Making Transformers Solve Compositional Tasks

Anonymous ACL submission

Abstract

Several studies have reported the inability of
Transformer models to generalize composi-
tionally, a key type of generalization in many
NLP tasks such as semantic parsing. In this
paper we explore the design space of Trans-
former models showing that the inductive bi-
ases given to the model by several design deci-
sions significantly impact compositional gen-
eralization. We identified Transformer config-
urations that generalize compositionally sig-
nificantly better than previously reported in
the literature in a diverse set of compositional
tasks, and that achieve state-of-the-art results
in a semantic parsing compositional general-
ization benchmark (COGS), and a string edit
operation composition benchmark (PCFG).

1 Introduction

Although modern neural network architectures
reach state-of-the-art performance in many chal-
lenging natural language tasks, they seem to exhibit
a low amount of “compositional generalization”,
i.e., the ability to learn a set of basic primitives and
combine them in more complex ways than those
seen during training (Hupkes et al., 2020). For ex-
ample, suppose a system has learned the meaning
of “jump” and that “jump twice” means that the
action “jump” has to be repeated two times. Upon
learning the meaning of the action “jax”, it should
be able to infer what “jax twice” means. Compo-
sitional generalization is a key aspect of natural
language and many other tasks we might want ma-
chine learning models to learn.

While both humans and classical Al techniques
(such as grammars or search-based systems) can
handle compositional tasks with relative ease, it
seems that modern deep learning techniques do not
possess this ability. A key question is thus: Can
we build deep learning architectures that can also
solve compositional tasks? In this paper we focus
on Transformers (Vaswani et al., 2017), which have

been shown in the literature to exhibit poor compo-
sitional generalization (see Section 2). Through an
empirical study, we show that this is not necessar-
ily true. With the goal of creating general models
that generalize compositionally in a large range of
tasks, we show that several design decisions, such
as position encodings, decoder type, weight shar-
ing, model hyper-parameters, and formulation of
the target task result in different inductive biases,
with significant impact for compositional general-
ization!. We use a collection of twelve datasets
designed to measure compositional generalization.
In addition to six standard datasets commonly used
in the literature (such as SCAN (Lake and Baroni,
2018), PCFG (Hupkes et al., 2020), CFQ (Keysers
et al., 2019) and COGS (Kim and Linzen, 2020)),
we also use a set of basic algorithmic tasks (such
as addition, duplication, or set intersection) that al-
though not directly involving natural language, are
useful to obtain insights into what can and cannot
be learned with different Transformer models.
The main contributions of this paper are: (1) A
study of the Transformer design space, showing
which design choices result in compositional induc-
tive learning biases across a variety of tasks. (2)
state-of-the-art results in some of the datasets used,
such as COGS, where we report a classification
accuracy of 0.784 using an intermediate representa-
tion based on sequence tagging (compared to 0.35
for the best previously reported model (Kim and
Linzen, 2020)), and the productivity and system-
aticity splits of PCFG (Hupkes et al., 2020).

2 Background

This section briefly provides background on com-
positional generalization and Transformer models.
2.1 Compositional Generalization

Compositional generalization can manifest in dif-
ferent ways. Hupkes et al. (2020) identified five

'Source code: blinded for peer review.

different types, such as systematicity (recombina-
tion of known parts and rules) and productivity
(extrapolation to longer sequences than those seen
during training). An example of productivity would
be if a model has learned to add, subtract, and
multiply, and how to use parenthesis to associate
arguments in simple expressions, and we expect
it to generalize this knowledge to larger expres-
sions. Compositional generalization is related to
the general problem of out-of-distribution general-
ization. Hence, we can also see it as the problem of
how models can discover symmetries in the domain
(such as the existence of primitive operations or
other regularities) that would generalize better to
out-of-distribution samples than shortcuts (Geirhos
et al., 2020), which would only work on the same
distribution of examples seen during training.

Early work focused on showing how different
deep learning models do not generalize composi-
tionally (LisSka et al., 2018). For example LiSka
et al. (2018) showed that while models like LSTMs
are able to generalize compositionally, it is un-
likely that gradient descent converges to a solution
that does so (only about 2% out of 50000 train-
ing runs achieved a generalization accuracy higher
than 80% in a compositional task, while they had
almost perfect performance in training). Datasets
like SCAN (Lake and Baroni, 2018), PCFG (Hup-
kes et al., 2020), Arithmetic language (Veldhoen
et al., 2016), or CFQ (Keysers et al., 2019) were
proposed to show these effects. A key contribution
of this paper is to challenge the assumption that
Transformers do not generalize compositionally.

Work toward improving compositional gen-
eralization includes ideas like Syntactic at-
tention (Russin et al.,, 2019), increased pre-
training (Furrer et al., 2020), data augmenta-
tion (Andreas, 2019), intermediate representa-
tions (Herzig et al., 2021), structure annota-
tions (Kim et al., 2021) or Differential Neural Com-
puters (Graves et al., 2016). Specialized architec-
tures that achieve good performance in specific
compositional generalization tasks also exist. For
example, Liu et al. (2020) propose a model made up
of a “composer” and a “solver”, achieving perfect
performance on SCAN. Despite this growing body
of work, the problem remains largely unsolved.
The most related concurrent work to ours is that of
Csordas et al. (2021), who also evaluate relative at-
tention but also explore other aspects such as early
stopping, which we did not consider in this paper.

2.2 Transformer Models

Models based on Transformers (Vaswani et al.,
2017), such as BERT (Devlin et al., 2018), or vari-
ants (Yang et al., 2019; Lan et al., 2019; Raffel
et al., 2019) yield state-of-the-art results in many
NLP tasks such as language modeling (Child et al.,
2019; Sukhbaatar et al., 2019; Rae et al., 2019; Ki-
taev et al., 2020), question answering (Ainslie et al.,
2020; Lan et al., 2019; Zaheer et al., 2020; Belt-
agy et al., 2020), and summarization (Zhang et al.,
2019). However, existing studies show that they do
not have good compositional generalization. In the
context of this paper, we will consider the original
Transformer architecture (see the center of Figure
2), and expand upon it.

The standard Transformer model consists of two
main components (see the center of Figure 2): an
encoder and a decoder, each of which consists of
a series of layers. Each layer contains an attention
sublayer followed by a feed-forward sublayer (the
decoder has two attention sublayers for decoder-
to-decoder and decoder-to-encoder attention). The
input of a Transformer is a sequence of token em-
beddings, and the output is a sequence of tokens
generated one at a time by predicting based on the
output distribution generated by the decoder. To
provide a notion of token “order” a set of position
encodings are typically added to the embedding of
each input token to indicate sequence order.

We will use [to denote the number of en-
coder/decoder layers, d for the dimensionality of
token embeddings, f for the intermediate dimen-
sionality used by the feed-forward sublayer, and h
for the number of attention-heads in the attention
sublayers. The original Transformer model used
[=06,d=>512, f = 2048 and h = 8, as their base
configuration. In this paper, we use parameters
much smaller than that, as we are evaluating the
architectural decisions on relatively small datasets.

3 Evaluation Datasets

We use a collection of 12 datasets that require dif-
ferent types of compositional generalization. Six
of those dataset consist of “algorithmic” tasks (ad-
dition, reversing lists, etc.), and six of them are
standard datasets typically used to evaluate com-
positional generalization (most involving natural
language inputs or outputs). We note that our al-
gorithmic tasks mostly require productivity-style
compositional generalization, while other datasets
also require systematicity or synonimity (Hupkes

Addition:

Input: # # # 3 6 7 [SEP] # # 1 4 9 1 [END] Input:
Output: # # 1 8 5 8 [END] Output:
AdditionNegatives:

Input: # # - 3 6 7 [SEP] # # 1 4 9 1 [END]
Output: # # 1 1 2 4 [END]

SCAN-length / SCAN-add-jump:

look around right and walk left twice [END]
I_TURN_RIGHT I_LOOK I_TURN RIGHT I_LOOK
I _TURN RIGHT I LOOK I TURN RIGHT I LOOK
I_TURN_LEFT I_WALK I_TURN_LEFT I_WALK [END]

PCFG-productivity / PCFG-systematicity

Input:

Reverse: Output;
Input: 1 3 3 7 2 [END]
Output: 2 7 3 3 1 [END] COGS
Input:
Duplication: Output:
Input: 1 3 5 7 2 [END]
Output: 1 3 57 2 1 3 5 7 2 [END]
CFQ
Cartesian: Input:
Input: 1 2 3 [SEP] a b [END]
Output: 1 a [SEP] 2 a [SEP] 3 a [SEP] Output:

1 b [SEP] 2 b [SEP] 3 b [END]

Intersection:

Input: a4 bl f6 [SEP] £7 a4 c3 [END]
Output: true [END]

swap_first last copy remove_ second E18 E15
Q6 , P15 L18 X10 I15 Y14 [END]

Q6 E15 E18 [END]
A rose was helped by a dog . [END]
rose (X 1) AND help . theme (x 3, x 1)

AND helpi. agent (x 3, x _ 6)
AND dog (x _ 6) [END]

Did a person marry a cinematographer ,
influence M1 , and influence M2 [END]

SELECT count (*) WHERE {

?x0 a ns:people.person .

