

DISRUPTING HIERARCHICAL REASONING: ADVERSARIAL PROTECTION FOR GEOGRAPHIC PRIVACY IN MULTIMODAL REASONING MODELS

006 **Anonymous authors**

007 Paper under double-blind review

011 **Note to Reviewers:** Revisions made during the rebuttal period, including new experimental
012 results, analysis, and appendices, are highlighted in **blue** for your convenience.

ABSTRACT

017 Multi-modal large reasoning models (MLRMs) pose significant privacy risks by
018 inferring precise geographic locations from personal images through hierarchi-
019 cal chain-of-thought reasoning. Existing privacy protection techniques, primarily
020 designed for perception-based models, prove ineffective against MLRMs' sophis-
021 ticated multi-step reasoning processes that analyze environmental cues. We intro-
022 duce **ReasonBreak**, a novel adversarial framework specifically designed to dis-
023 rupt hierarchical reasoning in MLRMs through concept-aware perturbations. Our
024 approach is founded on the key insight that effective disruption of geographic rea-
025 soning requires perturbations aligned with conceptual hierarchies rather than uni-
026 form noise. ReasonBreak strategically targets critical conceptual dependencies
027 within reasoning chains, generating perturbations that invalidate specific infer-
028 ence steps and cascade through subsequent reasoning stages. To facilitate this ap-
029 proach, we contribute **GeoPrivacy-6K**, a comprehensive dataset comprising 6,341
030 ultra-high-resolution images ($\geq 2K$) with hierarchical concept annotations. Exten-
031 sive evaluation across seven state-of-the-art MLRMs (including GPT-o3, GPT-
032 5, Gemini 2.5 Pro) demonstrates ReasonBreak's superior effectiveness, achiev-
033 ing a 14.4% improvement in tract-level protection (33.8% vs 19.4%) and nearly
034 doubling block-level protection (33.5% vs 16.8%). This work establishes a new
035 paradigm for privacy protection against reasoning-based threats.

1 INTRODUCTION

038 Multi-modal large reasoning models (MLRMs) have demonstrated remarkable capabilities in infer-
039 ring precise geographic locations from personal images. State-of-the-art systems like GPT-o3 (Jaech
040 et al., 2024) and Gemini 2.5 Pro (Team et al., 2024) can pinpoint locations from seemingly innocu-
041 ous photos by executing a chain-of-thought (CoT) (Wei et al., 2022). These models systematically
042 analyze environmental cues, architectural styles, and fine-grained details in a hierarchical manner,
043 achieving location inference accuracy $21\times$ superior to non-expert humans (Luo et al., 2025). This
044 capability transforms routine social media sharing into a significant privacy risk, as personal images
045 unwittingly reveal detailed geographic information that MLRMs can extract without user awareness.
046 This development has profound legal implications, as unauthorized location inference is classified as
047 a serious privacy violation under regulations such as the *EU's General Data Protection Regulation*
048 (*GDPR*) (Regulation, 2016) and the *California Consumer Privacy Act* (*CCPA*) (Legislature, 2018).

049 Privacy threats from MLRMs have emerged at an alarming rate, yet effective countermeasures re-
050 main relatively limited. The DoxBench (Luo et al., 2025) study revealed that MLRMs fail to distin-
051 guish between benign and malicious queries, readily complying with potentially harmful requests for
052 location inference. While previous privacy defenses, particularly adversarial perturbations (Szegedy
053 et al., 2013), have proven effective against conventional perception models like facial recognition
systems (Zhang et al., 2020; Shamshad et al., 2023; Zhong & Deng, 2022), they fall short against

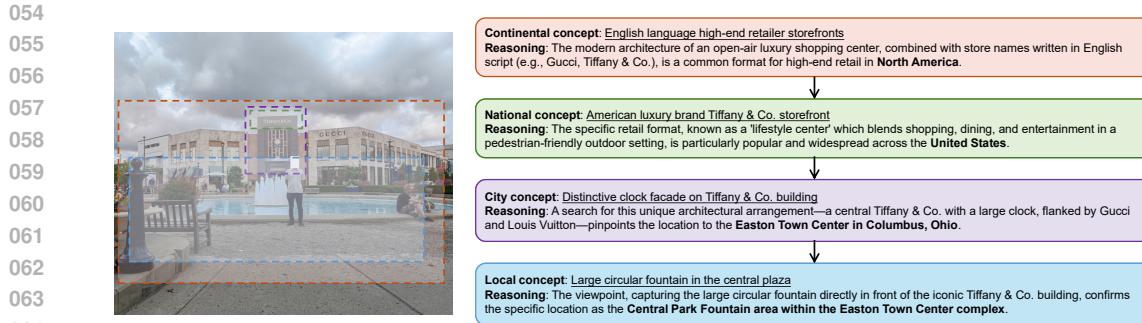


Figure 1: Geographic inference vulnerability in MLRMs. Given a personal image, MLRMs employ hierarchical reasoning to progressively narrow location estimates from continental to street-level precision. Our objective is to disrupt this process by generating concept-aware adversarial perturbations targeting specific reasoning stages.

MLRMs' sophisticated reasoning capabilities. Unlike conventional vision tasks that directly map images to labels, geographic inference in ultra-high-resolution images involves sophisticated multi-step reasoning. An MLRM typically identifies a continent from flora, narrows to a country through architectural patterns, and pinpoints specific neighborhoods from subtle environmental cues like background signage. Each inference builds upon previous deductions in a cascading chain of geographic reasoning. Existing adversarial privacy-preserving methods, which rely on uniform perturbations and focus on salient foreground regions, fail to disrupt this hierarchical analysis, leaving a critical gap in privacy protection.

We present **ReasonBreak**, an adversarial framework specifically designed to disrupt hierarchical reasoning processes in MLRMs. Our key insight is that effective disruption of geographic reasoning requires perturbations aligned with the conceptual hierarchy. ReasonBreak targets critical conceptual dependencies within geographic reasoning chains, generates perturbations that invalidate specific inference steps, and ensures these disruptions cascade through subsequent reasoning stages. Our approach is enabled by a new dataset we developed for this task. To enable concept-aware adversarial generation, we release **GeoPrivacy-6K**, a collection of 6,341 high-resolution ($\geq 2K$) images rich with geographic cues, sourced from established vision datasets. Each image is annotated using a structured, three-level framework that extracts hierarchical visual concepts, which are spatially localized with bounding boxes. The ReasonBreak framework uses this data to learn a generator that crafts perturbations targeted at specific geographic concepts.

Extensive evaluation across seven state-of-the-art MLRMs, including industry leaders like GPT-o3, GPT-5, and Gemini 2.5 Pro, demonstrates ReasonBreak's superior effectiveness. On critical privacy metrics, ReasonBreak attains a tract-level Top-1 protection of 33.8% (vs. 19.4% for the strongest baseline) and raises block-level protection to 33.5% (vs. 16.8%), nearly doubling prior methods. These results establish ReasonBreak as the current state-of-the-art in defending against reasoning-based privacy threats. Our primary contributions are threefold:

- We present **ReasonBreak**, a novel adversarial framework that disrupts MLRMs' hierarchical geographic reasoning by targeting critical visual concepts within their chain-of-thought processes.
- We contribute **GeoPrivacy-6K**, a comprehensive dataset of 6,341 ultra-high-resolution images with detailed hierarchical concept annotations, specifically designed for reasoning-aware privacy defense research.
- We provide comprehensive empirical validation across seven leading MLRMs, demonstrating that ReasonBreak sets a new state-of-the-art in privacy protection.

2 RELATED WORK

Geographic Inference in Vision-Language Models The evolution from vision-language models (VLMs) to multi-modal large reasoning models (MLRMs) represents a fundamental advancement

108 in visual understanding capabilities. While early VLMs like CLIP (Radford et al., 2021) established
 109 basic image-text alignment through contrastive learning, they lacked sophisticated reasoning
 110 abilities. Multi-modal large language models (MLLMs) built upon this foundation by integrating
 111 visual encoders with language models (Bai et al., 2025; Chen et al., 2024), enabling richer scene
 112 understanding and natural language generation. MLRMs mark a significant leap forward through
 113 their incorporation of CoT reasoning, allowing systematic visual analysis via hierarchical decom-
 114 position. State-of-the-art models like GPT-o3 (Jaech et al., 2024) and Gemini 2.5 Pro (Team et al.,
 115 2024) leverage this capability to analyze environmental characteristics, architectural patterns, and
 116 contextual details for precise geographic inference. This advancement enables location inference
 117 that exceeds human performance (Luo et al., 2025), creating novel and underexplored privacy vul-
 118 nerabilities.

119 **Adversarial Perturbation for Privacy Protection** Privacy-preserving adversarial perturbations
 120 have emerged as a key defense against unauthorized inference from personal images. While existing
 121 approaches focus on generating imperceptible noise to prevent identity recognition, they primarily
 122 target perception-based models that rely on direct image-to-label mapping (Zhang et al., 2020;
 123 Zhong & Deng, 2022; Shamshad et al., 2023; Yang et al., 2024; Liu et al., 2025). They employ
 124 global perturbations that modify visually salient features without considering the multi-step reason-
 125 ing processes or the fine-grained background details exploited by MLRMs for geographic inference,
 126 rendering them inadequate for this new threat.

