

j
t,I,p =1125

D(sj1, s
j′

2 ) − D(s
j
1, s

j
2) denote the change in their1126

similarity. For all the pairs, denote the change as1127

Lt,f,p =
[
∆1

t,f,p,∆
2
t,f,p, . . . ,∆

k
t,f,p

]
∈ Rk.1128

We measure the influence of token insertion1129

from two perspectives: magnitude and1130

frequency of the (directional) similarity1131

change. Let M+
(t,f,p) =

∑k
i=1max(∆

j , 0)1132

(M−
(t,f,p) =

∑k
j=1 |min(∆i, 0)|) denote the1133

cumulative amount of similarity increase1134

(decrease), and F+
(t,f,p) = 1

k

∑k
j=1 I(∆(i)>0)1135

(F−
(t,f,p) = 1

k

∑k
j=1 I(∆(j)<0)) denote the1136

frequency of observing similarity increase1137

(decrease) in L(t, f, p). I(·) is an indicator which1138

takes 1 if (·) is true.1139

By integrating the above influence measure, we1140

propose sticky score:1141

SSI,p(t) =
M+ + αF+ +D(s1, t)

M− + βF− + γ
(1)1142

where M+ + αF+ rewards positive values1143

(i.e., increasing similarity) in L, andM− + βF−1144

penalizes negative values. D(s1, t) is used to1145

penalizes any semantic proximity between token t1146

and the target sentence s1, preventing artificially1147

inflated anomaly scores when their meanings are1148

closely aligned. γ > 0 is a small constant (e.g., γ =1149

10−8) to ensure numerical stability. Parameters α,1150

β, and γ are tuning factors that allow the detection1151

to balance the consideration of magnitude and1152

frequency factors.1153

By aggregating the influence introduced by all1154

types of insert operations, across all the filter1155

sentence pairs, we obtain an overall sticky metric1156

for token t: SS(t) =
∑

I∈I
∑

p∈P SSI,p(t).1157

SS(t) measures how well (the influence of)1158

token t fits our expectation or what characterizes1159

sticky tokens. The higher the value of SS(t), the1160

more likely t is a sticky token. Given an embedding1161

13Recall for (s1, s2) ∈ Pf , D(s1, s2) > u, and a sticky
token should make |D(s1, I(s2, t, k))− u| smaller.

14As s1/s2 is randomly chosen from Sf , their order does
not matter and w.lo.g the insert is for s2.

model, we rank all its tokens based on their values 1162

of SS(t) and shortlist those ranked top 2%. Note 1163

that here only a sampled set of sentence pairs are 1164

used in calculating SS(t) and we need to further 1165

validate whether the shortlisted tokens are indeed 1166

sticky ones. 1167

D.4 Validation 1168

We validate whether the previously shortlisted 1169

tokens are indeed sticky ones by determining 1170

whether it adheres to the definition of a sticky 1171

token(Definition 1). At this stage, we use all 1172

the samples in the set of sentence pairs S from 1173

Section 4.1. The overall process of validation stage 1174

is shown in Algorithm 1. 1175

Algorithm 1 Validation

Input: C: the set of candidate tokens, P: the set of
sentence pairs, I: the set of insertion methods,
E: embedding model, n: insertion number, u:
mean similarity, ε: tolerance threshold.

Output: Ω: verified sticky tokens.
1: Initialize Ω← ∅
2: for all t ∈ C do
3: Initialize is_sticky ← True

4: for all (s1, s2) ∈ P do

5: for f ∈ I do
6: s∗2 ← f(s2, t, n)
7: e1 ← E(s1), e

∗
2 ← E(s∗2)

8: D∗ ← D(e1, e∗2)
9: if |D∗ − u| > ε then
10: is_sticky ← False

11: break

12: end if

13: end for

14: if ¬is_sticky then
15: break

16: end if

17: end for

18: if is_sticky then
19: Ω← Ω ∪ {t}
20: end if

21: end for

Adaptive Threshold. As mentioned in 1176

section 4.4, for the tokens in the shortlist: t ∈ 1177

SLE , we need to calculate |D(s1, I(s2, t, k))− u| 1178

according toDefinition 1, and let’s denote this value 1179

as GE(t) for model E. 1180

Assuming GE(t) values are collected across 1181

multiple models, we propose an adaptive 1182

thresholding algorithm inspired by statistical 1183
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anomaly detection theory. This approach leverages1184

the interquartile range (IQR) to dynamically1185

identify outliers while accounting for distributional1186

differences between models (contributors, 2025).1187

The specific algorithm is shown in Algorithm 2.1188

Algorithm 2Model-Specific Adaptive Threshold

Input: E: the set of target models,
SLE : the shortlist of tokens for each model

E ∈ E,
GE : the set of GE(t) values for each token
t ∈ SLE ,

α: the hyperparameter (default: 1.5).
Output: T : the set of thresholds for each model