?xX0 ns:influence.influence node.influenced M1 .
?x0 ns:influence.influence node.influenced M2 .
?x0 ns:people.person.spouse_s ?x1 .

?x1l a ns:film.cinematographer .

FILTER (?x0 != ?x1) } [END]

Figure 1: Examples from the different datasets used in our experiments.

et al., 2020). Specifically, we used the following
datasets (see Table 7 in Appendix F and Figure 1):

Addition (Add): A synthetic addition task,
where the input contains the digits of two integers,
and the output should be the digits of their sum.
The training set contains numbers with up to 8 dig-
its, and the test set contains numbers with 9 or 10
digits. Numbers are padded to reach a length of 12.

AdditionNegatives (AddNeg): The same as the
previous one, but 25% of the numbers are negative
(preceded with the — symbol).

Reversing (Reverse): Where the output is ex-
pected to be the input sequence in reverse order.
Training contains sequences of up to 16 digits, and
the test set contains lengths between 17 to 24.

Duplication (Dup): The input is a sequence of
digits and the output should be the same sequence,
repeated twice. Training contains sequences up to
16 digits, and test from 17 to 24.

Cartesian (Cart): The input contains two se-
quences of symbols, and the output should be their
Cartesian product. Training contains sequences of
up to 6 symbols (7 or 8 for testing).

Intersection (/nters): Given two sequences of
symbols, the output should be whether they have
a non-empty intersection. Training contains sets
with size 1 to 16, and testing 17 to 24.

SCAN-length (SCAN-I): The length split of the
SCAN dataset (Lake and Baroni, 2018).

SCAN-add-jump (SCAN-aj): The add primi-
tive jump split of the SCAN dataset (Lake and Ba-
roni, 2018).

PCFG-productivity (PCFG-p): The productiv-
ity split of the PCFG dataset (Hupkes et al., 2020)

PCFG-sytematicity (PCFG-s: The systematic-
ity split of the PCFG dataset (Hupkes et al., 2020).
COGS: The generalization split of the COGS
semantic parsing dataset (Kim and Linzen, 2020).

CFQ-mcd1 (CFQ): The MCD1 split of the CFQ
dataset (Keysers et al., 2019).

Note that most of these datasets are trivial if
the training and test sets come from the same dis-
tribution, and most Transformer models achieve
near 100% accuracy (except a few hard tasks like
the Cartesian product or set intersection). Hence,
splitting train and test data in a way that requires
compositional generalization is key (e.g., having
examples with larger sequences in the test set than
in the training set). We want to make sure models
do not just learn shortcuts (Geirhos et al., 2020)
that work well in in-distribution data but do not
generalize to out-of-distribution data.

4 Empirical Results

In this section we present an evaluation of the com-
positional generalization abilities of Transformers
with different architectural configurations. Specif-
ically we evaluated: (1) the type of position en-
codings, (2) the use of copy decoders, (3) model
size, (4) weight sharing, and (5) the use of interme-
diate representations for prediction (see Figure 2).
For this systematic experimentation, we used small
Transformer models, without pre-training (all mod-
els are trained from scratch, as most datasets are
synthetic). Even if previous work has reported ben-
efits of pre-training in some compositional tasks
(e.g., in CFQ (Furrer et al., 2020)), we aim at dis-
entangling the effects of each architecture decision

Copy Decoder
Attention

Output Probabilities
(with copy decoder)

Add & Norm

Feed
o S > Forward

Intermediate representation
to final output

A

p Output Probabilities
! (without copy decoder)

—{ Add & Norm |

[Add & Norm —

x!

A

Feed
Forward

Dec2Enc
Attention

/

Multi-head Xh <

Attention

—{ Add & Norm |

[Add & Norm —

Enc2Enc
Attention

xl‘

Dec2Dec
Attention

bias

Relative

Absolute
Position

H
Encodings <T>

\4

Decoder Position

Encodings

Input
Embedding

|

Output
Embedding

A — |
embedding

o Iinuts

Outputs i

Figure 2: An illustration of a Transformer, extended with the additional components necessary to explore the
different dimensions we experiment with in this paper: (1) position encodings, (2) copy decoder, (3) model size
(l,d, f, h), (4) weight sharing, and (5) intermediate representations.

in and of itself, in the search for compositional
inductive biases.

Our results show that, while these decisions do
not affect certain types of compositional general-
ization tasks, we see significant gains in others.

We report the average of at least 3 training runs
(for algorithmic tasks, we use at least 5 train-
ing runs, and 10 for set intersection since they
have a higher variance; see Appendix B). We use
sequence-level accuracy as the evaluation metric:
an output sequence with even just a single wrong
token is considered wrong.

4.1 Position Encodings

While the original Transformer model (Vaswani
et al., 2017) and BERT (Devlin et al., 2018) used
absolute position encodings, later models such as
TS (Raffel et al., 2019) or ETC (Ainslie et al., 2020)
use relative position encodings (Shaw et al., 2018).
Relative position encodings assign a label to each
pair of tokens in the input (typically representing
their relative distance in the input, up to a maxi-
mum radius). So, there is a label used for tokens
attending to a token “two positions to the right”,
etc. One interesting thing about relative position
encodings is that they are position invariant, i.e.
two tokens that are & positions apart will attend to
each other in the same way, regardless of where
they are in the sequence, and hence allowing mod-
els to capture further symmetries in the domain. We
compare the following position encodings:

abs: sinusoidal absolute position encodings (as
used in the original Transformer)?.

rel-e: relative position encodings, where the rel-
ative position label defines a learnable embedding
that is added to the key during the attention process.
We used a maximum local attention radius of 16,
which means that we have the following relative po-
sition labels {l_lﬁ, 15, .., 11,00, 11, ..., 115, llﬁ}.
Tokens that are further than 16 positions apart get
the [_1¢ or [labels.

rel-b: relative positions define a learnable bias
that is added to the attention weight of each atten-
tion pair. This is the attention mechanism used by
T5 (although they use a logarithmic scheme for
representing relative positions).

rel-eb: relative position using both a learnable
embedding vector and a learnable bias scalar.

While relative positions are straightforward for
encoder-to-encoder and decoder-to-decoder atten-
tion, it is unclear what the relative positions should
be for decoder-to-encoder. Hence, we tested three
alternatives (rel2-e, rel2-b and rel2-eb in our result
tables). rel-* methods do not use relative position
labels in decoder to encoder attention, and rel2-
* do (where token y; in the decoder attending to
token x; in the encoder will have label /;_;.

Table 1 shows sequence-level classification ac-

“We did not experiment with learnable absolute position
encodings, as test examples in our datasets are longer than
anything seen during training, hence potentially containing
untrained embeddings.