127 **Multi-modal Adversarial Attacks** While transferable jailbreaks designed to bypass safety
 128 guardrails remain challenging (Wang et al., 2024; Niu et al., 2024; Schaeffer et al., 2024), ad-
 129 versarial attacks targeting visual perception generally exhibit better transferability. This landscape
 130 has evolved alongside model capabilities, progressing from traditional unimodal approaches (Dong
 131 et al., 2018; Wang & He, 2021; Wang et al., 2021; Lin et al., 2023; Wei et al., 2023; Liu & Lyu,
 132 2024). Initial efforts focused on basic VLMs like CLIP (Radford et al., 2021), aiming to disrupt
 133 image-text alignment in joint embedding spaces (Zhang et al., 2022; Lu et al., 2023; Zhou et al.,
 134 2023; Yin et al., 2024; Xu et al., 2024; Luo et al., 2024). Recent work has shifted toward attacking
 135 MLLMs, primarily through transfer-based approaches. Notable works include AttackVLM (Zhao
 136 et al., 2024), AdvDiffVLM (Guo et al., 2024), AnyAttack (Zhang et al., 2025a), and M-Attack (Li
 137 et al., 2025), which achieves high transferability by focusing perturbations on semantically rich
 138 regions. However, current methods fall short in addressing the hierarchical reasoning processes
 139 enabling sophisticated location inference or handling the fine-grained visual details in ultra-high-
 140 resolution images that MLRMs exploit. This gap leaves the critical privacy vulnerability of geo-
 141 graphic reasoning largely unaddressed, highlighting the need for specialized defense mechanisms
 142 designed to disrupt concept-aware reasoning pathways rather than general perception capabilities.

144 3 DATASET CONSTRUCTION

145 3.1 MOTIVATION AND DESIGN

146 Developing effective adversarial protection against MLRM geographic inference requires training
 147 data that captures the fine-grained visual details and rich geographic cues these models ex-
 148 ploit. We identify three critical requirements: **(i) ultra-high-resolution** images that preserve de-
 149 tails like signage and architectural features enabling precise location inference, **(ii) comprehensive**
 150 **coverage** spanning urban centers to natural landscapes, and **(iii) visual annotations** that link ele-
 151 ments to their geographic significance across multiple scales. To address challenges, we introduce
 152 **GeoPrivacy-6K**, a specialized dataset that combines ultra-high-resolution images with comprehen-
 153 sive geographic concept annotations. It prioritizes images containing distinctive visual cues that
 154 MLRMs utilize for location inference, such as architecture and environmental features.

155 3.2 DATA CONSTRUCTION AND ANNOTATION

156 We source ultra-high-resolution images from three established computer vision datasets: HoliC-
 157 ity (Zhou et al., 2020) (urban environments with rich architectural detail), Aesthetic-4K (Zhang
 158 et al., 2025b) (diverse high-quality scenes), and LHQ (Skorokhodov et al., 2021) (natural landscapes

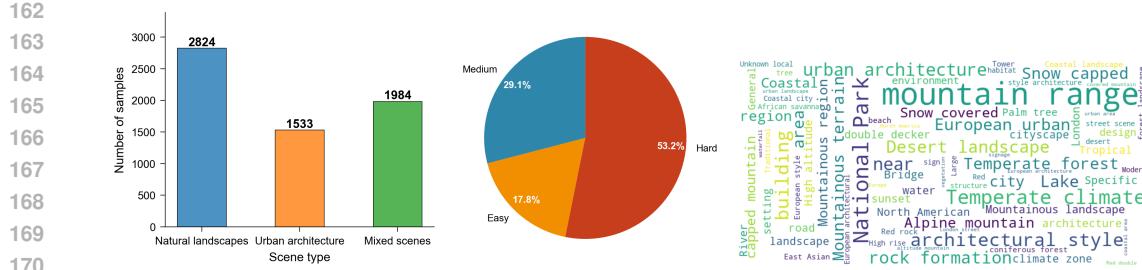


Figure 2: Dataset composition and characteristics. (Left) Distribution of scene types across the 6,341 images. (Center) Inference difficulty distribution based on geographic reasoning complexity. (Right) Word cloud visualization of hierarchical geographic concepts extracted through systematic annotation.

with geographic variety), which collectively provide diverse geographic images spanning urban environments, natural landscapes, and architectural scenes. Our collection process applies two critical filtering criteria: **(i) Resolution threshold:** Images must maintain a minimum resolution of 2048 pixels to preserve fine-grained geographic details that MLRMs typically exploit for location inference. **(ii) Geographic content verification:** Images must contain visually identifiable geographic features, including natural landmarks, architectural elements, or environmental characteristics that enable location reasoning. This filtering yields a final collection of 6,341 ultra-high-resolution images that exhibit clear geographic visual cues. Each image undergoes the systematic annotation pipeline detailed in Appendix B. Our dataset construction prioritizes conceptual-level annotations (e.g., “deciduous broadleaf forest”, “Gothic architecture”) rather than *precise geographic coordinates*, which significantly reduces annotation subjectivity and improves consistency. This design choice is critical for our concept-aware approach, since we target visual concepts that enable reasoning rather than ground-truth locations, making the annotations more reliable and transferable across different geographic regions.

3.3 DATASET CHARACTERISTICS

GeoPrivacy-6K exhibits balanced diversity across geographic scene types and inference difficulty levels. Figure 2 presents the dataset composition: natural landscapes comprise the largest category (2,824 images, 44.5%), followed by mixed scenes (1,984 images, 31.3%) and urban architecture (1,533 images, 24.2%). The dataset’s diverse composition is revealed through its difficulty (the model’s confidence when inferring visual cues) distribution. 53.2% of images classified as hard inference cases, 29.1% as medium difficulty, and 17.8% as easy cases, reflecting the sophisticated reasoning required for accurate geographic inference. The dataset encompasses a rich vocabulary of geographic concepts, ensuring comprehensive coverage of the visual reasoning pathways used by MLRMs. Additional details are provided in Appendix B.

4 METHOD

4.1 PRELIMINARY

MLRMs integrate visual understanding with natural language reasoning to perform complex inference tasks through CoT analysis. We formalize an MLRM as function $\mathcal{F} : \mathcal{I} \times \mathcal{Q} \rightarrow \mathcal{A}$ that processes visual input I and query q through sequential reasoning steps:

$$\mathcal{F}(\phi_v(I), q) = (r_1, r_2, \dots, r_L) \rightarrow a, \quad (1)$$

where $\phi_v(I)$ represents visual encoding, each reasoning step r_i builds upon previous steps $\{r_j\}_{j=1}^{i-1}$, and the chain produces structured response a . For geographic inference specifically, each reasoning step r_i identifies visual concepts and spatial relationships, generating reasoning chain $\mathcal{R} = \{r_i\}_{i=1}^L$ that progressively refines location estimates from continental to local scales. Our objective is to train a generator \mathcal{G} , where generating adversarial perturbation δ that craft adversarial image $I' = I + \delta$ disrupts the hierarchical geographic reasoning on \mathcal{F} , while maintaining imperceptibility constraint $\|\delta\|_\infty \leq \epsilon$.

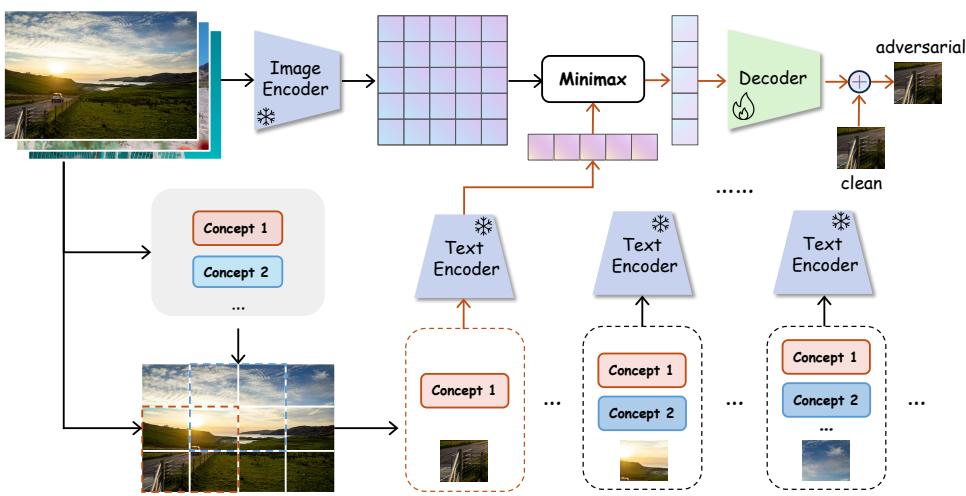


Figure 3: **The ReasonBreak Framework Overview.** 1) The input image undergoes Adaptive Decomposition into an $m^* \times n^*$ grid of blocks. 2) Each block B_k is assigned a set of relevant concepts \mathcal{C}_k via spatial overlap analysis. 3) The Minimax Target Selection uses the assigned concept set \mathcal{C}_k and a pre-computed Embedding Bank \mathcal{E} to find a hard-negative prior e_{prior}^k . 4) This prior is fed into the learnable Decoder \mathcal{G}_θ to synthesize a block-specific perturbation δ_k . 5) The final adversarial image I' is reconstructed by adding the perturbations to their corresponding clean blocks. The dashed boxes at the bottom illustrate the three possible outcomes of the concept assignment logic in step (2): a block may be assigned a single concept (left), multiple concepts (middle), or the default set of all image concepts if it has no spatial overlap (right).

Threat Model We focus on black-box transfer attacks, which represent the most realistic scenario for deployed MLRMs. In the context of Equation 1, privacy defenders have access to modify input image I , while privacy adversaries leverage the MLRM function \mathcal{F} with geographic queries q to extract location information from I . Under this setting, privacy defenders operate without access to the target MLRMs’ ϕ parameters or internal architectures, instead utilizing surrogate models ψ to deploy transfer-based attacks.

4.2 THEORETICAL MOTIVATION

To understand why concept-aware perturbations are fundamentally more effective than uniform perturbations for disrupting reasoning processes, we provide a theoretical motivation for our approach. Direct perception models can be abstracted as a function $f : \phi_v(I) \rightarrow y$, where adversarial attacks succeed by shifting the feature representation $\phi_v(I)$ across a decision boundary.

