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ABSTRACT

Multi-modal large reasoning models (MLRMs) pose significant privacy risks by
inferring precise geographic locations from personal images through hierarchi-
cal chain-of-thought reasoning. Existing privacy protection techniques, primarily
designed for perception-based models, prove ineffective against MLRMs’ sophis-
ticated multi-step reasoning processes that analyze environmental cues. We intro-
duce ReasonBreak, a novel adversarial framework specifically designed to dis-
rupt hierarchical reasoning in MLRMs through concept-aware perturbations. Our
approach is founded on the key insight that effective disruption of geographic rea-
soning requires perturbations aligned with conceptual hierarchies rather than uni-
form noise. ReasonBreak strategically targets critical conceptual dependencies
within reasoning chains, generating perturbations that invalidate specific infer-
ence steps and cascade through subsequent reasoning stages. To facilitate this ap-
proach, we contribute GeoPrivacy-6K, a comprehensive dataset comprising 6,341
ultra-high-resolution images (≥2K) with hierarchical concept annotations. Exten-
sive evaluation across seven state-of-the-art MLRMs (including GPT-o3, GPT-
5, Gemini 2.5 Pro) demonstrates ReasonBreak’s superior effectiveness, achiev-
ing a 14.4% improvement in tract-level protection (33.8% vs 19.4%) and nearly
doubling block-level protection (33.5% vs 16.8%). This work establishes a new
paradigm for privacy protection against reasoning-based threats.

1 INTRODUCTION

Multi-modal large reasoning models (MLRMs) have demonstrated remarkable capabilities in infer-
ring precise geographic locations from personal images. State-of-the-art systems like GPT-o3 (Jaech
et al., 2024) and Gemini 2.5 Pro (Team et al., 2024) can pinpoint locations from seemingly innocu-
ous photos by executing a chain-of-thought (CoT) (Wei et al., 2022). These models systematically
analyze environmental cues, architectural styles, and fine-grained details in a hierarchical manner,
achieving location inference accuracy 21× superior to non-expert humans (Luo et al., 2025). This
capability transforms routine social media sharing into a significant privacy risk, as personal images
unwittingly reveal detailed geographic information that MLRMs can extract without user awareness.
This development has profound legal implications, as unauthorized location inference is classified as
a serious privacy violation under regulations such as the EU’s General Data Protection Regulation
(GDPR) (Regulation, 2016) and the California Consumer Privacy Act (CCPA) (Legislature, 2018).

Privacy threats from MLRMs have emerged at an alarming rate, yet effective countermeasures re-
main relatively limited. The DoxBench (Luo et al., 2025) study revealed that MLRMs fail to distin-
guish between benign and malicious queries, readily complying with potentially harmful requests for
location inference. While previous privacy defenses, particularly adversarial perturbations (Szegedy
et al., 2013), have proven effective against conventional perception models like facial recognition
systems (Zhang et al., 2020; Shamshad et al., 2023; Zhong & Deng, 2022), they fall short against
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Continental concept: English language high-end retailer storefronts

Reasoning: The modern architecture of an open-air luxury shopping center, combined with store names written in English 

script (e.g., Gucci, Tiffany & Co.), is a common format for high-end retail in North America.

National concept: American luxury brand Tiffany & Co. storefront

Reasoning: The specific retail format, known as a 'lifestyle center' which blends shopping, dining, and entertainment in a 

pedestrian-friendly outdoor setting, is particularly popular and widespread across the United States.

National concept: American luxury brand Tiffany & Co. storefront

Reasoning: The specific retail format, known as a 'lifestyle center' which blends shopping, dining, and entertainment in a 

pedestrian-friendly outdoor setting, is particularly popular and widespread across the United States.

City concept: Distinctive clock facade on Tiffany & Co. building

Reasoning: A search for this unique architectural arrangement—a central Tiffany & Co. with a large clock, flanked by Gucci 

and Louis Vuitton—pinpoints the location to the Easton Town Center in Columbus, Ohio.

City concept: Distinctive clock facade on Tiffany & Co. building

Reasoning: A search for this unique architectural arrangement—a central Tiffany & Co. with a large clock, flanked by Gucci 

and Louis Vuitton—pinpoints the location to the Easton Town Center in Columbus, Ohio.

Local concept: Large circular fountain in the central plaza

Reasoning: The viewpoint, capturing the large circular fountain directly in front of the iconic Tiffany & Co. building, confirms 

the specific location as the Central Park Fountain area within the Easton Town Center complex.

Local concept: Large circular fountain in the central plaza

Reasoning: The viewpoint, capturing the large circular fountain directly in front of the iconic Tiffany & Co. building, confirms 

the specific location as the Central Park Fountain area within the Easton Town Center complex.

Figure 1: Geographic inference vulnerability in MLRMs. Given a personal image, MLRMs employ
hierarchical reasoning to progressively narrow location estimates from continental to street-level
precision. Our objective is to disrupt this process by generating concept-aware adversarial perturba-
tions targeting specific reasoning stages.

MLRMs’ sophisticated reasoning capabilities. Unlike conventional vision tasks that directly map
images to labels, geographic inference in ultra-high-resolution images involves sophisticated multi-
step reasoning. An MLRM typically identifies a continent from flora, narrows to a country through
architectural patterns, and pinpoints specific neighborhoods from subtle environmental cues like
background signage. Each inference builds upon previous deductions in a cascading chain of geo-
graphic reasoning. Existing adversarial privacy-preserving methods, which rely on uniform pertur-
bations and focus on salient foreground regions, fail to disrupt this hierarchical analysis, leaving a
critical gap in privacy protection.

We present ReasonBreak, an adversarial framework specifically designed to disrupt hierarchical
reasoning processes in MLRMs. Our key insight is that effective disruption of geographic reasoning
requires perturbations aligned with the conceptual hierarchy. ReasonBreak targets critical concep-
tual dependencies within geographic reasoning chains, generates perturbations that invalidate spe-
cific inference steps, and ensures these disruptions cascade through subsequent reasoning stages.
Our approach is enabled by a new dataset we developed for this task. To enable concept-aware
adversarial generation, we release GeoPrivacy-6K, a collection of 6,341 high-resolution (≥2K) im-
ages rich with geographic cues, sourced from established vision datasets. Each image is annotated
using a structured, three-level framework that extracts hierarchical visual concepts, which are spa-
tially localized with bounding boxes. The ReasonBreak framework uses this data to learn a generator
that crafts perturbations targeted at specific geographic concepts.