Add AddNeg Reverse Dup Cart Inters | SCAN-1 SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
abs 0.005 0.042 0.000 0.000 0.000 0.500 | 0.000 0.003 0.174 0434 0.177 0.304 0.137
rel-e 0.004 0.018 0422 0486 0.004 0.501 | 0.064 0.003 0238 0451 0.170 0.322 0.224
rel-b 0.002 0.005 0277 0362 0.054 0.501 | 0.049 0.007 0.042 0.102 0.126 0.276 | 0.150
rel-eb | 0.003 0.011 0486 0444 0.000 0.500 | 0.089 0.011 0.257 0452 0249 0.290 | 0.233
rel2-e | 0.988 0830 0.787 0.010 0.000 0.501 | 0.032 0.007 0.159 0353 0259 0322 || 0.354
rel2-b | 0.140 0.708 0.056 ~ 0.253 0.000 ~ 0.504 | 0.080 0.002 0.041 0.117 0.138 0.319 0.197
rel2-eb| 0978 0.779 0.737 0.017 0.000 0.504 | 0.091 0.010 0.194 0374 0.159 0.311 0.346

Table 1: Sequence-level accuracy for different position encoding methods. Bolded results represent the best results

for each dataset in this table.

Add AddNeg Reverse Dup Cart Inters | SCAN-1 SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
abs 0.005 0.042 0.000 0.000 0.000 0.500 | 0.000 0.003 0.174 0434 0.177 0.304 | 0.137
rel-eb 0.003 0.011 0486 0444 0.000 0.500 | 0.089 0.011 0.257 0452 0249 0290 | 0.233
rel2-eb 0978 0.779 0.737 0.017 0.000 0.504 | 0.091 0.010 0.194 0.374 0.159 0311 || 0.346
abs-c 0.006 ~ 0.021 0.000 0.000 0.000 0.501 | 0.000 0.003 0230 0.390 0.520 0.301 | 0.164
rel-eb-c | 0.004 0.007 0.271 0460 0.000 0413 | 0.026 0.009 0342 0541 0474 0311 || 0.238
rel2-eb-c | 0.977 0.791 0540 0283 0.000 0.528 | 0.043 0.010 0336 0527 0511 0.295 0.403

Table 2: Sequence-level accuracy with and without copy decoding (models with a copy decoder are marked with a
“-¢” suffix). Bolded numbers are the best results for each dataset in this table.

curacy for small Transformers (I = 2, d = 64,
f = 256, h = 4). The right-most column shows
the average accuracy across all datasets, and we can
see that position encodings play a very significant
role in the performance of the models. Going from
0.137 accuracy of the model with absolute position
encodings up to 0.354 for a model with relative
position encodings using embeddings (but no bias
term), as well as relative positions for decoder-to-
encoder attention. In general almost any type of
relative position encodings help, but using embed-
dings helps more than using bias terms. Moreover,
position encodings play a bigger role in algorith-
mic tasks. For example, in the Add and AddNeg
tasks, models go from 0.005 and 0.042 accuracy to
almost perfect accuracy (0.988 and 0.830 for the
rel2-e model). Moreover tasks like SCAN or CFQ
do not seem to be affected by position encodings,
and using relative position encodings with only a
bias term hurts in PCFG.

4.2 Decoder Type

Many tasks (such as the duplication or PCFG
datasets used in our experiments) require models
able to learn things like “output whatever is in po-
sition k of the input”, rather than having to learn
hard-coded rules for outputting the right token, de-
pending on the input, a type of symmetry that can
be captured with a copy decoder.

The copy decoder in our experiments is fairly
simple, and works as follows (Figure 2, top-left). It
assumes that the input and output vocabularies are
the same (we use the union of both input and output

vocabularies in our experiments). For a given token
x; in the output (with final embedding y;), in addi-
tion to the output probability distribution p; over
the tokens in the vocabulary, the copy decoder pro-
duces a second distribution po, which is then mixed
with p; via a weight w. po is obtained by attending
to the output of the last encoder layer (the attention
query is calculated using a learnable weight matrix
from y;, the embeddings of the last encoder layer
are used as the keys, and the values are a one-hot
representation of the input tokens). The result is
passed through a softmax layer, resulting in ps.

Table 2 shows sequence-level classification ac-
curacy for models with and without a copy decoder.
As can be seen in the last column (Avg.), having a
copy decoder consistently helps performance, with
all models using a copy decoder (abs-c, rel-eb-
¢ and rel2-eb-c) outperforming their counterparts
without a copy decoder. Moreover, we see that the
copy decoder helps the most in PCFG and COGS,
while it does not seem to help in some other tasks.

Finally, notice that some models achieve less
than 0.5 accuracy in Inters, which is (in principle)
a binary classification task.

4.3 Model Size

Next, we compare the effect of varying both the
number of layers (I), as well as their size (d, f,
h). Specifically, we tested models with number
of layers [equal to 2, 4 and 6, and layers of two
sizes: small (d = 64, f = 256, h = 4), and large
(d = 128, f = 512, h = 8). We denote these
models small-2, small-4, small-6, large-2, large-

Add AddNeg Reverse Dup Cart Inters | SCAN-1 SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
small-2| 0977 0.791 0.540 0.283 0.000 0.528 | 0.043 0.010 0336 0527 0511 0.295 0.403
small-4| 0986 0.835 0.676 0.572 0.000 0.500 | 0.170 0.000 0499 0.711 0.501 0.301 0.479
small-6| 0992 0.835 0225 0.000 0.000 0.203 | 0.164 0.002 0.548 0.741 0476 0312 | 0.375
large-2 | 0983 0.811 0.605 0.503 0.000 0.500 | 0.184 0.001 0.535 0.758 0498 0.269 0.471
large-4 | 0957 0.786 0.684 0.523 0.000 0.400 | 0.164 0.004 0513 0.770 0462 0.310 | 0.464
large-6 | 0978 0.673 0423 0.288 0.000 0.250 | 0.144 0.000 0.530 0.750 0.451 0.288 | 0.398

Table 3: Sequence-level accuracy for models of different sizes. All models are variations of the rel2-eb-c model in
Table 2 (small-2 is equivalent to rel2-eb-c). Bolded results represent the best results for each dataset in this table.

4, and large-6. All of the models in this section
are variants of rel2-eb-c, our previous best (see
Appendix C for parameter counts of our models).

Table 3 shows the sequence-level classification
accuracy, showing a few interesting facts. First,
in most algorithmic tasks, size does not help. Our
hypothesis is that the logic required to learn these
tasks does not require too many parameters, and
large models probably overfit (e.g., like in Duplica-
tion). Some datasets, however, do benefit from size.
For example, most large models outperform their
respective small ones in both variants of PCFG.
These results are not unexpected, as most compo-
sitional generalization datasets contain idealized
examples, often generated via some form of gram-
mar, and have very small vocabularies (see Table 7).
Hence, models might not benefit from size as much
as on complex natural language tasks. The overfit-
ting we are seeing might potentially be mitigated if
using pre-training (Furrer et al., 2020).

4.4 Weight Sharing

In this section we evaluate the effect of sharing
weights across transformer layers. When weight
sharing is activated, all learnable weights from all
layers in the encoder are shared across layers, and
the same is true across the layers of the decoder.
Table 4 shows the resulting performance of the
models (to be compared with Table 3). Surpris-
ingly, weight sharing significantly boosts compo-
sitional generalization accuracy, and almost all
models achieve a higher average accuracy across
all datasets than their equivalent models in Ta-
ble 3. In particular, datasets such as AdditionNeg-
atives see a significant boost, with several mod-
els achieving higher than 0.9 accuracy (0.982 for
large-65). PCFG also significantly benefits from
weight sharing, with the large-6s model achieving
0.634 and 0.828 in the productivity and systematic-
ity versions, respectively. These are higher than
previously reported results in the literature (using
the original Transformer, which is a much larger

model): 0.50 and 0.72 (Hupkes et al., 2020). No-
tice, moreover that achieving good results in PCFG
(or SCAN) is trivial with specialized models, but
the important achievement is doing so with general
purpose models. Our hypothesis is that a model
with shared weights across layers might have a
more suited inductive bias to learn primitive opera-
tions that are applied repeatedly to the input of the
transformer (copying, reversing, duplicating, etc.).

4.5 Intermediate Representations

The key idea of an intermediate representation is to
define a different representation of the target output
that is easier to generate by the model, but that
can be easily mapped to the desired output. Herzig
et al. (Herzig et al., 2021) recently showed very
promising results using this technique in several
tasks. Defining useful intermediate representations
for a given dataset is not trivial, and hence we
experimented with it in only two of our datasets:
COGS and CFQ (Figure 3).