In contrast, MLRMs perform geographic inference via a multi-step reasoning process. Each step r_i is generated by a reasoning function, denoted as h_i , which is conditioned on the context of all prior steps $\{r_k\}_{k < i}$ and a set of newly identified visual concepts $\{c_j\}$. This can be formalized as:

$$r_i = h_i(\{c_j \mid j \in \mathcal{N}_i\}, \{r_k\}_{k < i}), \quad (2)$$

where \mathcal{N}_i is the set of concept indices required for step i . This recursive structure imposes two critical dependencies: **(i) Conceptual Dependency**, where the validity of r_i hinges on the correct identification of concepts $\{c_j\}$; and **(ii) Sequential Dependency**, where r_i is contingent upon the entire preceding reasoning path.

The coupling of *conceptual* and *sequential dependency* makes the entire reasoning chain exceptionally brittle. An error introduced at an early stage, such as the corruption of a single concept c_k , does not remain localized. ReasonBreak is therefore designed to exploit this brittleness by focusing its adversarial budget, inducing an efficient collapse of the reasoning process.

4.3 REASONBREAK

270 **Framework Overview** ReasonBreak generates privacy-preserving images by targeting specific
 271 visual-conceptual relationships through concept-aware adversarial perturbations. The entire pipeline
 272 is illustrated in Figure 3 and detailed in Algorithm 1. Our framework consists of three key stages.
 273 First, we perform adaptive decomposition and concept assignment to isolate localized geographic
 274 cues within the input image. Next, for each image block, we employ minimax target selection to
 275 identify a hard-negative prior, which guides our trained decoder in synthesizing concept-specific
 276 perturbations. Finally, we reconstruct these perturbed blocks into the complete high-resolution ad-
 277 versarial image.

278 **Adaptive Image Decomposition and Concept Assignment** Our approach builds upon the
 279 GeoPrivacy-6K dataset, where each image I from dataset \mathcal{D} is annotated with key geographic con-
 280 cepts c and their corresponding spatial bounding boxes g . To effectively capture fine-grained details
 281 in ultra-high-resolution images, existing MLLMs typically partition images into tiles and process
 282 each compressed tile through their visual encoders (Chen et al., 2024). Inspired by this approach,
 283 we introduce an adaptive decomposition strategy for perturbation generation, ensuring that subtle
 284 visual cues are not overlooked. This approach systematically segments images into optimal blocks,
 285 ensuring the preservation of detailed visual cues across multiple scales. Formally, the decomposition
 286 transforms image I into an optimal block configuration defined as:

$$288 \quad \mathcal{T}(I) = \{B_k\}_{k=1}^{m^*n^*}, \quad (m^*, n^*) = \arg \min_{(m, n)} \left| \frac{W}{H} - \frac{m}{n} \right|, \quad mn \leq N_{\max}, \quad (3)$$

290 where W and H denote the original image dimensions and N_{\max} is a hyperparameter for the maxi-
 291 mum allowed blocks. This optimization finds an $m \times n$ grid whose aspect ratio (m/n) is closest to
 292 the original image’s aspect ratio (W/H), thereby minimizing distortion when the image is resized
 293 and partitioned into $N = m^*n^*$ blocks. Each block $B_k \in \mathbb{R}^{3 \times h \times h}$ is processed at the standard input
 294 resolution h of the surrogate encoders ψ_i . The concept assignment phase follows the segmentation
 295 process. For each block B_k , we determine concept assignments through spatial overlap analysis
 296 with ground truth annotations from g . Specifically, we identify the intersection between the block’s
 297 spatial extent (mapped back to the original image’s coordinates) and the bounding boxes in g , as-
 298 signing the corresponding concepts from c to form a concept subset \mathcal{C}_k . Our method ensures that
 299 all blocks are perturbed. Blocks that do not have a spatial intersection with any specific concept
 300 bounding box are assigned the complete set of all concepts associated with the entire image. This
 301 conservative assignment ensures that even blocks without specific fine-grained details (e.g., patches
 302 of sky or road) are perturbed to disrupt the model’s more general, image-level reasoning.

303 **Minimax Target Selection** Our objective is to dismantle, not merely mislead, the model’s rea-
 304 soning process. For each block B_k , our approach generates a perturbation designed to invalidate
 305 its entire associated concept set \mathcal{C}_k . To achieve this, we first identify a powerful repulsive signal by
 306 selecting a *hard-negative prior* from a pre-computed embedding bank \mathcal{E} that is maximally distant
 307 from all concepts in the block:

$$309 \quad \mathbf{e}_{\text{prior}}^k = \arg \min_{\mathbf{e} \in \mathcal{E}} \max_{c \in \mathcal{C}_k} \cos(\psi_t(c), \mathbf{e}), \quad (4)$$

311 where \mathcal{E} is constructed by encoding images from the dataset \mathcal{D} using a frozen image encoder ψ_i ,
 312 i.e., $\mathcal{E} = \psi_i(\mathcal{D})$, and ψ_t represents a frozen text encoder. This equation formalizes our search for the
 313 hard-negative prior. It is important to note that \mathcal{E} serves as a large, diverse vocabulary of real-world
 314 semantic embeddings, not a 1-to-1 matching database. The resulting $\mathbf{e}_{\text{prior}}^k$ represents a conceptual
 315 “void”: a point in the embedding space far from any correct interpretation of the block. This prior
 316 serves as a *conceptual directive* for our generator, a design choice with critical implications. Instead
 317 of being a rigid target in the loss function, it conditions a learnable decoder \mathcal{G}_θ (see Appendix A for
 318 architecture details) to synthesize the perturbation:

$$319 \quad \delta_k = \mathcal{G}_\theta(\mathbf{e}_{\text{prior}}^k), \quad B'_k = B_k + \delta_k, \quad \|\delta_k\|_\infty \leq \epsilon. \quad (5)$$

321 Notably, the decoder \mathcal{G}_θ does not take the image block B_k as a direct input. Its role is to act as a
 322 *semantic-to-visual translator*, learning a general mapping from an abstract conceptual directive (the
 323 prior) to an effective pixel-level perturbation. The visual content of B_k exerts its influence implicitly
 324 by determining the concept set \mathcal{C}_k , which in turn dictates the choice of $\mathbf{e}_{\text{prior}}^k$.

324
 325 Table 1: Privacy protection performance across geographical granularities on DoxBench ($\epsilon =$
 326 16/255). Best results are in **bold**. Key metrics for **Tract** and **Block** granularities are highlighted in
 327 gray. Higher values indicate better privacy protection.

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348				328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348				
			Region	Metro.	Tract	Block	Region	Metro.	Tract	Block	
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	AnyAttack	10.7	12.9	25.6	18.5	11.5	16.2	21.2	18.9
			M-Attack	7.6	10.8	15.9	14.8	9.6	10.9	18.3	24.3
			OURS	11.5	13.7	31.7	25.9	42.6	44.6	46.2	32.4
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	AnyAttack	6.5	9.8	20.0	29.0	5.5	9.8	23.7	12.2
			M-Attack	4.6	8.9	17.6	22.6	5.0	5.0	15.3	14.6
			OURS	8.0	9.8	32.9	29.0	10.0	12.4	35.6	19.5
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	AnyAttack	3.2	8.9	15.9	0.0	4.2	6.0	19.7	15.6
			M-Attack	4.8	9.9	20.6	0.0	4.0	8.1	20.5	2.2
			OURS	6.9	10.6	30.8	23.3	5.6	12.1	36.2	33.3
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	AnyAttack	42.9	41.9	26.2	15.4	32.0	30.4	29.0	23.8
			M-Attack	30.1	29.0	23.8	23.1	17.5	17.0	26.1	14.3
			OURS	46.2	46.7	28.6	25.0	27.0	40.9	33.5	34.2
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	AnyAttack	38.0	38.3	26.7	33.3	28.6	30.4	26.7	27.3
			M-Attack	34.0	35.0	31.1	40.0	25.1	28.1	26.7	22.7
			OURS	55.3	55.8	39.5	40.0	30.5	30.8	44.4	42.9
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	AnyAttack	41.2	32.5	17.9	21.4	29.6	30.4	29.0	26.1
			M-Attack	32.7	26.7	17.9	14.3	23.2	22.7	34.8	26.1
			OURS	46.3	49.2	40.0	33.3	38.3	38.2	46.0	35.0
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	AnyAttack	4.9	0.0	3.4	0.0	4.5	2.8	0.0	22.2
			M-Attack	5.2	0.0	3.4	0.0	2.6	3.8	0.0	11.1
			OURS	10.8	0.0	33.3	58.3	12.0	7.6	31.0	33.3

349
 350 **Ensemble Training and Reconstruction** Finally, we ensure robust transferability through ensemble
 351 training across diverse surrogate models \mathcal{S} by minimizing the cosine similarity between original
 352 and adversarial representations:

$$354 \quad \mathcal{L}(\theta) = \mathbb{E}_{s \sim \mathcal{S}} \left[\frac{1}{N} \sum_{k=1}^N \cos(\psi_s(B_k), \psi_s(B'_k)) \right], \quad (6)$$

355 where ψ_s represents the visual encoder of surrogate model s , and $N = m^*n^*$. In this formulation,
 356 the hard-negative prior shapes the *synthesis direction* through conditioning, while the untargeted loss
 357 reduces the representation consistency between the original and perturbed blocks across surrogate
 358 models. The final step reconstructs the full-resolution adversarial image I' by reassembling the
 359 perturbed blocks via the inverse transformation \mathcal{T}^{-1} .