E ∈ E.
1: initialize T ← ∅
2: for all E ∈ E do

3: calculate quartiles:

4: Q1E ← quantile(GE , 0.25)
5: Q3E ← quantile(GE , 0.75)
6: IQRE ← Q3E −Q1E

7: compute threshold: TE ← Q3E + α ×
IQRE

8: add to result: T ← T ∪ {TE}
9: end for

10:

11: return T

E Detection Experiment Details1189

Dateset. As mentioned in Section 4.1, the detecting1190

of sticky tokens needs input sentences to feed1191

into text embedding models and computing the1192

semantic distance between embeddings. The1193

natural language processing (NLP) task most1194

closely related to this process is Semantic1195

Textual Similarity (STS). For our analysis, we1196

utilize the STS datasets included in the widely1197

recognized Massive Text Embedding Benchmark1198

(MTEB) 15 (Muennighoff et al., 2023), which1199

includes STS12, STS13, STS14, STS15, STS16,1200

STS17, STS22, STSBenchmark, BIOSSES, SICK-1201

R 16 (Agirre et al., 2012, 2013, 2014, 2015, 2016).1202

We used the test sets of these datasets, each1203

containing between 1000 and 20000 sentences.1204

While most of the datasets are monolingual English,1205

for multilingual datasets, we exclusively use the1206

English subsets.1207

15https://github.com/embeddings-benchmark/mte
b

16https://huggingface.co/mteb?search_datasets=st
s#:~:text=2-,Datasets,-13

Target Text Embedding Models. As shown 1208

in Table 5, we evaluated STD using models 1209

from 12 different model families. For embedding 1210

models that support Matryoshka Representation 1211

Learning (Kusupati et al., 2024), we utilize 1212

the highest-dimensional vectors with default 1213

parameters. For models that require prompts, we 1214

employ the default prompts as specified in the 1215

original papers. 1216

Hardware and Software. We conduct all 1217

experiments on Server PowerEdge XE9680 with 1218

8 NVIDIA A100 (80G) GPUs and Ubuntu 22.04 1219

operating systems. We implement our framework 1220

in Python and use downloaded model checkpoints 1221

from Hugging Face. All models use 32-bit floating 1222

point precision (fp32 or float32) with default 1223

configuration. 1224

Ablation Study. Following Definition 1 and 1225

Section 4.3, we need to choose values for n (the 1226

number of insertions), k (the number of sentence- 1227

pair samples), and the threshold ε for model 1228

verification. We conducted some ablation studies 1229

to balance between computational efficiency and 1230

detection effectiveness. 1231

First of all, we need to establish a certain 1232

understanding of the running time of text 1233

embedding models. Our code has implemented 1234

the batch data parallelism. For a 7B embedding 1235

model, when n = 10, sentence pair k = 10, and 1236

the number of sentence pairs |S| = 200, it will 1237

take 25 hours for the detection pipline to detecting 1238

the all vocabulary, so it is impractical to exceed 1239

this configured parameter number. Therefore, we 1240

define this set of parameters as the upper bound, 1241

and the results obtained under this configuration 1242

serve as the ground truth for sticky token detection. 1243

Additionally, we conducted an ablation study on 1244

the st5-base model, with the results presented in 1245

Table 6. To balance computational efficiency and 1246

detection effectiveness, we selected n = 8 and 1247

k = 5. 1248

The corresponding thresholds used in our work 1249

for each model are provided in Table 7. We obtain 1250

this set of parameters by using Algorithm 2. 1251

F Downstream task detail 1252

We assess how sticky tokens degrade contextual 1253

representations through sequence-level evaluation 1254

on text embedding tasks. 1255

Set up. we evaluate on the Massive Text 1256

Embedding Benchmark (MTEB) (Muennighoff 1257

17
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Model Family Model Names

Sentence-BERT (Reimers and Gurevych, 2019) all-MiniLM-L6-v2,all-mpnet-base-v2

SimCSE (Gao et al., 2022) sup-simcse-bert-base-uncased, sup-simcse-bert-large-uncased, sup-

simcse-roberta-base, sup-simcse-roberta-large

Sentence-T5 (Ni et al., 2021a) sentence-t5-base, sentence-t5-large, sentence-t5-xl, sentence-t5-xxl