4.5.1 Intermediate Representation for COGS

Our intermediate representation for COGs turns
the task from seq2seq into a sequence tagging task.
We ask the model to produce 5 tags for each input
token: a parent, the role of the relation between the
token and its parent (if applicable), the caregory,
the noun determiner (for nouns) and the verb name
(for verbs). With these five tags, the original output
can be constructed deterministically. One of the
main advantages of this representation is that the
model is naturally pushed to produce outputs with
the correct length even for longer inputs (improv-
ing generalization to longer sequences), which is
harder on a seq2seq model setup.

For the sequence tagging formulation, we used
only the encoder part of the Transformer and added
five prediction heads, to predict each tag. For role,
category, noun determiner and verb name, we sim-
ply had a dense layer with a Sigmoid activation
function. For the parent tag, we experimented with
3 different head types: Absolute used a dense layer

Add AddNeg Reverse Dup Cart Inters | SCAN-1 SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
small-2s| 0992 0.809 0.780 0.750 0.000 0.699 | 0.022 0.003 0.313 0.501 0.450 0.303 0.468
small-4s | 0.991 0.955 0.708 0.580 0.000 0.500 | 0.172 0.017 0.534 0.723 0445 0.292 0.493
small-6s| 0993 0933 0505 0.000 0.000 0.500 | 0.186 0.000 0.562 0.780 0.454 0.295 0.434
large-2s | 0997 0.894 0.831 0.848 0.000 0.584 | 0.033 0.002 0.511 0.638 0.465 0.292 0.508
large-4s | 0991 0915 0.771 0882 0.000 0.400 | 0.186 0.002 0.589 0.791 0475 0.327 0.527
large-6s | 0985 0982 0241 0.000 0.000 0.500 | 0.196 0.000 0.634 0828 0454 0.303 0.427

Table 4: Sequence-level accuracy for all the models in Table 3, but sharing weights across layers.

COGS
Input: A rose was helped by a dog . [END]
Intermediate Output: / \

Parent: 3 = 3

theme
CNOUN
INDEF

Role:

Category:

Noun determiner:
Verb name:

agent
CNOUN
INDEF

VERB

help

rose (x _ 1) Final

AND help . theme (x _ 3, x _ 1) Output
AND help . agent (x _ 3, x _ 6)
AND dog (x _ 6) [END]

CFQ

Input: Did a person marry a cinematographer ,

influence M1 , and influence M2 [END

Intermediate Output:
SELECT count (*) WHERE {
?x0 a ns:people.person .
2x0 ns:influence.influence_ node.influenced {M1,M2} .
?x0 ns:people.person.spouse_s ?x1 .
?x1 a ns:film.cinematographer . Final
FILTER (2?x0 != 2x1) } [END] Output

?x0 ns:influence.influence_node.influenced Ml .
?x0 ns:influence.influence_node.influenced M2 .

Figure 3: Examples from the intermediate representations for COGs and CFQ. For COGs, we framed the task as
sequence tagging and made the model predict 5 tags for each token; for CFQ we compressed Cartesian products.

seq2seq tagging
Model abs rel2-eb-c| abs rel-eb
Size small-2 small-6s | small-2 small-2s
Parent encoding absolute attention
Lexical Generalization: Primitives and Grammatical Roles
Subject — Object (common noun) 0.309 0.899 0.911 0.969
Subject — Object (proper noun) 0.098 0.429 0.630 0.826
Object — Subject (common noun) 0.790 0.936 0.982 0.978
Object — Subject (proper noun) 0.207 0.951 0.993 0.995
Prim noun — Subject (common noun) | 0.240 0.913 0.993 0.988
Prim noun — Subject (proper noun) 0.019 0.772 0.974 0.996
Prim noun — Object (common noun) 0.017 0.902 0.950 0.953
Prim noun — Object (proper noun) 0.000 0513 0.651 0.700
Prim verb — Infinitival argument 0.000 0.766 0.000 0.001
Lexical Generalization: Verb Argument Structure Alternation
Active — Passive 0.604 0.000 0.697 0.948
Passive — Active 0.196 0.001 0.535 0.897
Object-omitted transitive — Transitive | 0.275 0.003 0.527 0.926
Unaccusative — Transitive 0.069 0.003 0.528 0.787
Double object dative — PP dative 0.819 0.000 0.590 0.958
PP dative — Double object dative 0.404 0.004 0.771 0.850
Lexical Generalization: Verb Class
Agent NP — Unaccusative Subject 0.399 0.951 0.784 1.000
Theme NP — Obj-omitted trans Subj | 0.688 0.965 0.791 0.701
Theme NP — Unergative subject 0.694 0.966 0.930 0.771
Structural Generalization: Phrases and Grammatical Roles
Obj-mod PP — Subj-mod PP 0.000 0.000 0.000 0.299
Structural Generalization: Deeper Recursion
Depth generalization: PP modifiers 0.003 0.000 0.138 0.681
Depth generalization: Sentential comp | 0.000 0.000 0.000 0.233
Overall 0278 0475 0.637 0.784

Table 5: Sequence-level accuracy in different general-
ization subsets in COGS for both seq2seq and sequence
tagging models. PP stands for prepositional phrase.

with a Sigmoid activation to predict the absolute
index of the parent in the input sequence (-/ for
no parent). Relative predicted the relative offset of
the parent token with respect to the current token,
or self for no parent. Finally, Attention used the
attention weights from a new attention layer with 1
head to predict the parent.

Table 5 shows the experimental results compar-

ing this new tagging approach to the seq2seq ap-
proach. For both approaches, we list performance
of a transformer in a basic configuration and in one
that helps generalization (see Appendix D for other
configurations). Examples in the structural general-
ization tasks are typically longer than in the training
set and require productivity. All the models tested
in the original COGS paper (Kim and Linzen, 2020)
(and all of our seq2seq approaches above) achieved
0 accuracy in this category, while performance on
lexical tasks is mixed. The small-6s seq2seq model
improves the overall performance from 0.278 to
0.475, but curiously has near 0 performance on
Verb Argument Structure Alternation tasks, worse
than the base abs seq2seq model.

The intermediate representation based on tag-
ging works much better. The base abs tagging
model manages to get non-zero performance on
one structural generalization task, which suggests
that enforcing the right output length helps. Finally,
when predicting the parent directly from attention
weights, the structural generalization tasks score
0.2-0.7, significantly better than our previous near
0 scores (see Appendix D for a discussion of the
common types of errors).

Overall, the sequence tagging intermediate repre-
sentation achieves a much higher accuracy (bottom
row), with one model reaching 0.784 (compared to
0.475 for our previous best model), which is higher
than any previously reported performance in COGS
in the literature, to the best of our knowledge. This
suggests that the encoder has the power to parse

| CFQ | CFQ-im
abs 0.304 0.541
rel-eb 0.290 0.555
rel2-eb 0.311 0.541
rel-eb-c 0.311 0.541
rel2-eb-c =~ 0.295 0.519
large-4 0.310 0.541
large-4s 0.327 0.474

Table 6: Sequence-level accuracy for different models
for the original CFQ, and for CFQ with intermediate
representations (CFQ-im). The top 5 models are small
models with 2 layers, and the last four models are vari-
ants of rel2-eb-c (used in Tables 3 and 4).

the input correctly, but maybe it is the decoder that
is not capable of generating the correct output se-
quence from the encoder in the full transformer.

4.5.2 Intermediate Representation for CFQ

One of the difficulties in the CFQ dataset is that
models need to learn to perform Cartesian prod-
ucts (e.g., for questions like “who directed and
acted in M1 and M27?”, the model needs to ex-
pand to “directed M1”, “directed M2”, “acted in
M1” and “acted in M2”). However, as shown in
our experiments above, this is a very hard task to
learn. Hence, we followed the same idea in Herzig
et al. (2021), and defined an intermediate repre-
sentation that removes the need to learn Cartesian
products by allowing triples of the form (entity list)
- (relation list) - (entity list).

Table 6 shows the sequence-level classification
accuracy for models on CFQ and on the version
with intermediate representations (CFQ-im). While
the different variations on Transformer models
have little affect on the performance, the use of an
intermediate representation significantly improves
performance, going from around 0.3 accuracy for
most Transformer models to over 0.5, and up to
0.555 for the rel-eb model. This is consistent with
the results reported by Herzig et al. (2021).