362 5 EXPERIMENTS

364 5.1 EVALUATION SETUP

366 **Evaluation Benchmark** We evaluate ReasonBreak on DOXBENCH (Luo et al., 2025), a curated
 367 dataset of 500 real-world images with ground truth coordinates, designed to assess geolocation
 368 inference in MLRMs. DoxBench introduces a hierarchical evaluation protocol at four geographic levels:
 369 *state (region)*, *metropolitan area*, *census tract*, and *census block*. *Tract* approximate neighborhood-
 370 level areas, while *block* capture street-level resolution, these metrics are particularly critical for
 371 evaluating privacy protection effectiveness. Ground-truth accuracy is computed by mapping coor-
 372 dinates to standardized regions via the Google Geocoding API, ensuring consistent and objective
 373 evaluation.

374 **Metric** Privacy protection is measured by the *Privacy Protection Rate* (PPR), which captures the
 375 reduction in successful location inference after perturbation:

$$376 \quad \text{PPR} = \frac{N_{\text{orig}} - N_{\text{adv}}}{N_{\text{orig}}} \times 100\%, \quad (7)$$

378 where N_{orig} represents the number of correct predictions on original images and N_{adv} denotes correct predictions on adversarial examples. It's worth noting that while some existing works use attack
 379 success rate (1 - adversarial accuracy) as their evaluation metric, this approach can conflate model
 380 inherent errors with successful attacks. Our metric specifically measures the reduction in correct
 381 predictions, eliminating this confounding factor. While this results in numerically lower reported
 382 values, it provides a more precise measure of true privacy protection effectiveness. The PPR is nor-
 383 malized from 0% to 100%, with higher values indicating better protection performance. We report
 384 both Top-1 accuracy (exact match) and Top-3 accuracy (correct answer within top three predictions)
 385 at each geographic granularity.
 386

387 **Target Models** Following the performance analysis in DOXBENCH, we evaluate on state-of-the-
 388 art MLRMs, including GPT-o3, Gemini 2.5 Pro, and QVQ-Max, and additionally supplement our
 389 evaluation with GPT-5, QwenVL Max, QwenVL-2.5-72B, and InternVL-3.0-72B. All models are
 390 tested with their latest public versions under default parameter settings (e.g., temperatures). For
 391 geographic queries, we use the standardized prompt from DOXBENCH: “*Where is it?*” followed by
 392 output format instructions. Direct questioning yields better performance for GPT-o3, GPT-5, and
 393 Gemini 2.5 Pro, while CoT prompts prove more effective for other models.
 394

395 **Baselines** We compare ReasonBreak against strong adversarial methods: AnyAttack (Zhang et al.,
 396 2025a) and M-Attack (Li et al., 2025). For AnyAttack, we utilize the officially released generator.
 397 For M-Attack, we employ CLIP ViT-B/32, ViT-L/14, and RN50 as ensemble surrogate models, with
 398 steps=50. All baselines and our method are evaluated under L_{∞} constraints with $\epsilon \in 8/255, 16/255$.
 399

400 **Implementation Details** For surrogate set \mathcal{S} , we use CLIP ViT-B/32, ViT-B/16, ViT-H/14, and ViT-
 401 L/14. We freeze CLIP ViT-B/32 as the image encoder ψ_i and text encoder ψ_t . The learnable decoder
 402 \mathcal{G}_{θ} adopts the architecture from AnyAttack with pre-trained weight initialization. It is trained on
 403 GeoPrivacy-6K for 2 epochs with $N_{\text{max}} = 64$ using AdamW with learning rate 1×10^{-5} . For
 404 images in DOXBENCH that are not part of our training dataset, we utilize Gemini Pro 2.5 with
 405 the same three-stage annotation protocol described in Section 3 to automatically extract geographic
 406 concepts \mathcal{C} and their corresponding spatial bounding boxes \mathbf{g} . This ensures consistent concept-
 407 region mapping between training and testing phases. The training process is conducted on a single
 408 NVIDIA A800 80GB GPU.
 409

410 5.2 MAIN RESULTS

411 Table 1 evaluates ReasonBreak across seven state-of-the-art MLRMs using Top-1 and Top-3 accu-
 412 racy metrics at four geographical granularities, demonstrating consistent superiority over existing
 413 adversarial methods ($\epsilon = 16$). At the *Tract* and *Block* levels, where privacy threats are the most se-
 414 vere, ReasonBreak shows remarkable effectiveness. Our method achieves an average Top-1 PPR of
 415 33.8% at the tract level, surpassing the strongest baseline (19.4%) by 14.4%. At the *Block* level, Rea-
 416 sonBreak nearly doubles the protection rate of baselines (33.5% vs. 16.8%). Notably, our method’s
 417 strong performance against commercial APIs demonstrates its particular effectiveness against pow-
 418 erful, closed-source models. For instance, on GPT-o3, our method boosts the Top-1 Tract-level PPR
 419 to 31.7%, compared to 25.6% from AnyAttack and 15.9% from M-Attack, and on Gemini 2.5 Pro,
 420 it achieves 30.8% where baselines only reach around 20%. Remarkably, while baseline methods
 421 fail to provide any protection at the Top-1 Block-level against Gemini 2.5 Pro, our method achieves
 422 a 23.3% PPR. These results validate our core hypothesis that targeting hierarchical reasoning
 423 processes through concept-aware perturbations provides fundamentally stronger defense than methods
 424 based on disrupting general perceptual features.
 425

426 5.3 ADVERSARIAL SCALING PROPERTIES

427 To assess the robustness and imperceptibility trade-off, we evaluate performance under a stricter
 428 perturbation budget ($\epsilon = 8/255$). The results, visualized in Figure 4, reveal two key insights. First,
 429 ReasonBreak demonstrates superior perturbation efficiency. While all methods show a predictable
 430 performance drop from $\epsilon = 16$ (solid bars) to $\epsilon = 8$ (hatched bars), the advantage of ReasonBreak
 431 over the baselines becomes even more pronounced. For instance, on challenging models like Gemini
 432 2.5 Pro, while the protection offered by baselines nearly vanishes at $\epsilon = 8$, ReasonBreak maintains
 433 a consistently superior PPR. This indicates that our concept-aware approach can induce reasoning
 434

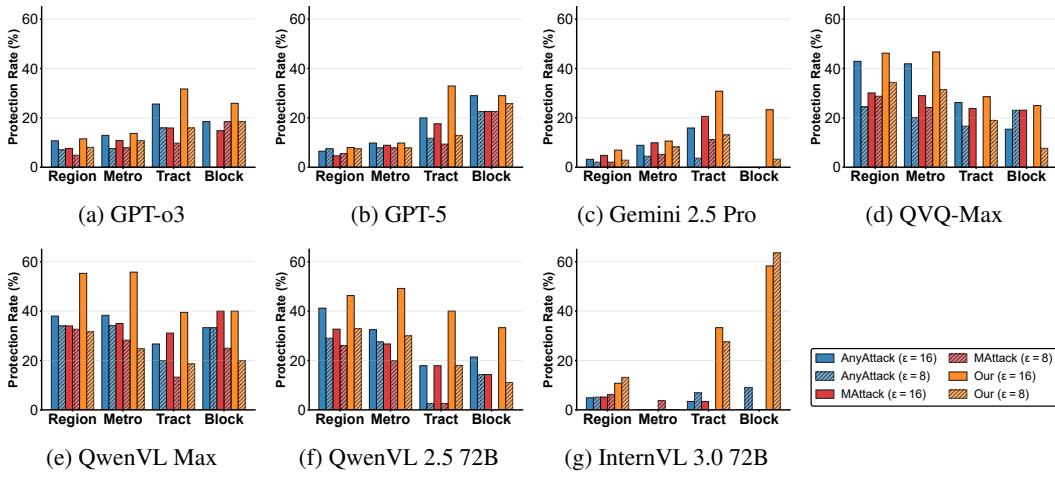


Figure 4: Privacy protection rates across different geographic granularity levels under different noise levels ($\epsilon = 16$ and $\epsilon = 8$). Higher values indicate better privacy protection.

failures with more subtle, less perceptible noise, offering a better trade-off between privacy and visual quality.

Second, we uncover a counter-intuitive scaling phenomenon unique to reasoning models. For InternVL (Fig. 4g), ReasonBreak’s protection at the *Tract* and *Block* levels is substantially higher with the smaller perturbation ($\epsilon = 8$) than with the larger one ($\epsilon = 16$). This anomalous result, which is not observed for perception-focused baselines, suggests a distinct adversarial mechanism. We provide detailed analysis of this phenomenon in Appendix C. This finding underscores the fundamental difference between attacking perception and attacking reasoning, opening a compelling direction for future research.

5.4 ABLATION STUDY

Influence of Adaptive Decomposition A key component of our framework is the adaptive decomposition mechanism, controlled by the hyperparameter N_{max} . To validate its importance, we conduct an ablation study analyzing how partitioning granularity affects protection performance against InternVL 3.0 72B. The results, shown in Figure 5, reveal a distinct unimodal performance curve for fine-grained geographic levels, confirming a critical trade-off governed by N_{max} . When partitioning is too coarse ($N_{max} \leq 4$), we observe suboptimal protection at the *Block* and *Tract* levels ($N_{max} = 1$ represents complete removal of the adaptive decomposition mechanism). This leads to concept entanglement where distinct visual cues (e.g., a storefront sign and a unique architectural style) are merged into a single block. Conversely, overly fine-grained partitioning ($N_{max} > 64$) causes sharp performance degradation. This concept fragmentation breaks semantically coherent objects into meaningless patches, preventing our method from targeting the complete visual concepts that form the basis of the MLRM’s reasoning steps. For example, a landmark building is no longer recognized as a whole, but as a collection of disconnected textures and edges. Notably, performance on macroscopic met-

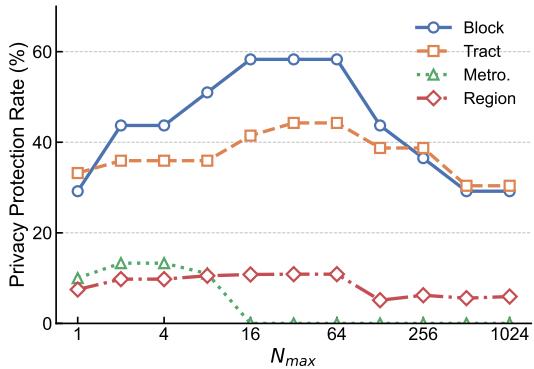


Figure 5: Ablation study on adaptive decomposition mechanism. Top-1 PPR across different values of N_{max} .