Extensive evaluation across seven state-of-the-art MLRMs, including industry leaders like GPT-o3,
GPT-5, and Gemini 2.5 Pro, demonstrates ReasonBreak’s superior effectiveness. On critical privacy
metrics, ReasonBreak attains a tract-level Top-1 protection of 33.8% (vs. 19.4% for the strongest
baseline) and raises block-level protection to 33.5% (vs. 16.8%), nearly doubling prior methods.
These results establish ReasonBreak as the current state-of-the-art in defending against reasoning-
based privacy threats. Our primary contributions are threefold:

• We present ReasonBreak, a novel adversarial framework that disrupts MLRMs’ hierarchi-
cal geographic reasoning by targeting critical visual concepts within their chain-of-thought
processes.

• We contribute GeoPrivacy-6K, a comprehensive dataset of 6,341 ultra-high-resolution im-
ages with detailed hierarchical concept annotations, specifically designed for reasoning-
aware privacy defense research.

• We provide comprehensive empirical validation across seven leading MLRMs, demonstrat-
ing that ReasonBreak sets a new state-of-the-art in privacy protection.

2 RELATED WORK

Geographic Inference in Vision-Language Models The evolution from vision-language models
(VLMs) to multi-modal large reasoning models (MLRMs) represents a fundamental advancement
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in visual understanding capabilities. While early VLMs like CLIP (Radford et al., 2021) estab-
lished basic image-text alignment through contrastive learning, they lacked sophisticated reasoning
abilities. Multi-modal large language models (MLLMs) built upon this foundation by integrating
visual encoders with language models (Bai et al., 2025; Chen et al., 2024), enabling richer scene
understanding and natural language generation. MLRMs mark a significant leap forward through
their incorporation of CoT reasoning, allowing systematic visual analysis via hierarchical decom-
position. State-of-the-art models like GPT-o3 (Jaech et al., 2024) and Gemini 2.5 Pro (Team et al.,
2024) leverage this capability to analyze environmental characteristics, architectural patterns, and
contextual details for precise geographic inference. This advancement enables location inference
that exceeds human performance (Luo et al., 2025), creating novel and underexplored privacy vul-
nerabilities.

Adversarial Perturbation for Privacy Protection Privacy-preserving adversarial perturbations
have emerged as a key defense against unauthorized inference from personal images. While existing
approaches focus on generating imperceptible noise to prevent identity recognition, they primar-
ily target perception-based models that rely on direct image-to-label mapping (Zhang et al., 2020;
Zhong & Deng, 2022; Shamshad et al., 2023; Yang et al., 2024; Liu et al., 2025). They employ
global perturbations that modify visually salient features without considering the multi-step reason-
ing processes or the fine-grained background details exploited by MLRMs for geographic inference,
rendering them inadequate for this new threat.

Multi-modal Adversarial Attacks While transferable jailbreaks designed to bypass safety
guardrails remain challenging (Wang et al., 2024; Niu et al., 2024; Schaeffer et al., 2024), ad-
versarial attacks targeting visual perception generally exhibit better transferability. This landscape
has evolved alongside model capabilities, progressing from traditional unimodal approaches (Dong
et al., 2018; Wang & He, 2021; Wang et al., 2021; Lin et al., 2023; Wei et al., 2023; Liu & Lyu,
2024). Initial efforts focused on basic VLMs like CLIP (Radford et al., 2021), aiming to disrupt
image-text alignment in joint embedding spaces (Zhang et al., 2022; Lu et al., 2023; Zhou et al.,
2023; Yin et al., 2024; Xu et al., 2024; Luo et al., 2024). Recent work has shifted toward attacking
MLLMs, primarily through transfer-based approaches. Notable works include AttackVLM (Zhao
et al., 2024), AdvDiffVLM (Guo et al., 2024), AnyAttack (Zhang et al., 2025a), and M-Attack (Li
et al., 2025), which achieves high transferability by focusing perturbations on semantically rich
regions. However, current methods fall short in addressing the hierarchical reasoning processes
enabling sophisticated location inference or handling the fine-grained visual details in ultra-high-
resolution images that MLRMs exploit. This gap leaves the critical privacy vulnerability of geo-
graphic reasoning largely unaddressed, highlighting the need for specialized defense mechanisms
designed to disrupt concept-aware reasoning pathways rather than general perception capabilities.

3 DATASET CONSTRUCTION

3.1 MOTIVATION AND DESIGN

Developing effective adversarial protection against MLRM geographic inference requires train-
ing data that captures the fine-grained visual details and rich geographic cues these models ex-
ploit. We identify three critical requirements: (i) ultra-high-resolution images that preserve de-
tails like signage and architectural features enabling precise location inference, (ii) comprehensive
coverage spanning urban centers to natural landscapes, and (iii) visual annotations that link ele-
ments to their geographic significance across multiple scales. To address challenges, we introduce
GeoPrivacy-6K, a specialized dataset that combines ultra-high-resolution images with comprehen-
sive geographic concept annotations. It prioritizes images containing distinctive visual cues that
MLRMs utilize for location inference, such as architecture and environmental features.

3.2 DATA CONSTRUCTION AND ANNOTATION

We source ultra-high-resolution images from three established computer vision datasets: HoliC-
ity (Zhou et al., 2020) (urban environments with rich architectural detail), Aesthetic-4K (Zhang
et al., 2025b) (diverse high-quality scenes), and LHQ (Skorokhodov et al., 2021) (natural landscapes

3
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Figure 2: Dataset composition and characteristics. (Left) Distribution of scene types across the
6,341 images. (Center) Inference difficulty distribution based on geographic reasoning complexity.
(Right) Word cloud visualization of hierarchical geographic concepts extracted through systematic
annotation.

with geographic variety), which collectively provide diverse geographic images spanning urban en-
vironments, natural landscapes, and architectural scenes. Our collection process applies two critical
filtering criteria: (i) Resolution threshold: Images must maintain a minimum resolution of 2048
pixels to preserve fine-grained geographic details that MLRMs typically exploit for location infer-
ence. (ii) Geographic content verification: Images must contain visually identifiable geographic
features, including natural landmarks, architectural elements, or environmental characteristics that
enable location reasoning. This filtering yields a final collection of 6,341 ultra-high-resolution im-
ages that exhibit clear geographic visual cues. Each image undergoes the systematic annotation
pipeline detailed in Appendix B. Our dataset construction prioritizes conceptual-level annotations
(e.g., “deciduous broadleaf forest”, “Gothic architecture”) rather than precise geographic coordi-
nates, which significantly reduces annotation subjectivity and improves consistency. This design
choice is critical for our concept-aware approach, since we target visual concepts that enable rea-
soning rather than ground-truth locations, making the annotations more reliable and transferable
across different geographic regions.