5 Discussion

An overall trend is that algorithmic tasks seem to
be greatly affected by the different architecture de-
sign decisions we explored. In all datasets, except
for Cartesian product, there is at least one combina-
tion in our experiments that achieved high perfor-
mance (close to 0.8 accuracy or higher). Cartesian
products remain an open challenge for future work,
where one of the big obstacles is learning to pro-
duce much longer outputs than seen during training
(output is quadratic with respect to input size).

There are some datasets, such as SCAN-aj, where
we did not see large improvements in performance.
The main obstacle is learning to handle a symbol
(“jump”) having seen it very few times (or even just
once) during training (this also happens in some
types of generalization in COGS). None of the vari-
ations we experimented with were enough to han-
dle this type of compositionality either.

In summary, different design decisions seem to
give inductive biases that allow models to easily
generalize to certain symmetries in the data (e.g.,
the existence of primitive operations or invariance
to order or position) which significantly improve
certain types of compositional generalization. Not
all types of compositional generalization can be
solved with the dimensions we explored, but our
results show that Transformers can generalize com-
positionally better than previously reported, if they
are given the right inductive biases. We believe this
is an important result, complementary to the design
of specialized architectures that can solve some of
these datasets, but might not generalize to others.

Finally, notice that in our experiments, we used
relatively small models. This was by choice, as our
goal was not to achieve state-of-the-art results, but
to explore the effect of different design decisions.

6 Conclusions

This paper presented an empirical study of the de-
sign space of Transformer models, evaluated in a
collection of benchmarks for compositional gener-
alization in language and algorithmic tasks. Our
results show that, compared to a baseline Trans-
former, significant gains in compositional general-
ization can be achieved. Specifically, the baseline
Transformer achieved an average sequence-level
accuracy of 0.137, while we showed this can in-
crease to up to 0.527 with some design changes.
Accuracy levels of up to 0.493 can be achieved
without increasing the parameter count of our base-
line model (see Appendix C for parameter counts).
Moreover, we achieved state-of-the-art results in
COGS, showing 0.784 accuracy on the generaliza-
tion set, and two PCFG splits (0.634 and 0.828
respectively). This shows that a key factor in train-
ing models that generalize compositionally is to
provide the right inductive biases.

As part of our future work, we want to explore
more dimensions, such as pre-training, and study
the implications of our results in compositional
generalization in large models on real world tasks.

References

Joshua Ainslie, Santiago Ontafién, Chris Alberti, Va-
clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. ETC: Encoding long and structured inputs
in transformers. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 268-284.

Jacob Andreas. 2019. Good-enough composi-
tional data augmentation. arXiv preprint
arXiv:1904.09545.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150v1.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Rébert Csordds, Kazuki Irie, and Jirgen Schmidhu-
ber. 2021. The devil is in the detail: Simple tricks
improve systematic generalization of transformers.
arXiv preprint arXiv:2108.12284.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schérli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. arXiv preprint arXiv:2007.08970.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. 2020.
Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665-673.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine
Learning Research, pages 249-256, Chia Laguna
Resort, Sardinia, Italy. PMLR.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio Gémez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, et al.
2016. Hybrid computing using a neural net-
work with dynamic external memory. Nature,
538(7626):471-476.

Jonathan Herzig, Peter Shaw, Ming-Wei Chang, Kelvin
Guu, Panupong Pasupat, and Yuan Zhang. 2021. Un-
locking compositional generalization in pre-trained
models using intermediate representations. arXiv
preprint arXiv:2104.07478.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and
Elia Bruni. 2020. Compositionality decomposed:
How do neural networks generalise? Journal of Ar-
tificial Intelligence Research, 67:757-795.

Daniel Keysers, Nathanael Schirli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, et al. 2019. Measuring com-
positional generalization: A comprehensive method
on realistic data. In International Conference on
Learning Representations.

Juyong Kim, Pradeep Ravikumar, Joshua Ainslie, and
Santiago Ontaidén. 2021. Improving compositional
generalization in classification tasks via structure an-
notations. arXiv preprint arXiv:2106.10434.

Najoung Kim and Tal Linzen. 2020. Cogs: A compo-
sitional generalization challenge based on semantic
interpretation. arXiv preprint arXiv:2010.05465.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In /n-
ternational Conference on Machine Learning, pages

2873-2882. PMLR.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Adam LiSka, German Kruszewski, and Marco Baroni.
2018. Memorize or generalize? searching for a
compositional rnn in a haystack. arXiv preprint
arXiv:1802.06467.

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen,
Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng,
and Dongmei Zhang. 2020. Compositional gener-
alization by learning analytical expressions. arXiv
preprint arXiv:2006.10627.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
and Timothy P Lillicrap. 2019. Compressive trans-
formers for long-range sequence modelling. arXiv
preprint arXiv:1911.05507.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Jake Russin, Jason Jo, Randall C O’Reilly, and Yoshua
Bengio. 2019. Compositional generalization in a
deep seq2seq model by separating syntax and seman-
tics. arXiv preprint arXiv:1904.09708.

https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464—468.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bo-
janowski, and Armand Joulin. 2019. Adaptive
attention span in transformers. arXiv preprint
arXiv:1905.07799.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Sara Veldhoen, Dieuwke Hupkes, Willem H Zuidema,
et al. 2016. Diagnostic classifiers revealing how
neural networks process hierarchical structure. In
CoCo@ NIPS, pages 69-77.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5754-5764.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
et al. 2020. Big bird: Transformers for longer se-
quences. arXiv preprint arXiv:2007.14062.

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. Hi-
bert: Document level pre-training of hierarchical
bidirectional transformers for document summariza-
tion. arXiv preprint arXiv:1905.06566.

10

A Implementation Details

We used a standard Transformer implementation?,
and added all the proposed variations on top of
it. All experiments were run on machines with
a single CPU and a single Tesla V100 GPU. All
parameters were left to their default values from the
original implementation, including the learning rate
schedule (which could probably be further tweaked
if state-of-the-art results are sought), as we were
just aiming to compare inductive biases, rather than
aim for SOTA results.

Additionally, we would like to highlight some
implementation details, which surprisingly had
large effects on our experimental results. Layer
normalization operations in our Transformer imple-
mentation were done after each sublayer (attention
and feed forward). Embedding layers were initial-
ized with the Keras default “uniform” Keras ini-
tializer (uniform random distribution in the range
[—0.05,0.05]). Dense layers were initialized also
with the Keras default Glorot initializer (uniform
random distribution with mean 0 and standard
deviation v/2/(fan_in + fan_out)) (Glorot and
Bengio, 2010). While these details might not
seem that important, we were unable to repro-
duce some of the results reported above using a
re-implementation of the Transformer model in
Flax, which used different defaults (and layer nor-
malization before each sublayer rather than after)
unless we changed these implementation details
to match those of the Keras implementation. This
indicates that these low-level details also have an
effect on the learning bias of the models, with an
impact in compositional generalization, which we
plan to study in the future.

B Detailed Results

Table 8 shows the average sequence-level accuracy
for all the models evaluated in this paper, all in one
table. We used the same names as used in the paper
(as models rel2-eb-c and small-2 both refer to the
same model, we included the row twice, with both
names, for clarity).

Table 9 shows the maximum accuracy each
model achieved in each dataset out of the 3 to
10 repetitions we did for each dataset. Recall we
used 3 repetitions for SCAN-1, SCAN-aj, PCFG-p,
PCFG-s, COGS and CFQ, 5 repetitions for Add,
AddNeg, Reverse, Dup and Cart, and 10 repetitions

*https://www.tensorflow.org/tutorials/
text/transformer

11

for Inters (as it was the dataset where we saw more
extreme results). An interesting phenomenon ob-
served in the Inters dataset is that models tend to
achieve either random accuracy (around 0.5), or
perfect accuracy (1.0). Very rarely models achieve
intermediate values. This support the needle-in-a-
haystack argument of LiSka et al. (2018), who saw
that while LSTMs have the capability of general-
ize compositionally, what happens in practice is
that gradient descent has a very low probability of
converging to weights that do so (finding the “com-
positional needle” in a haystack). We observed a
similar thing in our experiments, but saw that some
Transformer architectures resulted in an increased
chance of finding this needle.