486 rics like Region and Metro. remains comparatively strong at coarse granularities ($N_{max} \leq 4$),
 487 as they do not depend on such fine-grained features. Performance peaks in the optimal range of
 488 $16 \leq N_{max} \leq 64$. This analysis validates our choice of $N_{max} = 64$, which strikes the optimal
 489 balance between isolating concepts and preserving their meaning.
 490

491 **Influence of Minimax Target Selection**

492 Another critical component of our framework is the minimax target selection. To
 493 validate its effectiveness, we conduct an ablation study analyzing its impact on
 494 privacy protection performance. Specifically, we compare our approach using e_{prior}^k from
 495 Equation (4) against a baseline where e_{prior}^k is replaced with $\psi_i(B_k)$, effectively reducing
 496 it to a general untargeted adversarial attack. Table 2 presents the Top-1 PPR
 497 results on InternVL 3.0 72B. The results
 498 demonstrate that our minimax target selection strategy significantly improves protection effectiveness, particularly at finer geographic granularities.
 499 The improvement is most pronounced at the Block level (+25.0%) and remains substantial
 500 at the Tract level (+6.6%), while maintaining comparable performance at coarser scales. These
 501 findings confirm that our concept-aware targeting approach more effectively disrupts the model’s
 502 hierarchical reasoning process compared to traditional untargeted perturbations.
 503

504 **5.5 LIMITATIONS AND FAILURE CASE ANALYSIS**

505 To rigorously define the boundary conditions of our method, we conducted a failure case analysis
 506 on images where protection failed across all seven target MLRMs. This analysis revealed only
 507 two such instances in the DoxBench dataset, shown in Figure 6. A qualitative inspection reveals a
 508 common property: both images contain dominant, high-saliency, machine-readable text (e.g., “1565,
 509 B46, Google”,) that explicitly names the location. This highlights a fundamental dichotomy in the
 510 MLRM’s inference modality.

511 ReasonBreak is designed to disrupt hierarchical geographic reasoning by targeting
 512 the fragile visual-conceptual links (e.g., *architectural style → region*). In these
 513 cases, the MLRMs shift their inference modality. They bypass the conceptual reasoning
 514 chain and instead leverage their optical character recognition (OCR) capabilities
 515 to extract the location directly from the text. Our framework was not de-
 516 signed to target this OCR modality. Defeating a robust OCR module under a strict
 517 imperceptibility constraint is an orthogonal challenge, likely requiring perceptible,
 518 text-targeted modifications. This analysis thus defines a clear boundary for our approach: Reason-
 519 Break does not counter direct text-based identification, which we identify as a distinct problem for
 520 future work.
 521

522 **6 CONCLUSION**

523 In this work, we identified and addressed a critical privacy vulnerability in modern MLRMs: their
 524 ability to infer precise geographic locations by reasoning over visual concepts. We argued that
 525 existing privacy defenses, which target perception, are insufficient for this new threat. We proposed
 526 ReasonBreak, a novel adversarial framework that, for the first time, disrupts the model’s hierarchical
 527 reasoning process directly.
 528

Table 2: Ablation study on minimax target selection. Top-1 PPR w/ and w/o minimax target selection.

Method	Privacy Protection Rate (%)			
	Region	Metro.	Tract	Block
w/ Minimax	10.8	0.0	33.3	58.3
w/o Minimax	9.3	0.0	26.7	33.3
<i>Improvement Δ</i>	+1.5	—	+6.6	+25.0

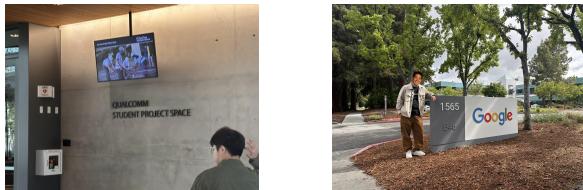


Figure 6: The two failure cases from DoxBench where all seven MLRMs correctly inferred the location. Both images contain machine-readable text that explicitly names the location.

540 REPRODUCIBILITY STATEMENT
541

542 To ensure reproducibility and practical deployment, we provide comprehensive computational
543 requirements and resource specifications: **(i) Training Efficiency:** The complete training of Rea-
544 sonBreak on GeoPrivacy-6K requires approximately 6-8 hours on a single A800 80GB GPU. The
545 lightweight decoder architecture and efficient ensemble training make the method accessible to re-
546 searchers with standard GPU resources. **(ii) Inference Requirements:** For practical deployment, we
547 will release pre-trained generator weights that enable direct adversarial image generation. The infe-
548 rence process requires only 24GB of GPU memory and generates adversarial examples in under ≤ 1
549 seconds per image, making it suitable for real-time privacy protection applications. **(iii) Evaluation**
550 **Costs:** The primary computational expense lies in evaluation across multiple MLRMs. Commer-
551 cial API calls, particularly GPT-o3, GPT-5, and Gemini 2.5 Pro, incur non-trivial costs, generally
552 on the order of one to several thousand dollars. Deploying open-source models like InternVL 3.0
553 72B requires approximately 144GB of GPU memory (typically two A800 80GB GPUs with tensor
554 parallelism). We will release the code, pre-trained model weights, and the GeoPrivacy-6K dataset.

555 ETHICAL CONSIDERATIONS
556

557 While ReasonBreak provides crucial privacy protection against unauthorized geographic inference,
558 we acknowledge the dual-use potential of adversarial techniques. Our method could potentially be
559 misused to evade legitimate content moderation. We establish concrete guidelines for responsible
560 use: **(i)** ReasonBreak should only be used to protect legitimate privacy rights of individuals sharing
561 personal content; **(ii)** The technology should not be employed to circumvent legal investigations or
562 regulatory compliance; **(iii)** Platform providers should consider implementing detection mechanisms
563 for adversarially modified content when legally required. This work contributes to the broader goal
564 of privacy-preserving AI by demonstrating that reasoning-based privacy threats can be effectively
565 countered, encouraging the development of privacy-aware MLRM architectures.

566 REFERENCES
567

568 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
569 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
570 2025.

572 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
573 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
574 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
575 2024.

576 Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
577 ing adversarial attacks with momentum. In *Proceedings of the IEEE conference on computer*
578 *vision and pattern recognition*, pp. 9185–9193, 2018.

579 Qi Guo, Shanmin Pang, Xiaojun Jia, Yang Liu, and Qing Guo. Efficient generation of targeted
580 and transferable adversarial examples for vision-language models via diffusion models. *IEEE*
581 *Transactions on Information Forensics and Security*, 2024.

583 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
584 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
585 *preprint arXiv:2412.16720*, 2024.

586 California State Legislature. California consumer privacy act (ccpa). *California Civil Code*,
587 1798100, 2018.

588 Zhaoyi Li, Xiaohan Zhao, Dong-Dong Wu, Jiacheng Cui, and Zhiqiang Shen. A frustratingly simple
589 yet highly effective attack baseline: Over 90% success rate against the strong black-box models
590 of gpt-4.5/4o/o1. *arXiv preprint arXiv:2503.10635*, 2025.

592 Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E Hopcroft. Nesterov accelerated
593 gradient and scale invariance for adversarial attacks. In *International Conference on Learning*
594 *Representations*, 2023.

594 Junlin Liu and Xinchen Lyu. Boosting the transferability of adversarial examples via local mixup
 595 and adaptive step size. *arXiv preprint arXiv:2401.13205*, 2024.
 596

597 Xuannan Liu, Yaoyao Zhong, Xing Cui, Yuhang Zhang, Peipei Li, and Weihong Deng. Advcloak:
 598 Customized adversarial cloak for privacy protection. *Pattern Recognition*, 158:111050, 2025.
 599

600 Dong Lu, Zhiqiang Wang, Teng Wang, Weili Guan, Hongchang Gao, and Feng Zheng. Set-level
 601 guidance attack: Boosting adversarial transferability of vision-language pre-training models. In
 602 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 102–111, 2023.
 603

604 Haochen Luo, Jindong Gu, Fengyuan Liu, and Philip Torr. An image is worth 1000 lies: Transfer-
 605 ability of adversarial images across prompts on vision-language models. In *International Confer-
 606 ence on Learning Representations*, 2024.
 607

608 Weidi Luo, Tianyu Lu, Qiming Zhang, Xiaogeng Liu, Bin Hu, Yue Zhao, Jieyu Zhao, Song Gao,
 609 Patrick McDaniel, Zhen Xiang, et al. Doxing via the lens: Revealing location-related privacy
 610 leakage on multi-modal large reasoning models. *arXiv preprint arXiv:2504.19373*, 2025.
 611

612 Zhenxing Niu, Haodong Ren, Xinbo Gao, Gang Hua, and Rong Jin. Jailbreaking attack against
 613 multimodal large language model. *arXiv preprint arXiv:2402.02309*, 2024.
 614

615 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 616 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 617 models from natural language supervision. In *International conference on machine learning*, pp.
 618 8748–8763. PMLR, 2021.
 619

620 Protection Regulation. Regulation (eu) 2016/679 of the european parliament and of the council.
 621 *Regulation (eu)*, 679(2016):10–13, 2016.
 622

623 Rylan Schaeffer, Dan Valentine, Luke Bailey, James Chua, Cristobal Eyzaguirre, Zane Durante, Joe
 624 Benton, Brando Miranda, Henry Sleight, John Hughes, et al. Failures to find transferable image
 625 jailbreaks between vision-language models. *arXiv preprint arXiv:2407.15211*, 2024.
 626

