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ABSTRACT

Image generation has been dominated by generative adversarial Networks (GANs)
due to its superior ability to generate realistic images. Recently, by decompos-
ing the image generation process into a sequence of denoising steps, denoising
diffusion probabilistic models (DDPMs) have shown remarkable sample quality
and diversity in image generation. However, DDPMs typically face two main
challenges (but GANs do not): the time-expensive sampling process and the se-
mantically meaningless latent space. Although these two challenges start to draw
attention in recent works on DDPMs, they are often addressed separately. In this
paper, by interpreting the sampling process of DDPMs in a new way with a special
noise scheduler, we propose a novel progressive training pipeline to address these
two challenges simultaneously. Concretely, when the DDPMs try to predict the
real images at each time step, we choose to decompose the sampling process into
two stages: generating semantics firstly and then refining details progressively. As
a result, we are able to interpret the sampling process of DDPMs as a refinement
process instead of a denoising process. Motivated by such new interpretation, we
present a novel training pipeline that progressively transforms the attention from
semantics to sample quality during training. Extensive results on two benchmarks
show that our proposed diffusion model achieves competitive results with as few
as two sampling steps on unconditional image generation. Importantly, the latent
space of our diffusion model is shown to be semantically meaningful, which can
be exploited on various downstream tasks (e.g., attribute manipulation).

1 INTRODUCTION

Image generation falls in the most popular research fields in computer vision, which has been dom-
inated by GANs in the past few years (Karras et al., 2018; 2019; 2020b; Anokhin et al., 2021) due
to its superior ability to generate realistic images. Recently, Denoising Diffusion Probabilistic Mod-
els (DDPMs) (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Choi et al., 2021)
have also achieved impressive results in various generation tasks, including image generation (Ho
et al., 2022), audio generation (Chen et al., 2021), and 3D point cloud generation (Luo & Hu, 2021).
More recent works bring further improvements to DDPMs, and show that the generation quality of
DDPMs is comparable to that of GANs. In addition, DDPMs resort to likelihood computation and
thus do not suffer from mode-collapse and training instability like GANs.

Although DDPMs show superior ability in generation tasks, they typically face two main draw-
backs (but GANs do not): the time-expensive sampling process and the semantically meaningless
latent space. Different from GANs that synthesize images with a single forward pass through learned
generator, DDPMs decompose the image generation process into a sequence of denoising steps.
Therefore, DDPMs require hundreds of forward passes to generate high-quality images during in-
ference phase, which is rather time expensive. In addition, a latent variable can be denoised to
different real images by removing different noises at each step (but sampled from the same distribu-
tion) in the sampling process, resulting in that one latent variable is mapped to various real images
and the latent space of DDPMs thus typically lacks high-level semantics and other desirable proper-
ties (but often possessed by GANs). Some recent works (Song et al., 2021c;a; Watson et al., 2022;
Preechakul et al., 2021) start to address these two challenges, respectively. For example, Denoising
Diffusion GAN (Xiao et al., 2022) is proposed to address the slow sampling by removing Gaussian
assumption and adopting conditional GAN to model the denoising distribution with an expressive
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Figure 1: Two different interpretations of the sampling process of DDPMs. The top row shows the
traditional interpretation as a sequence of denoising steps (with their noise scheduler). The second
row shows our interpretation as a sequence of refinement steps (with our special noise scheduler).
Note that these two interpretations are indeed two different partitions of the same generation process.

multimodal distribution, which takes only two sampling steps but achieves competitive sample qual-
ity and mode coverage w.r.t. traditional DDPMs. Diffusion Autoencoders (Preechakul et al., 2021)
adopt an auxiliary encoder to obtain semantically meaningful representations and generate images
conditioned on them. However, all of these methods can address only one of the two challenges.