3.3 DATASET CHARACTERISTICS

GeoPrivacy-6K exhibits balanced diversity across geographic scene types and inference difficulty
levels. Figure 2 presents the dataset composition: natural landscapes comprise the largest category
(2,824 images, 44.5%), followed by mixed scenes (1,984 images, 31.3%) and urban architecture
(1,533 images, 24.2%). The dataset’s diverse composition is revealed through its difficulty (the
model’s confidence when inferring visual cues) distribution. 53.2% of images classified as hard
inference cases, 29.1% as medium difficulty, and 17.8% as easy cases, reflecting the sophisticated
reasoning required for accurate geographic inference. The dataset encompasses a rich vocabulary
of geographic concepts, ensuring comprehensive coverage of the visual reasoning pathways used by
MLRMs. Additional details are provided in Appendix B.

4 METHOD

4.1 PRELIMINARY

MLRMs integrate visual understanding with natural language reasoning to perform complex infer-
ence tasks through CoT analysis. We formalize an MLRM as function F : I × Q → A that
processes visual input I and query q through sequential reasoning steps:

F(ϕv(I), q) = (r1, r2, . . . , rL)→ a, (1)

where ϕv(I) represents visual encoding, each reasoning step ri builds upon previous steps {rj}i−1
j=1,

and the chain produces structured response a. For geographic inference specifically, each reasoning
step ri identifies visual concepts and spatial relationships, generating reasoning chainR = {ri}Li=1
that progressively refines location estimates from continental to local scales. Our objective is to train
a generator G, where generating adversarial perturbation δ that craft adversarial image I ′ = I + δ
disrupts the hierarchical geographic reasoning on F , while maintaining imperceptibility constraint
∥δ∥∞ ≤ ϵ.

4
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Figure 3: The ReasonBreak Framework Overview. 1) The input image undergoes Adaptive De-
composition into an m∗×n∗ grid of blocks. 2) Each block Bk is assigned a set of relevant concepts
Ck via spatial overlap analysis. 3) The Minimax Target Selection uses the assigned concept set Ck
and a pre-computed Embedding Bank E to find a hard-negative prior ekprior. 4) This prior is fed into
the learnable Decoder Gθ to synthesize a block-specific perturbation δk. 5) The final adversarial im-
age I ′ is reconstructed by adding the perturbations to their corresponding clean blocks. The dashed
boxes at the bottom illustrate the three possible outcomes of the concept assignment logic in step
(2): a block may be assigned a single concept (left), multiple concepts (middle), or the default set of
all image concepts if it has no spatial overlap (right).

Threat Model We focus on black-box transfer attacks, which represent the most realistic scenario
for deployed MLRMs. In the context of Equation 1, privacy defenders have access to modify input
image I , while privacy adversaries leverage the MLRM function F with geographic queries q to
extract location information from I . Under this setting, privacy defenders operate without access to
the target MLRMs’ ϕ parameters or internal architectures, instead utilizing surrogate models ψ to
deploy transfer-based attacks.

4.2 THEORETICAL MOTIVATION

To understand why concept-aware perturbations are fundamentally more effective than uniform per-
turbations for disrupting reasoning processes, we provide a theoretical motivation for our approach.
Direct perception models can be abstracted as a function f : ϕv(I) → y, where adversarial attacks
succeed by shifting the feature representation ϕv(I) across a decision boundary.

In contrast, MLRMs perform geographic inference via a multi-step reasoning process. Each step ri
is generated by a reasoning function, denoted as hi, which is conditioned on the context of all prior
steps {rk}k<i and a set of newly identified visual concepts {cj}. This can be formalized as:

ri = hi({cj | j ∈ Ni}, {rk}k<i), (2)

where Ni is the set of concept indices required for step i. This recursive structure imposes two
critical dependencies: (i) Conceptual Dependency, where the validity of ri hinges on the correct
identification of concepts {cj}; and (ii) Sequential Dependency, where ri is contingent upon the
entire preceding reasoning path.

The coupling of conceptual and sequential dependency makes the entire reasoning chain exception-
ally brittle. An error introduced at an early stage, such as the corruption of a single concept ck, does
not remain localized. ReasonBreak is therefore designed to exploit this brittleness by focusing its
adversarial budget, inducing an efficient collapse of the reasoning process.

4.3 REASONBREAK

5
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Framework Overview ReasonBreak generates privacy-preserving images by targeting specific
visual-conceptual relationships through concept-aware adversarial perturbations. The entire pipeline
is illustrated in Figure 3 and detailed in Algorithm 1. Our framework consists of three key stages.
First, we perform adaptive decomposition and concept assignment to isolate localized geographic
cues within the input image. Next, for each image block, we employ minimax target selection to
identify a hard-negative prior, which guides our trained decoder in synthesizing concept-specific
perturbations. Finally, we reconstruct these perturbed blocks into the complete high-resolution ad-
versarial image.