Table 10 shows the standard deviation in the
sequence-level accuracy we observed in our ex-
periments. As can be seen, the algorithmic tasks
result in a much larger standard deviation. In some
datasets (e.g., Add and Inters) it was common for
morels to either achieve near 0% accuracy (50% in
Inters) or near 100% accuracy, but few values in
between.

C Parameter Counts

Table 11 shows the parameter count for all the mod-
els used in this paper, notice that exact parameter
counts vary per dataset, as each dataset has a differ-
ent token vocabulary, and hence both the token em-
bedding and the output layers vary. One interesting
result is that in our experiments, parameter count is
not, by itself, sufficient to increase compositional
generalization. Our best model overall (large-4s)
only had about 0.5 million parameters, and outper-
formed significantly larger models. Another ex-

Dataset | |Train| | |Test| | | Vocab| | Epochs
Add 200000 | 1024 14 2
AddNeg | 200000 | 1024 16 10
Reverse | 200000 | 1024 14 2
Dup 200000 | 1024 14 4
Cart 200000 | 1024 24 4
Inters 200000 | 1024 106 8
SCAN-1 | 16989 | 3919 25 24
SCAN-aj | 14669 | 7705 25 24
PCFG-p | 81011 | 11331 537 20
PCFG-s | 82167 | 10175 | 537 20
COGS 24155 | 21000 876 16
CFQ 95743 | 11968 184 16

Table 7: Size of the training/test sets, vocab and train-
ing epochs we used for the different datasets.

https://www.tensorflow.org/tutorials/text/transformer
https://www.tensorflow.org/tutorials/text/transformer

Add AddNeg Reverse Dup Cart Inters | SCAN-1 SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
abs 0.005 0.042 0.000 0.000 0.000 0.500 | 0.000 0.003 0.174 0434 0.177 0.304 0.137
rel-e 0.004 0.018 0422 0486 0.004 0.501 | 0.064 0.003 0.238 0451 0.170 0.322 0.224
rel-b 0.002 0.005 0277 0362 0.054 0501 | 0.049 0.007 0.042 0.102 0.126 0.276 0.150
rel-eb 0.003 0.011 0486 0.444 0.000 0.500 | 0.089 0.011 0.257 0452 0.249 0.290 0.233
rel2-e 0.988 0.830 0.787 0.010 0.000 0.501 | 0.032 0.007 0.159 0353 0.259 0.322 0.354
rel2-b 0.140 0.708 0.056 0.253 0.000 0.504 | 0.080 0.002 0.041 0.117 0.138 0.319 0.197
rel2-eb 0978 0.779 0.737 0.017 0.000 0.504 | 0.091 0.010 0.194 0374 0.159 0311 0.346
abs-c 0.006 ~ 0.021 0.000 0.000 0.000 0.501 | 0.000 0.003 0.230 0.390 0.520 0.301 0.164
rel-eb-c | 0.004 0.007 0271 0460 0.000 0413 | 0.026 0.009 0342 0541 0474 0311 0.238
rel2-eb-c | 0.977 0.791 0.540 0.283 0.000 0.528 | 0.043 0.010 0.336 0527 0.511 0.295 0.403
small-2 0977 0.791 0.540 0.283 0.000 0.528 | 0.043 0.010 0336 0527 0.511 0.295 0.403
small-4 | 0986 0.835 0.676 0.572 0.000 0.500 | 0.170 0.000 0.499 0.711 0.501 0.301 0.479
small-6 0.992 0.835 0.225 0.000 0.000 0.203 | 0.164 0.002 0.548 0.741 0476 0.312 0.375
large-2 0983 0.811 0.605 0.503 0.000 0.500 | 0.184 0.001 0.535 0.758 0.498 0.269 0.471
large-4 0.957 0.786 0.684 0.523 0.000 0.400 | 0.164 0.004 0.513 0.770 0462 0.310 0.464
large-6 0.978 0.673 0423 0288 0.000 0.250 | 0.144 0.000 0.530 0.750 0451 0.288 0.398
small-2s | 0.992 0.809 0.780 0.750 0.000 0.699 | 0.022 0.003 0.313 0.501 0.450 0.303 0.468
small-4s | 0991 0955 0.708 0.580 0.000 0.500 | 0.172 0.017 0.534 0.723 0.445 0.292 0.493
small-6s | 0.993 0933 0.505 0.000 0.000 0.500 | 0.186 0.000 0.562 0.780 0.454 0.295 0.434
large-2s | 0997 0.894 0.831 0.848 0.000 0.584 | 0.033 0.002 0.511 0.638 0.465 0.292 0.508
large-4s | 0991 0915 0.771 0.882 0.000 0.400 | 0.186 0.002 0.589 0.791 0475 0.327 0.527
large-6s | 0985 0982 0241 0.000 0.000 0.500 | 0.196 0.000 0.634 0828 0.454 0.303 0.427

Table 8: Average sequence-level accuracy for all the models evaluated in this paper.

ample, of this is that the models with shared layer
parameters outperform their counterparts without
parameter sharing, although they naturally have
less parameters.

D Detailed Results in COGS

Table 12 shows the results of some of the models
we tested in the COGS dataset (including seq2seq
and sequence tagging models), with the accuracy
broken down by the type of example in the gen-
eralization set. The COGS dataset contains four
splits: training, dev, test and generalization (gener-
alization is the one used to measure compositional
generalization, and the set reported in the main pa-
per). All but one shown configuration achieve more
than 95% sequence level accuracy on the test and
development splits after training for 16 epochs over
the training data. The generalization set is split into
several generalization tasks as described above, to
break down performance by type of generalization
(overall performance in the generalization set is
shown in the bottom row).

The best tagging model does much better than
the base seq2seq model (0.784 vs. 0.278). No-
tably the tagging model does relatively well on the
Depth generalization: Prepositional phrase (PP)
modifiers task achieving accuracy 0.681. When the
depth of the model is increased from 2 to 6, the
score on this task increases from 0.681 to 0.819, i.e.
the model with more layers can parse deeper recur-
sion. However, increasing the encoder depth at the

12

same time dramatically lowers the performance on
Verb Argument Structure Alternation tasks.

Since many of the tasks are solved to near per-
fect accuracy, here we briefly discuss the types of
the remaining errors. The one type of task where
sequence tagging models did worse than seq2seq
is Prim verb — Infinitival argument, which mea-
sures one shot generalization of an example with
only a single verb to examples where the verb is
used in sentences. The cause of this is that the
tagging example with only a single verb doesn’t ac-
tually encode the type of relations the verb allows,
so the tagging model is actually not provided the
full information in the only example for this one
shot learning task. Nevertheless, this category was
solved in our seq2seq models with a copy decoder.

Curiously, some errors, that the tagging model
with attention in the parent prediction head makes,
are quite quite reasonable. For example in the Obj-
mod PP — Subj-mod PP task, the model often
gets the complete parsing tree correctly, and the
only error is the predicted relation of the subject to
the predicate (instead of agent the model predicts
theme as is present in all the training examples,
where the prepositional phrase modifies the object).