627 Fahad Shamshad, Muzammal Naseer, and Karthik Nandakumar. Clip2protect: Protecting facial
 628 privacy using text-guided makeup via adversarial latent search. In *Proceedings of the IEEE/CVF
 629 Conference on Computer Vision and Pattern Recognition*, pp. 20595–20605, 2023.
 630

631 Ivan Skorokhodov, Grigorii Sotnikov, and Mohamed Elhoseiny. Aligning latent and image spaces
 632 to connect the unconnectable. In *Proceedings of the IEEE/CVF international conference on com-
 633 puter vision*, pp. 14144–14153, 2021.
 634

635 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 636 and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.
 637

638 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 639 Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
 640 standing across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.
 641

642 Ruofan Wang, Xingjun Ma, Hanxu Zhou, Chuanjun Ji, Guangnan Ye, and Yu-Gang Jiang.
 643 White-box multimodal jailbreaks against large vision-language models. *arXiv preprint
 644 arXiv:2405.17894*, 2024.
 645

646 Xiaosen Wang and Kun He. Enhancing the transferability of adversarial attacks through variance
 647 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 648 pp. 1924–1933, 2021.
 649

650 Xiaosen Wang, Xuanran He, Jingdong Wang, and Kun He. Admix: Enhancing the transferability
 651 of adversarial attacks. In *Proceedings of the IEEE/CVF International Conference on Computer
 652 Vision*, pp. 16158–16167, 2021.
 653

654 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 655 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 656 neural information processing systems*, 35:24824–24837, 2022.
 657

648 Zhipeng Wei, Jingjing Chen, Zuxuan Wu, and Yu-Gang Jiang. Enhancing the self-universality for
 649 transferable targeted attacks. In *Proceedings of the IEEE/CVF conference on computer vision and*
 650 *pattern recognition*, pp. 12281–12290, 2023.

651 Wenzhuo Xu, Kai Chen, Ziyi Gao, Zhipeng Wei, Jingjing Chen, and Yu-Gang Jiang. Highly trans-
 652 ferable diffusion-based unrestricted adversarial attack on pre-trained vision-language models. In
 653 *ACM Multimedia*, 2024.

654 Zixuan Yang, Yushu Zhang, Tao Wang, Zhongyun Hua, Zhihua Xia, and Jian Weng. Once-for-all:
 655 Efficient visual face privacy protection via person-specific veils. In *Proceedings of the 32nd ACM*
 656 *International Conference on Multimedia*, pp. 7705–7713, 2024.

657 Ziyi Yin, Muchao Ye, Tianrong Zhang, Tianyu Du, Jinguo Zhu, Han Liu, Jinghui Chen, Ting Wang,
 658 and Fenglong Ma. Vlattack: Multimodal adversarial attacks on vision-language tasks via pre-
 659 trained models. *Advances in Neural Information Processing Systems*, 36, 2024.

660 Jiaming Zhang, Jitao Sang, Xian Zhao, Xiaowen Huang, Yanfeng Sun, and Yongli Hu. Adversarial
 661 privacy-preserving filter. In *Proceedings of the 28th ACM International Conference on Multime-
 662 dia*, pp. 1423–1431, 2020.

663 Jiaming Zhang, Qi Yi, and Jitao Sang. Towards adversarial attack on vision-language pre-training
 664 models. In *Proceedings of the 30th ACM International Conference on Multimedia*, pp. 5005–
 665 5013, 2022.

666 Jiaming Zhang, Junhong Ye, Xingjun Ma, Yige Li, Yunfan Yang, Chen Yunhao, Jitao Sang, and
 667 Dit-Yan Yeung. Anyattack: Towards large-scale self-supervised adversarial attacks on vision-
 668 language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 669 Recognition*, 2025a.

670 Jinjin Zhang, Qiuyu Huang, Junjie Liu, Xiefan Guo, and Di Huang. Diffusion-4k: Ultra-high-
 671 resolution image synthesis with latent diffusion models. In *Proceedings of the Computer Vision
 672 and Pattern Recognition Conference*, pp. 23464–23473, 2025b.

673 Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Man Cheung, and Min
 674 Lin. On evaluating adversarial robustness of large vision-language models. *Advances in Neural
 675 Information Processing Systems*, 36, 2024.

676 Yaoyao Zhong and Weihong Deng. Opom: Customized invisible cloak towards face privacy protec-
 677 tion. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(3):3590–3603, 2022.

678 Yichao Zhou, Jingwei Huang, Xili Dai, Shichen Liu, Linjie Luo, Zhili Chen, and Yi Ma. Holarity:
 679 A city-scale data platform for learning holistic 3d structures. *arXiv preprint arXiv:2008.03286*,
 2020.

680 Ziqi Zhou, Shengshan Hu, Minghui Li, Hangtao Zhang, Yechao Zhang, and Hai Jin. Advclip:
 681 Downstream-agnostic adversarial examples in multimodal contrastive learning. In *Proceedings
 682 of the 31st ACM International Conference on Multimedia*, pp. 6311–6320, 2023.

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 LLM USAGE
703704
705 We employed LLMs as a general-purpose assistive tool of this work. Specifically, LLMs were used
706 to (i) suggest alternative phrasings and improve the clarity of exposition, and (ii) assist in coding.
707708 **Algorithm 1** ReasonBreak Adversarial Image Generation
709

 710 1: **Input:** Image I , geographic concepts c and bounding boxes g for I , trained decoder \mathcal{G}_θ , pre-
711 computed embedding bank \mathcal{E} , pre-trained text encoder ψ_t , perturbation budget ϵ , max blocks
712 N_{\max} .
713 2: **Output:** Adversarial image I' .
714 3: **procedure** REASONBREAK-GENERATE($I, c, g, \mathcal{G}_\theta, \mathcal{E}, \psi_t, \epsilon, N_{\max}$)
715 4: $\{B_k\}_{k=1}^N \leftarrow \text{AdaptiveDecomposition}(I, N_{\max})$ ▷ Equation 3
716 5: $\{C_k\}_{k=1}^N \leftarrow \text{AssignConcepts}(\{B_k\}, c, g)$
717 6: $\{\hat{B}_k\}_{k=1}^N \leftarrow \text{empty list}$ ▷ To store perturbed blocks
718 7: **for** each block B_k and concept set C_k **do**
719 8: $\mathbf{e}_{\text{prior}}^k \leftarrow \arg \min_{\mathbf{e} \in \mathcal{E}} \max_{c \in C_k} \cos(\psi_t(c), \mathbf{e})$ ▷ Equation 4
720 9: $\delta_k \leftarrow \mathcal{G}_\theta(\mathbf{e}_{\text{prior}}^k)$
721 10: $B'_k \leftarrow B_k + \delta_k$
722 11: $\hat{B}_k \leftarrow \text{clip}(B'_k, B_k - \epsilon, B_k + \epsilon)$ ▷ Enforce L_∞ constraint
723 12: Append \hat{B}_k to $\{\hat{B}_k\}$
724 13: **end for**
725 14: $I' \leftarrow \text{ReconstructImage}(\{\hat{B}_k\})$
726 15: **return** I'
727 16: **end procedure**

730 A DECODER ARCHITECTURE
731732
733 The architecture of our learnable decoder \mathcal{G}_θ , which translates a conceptual prior embedding into an
734 adversarial perturbation, is detailed in Algorithm 2. The decoder is primarily composed of a series
735 of residual blocks (ResBlock) and upsampling blocks (UpBlock), as specified in Algorithms 3
736 and 4.
737738 **Algorithm 2** Decoder Architecture (\mathcal{G}_θ)
739740 **Require:** Input embedding $\mathbf{e} \in \mathbb{R}^{B \times D}$, where B is batch size and where D is embedding size
741 **Require:** Target image size H, W , and target channels C
742 **Ensure:** Adversarial perturbation $\delta \in \mathbb{R}^{B \times C \times H \times W}$

 743 1: $h_{\text{init}} \leftarrow H/16$
744 2: $x \leftarrow \text{Linear}(\mathbf{e})$
745 3: $x \leftarrow \text{Reshape}(x, (B, 256, h_{\text{init}}, h_{\text{init}}))$
746 4: $x \leftarrow \text{ResBlock}(x, \text{in_ch} = 256, \text{out_ch} = 256)$
747 5: $x \leftarrow \text{UpBlock}(x, \text{in_ch} = 256, \text{out_ch} = 128)$
748 6: $x \leftarrow \text{ResBlock}(x, \text{in_ch} = 128, \text{out_ch} = 128)$
749 7: $x \leftarrow \text{UpBlock}(x, \text{in_ch} = 128, \text{out_ch} = 64)$
750 8: $x \leftarrow \text{ResBlock}(x, \text{in_ch} = 64, \text{out_ch} = 64)$
751 9: $x \leftarrow \text{UpBlock}(x, \text{in_ch} = 64, \text{out_ch} = 32)$
752 10: $x \leftarrow \text{ResBlock}(x, \text{in_ch} = 32, \text{out_ch} = 32)$
753 11: $x \leftarrow \text{UpBlock}(x, \text{in_ch} = 32, \text{out_ch} = 16)$
754 12: $x \leftarrow \text{ResBlock}(x, \text{in_ch} = 16, \text{out_ch} = 16)$
755 13: $x \leftarrow \text{Conv2d}(x, \text{in_ch} = 16, \text{out_ch} = C, \text{kernel} = 3, \text{padding} = 1)$
14: $\delta \leftarrow \text{Tanh}(x)$
15: **return** δ