Adaptive Image Decomposition and Concept Assignment Our approach builds upon the
GeoPrivacy-6K dataset, where each image I from dataset D is annotated with key geographic con-
cepts c and their corresponding spatial bounding boxes g. To effectively capture fine-grained details
in ultra-high-resolution images, existing MLLMs typically partition images into tiles and process
each compressed tile through their visual encoders (Chen et al., 2024). Inspired by this approach,
we introduce an adaptive decomposition strategy for perturbation generation, ensuring that subtle
visual cues are not overlooked. This approach systematically segments images into optimal blocks,
ensuring the preservation of detailed visual cues across multiple scales. Formally, the decomposition
transforms image I into an optimal block configuration defined as:

T (I) = {Bk}m
∗n∗

k=1 , (m∗, n∗) = argmin
(m,n)

∣∣∣∣WH − m

n

∣∣∣∣ , mn ≤ Nmax, (3)

where W and H denote the original image dimensions and Nmax is a hyperparameter for the maxi-
mum allowed blocks. This optimization finds an m× n grid whose aspect ratio (m/n) is closest to
the original image’s aspect ratio (W/H), thereby minimizing distortion when the image is resized
and partitioned intoN = m∗n∗ blocks. Each blockBk ∈ R3×h×h is processed at the standard input
resolution h of the surrogate encoders ψi.The concept assignment phase follows the segmentation
process. For each block Bk, we determine concept assignments through spatial overlap analysis
with ground truth annotations from g. Specifically, we identify the intersection between the block’s
spatial extent (mapped back to the original image’s coordinates) and the bounding boxes in g, as-
signing the corresponding concepts from c to form a concept subset Ck. Our method ensures that
all blocks are perturbed. Blocks that do not have a spatial intersection with any specific concept
bounding box are assigned the complete set of all concepts associated with the entire image. This
conservative assignment ensures that even blocks without specific fine-grained details (e.g., patches
of sky or road) are perturbed to disrupt the model’s more general, image-level reasoning.

Minimax Target Selection Our objective is to dismantle, not merely mislead, the model’s rea-
soning process. For each block Bk, our approach generates a perturbation designed to invalidate
its entire associated concept set Ck. To achieve this, we first identify a powerful repulsive signal by
selecting a hard-negative prior from a pre-computed embedding bank E that is maximally distant
from all concepts in the block:

ekprior = argmin
e∈E

max
c∈Ck

cos(ψt(c), e), (4)

where E is constructed by encoding images from the dataset D using a frozen image encoder ψi,
i.e., E = ψi(D), and ψt represents a frozen text encoder. This equation formalizes our search for the
hard-negative prior. It is important to note that E serves as a large, diverse vocabulary of real-world
semantic embeddings, not a 1-to-1 matching database. The resulting ekprior represents a conceptual
“void”: a point in the embedding space far from any correct interpretation of the block. This prior
serves as a conceptual directive for our generator, a design choice with critical implications. Instead
of being a rigid target in the loss function, it conditions a learnable decoder Gθ (see Appendix A for
architecture details) to synthesize the perturbation:

δk = Gθ
(
ekprior

)
, B′

k = Bk + δk, ||δk||∞ ≤ ϵ. (5)

Notably, the decoder Gθ does not take the image block Bk as a direct input. Its role is to act as a
semantic-to-visual translator, learning a general mapping from an abstract conceptual directive (the
prior) to an effective pixel-level perturbation. The visual content ofBk exerts its influence implicitly
by determining the concept set Ck, which in turn dictates the choice of ekprior.

6
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Table 1: Privacy protection performance across geographical granularities on DoxBench (ϵ =
16/255). Best results are in bold. Key metrics for Tract and Block granularities are highlighted in
gray. Higher values indicate better privacy protection.

Model Attack Top-1 Protection Rate (%) Top-3 Protection Rate (%)
Region Metro. Tract Block Region Metro. Tract Block

GPT-o3
AnyAttack 10.7 12.9 25.6 18.5 11.5 16.2 21.2 18.9
M-Attack 7.6 10.8 15.9 14.8 9.6 10.9 18.3 24.3
OURS 11.5 13.7 31.7 25.9 42.6 44.6 46.2 32.4

GPT-5
AnyAttack 6.5 9.8 20.0 29.0 5.5 9.8 23.7 12.2
M-Attack 4.6 8.9 17.6 22.6 5.0 5.0 15.3 14.6
OURS 8.0 9.8 32.9 29.0 10.0 12.4 35.6 19.5

Gemini
2.5 Pro

AnyAttack 3.2 8.9 15.9 0.0 4.2 6.0 19.7 15.6
M-Attack 4.8 9.9 20.6 0.0 4.0 8.1 20.5 2.2
OURS 6.9 10.6 30.8 23.3 5.6 12.1 36.2 33.3

QVQ
Max

AnyAttack 42.9 41.9 26.2 15.4 32.0 30.4 29.0 23.8
M-Attack 30.1 29.0 23.8 23.1 17.5 17.0 26.1 14.3
OURS 46.2 46.7 28.6 25.0 27.0 40.9 33.5 34.2

QwenVL
Max

AnyAttack 38.0 38.3 26.7 33.3 28.6 30.4 26.7 27.3
M-Attack 34.0 35.0 31.1 40.0 25.1 28.1 26.7 22.7
OURS 55.3 55.8 39.5 40.0 30.5 30.8 44.4 42.9

QwenVL
2.5 72B

AnyAttack 41.2 32.5 17.9 21.4 29.6 30.4 29.0 26.1
M-Attack 32.7 26.7 17.9 14.3 23.2 22.7 34.8 26.1
OURS 46.3 49.2 40.0 33.3 38.3 38.2 46.0 35.0

InternVL
3.0 72B

AnyAttack 4.9 0.0 3.4 0.0 4.5 2.8 0.0 22.2
M-Attack 5.2 0.0 3.4 0.0 2.6 3.8 0.0 11.1
OURS 10.8 0.0 33.3 58.3 12.0 7.6 31.0 33.3

Ensemble Training and Reconstruction Finally, we ensure robust transferability through ensem-
ble training across diverse surrogate models S by minimizing the cosine similarity between original
and adversarial representations:

L(θ) = Es∼S

[
1

N

N∑
k=1

cos(ψs(Bk), ψs(B
′
k))

]
, (6)

where ψs represents the visual encoder of surrogate model s, and N = m∗n∗. In this formulation,
the hard-negative prior shapes the synthesis direction through conditioning, while the untargeted loss
reduces the representation consistency between the original and perturbed blocks across surrogate
models. The final step reconstructs the full-resolution adversarial image I ′ by reassembling the
perturbed blocks via the inverse transformation T −1.