Another task where even the best tagging model
achieves a low score (0.233) is Depth generaliza-
tion: Sentential complements. The examples in this
task are long complex sentences chained together
with the conjunction that. The most common er-
ror here is to predict that the main verb depends

Add AddNeg Reverse Dup Cart Inters | SCAN-1 SCAN-aj PCFG-p PCFG-s COGS CFQ

abs 0.008 0.131 0.002 0.000 0.000 0.500 | 0.000 0.008 0.191 0462 0211 0.326
rel-e 0.010 0.059 0597 0908 0.034 0511 | 0.115 0.007 0.257 0496 0.281 0.346
rel-b 0.004 0.016 0331 0417 0137 0.510 | 0.072 0.013 0.047 0.112 0.170 0.305

rel-eb 0.006 0.018 0.658 0.795 0.001 0502 | 0.129 0.023 0268 0528 0306 0.333
rel2-e 1.000 0943 0917 0.038 0.000 0.512 | 0.058 0.018 0.182 0.457 0332 0.357
rel2-b 0256 0910 0.132 0339 0.002 0529 | 0.116 0.004 0.049 0.137 0.187 0.342
rel2-eb 1.000 0.875 0.824 0.062 0.000 0519 | 0.124 0.018 0233 0479 0205 0.333
abs-c 0.021 ~ 0.037 0.000 0.000 0.000 0.506 | 0.000 0.005 0250 0420 0550 0.312
rel-eb-c | 0.006 ~ 0.027 0.504 0.721 0.000 1.000 | 0.031 0.021 0361 0562 0.581 0.351
rel2-eb-c| 0998 0.842 0.861 0.683 0.000 1.000 | 0.082 0.014 0346 0581 0.576 0.369
small-2 0998 0.842 0.861 0.683 0.000 1.000 | 0.082 0.014 0346 0581 0.576 0.369
small-4 0992 0877 0939 0805 0.000 0.500 | 0.197 0.001 0.509 0.734 0520 0.342
small-6 1.000 0922 0576 0.000 0.000 0.500 | 0.199 0.007 0.571 0.766 0.516 0.330
large-2 0998 089 0933 0.882 0.000 0.500 | 0.197 0.002 0548 0.762 0.530 0.314
large-4 099 0953 0.848 0.855 0.000 0.500 | 0.199 0.010 0523 0.782 0.500 0.360
large-6 0994 0.887 0.619 0856 0.000 0.500 | 0.195 0.000 0549 0.766 0483 0.317
small-2s | 0998 0.871 0979 0972 0.000 1.000 | 0.044 0.006 0328 0.519 0487 0.348
small-4s | 0998 0986 0.870 0.871 0.000 0.500 | 0.175 0.039 0540 0.742 0515 0.362
small-6s | 1.000 0984 0.821 0.000 0.000 0.500 | 0.199 0.000 0569 0.788 0.486 0.344
large-2s | 1.000 0945 0.952 0.955 0.000 1.000 | 0.054 0.003 0.526 0.641 0563 0.304
large-4s | 1.000 0959 0.923 0.959 0.000 0.500 | 0.195 0.004 0.604 0.810 0481 0.362
large-6s | 1.000 0998 0.489 0.000 0.000 0.500 | 0.198 0.000 0.642 0.832 0469 0.361

Table 9: Maximum sequence-level accuracy achieved in a given repetition for all the models evaluated in this
paper.

on another verb far away in the sentence structure,
instead of predicting that it has no parent. The dis-
tance to the incorrectly predicted parent is often
more than 16, which was the limit on our relative
attention offsets. The attention mechanism seems
to get confused by seeing many more tokens in this
test split than during training.

E Dataset Statistics

Table 7 shows the size of the training and test sets
for each dataset, as well as the size of their vocabu-
laries. For the vocabulary, we used the union of the
input and output vocabularies as a unified vocabu-
lary. We also show the number of training epochs
we performed in each dataset (this was chosen as
the number after which performance stabilized with
some initial models; it was not tuned afterwards
during the systematic evaluation presented below).

13

Add AddNeg Reverse Dup Cart Inters | SCAN-1 SCAN-aj PCFG-p PCFG-s COGS CFQ
abs 0.003 0.047 0.001 0.000 0.000 0.000 | 0.000 0.004 0.014 0.039 0.067 0.022
rel-e 0.003 0.017 0.169 0.271 0.012 0.003 | 0.045 0.004 0.023 0.078 0.103 0.027
rel-b 0.002 0.006 ~ 0.078 0.046 0.073 0.003 | 0.038 0.006 0.005 0.014 0.040 0.025
rel-eb 0.002 0.007 0.211 0.287 0.000 0.001 | 0.038 0.011 0.013 0.066 0.050 0.047
rel2-e 0.009 0.074 0.167 0.014 0.000 0.004 | 0.023 0.009 0.016 0.111 0.104 = 0.035
rel2-b 0.122 0202 0.051 0.055 0.001 0.009 | 0.039 0.002 0.011 0.018 0.045 0.016
rel2-eb 0.029 0.067 0.057 0.024 0.000 0.007 | 0.029 0.008 0.047 0.101 0.043 0.020
abs-c 0.009 0.010 0.000 0.000 0.000 0.003 | 0.000 0.002 0.024 0.027 0.038 0.013
rel-eb-¢ | 0.003 0.011 0.135 0.157 0.000 0.322 | 0.005 0.011 0.017 0.036 0.093 0.025
rel2-eb-c | 0.035 0.053 0.208 0.289 0.000 0.239 | 0.033 0.005 0.009 0.048 0.056 0.063
small-2 0.035 0.053 0.208 0.289 0.000 0.239 | 0.033 0.005 0.009 0.048 0.056 0.063
small-4 | 0.004 0054 0213 0.184 0.000 0.000 | 0.046 0000 0010 0019 0028 0.049
small-6 0.007 0.120 0.233 0.000 0.000 ~ 0.256 | 0.056 0.004 0.024 0.026 0.047 0.022
large-2 | 0.016 0.074 0240 0289 0.000 0000 | 0.022 0.001 0012 0004 0042 0.033
large-4 0.075 0.106 ~ 0.178 0.190 0.000 0.211 | 0.049 0.006 0.009 0.010 0.033 = 0.047
large-6 0.023 0377 0.119 0356 0.000 0.264 | 0.045 0.000 0.018 0.014 0.029 0.022
small-2s | 0.007 0.038 0.255 0.254 0.000 0.346 | 0.021 0.003 0.014 0.019 0.054 0.039
small-4s | 0.009 0.055 0.118 0.261 0.000 0.000 | 0.005 0.020 0.008 0.023 0.068 0.054
small-6s | 0.012 0.047 ~ 0.208 0.000 0.000 0.001 0.017 0.000 0.006 0.007 0.030 0.041
large-2s | 0.004 0.031 0.131 0.167 0.000 0.156 | 0.027 0.001 0.018 0.004 0.102 0.011
large-4s | 0.007 0.039 0.127 0.066 0.000 0.211 | 0.016 0.002 0.015 0.017 0.009 = 0.043
large-6s | 0.020 0.015 0.159 0.000 0.000 0.000 | 0.002 0.000 0.008 0.007 0.013 = 0.037

Table 10: Standard deviation of the sequence level accuracy results.

Add AddNeg Reverse Dup Cart Inters | SCAN-1 SCAN-aj PCFG-p PCFG-s COGS CFQ
abs 236k 236k 236k 236k 238k 253k | 238k 238k 337k 337k 402k 268k
rel-e 239k 239 239k 239k 241k 257k | 241k 241k 340k 340k 405k 272k
rel-b 236k 236k 236k 236k 238k 254k | 238k 238k 337k 337k 402k 269k
rel-eb 239k 239k 239k 239k 241k 257k | 241k 241k 340k 340k 405k 272k
rel2-e 239k 239k 239k 239k 241k 257k | 241k 241k 340k 340k 405k 272k
rel2-b 236k 236k 236k 236k 238k 254k | 238k 238k 337k 337k 402k 269k
rel2-eb | 239k 239k 239k 239k 241k 257k | 241k 241k 340k 340k 405k 272k
abs-c 241k 241k 241k 241k 242k 258k | 243k 243k 341k 341k 407k 273k
rel-eb-c | 243k 244k 243k 243k 245k 261k | 245k 245k 344k 344k 410k 276k
rel2-eb-c | 243k 244k 243k 243k 245k 261k | 245k 245k 344k 344k 410k 276k
small-2 | 243k 244k 243k 243k 245k 261k | 245k 245k 344k 344k 410k 276k
small-4 | 480k 480k 480k 480k 482k 498k | 482k 482k 581k 581k 646k 513k
small-6 | 717k 717k 717k 717k 719k 735k | 719k 719k 818k 818k 883k 750k
large-2 | 1.88m 1.88m 1.88m 1.88m 1.88m 1.92m| 1.88m 1.88m 2.08m 2.08m 2.2Im 1.95m
large-4 |1.88m 1.88m 1.88m 1.88m 1.88m 1.92m| 1.88m 1.88m 2.08m 2.08m 2.21m 1.95m
large-6 12.81m 2.81m 2.81m 2.8Im 2.81m 2.84m| 2.8lm 2.8Im 3.0lm 3.0lm 3.14m 2.87m
small-2s | 125k 125k 125k 125k 127k 143k | 127k 127k 226k 226k 291k 158k
small-4s | 125k 125k 125k 125k 127k 143k | 127k 127k 226k 226k 291k 158k
small-6s | 125k 125k 125k 125k 127k 143k | 127k 127k 226k 226k 291k 158k
large-2s | 486k 487k 486k 486k 490k 521k | 490k 490k 687k 687k 818k 552k
large-4s | 486k 487k 486k 486k 490k 521k | 490k 490k 687k 687k 818k 552k
large-6s | 486k 487k 486k 486k 490k 521k | 490k 490k 687k 687k 818k 552k

Table 11: Parameter counts for the models used in this paper.