In this paper, by interpreting the sampling process of DDPMs in a new way with a special noise
scheduler, we propose a novel progressive training pipeline to address these two challenges simul-
taneously. As shown in Figure 1 (top row), the traditional DDPMs consider the sampling process
as a sequence of denoising steps that progressively removes noise from the noisy images. Different
from this interpretation, when DDPMs are supposed to predict the real images at each time step, the
sampling process with the special noise scheduler (see Sec. 3.1) can be interpreted as a sequence of
refinement steps that generates semantics firstly and then refines details progressively (see Figure 1
(second row)), resulting in that the sampling process is decomposed into the semantics generation
stage and detail refinement stage. Note that these two interpretations are indeed two different parti-
tions of the same generation process. Motivated by such interpretation, we present a novel training
pipeline that progressively transforms the attention from semantics to sample quality. In particular,
we introduce an auxiliary encoder to encode the input image into latent vector similar to Diffusion
Autoencoders (Preechakul et al., 2021), and then enforce the generator to recover semantics from
the pure Gaussian noise conditioned on the latent vector at the first step (i.e., the semantics gener-
ation stage). At the other steps, we enforce the generator to refine the details progressively while
preserving the main semantic information of the output of the first step. Importantly, we choose to
train the model by progressively transforming the attention from semantics generation stage to de-
tail refinement stage. With such training pipeline, our model can achieve competitive sample quality
(with as few as two sampling steps) while possessing the semantically meaningful latent space.

Our main contributions are three-fold: (1) We are the first to interpret the sampling process of
DDPMs as a sequence of refinement steps that generates semantics firstly and then refines details
progressively. (2) To address the two main challenges of DDPMs simultaneously, we present a novel
training pipeline based on the new interpretation, which progressively transforms the attention from
semantics to sample quality during training. (3) Extensive results show that our proposed diffusion
model achieves competitive results with as few as two sampling steps on unconditional image gen-
eration. Importantly, the latent space of our model is shown to be semantically meaningful, which
can be exploited on various downstream tasks (e.g., attribute manipulation).

2 BACKGROUND

Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Ho et al., 2020) belong to a family of generative models that decompose the generation process
into a sequence of denoising steps. Concretely, DDPMs define a Markovian forward process that
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gradually adds noise with variance βt (at step t) to the real data x0 ∼ q(x0) in T steps:

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (1)

When T is infinite and the step size βt is infinitesimal, the reverse process (sampling process) can be
described using the same functional form as the forward process (i.e., Gaussian distribution):

pθ(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

where θ denotes the parameters of the denoising model, µθ(xt, t) and Σθ(xt, t) are the mean and
variance of the Gaussian distribution predicted by the denoising model, and p(xT ) = N (xT ; 0, I).
Note that this assumption is never satisfied in practice, and thus the DDPMs can only make approx-
imation. Generally, T is larger, the DDPMs are more accurate. Ho et al. (2020) propose to optimize
the usual variational bound on negative log likelihood for training:

L =
∑
t≥1

Eq[DKL(q(xt−1|xt)||pθ(xt−1|xt)) + C], (3)

where DKL is the KL divergence and C denotes the constant term independent of θ. With the
Gaussian assumption, this bound can be simplified as:

Lsimple =
∑
t≥1

Et,xt,ϵ[∥ϵ− ϵθ(xt, t)∥2], (4)

where ϵ is the noise added to x0 to produce xt, and ϵθ denotes the noise predicted by the generator.
To reduce the number of sampling steps, the state-of-the-art model Denoising Diffusion GAN (Xiao
et al., 2022) proposes to remove the Gaussian assumption and adopts GANs to directly approximate
the true denoising distribution q(xt−1|xt):

min
θ

=
∑
t≥1

Eq[Dadv(q(xt−1|xt)||pθ(xt−1|xt))], (5)

where Dadv is the softened reverse KL divergence (Shannon et al., 2020). Different from previous
works that adopt generator to predict the added noise ϵ and derive the mean of the posterior dis-
tribution, Denoising Diffusion GAN adopts the generator to predict the x0 firstly and then uses the
posterior distribution q(xt−1|xt, x0) to sample xt−1. Although this model can achieve comparative
sample quality w.r.t. traditional DDPMs while takes as few as two steps for sampling, it does not
address another main challenge of DDPMs (i.e., the latent space lacks high-level semantics).

3 PROGRESSIVE DENOISING DIFFUSION GAN

In this section, we firstly introduce a new interpretation of the sampling process of DDPMs with
a special noise scheduler (see Sec. 3.1). Motivated by this interpretation, we decompose the sam-
pling process into two stages: semantics generation stage and detail refinement stage (see Sec. 3.2).
Based on the two-stage sampling process, we propose a novel training pipeline that progressively
transforms the attention from semantics to sample quality (see Sec. 3.3). Note that we focus on the
diffusion models that adopt generator to directly predict the real images xt0 at step t in this section.
However, the diffusion models that adopt generator to predict the added noise at each time step can
be considered as predicting the real images indirectly and thus are easily generalized to this case.