5 EXPERIMENTS

5.1 EVALUATION SETUP

Evaluation Benchmark We evaluate ReasonBreak on DOXBENCH (Luo et al., 2025), a curated
dataset of 500 real-world images with ground truth coordinates, designed to assess geolocation infer-
ence in MLRMs. DoxBench introduces a hierarchical evaluation protocol at four geographic levels:
state (region), metropolitan area, census tract, and census block. Tract approximate neighborhood-
level areas, while block capture street-level resolution, these metrics are particularly critical for
evaluating privacy protection effectiveness. Ground-truth accuracy is computed by mapping coor-
dinates to standardized regions via the Google Geocoding API, ensuring consistent and objective
evaluation.

Metric Privacy protection is measured by the Privacy Protection Rate (PPR), which captures the
reduction in successful location inference after perturbation:

PPR =
Norig −Nadv

Norig
× 100%, (7)
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where Norig represents the number of correct predictions on original images and Nadv denotes cor-
rect predictions on adversarial examples. It’s worth noting that while some existing works use attack
success rate (1 - adversarial accuracy) as their evaluation metric, this approach can conflate model
inherent errors with successful attacks. Our metric specifically measures the reduction in correct
predictions, eliminating this confounding factor. While this results in numerically lower reported
values, it provides a more precise measure of true privacy protection effectiveness. The PPR is nor-
malized from 0% to 100%, with higher values indicating better protection performance. We report
both Top-1 accuracy (exact match) and Top-3 accuracy (correct answer within top three predictions)
at each geographic granularity.

Target Models Following the performance analysis in DOXBENCH, we evaluate on state-of-the-
art MLRMs, including GPT-o3, Gemini 2.5 Pro, and QVQ-Max, and additionally supplement our
evaluation with GPT-5, QwenVL Max, QwenVL-2.5-72B, and InternVL-3.0-72B. All models are
tested with their latest public versions under default parameter settings (e.g., temperatures). For
geographic queries, we use the standardized prompt from DOXBENCH: “Where is it?” followed by
output format instructions. Direct questioning yields better performance for GPT-o3, GPT-5, and
Gemini 2.5 Pro, while CoT prompts prove more effective for other models.

Baselines We compare ReasonBreak against strong adversarial methods: AnyAttack (Zhang et al.,
2025a) and M-Attack (Li et al., 2025). For AnyAttack, we utilize the officially released generator.
For M-Attack, we employ CLIP ViT-B/32, ViT-L/14, and RN50 as ensemble surrogate models, with
steps=50. All baselines and our method are evaluated underL∞ constraints with ϵ ∈ 8/255, 16/255.

Implementation Details For surrogate set S, we use CLIP ViT-B/32, ViT-B/16, ViT-H/14, and ViT-
L/14. We freeze CLIP ViT-B/32 as the image encoder ψi and text encoder ψt. The learnable decoder
Gθ adopts the architecture from AnyAttack with pre-trained weight initialization. It is trained on
GeoPrivacy-6K for 2 epochs with Nmax = 64 using AdamW with learning rate 1 × 10−5. For
images in DOXBENCH that are not part of our training dataset, we utilize Gemini Pro 2.5 with
the same three-stage annotation protocol described in Section 3 to automatically extract geographic
concepts C and their corresponding spatial bounding boxes g. This ensures consistent concept-
region mapping between training and testing phases. The training process is conducted on a single
NVIDIA A800 80GB GPU.

5.2 MAIN RESULTS

Table 1 evaluates ReasonBreak across seven state-of-the-art MLRMs using Top-1 and Top-3 accu-
racy metrics at four geographical granularities, demonstrating consistent superiority over existing
adversarial methods (ϵ = 16). At the Tract and Block levels, where privacy threats are the most se-
vere, ReasonBreak shows remarkable effectiveness. Our method achieves an average Top-1 PPR of
33.8% at the tract level, surpassing the strongest baseline (19.4%) by 14.4%. At the Block level, Rea-
sonBreak nearly doubles the protection rate of baselines (33.5% vs. 16.8%). Notably, our method’s
strong performance against commercial APIs demonstrates its particular effectiveness against pow-
erful, closed-source models. For instance, on GPT-o3, our method boosts the Top-1 Tract-level PPR
to 31.7%, compared to 25.6% from AnyAttack and 15.9% from M-Attack, and on Gemini 2.5 Pro,
it achieves 30.8% where baselines only reach around 20%. Remarkably, while baseline methods
fail to provide any protection at the Top-1 Block-level against Gemini 2.5 Pro, our method achieves
a 23.3% PPR. These results validate our core hypothesis that targeting hierarchical reasoning pro-
cesses through concept-aware perturbations provides fundamentally stronger defense than methods
based on disrupting general perceptual features.

5.3 ADVERSARIAL SCALING PROPERTIES

To assess the robustness and imperceptibility trade-off, we evaluate performance under a stricter
perturbation budget (ϵ = 8/255). The results, visualized in Figure 4, reveal two key insights. First,
ReasonBreak demonstrates superior perturbation efficiency. While all methods show a predictable
performance drop from ϵ = 16 (solid bars) to ϵ = 8 (hatched bars), the advantage of ReasonBreak
over the baselines becomes even more pronounced. For instance, on challenging models like Gemini
2.5 Pro, while the protection offered by baselines nearly vanishes at ϵ = 8, ReasonBreak maintains
a consistently superior PPR. This indicates that our concept-aware approach can induce reasoning
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Figure 4: Privacy protection rates across different geographic granularity levels under different noise
levels (ϵ = 16 and ϵ = 8). Higher values indicate better privacy protection.

failures with more subtle, less perceptible noise, offering a better trade-off between privacy and
visual quality.

Second, we uncover a counter-intuitive scaling phenomenon unique to reasoning models. For In-
ternVL (Fig. 4g), ReasonBreak’s protection at the Tract and Block levels is substantially higher with
the smaller perturbation (ϵ = 8) than with the larger one (ϵ = 16). This anomalous result, which is
not observed for perception-focused baselines, suggests a distinct adversarial mechanism. We pro-
vide detailed analysis of this phenomenon in Appendix C. This finding underscores the fundamental
difference between attacking perception and attacking reasoning, opening a compelling direction for
future research.