GTR (Ni et al., 2021b) gtr-t5-base, gtr-t5-large, gtr-t5-xl, gtr-t5-xxl

Instructor (Su et al., 2023) instructor-base, instructor-large, instructor-xl

E5 (Wang et al., 2024b,c) e5-small, e5-base, e5-large , e5-mistral-7b-instruct

BGE (Xiao et al., 2024) bge-small-en-v1.5, bge-base-en-v1.5, bge-large-en-v1.5

AnglE (Li and Li, 2024) UAE-Large-V1

Nomic (Nussbaum et al., 2025) nomic-embed-text-v1, nomic-embed-text-v1.5

GTE (Li et al., 2023) gte-small, gte-base, gte-large, gte-base-en-v1.5, gte-large-en-v1.5, gte-

Qwen2-1.5B-instruct, gte-Qwen2-7B-instruct

GritLM (Muennighoff et al., 2024) GritLM-7B

SFR (Yavuz et al., 2024) SFR-Embedding-2_R, SFR-Embedding-Mistral

Table 5: Target text embedding models used in the experiments.

Set(n, k) Runtime (h) Accuracy (%) F1-Score

(5, 3) 1.1 83.7 0.812

(6, 4) 1.8 88.4 0.862

(7, 5) 2.1 90.6 0.891

(8, 5) 2.5 92.1 0.907

(9, 6) 3.3 93.8 0.923

(10, 10) 4.9 100.0 1.000

(8, 6) 2.7 91.2 0.896

(7, 4) 1.9 89.1 0.878

Table 6: Ablation Study on Parameter Selection for

Sticky Token Detection

Model Threshold

all-MiniLM-L6-v2 0.0865

all-mpnet-base-v2 0.0742

bge-base-en-v1.5 0.1649

bge-large-en-v1.5 0.1686

bge-small-en-v1.5 0.1596

e5-base 0.0819

e5-large 0.0796

e5-mistral-7b-instruct 0.1254

e5-small 0.0777

GritLM-7B 0.2089

gte-base 0.0546

gte-base-en-v1.5 0.0892

gte-large 0.0652

gte-large-en-v1.5 0.0651

gte-Qwen2-1.5B-instruct 0.1841

gte-Qwen2-7B-instruct 0.1542

gte-small 0.0542

gtr-t5-base 0.0548

Model Threshold

gtr-t5-large 0.0451

gtr-t5-xl 0.0562

gtr-t5-xxl 0.0543

instructor-base 0.0690

instructor-large 0.0706

instructor-xl 0.1165

nomic-embed-text-v1 0.0362

nomic-embed-text-v1.5 0.0254

sentence-t5-base 0.1106

sentence-t5-large 0.1153

sentence-t5-xl 0.1303

sentence-t5-xxl 0.1233

SFR-Embedding-2_R 0.1243

SFR-Embedding-Mistral 0.0568

sup-simcse-bert-base-uncased 0.1832

sup-simcse-bert-large-uncased 0.1952

sup-simcse-roberta-base 0.1523

sup-simcse-roberta-large 0.1644

UAE-Large-V1 0.1721

Table 7: Threshold to validate sticky token. We obtain

this set of parameters by using Algorithm 2. Note that

these values are derived from the standard deviation, not

the variance, between sentence distances.

Category Task

Retrieval

SciFact

ArguAna

NFCorpus

Reranking
SciDocsRR

StackOverflowDupQuestions

Clustering

BiorxivClusteringS2S

MedrxivClusteringS2S

TwentyNewsgroupsClustering

Pair Classification SprintDuplicateQuestions

Classification

Banking77Classification

EmotionClassification

MassiveIntentClassification

STS

STS16

SICK-R

STSBenchmark

Summarization SummEval

Table 8: The subset of MTEB evaluation benchmark

used in downstream impact studie.