3.1 NEW INTERPRETATION OF SAMPLING PROCESS OF DDPMS

As we have discussed in Sec. 2, diffusion models (including traditional DDPMs and Denoising
Diffusion GAN (Xiao et al., 2022)) consider the sampling process as a Markovian process that
progressively removes noise from noisy images, where each step can be interpreted as a denoising
step. With such interpretation, the denoising model adopts generator (e.g., UNet (Ronneberger
et al., 2015)) to predict the real images from noisy images firstly, and then adopts the posterior
distribution q(xt−1|xt, x0) to sample the less noisy images at each denoising step (shown in the top
row of Figure 1). Different from these previous works, we propose a completely new interpretation
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Figure 2: Illustration of the detailed training process of the semantics generation stage and the detail
refinement stage. We denote the sample xt drawn from pθ(xt|xt+1) as x̃t for easy distinction.

of sampling process in this work. Specifically, we decompose the sampling process into two stages:
semantics generation stage and detail refinement stage, as shown in the second row of Figure 1. At
the semantics generation stage, the generator tries to predict blur images from pure Gaussian noise,
which contains main semantic information of the real images but lacks of realistic details. At the
detail refinement stage, the generator gradually refines the details of the blur images generated in the
semantics generation stage so that the generated images become more realistic. The refining model
firstly perturbs the input image to xt−1 with the posterior distribution, and then predicts the more
realistic image xt−1

0 from xt−1 at each refinement step. In this way, the sampling process of DDPMs
can be considered as a new progressive process that generates semantics at the first step and then
refines the details of generated images progressively at the left steps.

However, due to the noise scheduler of traditional DDPMs and Denoising Diffusion GAN, the se-
mantic information of images is commonly destroyed in the middle of diffusion process (Choi et al.,
2022) instead of the last step. To ensure that the semantic information is destroyed in the last step,
we design a special noise scheduler {βt|t = 1, 2, . . . ,T}: the diffusion step size βt (t < T) is kept
small so that the perturbation does not destroy the semantic information; the diffusion step size βT

is set to be large enough so that the semantic information is destroyed and the images are perturbed
into pure Gaussian noise. Note that the large step size βT does not satisfy the Gaussian assumption
of traditional DDPMs. We thus remove the Gaussian assumption and adopt GAN to approximate the
true denoising distribution q(xt−1|xt) with small T (like Denoising Diffusion GAN). The strategy of
computing such noise scheduler is given in Appendix A.

3.2 TWO-STAGE SAMPLING PROCESS

Our main goal is to address the two main drawbacks of DDPMs (i.e., the time-expensive sampling
process and the semantically meaningless latent space) simultaneously. Based on the assumption of
Denoising Diffusion GAN, T can be set to a small number, which would significantly speed up the
sampling process. Therefore, in this work, we focus on making the latent space of Denoising Diffu-
sion GAN more semantically meaningful. To achieve this, we present a novel two-stage framework
in the following, which is motivated by the proposed interpretation in Sec. 3.1.

Semantics Generation Stage. With the new interpretation described above, the generator should
learn to recover the semantic information of the input images in the semantics generation stage. To
this end, we design a auxiliary encoder that learns to encode the input image x0 into a semantically
meaningful latent vector zT , and adopt the generator to synthesize images conditioned on the in-
formation contained in the latent vector. The training process of the semantics generation stage is
shown in Figure 2 (left). Formally, the input image x0 is fed into the semantic encoder SE to derive
the latent vector zT = SE(x0). The generator G takes the noisy image xT (derived from the forward
process) as input and adopts adaptive group normalization layers (AdaGN) (Dhariwal & Nichol,
2021) to absorb the information contained in the latent vector zT .

Detail Refinement Stage. With the outputs of the semantics generation stage xT0 , the goal of detail
refinement stage is to refine its details progressively while preserving the semantic information of
it. Note that the perturbed image xt contains the semantic information of input image in the training
phase due to the small βt (t < T). The semantic information in zT is thus redundant in this stage.
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Therefore, we inject the random noise z ∼ N (0, I) to the generator G other than zT , which is found
to bring boost to the sample quality (Karras et al., 2019; Xiao et al., 2022). The training process of
each step in detail refinement stage is shown in Figure 2 (right).