5.4 ABLATION STUDY

Influence of Adaptive Decomposition A key component of our framework is the adaptive de-
composition mechanism, controlled by the hyperparameter Nmax. To validate its importance, we
conduct an ablation study analyzing how partitioning granularity affects protection performance
against InternVL 3.0 72B. The results, shown in Figure 5, reveal a distinct unimodal perfor-
mance curve for fine-grained geographic levels, confirming a critical trade-off governed by Nmax.
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Figure 5: Ablation study on adaptive decomposi-
tion mechanism. Top-1 PPR across different val-
ues of Nmax.

When partitioning is too coarse (Nmax ≤
4), we observe suboptimal protection at
the Block and Tract levels (Nmax = 1 rep-
resents complete removal of the adaptive
decomposition mechanism). This leads to
concept entanglement where distinct vi-
sual cues (e.g., a storefront sign and a
unique architectural style) are merged into
a single block. Conversely, overly fine-
grained partitioning (Nmax > 64) causes
sharp performance degradation. This con-
cept fragmentation breaks semantically
coherent objects into meaningless patches,
preventing our method from targeting the
complete visual concepts that form the ba-
sis of the MLRM’s reasoning steps. For
example, a landmark building is no longer
recognized as a whole, but as a collection
of disconnected textures and edges. No-
tably, performance on macroscopic met-
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rics like Region and Metro. remains comparatively strong at coarse granularities (Nmax ≤ 4),
as they do not depend on such fine-grained features. Performance peaks in the optimal range of
16 ≤ Nmax ≤ 64. This analysis validates our choice of Nmax = 64, which strikes the optimal
balance between isolating concepts and preserving their meaning.

Table 2: Ablation study on minimax target selec-
tion. Top-1 PPR w/ and w/o minimax target se-
lection.

Privacy Protection Rate (%)

Method Region Metro. Tract Block

w/ Minimax 10.8 0.0 33.3 58.3
w/o Minimax 9.3 0.0 26.7 33.3

Improvement ∆ +1.5 — +6.6 +25.0

Influence of Minimax Target Selection
Another critical component of our frame-
work is the minimax target selection. To
validate its effectiveness, we conduct an
ablation study analyzing its impact on pri-
vacy protection performance. Specifically,
we compare our approach using ekprior from
Equation (4) against a baseline where ekprior
is replaced with ψi(Bk), effectively reduc-
ing it to a general untargeted adversarial
attack. Table 2 presents the Top-1 PPR
results on InternVL 3.0 72B. The results
demonstrate that our minimax target selec-
tion strategy significantly improves protection effectiveness, particularly at finer geographic granu-
larities. The improvement is most pronounced at the Block level (+25.0%) and remains substantial
at the Tract level (+6.6%), while maintaining comparable performance at coarser scales. These
findings confirm that our concept-aware targeting approach more effectively disrupts the model’s
hierarchical reasoning process compared to traditional untargeted perturbations.

5.5 LIMITATIONS AND FAILURE CASE ANALYSIS

To rigorously define the boundary conditions of our method, we conducted a failure case analysis
on images where protection failed across all seven target MLRMs. This analysis revealed only
two such instances in the DoxBench dataset, shown in Figure 6. A qualitative inspection reveals a
common property: both images contain dominant, high-saliency, machine-readable text (e.g., “1565,
B46, Google”,) that explicitly names the location. This highlights a fundamental dichotomy in the
MLRM’s inference modality.

Figure 6: The two failure cases from DoxBench
where all seven MLRMs correctly inferred the lo-
cation. Both images contain machine-readable
text that explicitly names the location.

ReasonBreak is designed to disrupt hierar-
chical geographic reasoning by targeting
the fragile visual-conceptual links (e.g.,
architectural style → region). In these
cases, the MLRMs shift their inference
modality. They bypass the conceptual rea-
soning chain and instead leverage their op-
tical character recognition (OCR) capabil-
ities to extract the location directly from
the text. Our framework was not de-
signed to target this OCR modality. De-
feating a robust OCR module under a strict
imperceptibility constraint is an orthogo-
nal challenge, likely requiring perceptible,
text-targeted modifications. This analysis thus defines a clear boundary for our approach: Reason-
Break does not counter direct text-based identification, which we identify as a distinct problem for
future work.

6 CONCLUSION

In this work, we identified and addressed a critical privacy vulnerability in modern MLRMs: their
ability to infer precise geographic locations by reasoning over visual concepts. We argued that
existing privacy defenses, which target perception, are insufficient for this new threat. We proposed
ReasonBreak, a novel adversarial framework that, for the first time, disrupts the model’s hierarchical
reasoning process directly.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility and practical deployment, we provide comprehensive computational re-
quirements and resource specifications: (i) Training Efficiency: The complete training of Rea-
sonBreak on GeoPrivacy-6K requires approximately 6-8 hours on a single A800 80GB GPU. The
lightweight decoder architecture and efficient ensemble training make the method accessible to re-
searchers with standard GPU resources. (ii) Inference Requirements: For practical deployment, we
will release pre-trained generator weights that enable direct adversarial image generation. The infer-
ence process requires only 24GB of GPU memory and generates adversarial examples in under ≤ 1
seconds per image, making it suitable for real-time privacy protection applications. (iii)Evaluation
Costs: The primary computational expense lies in evaluation across multiple MLRMs. Commer-
cial API calls, particularly GPT-o3, GPT-5, and Gemini 2.5 Pro, incur non-trivial costs, generally
on the order of one to several thousand dollars. Deploying open-source models like InternVL 3.0
72B requires approximately 144GB of GPU memory (typically two A800 80GB GPUs with tensor
parallelism). We will release the code, pre-trained model weights, and the GeoPrivacy-6K dataset.

ETHICAL CONSIDERATIONS

While ReasonBreak provides crucial privacy protection against unauthorized geographic inference,
we acknowledge the dual-use potential of adversarial techniques. Our method could potentially be
misused to evade legitimate content moderation. We establish concrete guidelines for responsible
use: (i) ReasonBreak should only be used to protect legitimate privacy rights of individuals sharing
personal content; (ii) The technology should not be employed to circumvent legal investigations or
regulatory compliance; (iii) Platform providers should consider implementing detection mechanisms
for adversarially modified content when legally required. This work contributes to the broader goal
of privacy-preserving AI by demonstrating that reasoning-based privacy threats can be effectively
countered, encouraging the development of privacy-aware MLRM architectures.
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LLM USAGE

We employed LLMs as a general-purpose assistive tool of this work. Specifically, LLMs were used
to (i) suggest alternative phrasings and improve the clarity of exposition, and (ii) assist in coding.