14

-oseayd euonsodoxd
IoJ spuels 4 ‘(suni ¢ 10A0 pageraae) sjopowr Surd3e) aouanbes pue basgbas y1oq 10] OO UI 198 UONBZITRISUAS Y JO $19SqNS JUAIJJIP Ul AOBINOJL [SAS[-20uanbag 71 9[qel,

L6¥'0 ¥8L0 ¥1S0 6890 69%0 0O¥S0 Svy'0 6790 96¥'0 TT90 00S0 LE€90 7 SLY'0 0ey’0 700 L¥0'0 6100 8LTO 7 re1A0
€€1°0 €€C0 ¥91°0 C8CT'0 0000 0000 0000 0000 S000 LIOCO 0000 0000 0000 0000 0000 0000 0000 00070 | Siudwddwos [ENUAUAS ‘UONEZITEIUAS Yo
6180 189°0 SLLO 6990 0100 0000 0000 €eI'0 T6I'0 1€T0 +¥L00 8€I'0 000°0 000°0 0000 0000 0000 €000 sloyipour 44 :uoneziesousd yideq
uo1sINdY 12doo(:UONEZI[BIAUAD) [BINONNS
1LE0 66¢0 0000 0000 0000 0000 6200 L00'0 0000 0000 0000 0000 000°0 000°0 0000 0000 0000 0000 | dd Sukjipow-109{qng «— Jd Surkyipow-109{q0
SO[0Y [EONBWIWIRIL) PUE SISLIYJ PAYIPOJAl UONBUIQUIO)) [AON :UOTRZI[EISUSL) [BIN)ONIS
0€s°0 ILLO 6160 0960 S68°0 €850 0LSO ¥7S°0 8680 €¥90 SILO 0£6°0 996°0 €780 0000 €200 0000 ¥69°0 103[qns aaneSIoU() < N SWAYL
S817°0 10L°0 €060 ¥860 1€80 LESO 0Zy'0 €Ly'0 1980 90 v¥90 T16L°0 $96'0 8180 0000 €200 0000 889°0 |300lqng aAnisuen paniwo-109(qQ «— dN WYL,
6660 000°T 6660 S66'0 0860 T80 6V6'0 ¢S6'0 I160 1S6'0 1990 ¥8L°0 1S6°0 8660 000 €000 0000 66£°0 100[qng aAnEsnIdRU() «— N JUAFY
SSB[D) QIOA UONBZI[BIIUAL) [BIIXA]
6€1°0 0S80 6900 LILO 8000 9190 TH00 $68°0 6910 LI90 TPSO ILLO +00°0 900°0 €000 €500 T000 ¥O¥O AP 193[qo aqno(«— dAnep dd
0000 8660 8100 €580 0000 ¥T¥'0 LEOO °eEL0 SvE0 8LLO 6LTO 0650 0000 2000 100°0 S60'0 S000 6180 QAIED dd <~ 2AnEP 102[qo d[quo
€000 L8L0 6000 9T€0 0000 T0€0 0000 LS¥’'0 0000 S6C0 ¥¥I'0O 8TSO €000 2000 10000 2000 0000 6900 QADISUBI], <— 9AESNOdRU[)
0000 9¢6'0 LC00 LVFO 0000 9S€0 CT60°0 8 40) [€0°0 0290 00I'0 LTSO £00°0 100°0 10000 T00'0 2000 SLTO SATNISUBLY, 4— QANISUR) PANIW0-192[q0
0000 L68°0 €L0°'0 9850 0000 6£S0 €91°0 §¢90 vI00 LI90O SITO SES°0 1000 1000 10000 2000 1900 = 9610 QALY <— dAISSE]
0000 8¥6'0 1000 <190 €100 0IT0 +000 9¢L0 0910 1PLO TTI'O L690 0000 000'0 0000 LyI'0 LOT'O ¥09°0 OAISSE] <— 9ADOY
UONBUIANY IMINNS JUAWNSIY QISA UONRZI[RIUL) [BOIXY]
0000 100°0 0000 0000 0000 LIOO 0000 1100 0000 0000 0000 0000 99L°0 9LY0 0000 0000 0000 0000 JuSWINSIE [EANTUYU] 4— QIOA QADIWLI]
€L9°0 00L°0 L9V'O S¥S'0 9L90 ¥T9'0 6¥9°0 CCL0 6950 LSS0 L890 159°0 €150 00C°0 0000 0000 0000 0000 (unou xadoid) 109[qQ < unou sAnILI]
996'0 €56'0 000'T 9660 9860 ¥06'0 TL6O 6v6'0 S¥6'0 6€6'0 8960 0S6'0 060 626'0 cI00 ¥100 L00'0 LIOO (unou uowwod) 33O <— unou dANIWL]
666'0 966°0 €080 6560 0660 96L0 T66'0 €660 S860 6L60 €860 V.60 CTLL'O (4440 LI0O0 9100 ¥000 6100 (unou 1odoxd) 109[qng <— unou sapIUILg
LT6'0 8860 0001 000°T 9L6'0 LT6'0 8L6°0 0660 CL60 S660 €860 €660 €160 9660 91C0 TrT’0 8600 0¥CO (Unou uowIW09) 159(qng «— UNOU dANIWLY
¥86°0 660 6660 8660 L¥80 §86'0 0660 €660 1660 S66'0 9860 €660 156°0 0L6°0 6100 €200 LOO0O LOTO (unou xadoxd) 102[qng < 303[q0
69L°0 8L60 6660 T660 8360 S¥6'0 $€6°0 €960 ¥66'0 ¥L60 €L60 T86'0 9€6°0 656'0 SLI'0O +¥0€0 1600 06L0 (unou uowwod) 323§ +109(q0
°L90 9¢8°0 0850 L9S0 1L90 0690 0190 I€L0 v6¥0 €950 0650 0€9°0 6Cy’0 185°0 0000 0000 0000 8600 (unou 1adoxd) 103[qQ < 100lgng
956'0 6960 9660 8L60 TL60 6680 8160 €680 9160 ¥I60 8¢60 1160 668°0 006°0 1100 0€0°'0 8000 60¢£0 (unou uowrwod) 309[qQ - 193[qng
SO[0Y [EONBWIIRID) PUE SIANIWILI] JEI[IWE,] JO UONBUIqUIOD) [QAON :UONBZI[BIIUIL) [BIIX]
666'0 0001 000°T 000°T 9660 S66'0 9660 L660 9660 L660 660 966°0 ¥L6°0 9L6'0 0S6'0 8960 ST90 9L60 s AaQ
0001 0001 000'T 000'T L66°0 S660 L660 L660 L6600 L660 1660 L66°0 ¥L6°0 £€86°0 196'0 8L60 9¥90 1860 1ds 153,
uonueNE UONUAJE OANE[AI QANE[AI dIN[Osqe IN[Osqe UONUSNE UONUIE ANB[AI JATIR[AI QINjosqe N[osqe Surpooud juareq
SO-[[PWS SZ-[[BWS SO-[[BWS SZ-[[PWS SO-[[EWS SZ-[[BWS O-[[BWS Z-[[WS O-[[BWS g-[[BWS O-[[WS Z-[[BWS | SO-[[BWS SZ-[[BWS SO-[[BUIS ST-[[BWS O-[[eWS g-[[EWS az1g
qo-ar qo-[a1 @e-[aI @o-[aI @o-[aI go-[aI sqe sqe sqe sqe sqe Sqe | 9-qO-g[aI 0-QA-g[dI Qo-g[al go-g[aI sqe sqe [9POIN
Suis3ey basgbas

15