Learning Objective. Following Denoising Diffusion GAN (Xiao et al., 2022)), we adopt an adver-
sarial loss to minimize the divergence DKL(q(xt−1|xt)||pθ(xt−1|xt)) :

LAdv=
∑
t≥1

Eq(xt)

[
Eq(xt−1|xt)[− log(Dϕ(xt−1, xt, t))]+Epθ(xt−1|xt)[− log(1−Dϕ(xt−1, xt, t))]

]
, (6)

where Dϕ denotes the discriminator, and pθ(xt−1|xt) is defined as:

pθ(xt−1|xt)=
∫

pθ(x0|xt)q(xt−1|xt, x0)dx0=

∫
p(z̃)q(xt−1|xt, x0 = G(xt, z̃, t))dz̃, (7)

p(z̃) =
{N (0, I), t < T

p(SE(x0)), t = T
. (8)

The similar idea of introducing an auxiliary encoder to learn to encode the input images into seman-
tically meaningful latent vectors is explored in Diffusion Autoencoders (Preechakul et al., 2021),
where a conditional Denoising Diffusion Implicit Model (DDIM) is designed to decode noise
conditioned on the latent vectors and then the model is trained by minimizing the loss function
∥ϵθ(xt, t, zsem) − ϵ∥22 with the Gaussian assumption. Note that Diffusion Autoencoders can learn
the semantically meaningful latent space well without extra objectives due to this special loss func-
tion (L2 loss), which implicitly enforces xt to be close to x0 in semantics. Differently, we follow
Denoising Diffusion GAN (Xiao et al., 2022) to remove the Gaussian assumption for fast sampling
and thus adopt the adversarial loss for training instead of the L2 loss. Importantly, the adversar-
ial loss only guarantees the two distribution q(xt−1|xt) and pθ(xt−1|xt) to be close, but can not
guarantee the two images xt and x0 to be close in semantics. Therefore, to make the latent space
semantically meaningful, the output of the semantics generation stage xT0 is subject to the L1 con-
straints w.r.t. the input image x0 at both pixel level and feature-map level, which encourage the
semantic encoder SE to learn to extract semantically meaningful latent vector and the generator G
to learn to synthesize images containing corresponding semantics conditioned on the latent vector:
LSem = Eq(x0)q(xT |x0)

[
∥G(xT , SE(x0), T )− x0∥1+∥V (G(xT , SE(x0), T ))− V (x0)∥1

]
, (9)

where V (·) denotes the function to extract feature map with pre-trained VGG network (Simonyan
& Zisserman, 2014). To further guarantee the semantics of xT0 is preserved in the detail refinement
stage, we also apply the L1 constraint to the output of each refinement step:

LPer = Eq(x0)q(xt|x0)pθ(xt+1:T )

[
∥G(xt, z, t)− xt+1

0 ∥1
]
, (10)

where xt+1
0 is sampled from pθ(xt+1:T ) with x0 as input.

3.3 PROGRESSIVE TRAINING PIPELINE

Although the sampling process of DDPMs is decomposed into two stages, we follow the traditional
DDPMs to train our model end-to-end. Since each denoising step is independent to the other steps
for DDPMs, they randomly sample t from the uniform distribution for training. Note that the gener-
ator G must learn to synthesize images that preserve the semantic information of xt+1

0 (see Eq. (10)),
but xt+1

0 can not provide precise semantic information at the beginning of training due to the inac-
curate sampling process pθ(xt+1:T ). To alleviate this issue, we present a novel progressive training
pipeline, which progressively transforms the attention from semantics to sample quality. Concretely,
we pick the step in the semantics generation stage (i.e., T) with the probability P and the steps in
the detail refinement stage (i.e., t < T) with probability 1−P . The probability P linearly decreases
as the number of training epochs increases:

P = Pmax − (Pmax − Pmin)
n

N
, (11)

where n and N denote the current and total number of training epochs, respectively. Pmax and
Pmin are two hyperparameters that control the trade-off between semantics and sample quality. For
t < T, we randomly sample t from the uniform distribution, i.e., t ∼ Uniform({1, . . . ,T − 1}).
With such dynamic sampling strategy, the model pays more attention to semantics generation at the
beginning of training. As the training process goes on, the model gradually diverts attention to detail
refinement. When this happens, the model has learnt to generate semantically meaningful image xT0 ,
and the refinement steps thus can be trained efficiently based on the semantic information of xT0 .
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4 RELATED WORKS

Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Ho et al., 2020) aim to learn to generate data from the pure Gaussian noise by the finite-
time reversal of a diffusion process, which transits noisy data to less noisy data in each step. Due
to its superior performance on sample quality and mode coverage, DDPMs have been deployed
in various generation tasks, such as unconditional image generation (Ho et al., 2020; Dhariwal &
Nichol, 2021; Nichol & Dhariwal, 2021), text-to-image generation (Nichol et al., 2022; Rombach
et al., 2021), image super-resolution (Saharia et al., 2021; Li et al., 2022), and text-driven image
editing (Avrahami et al., 2021). However, DDPMs typically face two challenges: the sampling
process of DDPMs is time-expensive, and the latent space of DDPMs lacks high-level semantics.