Algorithm 1 ReasonBreak Adversarial Image Generation

1: Input: Image I , geographic concepts c and bounding boxes g for I , trained decoder Gθ, pre-
computed embedding bank E , pre-trained text encoder ψt, perturbation budget ϵ, max blocks
Nmax.

2: Output: Adversarial image I ′.
3: procedure REASONBREAK-GENERATE(I, c, g,Gθ, E , ψt, ϵ,Nmax)
4: {Bk}Nk=1 ← AdaptiveDecomposition(I,Nmax) ▷ Equation 3
5: {Ck}Nk=1 ← AssignConcepts({Bk}, c, g)
6: {B̂k}Nk=1 ← empty list ▷ To store perturbed blocks
7: for each block Bk and concept set Ck do
8: ekprior ← argmin

e∈E
maxc∈Ck

cos(ψt(c), e) ▷ Equation 4

9: δk ← Gθ(ekprior)

10: B′
k ← Bk + δk

11: B̂k ← clip(B′
k, Bk − ϵ, Bk + ϵ) ▷ Enforce L∞ constraint

12: Append B̂k to {B̂k}
13: end for
14: I ′ ← ReconstructImage({B̂k})
15: return I ′
16: end procedure

A DECODER ARCHITECTURE

The architecture of our learnable decoder Gθ, which translates a conceptual prior embedding into an
adversarial perturbation, is detailed in Algorithm 2. The decoder is primarily composed of a series
of residual blocks (ResBlock) and upsampling blocks (UpBlock), as specified in Algorithms 3
and 4.

Algorithm 2 Decoder Architecture (Gθ)

Require: Input embedding e ∈ RB×D, where B is batch size and where D is embedding size
Require: Target image size H,W , and target channels C
Ensure: Adversarial perturbation δ ∈ RB×C×H×W

1: hinit ← H/16
2: x← Linear(e)
3: x← Reshape(x, (B, 256, hinit, hinit))
4: x← ResBlock(x, in ch = 256, out ch = 256)
5: x← UpBlock(x, in ch = 256, out ch = 128)
6: x← ResBlock(x, in ch = 128, out ch = 128)
7: x← UpBlock(x, in ch = 128, out ch = 64)
8: x← ResBlock(x, in ch = 64, out ch = 64)
9: x← UpBlock(x, in ch = 64, out ch = 32)

10: x← ResBlock(x, in ch = 32, out ch = 32)
11: x← UpBlock(x, in ch = 32, out ch = 16)
12: x← ResBlock(x, in ch = 16, out ch = 16)
13: x← Conv2d(x, in ch = 16, out ch = C, kernel = 3, padding = 1)
14: δ ← Tanh(x)
15: return δ
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Algorithm 3 ResBlock Module

1: procedure RESBLOCK(x, in ch, out ch)
2: r ← Conv2d(x, in ch, out ch, kernel = 1)
3: h← Conv2d(x, in ch, out ch, kernel = 3, padding = 1)
4: h← BatchNorm2d(h)
5: h← LeakyReLU(h, α = 0.2)
6: h← Conv2d(h, out ch, out ch, kernel = 3, padding = 1)
7: h← BatchNorm2d(h)
8: h← EfficientAttention(h)
9: h← h+ r

10: h← LeakyReLU(h, α = 0.2)
11: return h
12: end procedure

Algorithm 4 UpBlock Module

1: procedure UPBLOCK(x, in ch, out ch)
2: h← Upsample(x, scale factor = 2,mode=’nearest’)
3: h← Conv2d(h, in ch, out ch, kernel = 3, padding = 1)
4: h← BatchNorm2d(h)
5: h← LeakyReLU(h, α = 0.2)
6: return h
7: end procedure

B DATASET CONSTRUCTION DETAILS

B.1 THREE-STAGE ANNOTATION PIPELINE

The construction of GeoPrivacy-6K employs a systematic three-stage annotation pipeline imple-
mented using QwenVL 2.5 72B as the annotation model. To mitigate potential factual inaccuracies
from model limitations, our annotation process focuses exclusively on visual feature characteriza-
tion rather than specific geographic location identification. This multi-stage approach progressively
refines image content from basic geographic filtering to detailed hierarchical concept analysis and
precise spatial reasoning chain extraction, ensuring comprehensive capture of the visual-conceptual
relationships that MLRMs exploit during geographic inference while maintaining annotation quality
and consistency.

B.1.1 STAGE 1: GEOGRAPHIC CONTENT FILTERING

The initial filtering stage identifies images containing real-world geographical features suitable for
location inference training. This stage operates through automated resolution screening followed by
content-based evaluation that excludes abstract patterns, studio portraits with plain backgrounds, or
isolated object close-ups while retaining images with identifiable natural landmarks, architectural
elements, or environmental characteristics.

Stage 1 Prompt: The system evaluates whether images contain real-world ge-
ographical features (natural or man-made elements related to places on Earth)
while excluding abstract patterns, studio portraits, or isolated object close-ups.
The assessment produces a boolean decision with reasoning explanation in JSON
format.

B.1.2 STAGE 2: HIERARCHICAL SCENE ANNOTATION

Images passing the geographic filter undergo comprehensive hierarchical categorization that cap-
tures the conceptual structure employed by MLRMs during visual analysis. This stage establishes
the foundational semantic framework through three-level hierarchical classification and detailed at-
tribute annotation across environmental, architectural, and atmospheric dimensions.
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The hierarchical framework begins with L1 - Environmental Domain classification, distinguish-
ing between Natural Environment and Built Environment contexts. This guides subsequent L2 -
Contextual Setting refinement, where natural environments are classified into mountainous, forest/-
woodland, plains/grassland, water body, desert, or coastal categories, while built environments en-
compass urban/city, rural/suburban, transportation infrastructure, or industrial settings. The L3 -
Scene Specification level provides granular scene categorization, subdividing urban environments
into street views, skylines, plazas/parks, residential areas, commercial districts, or historic districts,
while mountainous regions distinguish between peaks/ridges, valleys, or plateaus.