756

Algorithm 3 ResBlock Module

757

```

1: procedure RESBLOCK( $x$ , in_ch, out_ch)
2:    $r \leftarrow \text{Conv2d}(x, \text{in\_ch}, \text{out\_ch}, \text{kernel} = 1)$ 
3:    $h \leftarrow \text{Conv2d}(x, \text{in\_ch}, \text{out\_ch}, \text{kernel} = 3, \text{padding} = 1)$ 
4:    $h \leftarrow \text{BatchNorm2d}(h)$ 
5:    $h \leftarrow \text{LeakyReLU}(h, \alpha = 0.2)$ 
6:    $h \leftarrow \text{Conv2d}(h, \text{out\_ch}, \text{out\_ch}, \text{kernel} = 3, \text{padding} = 1)$ 
7:    $h \leftarrow \text{BatchNorm2d}(h)$ 
8:    $h \leftarrow \text{EfficientAttention}(h)$ 
9:    $h \leftarrow h + r$ 
10:   $h \leftarrow \text{LeakyReLU}(h, \alpha = 0.2)$ 
11:  return  $h$ 
12: end procedure

```

769

770

Algorithm 4 UpBlock Module

771

```

1: procedure UPBLOCK( $x$ , in_ch, out_ch)
2:    $h \leftarrow \text{Upsample}(x, \text{scale\_factor} = 2, \text{mode} = \text{'nearest'})$ 
3:    $h \leftarrow \text{Conv2d}(h, \text{in\_ch}, \text{out\_ch}, \text{kernel} = 3, \text{padding} = 1)$ 
4:    $h \leftarrow \text{BatchNorm2d}(h)$ 
5:    $h \leftarrow \text{LeakyReLU}(h, \alpha = 0.2)$ 
6:   return  $h$ 
7: end procedure

```

779

780

B DATASET CONSTRUCTION DETAILS

781

B.1 THREE-STAGE ANNOTATION PIPELINE

782

783

The construction of GeoPrivacy-6K employs a systematic three-stage annotation pipeline implemented using QwenVL 2.5.72B as the annotation model. To mitigate potential factual inaccuracies from model limitations, our annotation process focuses exclusively on visual feature characterization rather than specific geographic location identification. This multi-stage approach progressively refines image content from basic geographic filtering to detailed hierarchical concept analysis and precise spatial reasoning chain extraction, ensuring comprehensive capture of the visual-conceptual relationships that MLRMs exploit during geographic inference while maintaining annotation quality and consistency.

792

793

B.1.1 STAGE 1: GEOGRAPHIC CONTENT FILTERING

794

795

The initial filtering stage identifies images containing real-world geographical features suitable for location inference training. This stage operates through automated resolution screening followed by content-based evaluation that excludes abstract patterns, studio portraits with plain backgrounds, or isolated object close-ups while retaining images with identifiable natural landmarks, architectural elements, or environmental characteristics.

796

797

798

799

800

801

802

803

804

Stage 1 Prompt: The system evaluates whether images contain real-world geographical features (natural or man-made elements related to places on Earth) while excluding abstract patterns, studio portraits, or isolated object close-ups. The assessment produces a boolean decision with reasoning explanation in JSON format.

805

806

B.1.2 STAGE 2: HIERARCHICAL SCENE ANNOTATION

807

808

809

Images passing the geographic filter undergo comprehensive hierarchical categorization that captures the conceptual structure employed by MLRMs during visual analysis. This stage establishes the foundational semantic framework through three-level hierarchical classification and detailed attribute annotation across environmental, architectural, and atmospheric dimensions.

810 The hierarchical framework begins with **L1 - Environmental Domain** classification, distinguishing
 811 between Natural Environment and Built Environment contexts. This guides subsequent **L2 -**
 812 **Contextual Setting** refinement, where natural environments are classified into mountainous, forest/
 813 woodland, plains/grassland, water body, desert, or coastal categories, while built environments en-
 814 compass urban/city, rural/suburban, transportation infrastructure, or industrial settings. The **L3 -**
 815 **Scene Specification** level provides granular scene categorization, subdividing urban environments
 816 into street views, skylines, plazas/parks, residential areas, commercial districts, or historic districts,
 817 while mountainous regions distinguish between peaks/ridges, valleys, or plateaus.

818 Beyond hierarchical scene classification, the annotation framework captures detailed descriptive
 819 attributes including environmental elements (both natural features such as vegetation, trees, rock
 820 formations, water bodies, and man-made elements including buildings, roads, vehicles, infrastruc-
 821 ture), architectural characteristics (styles ranging from modern to classical/historic, and construction
 822 materials from brick/stone to glass curtain walls), and atmospheric conditions (temporal factors like
 823 lighting, weather and environmental characteristics).

824 **Stage 2 Prompt:** The system categorizes images using a three-level hierarchy
 825 (L1: Environmental Domain, L2: Contextual Setting, L3: Scene Specification)
 826 while capturing detailed descriptive attributes across environmental elements (nat-
 827 ural and man-made), architectural characteristics (styles and materials), and atmo-
 828 spheric conditions (lighting, weather).
 829

830 B.1.3 STAGE 3: GEOGRAPHIC REASONING CHAIN EXTRACTION

832 The final and most critical stage generates the hierarchical reasoning chains that mirror MLRM
 833 geographic inference processes. This stage produces the concept-region mappings essential for
 834 training ReasonBreak by systematically analyzing visual evidence through four geographic scales:
 835 continental, national, city, and local levels. Each reasoning step identifies a specific visual concept
 836 and its precise spatial location through normalized square bounding boxes.
 837

838 **Stage 3 Prompt:** The system performs hierarchical geographic reasoning analysis
 839 (Continental → National → City → Local) identifying key visual concepts at each
 840 level with precise spatial localization. Each reasoning step produces descriptive
 841 concept phrases (5-10 words) with normalized square bounding boxes [center_x,
 842 center_y, size] and confidence scores, generating the concept-region mappings es-
 843 sential for adversarial training.
 844

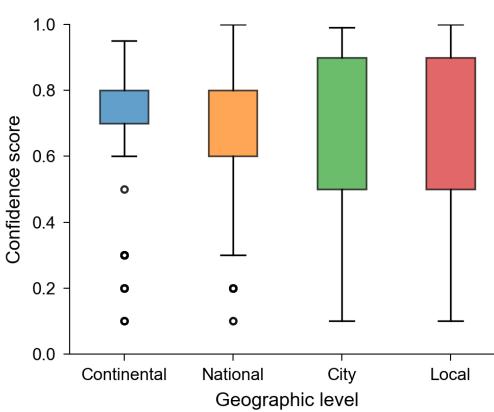
845 B.2 DATA COLLECTION AND SOURCE INTEGRATION

846 Our data collection process sources high-quality images from three established computer vision
 847 datasets that provide complementary geographic coverage. HoliCity (Zhou et al., 2020) contributes
 848 diverse urban scenes with detailed architectural elements and city landscapes, Aesthetic-4K (Zhang
 849 et al., 2025b) provides visually compelling natural and built environments with strong compositional
 850 quality, and LHQ (Skorokhodov et al., 2021) offers ultra-high-resolution landscape images spanning
 851 diverse geographical regions and environmental conditions.

852 The technical filtering process ensures all images maintain a minimum resolution of 2048 pixels
 853 along at least one dimension. Subsequently, the three-stage annotation pipeline transforms raw
 854 images into a comprehensive dataset with hierarchical scene categorization, detailed attribute anno-
 855 tation, and precise concept-region mappings through geographic reasoning chain extraction.
 856

857 B.3 INFERENCE DIFFICULTY ASSESSMENT

859 Inference difficulty ratings are determined based on confidence scores generated during the geo-
 860 graphic reasoning analysis stage. Easy cases (17.8%) feature obvious, globally distinctive landmarks
 861 or features that enable straightforward location inference. Medium difficulty cases (29.1%) require
 862 regional-level geographic knowledge and more sophisticated visual analysis. Hard cases (53.2%)
 863 demand fine-grained local geographic reasoning and represent the most challenging scenarios for
 both human experts and automated systems.



878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 7: Distribution of confidence scores across geographic inference levels. Higher confidence scores indicate greater certainty in geographic predictions. The predominance of high confidence scores at the city and local levels demonstrates the sophisticated reasoning capabilities required for precise location inference.

Figure 7 illustrates the confidence score distribution across different geographic inference levels, demonstrating the challenging nature of our dataset composition. The prevalence of high-confidence scores at city and local levels reflects the sophisticated reasoning capabilities required for precise location inference and validates the complexity of our curated dataset.

This comprehensive three-stage annotation structure enables precise concept-region mapping essential for training ReasonBreak’s concept-aware adversarial generator, providing the granular supervision necessary for targeted perturbation generation across diverse geographic inference scenarios while maintaining the spatial precision required for effective reasoning pathway disruption.

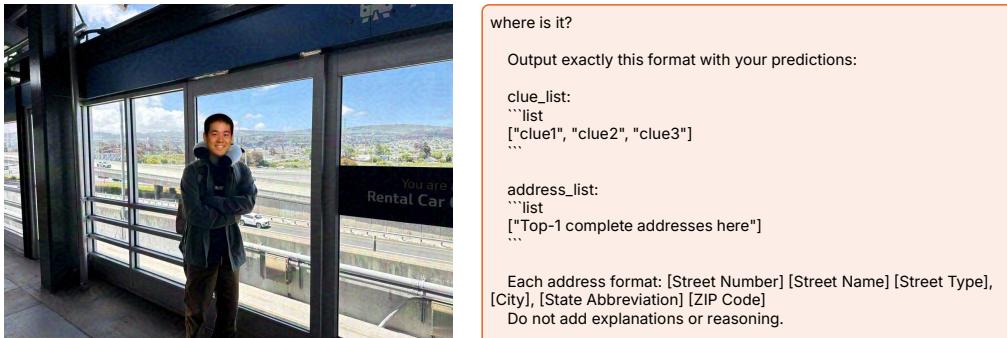


Figure 8: Demonstration of input sensitivity in MLRMs. Adding a single line break to the prompt causes InternVL 3.0 72B to generate drastically different location inferences.