et al., 2023), a collection of 7 diverse embedding 1258

task categories. MTEB consists of diverse small 1259

and large embedding tasks. To speed up the 1260

evaluation17, we consider a representative subset 1261

of 16 tasks from MTEB for our analyses, presented 1262

in Table 8. To make sure that our analyses are 1263

not biased towards one specific category or task, 1264

this subset includes tasks from each category with 1265

almost the same proportion compared to the full 1266

MTEB. Our analysis focuses on a 16-task subset 1267

consisting of representative tasks from each of the 1268

MTEB categories. 1269

17Evaluating Mistral-7B on the full MTEB benchmark
requires over 40 hours using 8x A100 GPUs.
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For each model under investigation, we have1270

previously identified its associated list of sticky1271

tokens, as delineated in Section 5.2. To establish1272

a balanced comparison, an equivalent number of1273

tokens were randomly sampled from the model’s1274

vocabulary to serve as normal tokens. The seven1275

tasks under consideration can be stratified into1276

two primary types: Sentence-to-Sentence (S2S)1277

and Sentence-to-Paragraph (S2P) tasks. In the1278

case of S2S tasks, sticky or normal tokens were1279

appended either at the onset or the conclusion of1280

one of the sentences. For S2P tasks, these tokens1281

were inserted at both the beginning and end of one1282

of the paragraphs. The quantity of tokens added1283

was strategically set to constitute 10% of the token1284

length of the original sentence or paragraph.1285

Results Table 9 shows the results of our1286

evaluation on 16 tasks of 7 categories. Compared1287

with normal tokens, sticky tokens demonstrate1288

significantly higher destructiveness.1289

G Explainability of Causes details1290

In this section, we attempt to tentatively investigate1291

the underlying causes of the sticky token1292

phenomenon. To systematically explain this1293

phenomenon, we compare the intermediate results1294

extracted from model and analyze the observed1295

attention patterns and layer-wise divergence1296

between sticky tokens and normal tokens.1297

Setup To systematically analyze the impact of1298

sticky tokens on text embedding models, we1299

conducted experiments using the sentence-t5-base1300

model.1301

We also constructed a dataset of 1,000 sentences1302

sampled from English Wikipedia, covering diverse1303

topics to ensure generalizability. To establish a1304

balanced comparison, an equivalent number of1305

tokens were randomly sampled from the model’s1306

vocabulary to serve as normal tokens. For each1307

sentence, we generated two variants: 1) Sticky1308

Token Variant: The original sentence appended1309

with a sticky tokens identified in Section 5.2 (e.g.,1310

</s>, lucrarca). 2) Normal token Variant: The1311

original sentence appended with a normal tokens1312

randomly selected from the model’s vocabulary.1313

We select a key feature to represent the model’s1314

internal state, i.e., attention patterns. The attention1315

patterns capture the relative importance and1316

relationships between tokens, providing insights1317

on how the model synthesizes and modulates new1318

representations within the attention head. 1319

Attention Pattern Disparity Self-attention 1320

mechanisms in Transformer-based models 1321

dynamically allocate weights to tokens based on 1322

their contextual relevance. 1323

Given an input sequence X ∈ Rn×d, where 1324

n is the sequence length and d is the embedding 1325

dimension,self-attention linearly projects X into 1326

query, key, and value representations, i.e., Q, K, 1327

and V . The attention scores matrix A is then 1328

computed by taking the dot product between the 1329

query and key matrices, followed by a softmax 1330

normalization. The attention output is obtained 1331

by multiplying the attention scores with the value 1332

matrix. 1333

A = softmax

(
QK>
√
d

)
(2) 1334

Attention(Q,K, V ) = A · V (3) 1335

To analyze the behavior of Transformer-based 1336

models during sequence processing, we introduce 1337

the concept of attention patterns, which can be 1338

extracted from the corresponding columnA[:, n] of 1339

the attention scores matrix A. For a bidirectional 1340

encoder like sentence-t5-base, the attention scores 1341

are computed across all tokens in the input sequence 1342

without masking. 1343

As illustrated in Figure 14, for each sentence 1344

and attention head, we extract the values along the 1345

destination dimension of the attention score matrix 1346

at the position of the added token. Thereafter, 1347

a comprehensive statistical analysis is performed 1348

to discern the patterns between sticky tokens and 1349

normal tokens. 1350

Our analysis of attention scores reveals that 1351

sticky tokens exhibit distinct attention patterns 1352

compared to normal tokens. As shown in Figure 15, 1353

when sticky tokens are appended to sentences, 1354

their attention weights in intermediate layers 1355

concentrate disproportionately in high-value ranges 1356

(e.g., weights > 0.4), whereas normal tokens follow 1357

a smoother, more Gaussian/Normal distribution. 1358

This suggests that sticky tokens dominate the 1359

model’s focus and disrupt the balanced contextual 1360

representation of input texts. 1361

This behavior aligns with the anisotropic 1362

nature of text embedding spaces, where token 1363

embeddings occupy narrow, non-uniform regions. 1364

Sticky tokens, likely positioned near dominant 1365

directions in these spaces, amplify their influence 1366
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Categories → Classification Clustering Pair Classification Reranking Retrieval STS Summarization