To address the first challenge, a number of recent methods have been proposed. Song et al. (2021a);
Watson et al. (2022); Kong & Ping (2021); Jolicoeur-Martineau et al. (2021a) employ various sam-
pling strategies to reduce the number of sampling steps, but still require hundreds of sampling steps
to generate high-quality images. Luhman & Luhman (2021) adopt knowledge distillation to convert
DDPM into a new model that can generate images in one step, resulting in inferior sample quality
w.r.t. GANs. Xiao et al. (2022) balance the efficiency of sampling process, the sample quality and
the mode coverage by removing the Gaussian assumption and modeling the denoising distribution
with an expressive multimodal distribution, which reduces the required steps in both training and
inference phases while achieving competitive results in sample quality and mode coverage.

However, these methods focus on addressing the first challenge, and ignore the semantics of the
latent space of DDPMs. Note that semantically meaningful latent space is widely explored in
other deep generative models (e.g., GAN (Goodfellow et al., 2020) and VAE (Kingma & Welling,
2013)), which is useful for various downstream tasks (e.g., controllable image manipulation with
GAN (Patashnik et al., 2021; Yang et al., 2021; Zhu et al., 2020) and model-based reinforcement
learning with VAE (Hafner et al., 2019; Freeman et al., 2019; Ha & Schmidhuber, 2018)). To make
the latent variables more meaningful, Diffusion Autoencoders (Preechakul et al., 2021) design an
auxiliary encoder to encode the input image into a semantically meaningful latent vector and adopt
DDIM (Song et al., 2021a) to reconstruct the input image conditioned on the latent vector, which re-
quires hundreds of sampling steps to generate high-quality images. In this paper, by interpreting the
sampling process of DDPMs in a completely new way with the special noise scheduler, we present
a novel progressive training pipeline to address the two main challenges of DDPMs simultaneously.

5 EXPERIMENTS

5.1 DATASETS AND SETTINGS

Datasets. To evaluate the effectiveness of our proposed diffusion model, we mainly conduct exper-
iments on the CelebA-HQ (Karras et al., 2018) dataset, which has 30,000 high-quality face images
of the resolution 256 × 256. Moreover, we also conduct experiments on the CIFAR-10 (Krizhevsky,
2009) dataset, since it is widely used in previous works. CIFAR-10 consists of 60,000 diverse images
from 10 different classes. We follow the standard training/test split of each dataset.

Implementation Details. Our proposed diffusion model is implemented on top of Denoising Dif-
fusion GAN (Xiao et al., 2022), which adopts UNet as the generator and a time-independent CNN
as the discriminator. Moreover, the number of time steps T is set to 2 in all experiments. Pmax

and Pmin are empirically set to 0.8 and 0.4, respectively. We use 8 V100 GPUs to train our model
on both CelebA-HQ and CIFAR-10, which takes about 160 hours and 50 hours, respectively. For
unconditional generation, we following Diffusion Autoencoders (Preechakul et al., 2021) to train an
extra diffusion model to sample the latent vectors. The code and models will be released soon.

Evaluation Metrics. We adopt the Frechét Inception Distance (FID) (Heusel et al., 2017) and
Inception Score (IS) (Salimans et al., 2016) to evaluate the quality of generated images, which are
commonly used in previous works. Following Denoising Diffusion GAN, we utilize the improved
recall score (Kynkäänniemi et al., 2019) to evaluate the diversity of generated images. For fair
comparison, we generate 30,000 images for CelebA-HQ and 50,000 images for CIFRA-10 during
evaluation, and compute the three metrics with the generated images and images in the training set.
To evaluate the efficiency of sampling process, we also report the clock time of generating a batch
of 100 images on a V100 GPU and the number of function evaluations (NFE) as metrics. Note that
the NFE of our model does not contain the number of steps to sample the latent vectors.
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Table 1: The results of the ablation study of
our proposed full diffusion model for uncon-
ditional generation on CelebA-HQ. The re-
sult in each row is obtained by adding the
corresponding component to the model in the
last row (except the first row). The second-
best result is marked by underline.
Method Semantic FID ↓
Baseline N 7.64
+ Semantic encoder N 5.88
+ L1 constraint at pixel level Y 6.77
+ L1 constraint at feature-map level Y 6.66

+ Progressive training pipeline (ours) Y 6.47

Table 2: Quantitative results for unconditional
high-quality generation on CelebA-HQ.