C COUNTER-INTUITIVE SCALING PHENOMENA IN REASONING MODELS

Our experiments reveal two intriguing phenomena rarely observed in traditional perception models but consistently present in MLRMs, particularly in open-source models like InternVL 3.0 72B. First, an Inverted Scaling Relationship: unlike traditional adversarial attacks where larger perturbations typically yield stronger effects, we observe instances in MLRMs where smaller perturbations occasionally produce more effective attacks. Second, the Adversarial Enhancement Effect: while adversarial noise typically degrades model performance in traditional perception models, we occasionally observe anomalous cases in MLRMs where adversarial perturbations actually improve

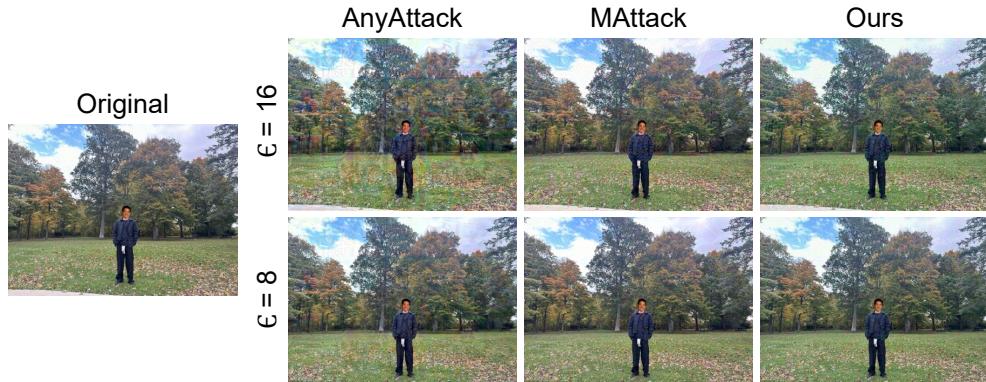
918 model performance, resulting in negative protection rates. In Table 1, we normalize these occasional negative values to zero while discussing this phenomenon separately here.
 919
 920

921 We attribute these phenomena to two key factors: First, the inherent randomness introduced by the
 922 LLM component in MLRMs. For instance, model temperature settings introduce inherent stochasticity in outputs, making some performance variations expected. More surprisingly, the second
 923 factor relates to input sensitivity in reasoning models. Figure 8 demonstrates this phenomenon: on
 924 InternVL 3.0 72B, even with temperature=0, simply adding a line break at the end of the prompt
 925 transforms the output from *[Rental Car sign”, Highway view”, Urban landscape”]*, *address list: [100 Rental Car Center, San Francisco, CA 94130”]* to *[Rental Car”, highway view”, train station”]*, *address list: [1000 Broadway, Oakland, CA 94607”]*. Similarly, this sensitivity extends
 926 to image inputs, where ostensibly adversarial perturbations can occasionally trigger patterns that
 927 improve model accuracy.
 928
 929

930 These observations highlight the complex nature of the reasoning processes of MLRMs. Under-
 931 standing and addressing these unique characteristics presents an important direction for future re-
 932 search in privacy protection against reasoning-based models.
 933

934 D VISUAL QUALITY ANALYSIS

935 We provide qualitative analysis of the visual quality of adversarial examples generated by Reason-
 936 Break and baseline methods across different perturbation budgets. Figure 9 presents representa-
 937 tive examples of adversarial images generated under $\epsilon = 8/255$ and $\epsilon = 16/255$ constraints. All
 938 methods produce perturbations that remain largely imperceptible to human observers, ensuring that
 939 privacy protection does not compromise image usability for legitimate sharing purposes. While the
 940 overall visual impact is minimal across all methods, we observe distinct perturbation patterns. Base-
 941 line methods (AnyAttack, M-Attack) exhibit subtle block-like artifacts, particularly noticeable in
 942 high-resolution images. This occurs because these methods generate perturbations at lower resolu-
 943 tions and resize them to match the target image dimensions, leading to slight pixelation effects. In
 944 contrast, our concept-aware approach produces more naturally distributed perturbations that align
 945 with semantic boundaries and geographic features, avoiding the block artifacts inherent in resize-
 946 based approaches.
 947

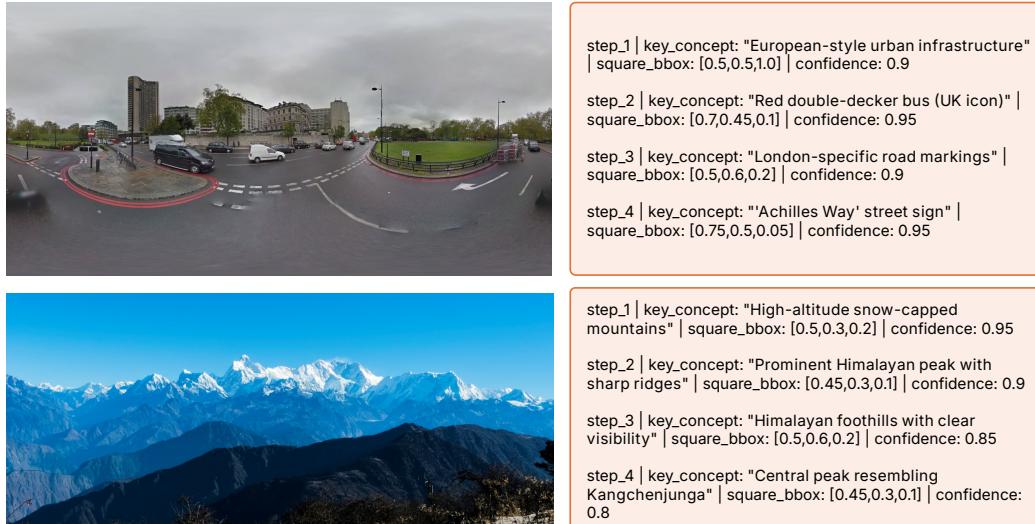


950
 951 Figure 9: Visual comparison of adversarial examples generated by different methods.
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961

962 E QUALITATIVE EXAMPLES OF GEOFPRIVACY-6K

963 To facilitate a deeper understanding of the GeoPrivacy-6K dataset and validate the effectiveness of
 964 our automated annotation pipeline, we present representative visualizations in Figure 10. These
 965 examples demonstrate the diversity of scenes covered, ranging from dense urban environments to
 966 remote natural landscapes. As illustrated, the annotations generated by QwenVL 2.5 72B follow
 967 a structured geographic reasoning chain. The process initiates with broad environmental classifi-
 968 cation (e.g., “European-style urban infrastructure”) and progressively narrows down to localized,
 969
 970
 971

972 discriminative features (e.g., specific road markings or distinct mountain peaks). Crucially, each
 973 reasoning step is grounded by a normalized square bounding box parameterized as `[center_x, center_y, size]` alongside a confidence score.
 974
 975
 976



995 Figure 10: Visualization of hierarchical annotations in GeoPrivacy-6K. The figure displays two
 996 samples with their corresponding automated reasoning chains.
 997
 998

999 Table 3: Privacy protection rates under different JPEG compression quality factors (Q) on InternVL
 1000 3.0 72B. The method demonstrates strong stability even under aggressive compression ($Q = 50$).
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008

F COMPUTATIONAL EFFICIENCY ANALYSIS

1011 We evaluate the computational efficiency of ReasonBreak against the baseline methods, focusing
 1012 on both training overhead and inference latency. Regarding training costs, there are substantial
 1013 disparities among approaches. The generator-based baseline, AnyAttack, requires a computationally
 1014 intensive pre-training phase spanning approximately one week on three NVIDIA A100 GPUs. In
 1015 contrast, ReasonBreak significantly reduces this overhead, converging in 6 hours and 30 minutes on a
 1016 single GPU. The PGD-style baseline, M-Attack, incurs no training cost as it computes perturbations
 1017 dynamically at inference time.

1018 For inference, we measured the time required to generate adversarial examples for DoxBench (≈ 500
 1019 images). M-Attack exhibits the highest latency (43 minutes and 30 seconds) due to the necessity
 1020 of iterative gradient optimization for each input. Generator-based methods demonstrate a marked
 1021 advantage in deployment efficiency: AnyAttack completes the process in 2 minutes and 30 seconds,
 1022 while ReasonBreak requires 5 minutes and 20 seconds. The marginal increase in our inference
 1023 time compared to AnyAttack is attributable to the adaptive decomposition and concept assignment
 1024 pre-processing steps. This indicates that ReasonBreak achieves a favorable balance, offering protec-
 1025 tion rates comparable to computationally expensive methods while maintaining the near real-time
 inference capabilities of generator-based architectures.

1026 G ROBUSTNESS TO JPEG COMPRESSION

1028 To verify the practicality of ReasonBreak in real-world social media environments, where uploaded
1029 images typically undergo lossy compression, we evaluated the resilience of our generated perturba-
1030 tions against varying levels of JPEG compression. It is important to note that all experimental results
1031 reported in the main text were conducted using a standard JPEG quality factor (Q) of 95 to simulate
1032 a realistic baseline. In this section, we perform a stress test by further reducing the quality factor to
1033 $Q = 75$ and $Q = 50$. We utilize InternVL 3.0 72B as the target model for this evaluation.

1034 As shown in Table 3, ReasonBreak exhibits remarkable stability. Reducing the quality factor from
1035 95 to 75 results in virtually no degradation in protection performance. Even under aggressive com-
1036 pression ($Q = 50$), the decline in protection rates is minimal. This resilience suggests that the
1037 concept-aware perturbations generated by our method are structurally robust and can survive the
1038 standard image processing pipelines employed by major social platforms.

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079