Datasets → Banking77 Emotion MassiveIntent Biorxiv Medrxiv
TwentyNews

groups

SprintDuplicate

Questions

StackOverflow

DupQuestions
SciDocsRR SciFact ArguAna NFCorpus SICK-R STS16

STS

Benchmark
SummEval

sentence-t5-base 76.60 51.34 69.70 23.11 26.03 49.27 91.23 48.46 73.96 45.76 44.84 28.64 80.18 84.03 85.52 31.39

w/ normal token 75.73 51.30 66.57 20.04 25.06 37.17 87.86 44.85 72.05 44.58 45.41 28.48 76.72 79.69 81.32 30.32

w/ sticky oken 75.20 50.20 66.83 15.02 20.41 35.38 88.39 45.16 71.17 26.76 42.14 13.65 76.32 79.26 81.24 30.84

gte-base-en-v1.5 86.72 46.34 77.67 37.39 32.31 48.66 95.03 52.18 85.16 76.79 63.65 35.85 79.38 85.02 86.06 31.35

w/ normal oken 85.87 46.10 74.92 36.31 32.01 44.68 94.19 50.00 84.67 73.36 62.14 35.22 77.36 81.75 83.65 31.87

w/ sticky token 84.44 44.26 70.36 36.11 31.03 45.20 89.97 46.16 83.77 75.41 61.58 35.77 74.85 76.96 78.49 30.46

bge-base-en-v1.5 83.99 54.61 72.64 36.62 31.68 50.75 96.37 54.62 87.49 73.76 63.62 36.81 80.30 85.47 86.42 31.04

w/ normal token 82.57 52.70 66.98 36.20 30.74 44.27 95.18 50.94 86.59 72.91 60.63 37.15 76.10 80.97 82.02 29.97

w/ sticky oken 82.31 51.98 67.62 35.93 31.06 43.36 94.95 50.99 86.61 73.70 61.31 37.05 77.80 80.11 81.72 30.31

instructor-base 76.92 48.48 66.00 26.40 28.38 52.77 92.06 50.66 79.36 57.88 51.18 30.76 80.02 84.78 85.85 30.57

w/ normal token 75.07 45.79 62.38 18.05 23.13 50.64 88.39 47.66 77.92 57.70 47.45 29.77 75.48 77.97 79.99 30.37

w/ sticky oken 76.37 47.66 64.62 26.05 26.55 50.55 91.30 49.67 76.63 43.47 47.03 23.11 78.86 81.96 84.21 29.17

e5-base 76.27 51.85 66.65 29.92 27.67 43.75 94.19 48.18 81.01 71.88 53.03 37.09 80.66 84.49 86.35 31.04

w/ normal token 74.85 49.91 63.00 28.94 26.51 22.15 91.37 44.11 79.85 71.36 51.13 37.15 76.01 78.17 79.42 30.76

w/ sticky oken 75.13 49.30 61.91 27.02 24.92 20.00 91.53 44.80 80.03 70.95 49.14 37.01 77.17 77.68 80.19 29.99

simcse-bert-base 75.49 45.69 67.21 25.70 25.85 31.67 81.74 40.32 71.14 33.89 39.56 13.49 80.62 80.71 82.69 31.17

w/ normal token 71.42 43.49 60.38 25.11 25.19 28.40 76.54 37.34 70.02 33.66 36.79 13.45 77.53 75.82 78.32 30.76

w/ sticky oken 72.40 43.34 61.03 24.80 25.17 29.22 76.51 38.31 70.25 29.89 38.38 8.84 77.74 77.05 79.53 30.18

all-mpnet-base-v2 81.7 42.23 69.76 34.82 33.42 50.07 90.15 51.98 88.65 65.57 46.52 33.29 80.59 80.03 83.42 27.49

w/ normal token 79.7 40.01 64.1 33.93 32.55 39.2 86.24 47.33 87.77 65.14 44.25 33.2 77.8 68.13 74.11 28.3

w/ sticky oken 79.64 40.65 65.02 34.05 32.16 39.28 85.87 47.79 87.77 64.81 43.98 33.16 78.04 68.2 73.19 26.17

UAE-Large-V1 87.73 51.72 76.24 37.24 31.18 51.72 97.24 55.32 87.49 73.91 66.15 37.61 82.62 86.61 89.06 32.03

w/ normal token 86.09 48.16 72.13 35.79 30.96 40.48 96.23 50.44 86.75 74.51 63.67 37.70 80.72 80.43 84.23 31.99

w/ sticky oken 86.56 50.43 72.79 35.98 30.94 47.20 96.52 52.44 86.94 72.63 63.48 37.79 81.53 83.13 86.00 30.84

Table 9: Results on Downstream Tasks. We compared the performance of 8 models, comparing their baseline

results with sticky tokens and normal tokens.
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Figure 14: A diagram of how to calculate the attention

patterns of sticky and normal tokens.