Method Semantic FID ↓
NVAE (Vahdat & Kautz, 2020) - 29.7
VAEBM (Xiao et al., 2021) - 20.4
NCP-VAE (Aneja et al., 2021) - 24.8

PGGAN (Karras et al., 2018) Y 8.03
VQ-GAN (Esser et al., 2021) Y 10.2
DC-AE (Parmar et al., 2021) Y 15.8

Score SDE (Song et al., 2021c) N 7.23
LSGM (Vahdat et al., 2021) N 7.22
UDM (Kim et al., 2021) N 7.16
LDM, T=500 (Rombach et al., 2021) N 5.11
Denoising Diffusion GAN (Xiao et al., 2022) N 7.64
P2, T=500 (Choi et al., 2022) N 6.91
Ours, T=2 Y 6.47

5.2 ABLATION STUDIES

To demonstrate the contributions of our proposed components and provide insightful analysis of our
model, we conduct ablation studies on CelebA-HQ. Concretely, we consider the Denoising Diffusion
GAN (Xiao et al., 2022) as the baseline, and add various components on the top of it gradually. We
first add the semantic encoder (denoted as ‘+ Semantic encoder’) on the top of the baseline, which
injects the latent vector to the generator for each step t instead of the random noises. Note that
the resultant model can be considered as the simple combination of Denoising Diffusion GAN and
Diffusion Autoencoders (Preechakul et al., 2021). Further, we add the L1 constraint at pixel level to
the model (denoted as ‘+ L1 constraint at pixel level’). Subsequently, we add the L1 constraint to
the feature maps extracted by the pre-trained VGG network when applying the two L1 constraints
to the step T only and injecting the random noise for t < T (denoted as ‘+ L1 constraint at feature
map level’ for short). Finally, we add the constraint in Eq. (10) to the model and train it with the
proposed progressive training pipeline (denoted as ‘+ progressive training pipeline’ for short).

Semantics. To the best of our knowledge, there is no effective metric to evaluate how the space
is semantically meaningful. Therefore, we indirectly evaluate this by exploring the interpolation
results of ablated models (i.e., the interpolation results are more smooth, the latent space is more
semantically meaningful), which is commonly used in the literature (Preechakul et al., 2021; Wu
et al., 2022; Kingma & Dhariwal, 2018). For baseline and its variants, both the latent space and pixel
space could contain high-level semantics, and thus we explore these two spaces separately. Note that
the variables in the latent space of baseline are the random noises injected at each step, while that
of the variants are the vectors extracted by the semantic encoder. Concretely, we randomly generate
two images with two random noises in the latent space (or pixel space), while inputting the same
noises in the other space. We then generate images with the linear interpolation of the two random
noises. The interpolation results are shown in Figure 3. We can observe that: (1) The interpolation
results of the baseline are not smooth in both latent space and pixel space, indicating that the two
spaces of the baseline are semantically meaningless (first row). (2) Adding the semantic encoder on
the top of baseline makes the main semantics of generated images be controlled by the variables in
the latent space. However, the latent space is still semantically meaningless. Although the results
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Table 3: Quantitative results for unconditional generation on CIFAR-10.
Method Semantic IS ↑ FID ↓ Recall ↑ NFE ↓ Time (s) ↓
Glow (Kingma & Dhariwal, 2018) Y 3.92 48.9 - 1 -
PixelCNN (van den Oord et al., 2016) N 4.60 65.9 - 1024 -
NVAE (Vahdat & Kautz, 2020) - 7.18 23.5 0.51 1 0.36
IGEBM (Du & Mordatch, 2019) Y 6.02 40.6 - 60 -
VAEBM (Xiao et al., 2021) - 8.43 12.2 0.53 16 8.79

SNGAN (Miyato et al., 2018) - 8.22 21.7 0.44 1 -
SNGAN+DGflow (Ansari et al., 2021) - 9.35 9.62 0.48 25 1.98
TransGAN (Jiang et al., 2021) Y 9.02 9.26 - 1 -
StyleGAN2 w/o ADA (Karras et al., 2020a) Y 9.18 8.32 0.41 1 0.04
StyleGAN2 w/ ADA (Karras et al., 2020a) Y 9.83 2.92 0.49 1 0.04
StyleGAN2 w/ Diffaug (Zhao et al., 2020) Y 9.40 5.79 0.42 1 0.04

DDPM (Ho et al., 2020) N 9.46 3.21 0.57 1000 80.5
NCSN (Song & Ermon, 2019) N 8.87 25.3 - 1000 107.9
Adversarial DSM (Jolicoeur-Martineau et al., 2021b) N - 6.10 - 1000 -
Likelihood SDE (Song et al., 2021b) N - 2.87 - - -
Score SDE (VE) (Song et al., 2021c) N 9.89 2.20 0.59 2000 423.2
Score SDE (VP) (Song et al., 2021c) N 9.68 2.41 0.59 2000 421.5
Probability Flow (VP) (Song et al., 2021c) N 9.83 3.08 0.57 140 50.9
LSGM (Vahdat & Kautz, 2020) N 9.87 2.10 0.61 147 44.5
DDIM, T=50 (Song et al., 2021a) N 8.78 4.67 0.53 50 4.01
FastDDPM, T=50 (Kong & Ping, 2021) N 8.98 3.41 0.56 50 4.01
Recovery EBM (Gao et al., 2021) N 8.30 9.58 - 180 -
Improved DDPM (Nichol & Dhariwal, 2021) N - 2.90 - 4000 -
VDM (Kingma et al., 2021) N - 2.90 - 4000 -
UDM (Kim et al., 2021) N 10.1 2.33 - 2000 -
D3PMs (Austin et al., 2021) N 8.56 7.34 - 1000 -
Gotta Go Fast (Jolicoeur-Martineau et al., 2021a) N - 4.00 - 1000 -
DDPM Distillation (Luhman & Luhman, 2021) N 8.36 9.36 0.51 1 -
Analytic-DDPM (Bao et al., 2022) N - 4.11 - 10 -
DPM-solver (Lu et al., 2022) N - 5.28 - 12 -
Denoising Diffusion GAN (Xiao et al., 2022) N 9.63 3.75 0.57 4 0.21
Ours Y 9.48 4.08 0.62 2 0.16

in the pixel space are more smooth, it only affects minor semantics (second row). (3) Adding
the L1 constraint at pixel level further makes the semantics of generated images be controlled by
the variables in the latent space, while the variables in the pixel space only affects minor details
(semantically meaningless). Notice that the interpolation results in the latent space are smooth, i.e.,
it is semantically meaningful (third row). This finding holds for our full model (fourth row).

Sample Quality. We explore how our proposed components contribute to the sample quality in
unconditional generation. The results of ablation study are shown in Table 1. It can be seen that:
(1) The simple combination of Denoising Diffusion GAN and Diffusion Autoencoder can bring a
boost in FID. However, it can not make the latent space semantically meaningful (see Figure 3).
(2) Adding the L1 constraint at pixel level makes the latent space semantically meaningful at the
cost of sample quality, indicating that forcing the model to reconstruct the input image with the
latent vector extracted by the auxiliary encoder is essential to learn semantically meaningful latent
space for DDPMs. (3) Our simple but effective modification brings a boost in FID. Importantly, our
proposed progressive training pipeline can further improve the FID (but ablating the constraint in
Eq. (10) from this progressive pipeline leads to a drop in our extra experiments).

5.3 COMPARISON TO THE STATE-OF-THE-ARTS

Furthermore, we compare our diffusion model with the state-of-the-arts in the unconditional gen-
eration tasks. The quantitative results on CelebA-HQ (that contains high-resolution images) are
shown in Table 2. We can observe that our diffusion model outperforms all the competitors except
LDM (Rombach et al., 2021) in unconditional high-resolution generation. However, LDM requires
500 steps in sampling process, which takes about 210 seconds to generate a batch of 100 images
on a V100 GPU (our model takes only 2.3 seconds). Furthermore, we also make comparison to the
state-of-the-art methods on CIFAR-10, and the results are shown in Table 3. We can observe that our
diffusion model achieves competitive results in sample quality (IS and FID) and mode coverage (Re-
call) but with much fewer sampling steps. Note that all of the DDPM-based methods that outperform
our diffusion model in sample quality require more than 50 steps for sampling (except Denoising
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Figure 4: Samples generated by our model on CelebA-HQ (256×256) and CIFAR-10 (32×32).