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(%

)

Layer 0 Attention Weight Distribution

Sticky Tokens
Normal Tokens

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(%

)

Layer 1 Attention Weight Distribution

Sticky Tokens
Normal Tokens

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(%

)

Layer 2 Attention Weight Distribution

Sticky Tokens
Normal Tokens

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(%

)

Layer 3 Attention Weight Distribution

Sticky Tokens
Normal Tokens

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(%

)

Layer 4 Attention Weight Distribution

Sticky Tokens
Normal Tokens

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(%

)

Layer 5 Attention Weight Distribution

Sticky Tokens
Normal Tokens

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(%

)

Layer 6 Attention Weight Distribution

Sticky Tokens
Normal Tokens

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(%

)

Layer 7 Attention Weight Distribution

Sticky Tokens
Normal Tokens

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(%

)

Layer 8 Attention Weight Distribution

Sticky Tokens
Normal Tokens

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(%

)

Layer 9 Attention Weight Distribution

Sticky Tokens
Normal Tokens

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(%

)

Layer 10 Attention Weight Distribution

Sticky Tokens
Normal Tokens

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(%

)

Layer 11 Attention Weight Distribution

Sticky Tokens
Normal Tokens

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y 
(%

)

All Layers Combined Attention Weight Distribution
Sticky Tokens (All Layers)
Normal Tokens (All Layers)

0 1 2 3 4 5 6 7 8 9 10 11
Layer

0

0.05

0.1

0.15

0.2

0.25

W
as

se
rs

te
in

 D
ist

an
ce

0 1 2 3 4 5 6 7 8 9 10 11
Layer

0

0.5

1

1.5

2

2.5

3

KL
 D

iv
er

ge
nc

e

KL Divergence Between Sticky and Normal Tokens Across Layers

Attention Weight Distribution Across Layers

Figure 15: The example distribution of attention patterns.

Sticky tokens (red) exhibit higher frequency in high-

attention regions (>0.4) compared to normal tokens

(blue).

during attention computation. Consequently, their 1367

high attention weights propagate through layers, 1368

overriding semantic relationships between other 1369

tokens and pulling sentence embeddings toward 1370

their own representations. 1371

Layer-Wise Amplification of Anomalies To 1372

illustrate the anomalies across different layers, 1373

we employ the Wasserstein distance (Vaserstein, 1374

1969) to quantify the differences in the outputs 1375

of intermediate layers generated by normal and 1376

sticky tokens. This approach helps uncover the 1377

variations in the model’s internal mechanisms when 1378

processing these two types of tokens. In this 1379

study, a largerWasserstein distance signifies amore 1380

significant divergence in distributions. 1381

The Wasserstein distance (Vaserstein, 1969) 1382

between the attention patterns of sticky and 1383

normal tokens (Figure 16) further elucidates how 1384

anomalies propagate across layers.(We also plotted 1385

the graph of KL divergence, which is similar to 1386

the Wasserstein distance, as shown in Figure 16.) 1387

In early layers (1–6), the divergence remains 1388

moderate, indicating that shallow processing retains 1389
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Figure 16: Wasserstein distance and KL divergence

of the probability distributions between glitch tokens

and normal tokens in different intermediate layers of

ST5_base model.

some robustness. However, from mid to late layers1390

(6–12), the distance increases sharply, peaking at1391

the final layers. This reflects a compounding effect:1392

minor irregularities in early layers are progressively1393

amplified as deeper layers integrate higher-order1394

semantic features.1395

For text embedding models, the amplification1396

disrupts the hierarchical abstraction of semantics.1397

The anomalous intermediate results caused by1398

sticky tokens are not uniformly distributed across1399

all layers of the model but are concentrated1400

and amplified in specific key layers. Sticky1401

tokens destabilize the aggregation of sentence-1402

level features, leading to embeddings that prioritize1403

token-specific artifacts over genuine semantic1404

content.1405
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