Varying Tz Varying Tx Varying z

Figure 5: Samples generated by varying one of the three inputs of our diffusion model on CelebA-
HQ (256×256) while keeping the other two inputs unchanged. Note that the top-left images of the
three columns/groups are exactly the same due to the same inputs.

Diffusion GAN), but our diffusion model requires only two sampling steps to achieve competitive
results, which speeds up the sampling process more than 20×. In particular, our diffusion model
achieves competitive sample quality w.r.t. Denoising Diffusion GAN (our baseline model) with
fewer steps and outperforms it in mode coverage. Importantly, the sample quality of our model out-
performs that of Denoising Diffusion GAN on CelebA-HQ, indicating that our proposed method is
more effective on generating high-resolution images. We show the qualitative results on CelebA-HQ
and CIFAR-10 in Figure 4. More generation samples are given in Appendix B.

5.4 ADDITIONAL STUDIES

Finally, we explore how the three inputs of our model (i.e., zT , z and xT ) affect the content of
images generated by our model. Concretely, we generate images by varying only one of the three
inputs each time while keeping the other two inputs unchanged. The generated samples are shown in
Figure 5. We can observe that the semantics of generated images is mainly controlled by zT . With
the constraints in Eq. (9) and Eq. (10), xT can only affect minor details of the generated image.
The random noise z affects some obvious details of the generated images (e.g., the color of skin
and eyes), but does not affect the main semantics of generated images. Note that this issue can be
alleviated by injecting zT at each time step, which leads to worse sample quality.

6 CONCLUSION

In this work, we firstly introduce a new interpretation of sampling process of DDMPs. Based on this
interpretation, we propose a novel progressive training pipeline to address the two main challenges
of DDPMs simultaneously, which are only separately explored in previous works. Extensive experi-
ments on two benchmark show that our proposed model can achieve comparative results with as few
as two sampling steps on unconditional images generation. Importantly, our diffusion model can
generate smooth interpolation results, indicating that the latent space of our model is semantically
meaningful and it is readily exploited on various downstream tasks.

9
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A STRATEGY OF COMPUTING βt

The proposed novel interpolation requires a special noise scheduler {βt|t = 1, 2, . . . ,T} so that
the diffusion model can recover the semantics at the T step. In this section, we introduce a simple
strategy to compute such special noise scheduler.

The main idea of our strategy is to compress all steps t > t̂ in the common scheduler into one step,
where t̂ denotes the step that destroys the semantics. Concretely, following Denoising Diffusion
GAN (Xiao et al., 2022), we define the initial noise scheduler as {βt|t = 1, 2, . . . , T̂} (T̂ > T),
which is computed based on the continuous-time diffusion model formulation:

βt = 1− e−βmin(
1
T̂
)−0.5(βmax−βmin)

2t−1

T̂2 , (12)

where βmax and βmin are set to 20 and 0.1, respectively. The value of t̂ is derived by the value
signal-to-noise ratio (SNR). As stated in Choi et al. (2022), the model leanrs the content when SNR
is between 10−2 and 100. We thus empirically set the step t̂ as that SNR(t̂) > 10−1 and SNR(t̂+ 1)
< 10−1. To ensure that the images are destroyed at the step t̂, we set the βt̂ as:

βt̂ = 1−
ᾱT̂

ᾱt̂−1

. (13)

We then discard the steps t > t̂, and set the variance of noise of t < t̂ to βt, which is the same
as that in the initial noise scheduler. The formed special noise scheduler is formally defined as
{β1, β2, . . . , βt̂}. Note that we can not determine the value of t̂ before computing the SNR. There-
fore, to obtain the special noise scheduler for desired T with this strategy, we have to compute the
SNR for multiple noise schedulers {βt|t = 1, 2, . . . , T̂} with different T̂ so that we can determine
t̂ = T. Other strategies to compute such special noise scheduler are possible, but we do not explore
them because the strategy to compute βt is not the scope of this paper.

B ADDITIONAL QUALITY RESULTS

We show additional samples of unconditional generation on the CelebA-HQ dataset in Figure 6. We
also give additional interpolation results of our full model in Figure 7, indicating that the latent space
of our model indeed contains high-level semantics.
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Figure 6: Additional samples generated by our model on CelebA-HQ (256×256).
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Figure 7: Additional interpolation results of our full model. Each row shows the interpolation
between the the leftmost image and the rightmost image.
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