Beyond hierarchical scene classification, the annotation framework captures detailed descriptive
attributes including environmental elements (both natural features such as vegetation, trees, rock
formations, water bodies, and man-made elements including buildings, roads, vehicles, infrastruc-
ture), architectural characteristics (styles ranging from modern to classical/historic, and construction
materials from brick/stone to glass curtain walls), and atmospheric conditions (temporal factors like
lighting, weather and environmental characteristics).

Stage 2 Prompt: The system categorizes images using a three-level hierarchy
(L1: Environmental Domain, L2: Contextual Setting, L3: Scene Specification)
while capturing detailed descriptive attributes across environmental elements (nat-
ural and man-made), architectural characteristics (styles and materials), and atmo-
spheric conditions (lighting, weather).

B.1.3 STAGE 3: GEOGRAPHIC REASONING CHAIN EXTRACTION

The final and most critical stage generates the hierarchical reasoning chains that mirror MLRM
geographic inference processes. This stage produces the concept-region mappings essential for
training ReasonBreak by systematically analyzing visual evidence through four geographic scales:
continental, national, city, and local levels. Each reasoning step identifies a specific visual concept
and its precise spatial location through normalized square bounding boxes.

Stage 3 Prompt: The system performs hierarchical geographic reasoning analysis
(Continental → National → City → Local) identifying key visual concepts at each
level with precise spatial localization. Each reasoning step produces descriptive
concept phrases (5-10 words) with normalized square bounding boxes [center x,
center y, size] and confidence scores, generating the concept-region mappings es-
sential for adversarial training.

B.2 DATA COLLECTION AND SOURCE INTEGRATION

Our data collection process sources high-quality images from three established computer vision
datasets that provide complementary geographic coverage. HoliCity (Zhou et al., 2020) contributes
diverse urban scenes with detailed architectural elements and city landscapes, Aesthetic-4K (Zhang
et al., 2025b) provides visually compelling natural and built environments with strong compositional
quality, and LHQ (Skorokhodov et al., 2021) offers ultra-high-resolution landscape images spanning
diverse geographical regions and environmental conditions.

The technical filtering process ensures all images maintain a minimum resolution of 2048 pixels
along at least one dimension. Subsequently, the three-stage annotation pipeline transforms raw
images into a comprehensive dataset with hierarchical scene categorization, detailed attribute anno-
tation, and precise concept-region mappings through geographic reasoning chain extraction.

B.3 INFERENCE DIFFICULTY ASSESSMENT

Inference difficulty ratings are determined based on confidence scores generated during the geo-
graphic reasoning analysis stage. Easy cases (17.8%) feature obvious, globally distinctive landmarks
or features that enable straightforward location inference. Medium difficulty cases (29.1%) require
regional-level geographic knowledge and more sophisticated visual analysis. Hard cases (53.2%)
demand fine-grained local geographic reasoning and represent the most challenging scenarios for
both human experts and automated systems.
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Figure 7: Distribution of confidence scores across geographic inference levels. Higher confidence
scores indicate greater certainty in geographic predictions. The predominance of high confidence
scores at the city and local levels demonstrates the sophisticated reasoning capabilities required for
precise location inference.

Figure 7 illustrates the confidence score distribution across different geographic inference levels,
demonstrating the challenging nature of our dataset composition. The prevalence of high-confidence
scores at city and local levels reflects the sophisticated reasoning capabilities required for precise
location inference and validates the complexity of our curated dataset.

This comprehensive three-stage annotation structure enables precise concept-region mapping essen-
tial for training ReasonBreak’s concept-aware adversarial generator, providing the granular super-
vision necessary for targeted perturbation generation across diverse geographic inference scenarios
while maintaining the spatial precision required for effective reasoning pathway disruption.

where is it?

    Output exactly this format with your predictions:

    clue_list:
    ```list
    ["clue1", "clue2", "clue3"]
    ```

    address_list:
    ```list
    ["Top-1 complete addresses here"]
    ```

    Each address format: [Street Number] [Street Name] [Street Type],            
[City], [State Abbreviation] [ZIP Code]
    Do not add explanations or reasoning. 

Figure 8: Demonstration of input sensitivity in MLRMs. Adding a single line break to the prompt
causes InternVL 3.0 72B to generate drastically different location inferences.

C COUNTER-INTUITIVE SCALING PHENOMENA IN REASONING MODELS

Our experiments reveal two intriguing phenomena rarely observed in traditional perception mod-
els but consistently present in MLRMs, particularly in open-source models like InternVL 3.0 72B.
First, an Inverted Scaling Relationship: unlike traditional adversarial attacks where larger perturba-
tions typically yield stronger effects, we observe instances in MLRMs where smaller perturbations
occasionally produce more effective attacks. Second, the Adversarial Enhancement Effect: while
adversarial noise typically degrades model performance in traditional perception models, we oc-
casionally observe anomalous cases in MLRMs where adversarial perturbations actually improve
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model performance, resulting in negative protection rates. In Table 1, we normalize these occa-
sional negative values to zero while discussing this phenomenon separately here.

We attribute these phenomena to two key factors: First, the inherent randomness introduced by the
LLM component in MLRMs. For instance, model temperature settings introduce inherent stochas-
ticity in outputs, making some performance variations expected. More surprisingly, the second
factor relates to input sensitivity in reasoning models. Figure 8 demonstrates this phenomenon: on
InternVL 3.0 72B, even with temperature=0, simply adding a line break at the end of the prompt
transforms the output from [Rental Car sign”, Highway view”, Urban landscape”], address list:
[100 Rental Car Center, San Francisco, CA 94130”]” to [Rental Car”, highway view”, train sta-
tion”], address list: [1000 Broadway, Oakland, CA 94607”]”. Similarly, this sensitivity extends
to image inputs, where ostensibly adversarial perturbations can occasionally trigger patterns that
improve model accuracy.

These observations highlight the complex nature of the reasoning processes of MLRMs. Under-
standing and addressing these unique characteristics presents an important direction for future re-
search in privacy protection against reasoning-based models.

D VISUAL QUALITY ANALYSIS

We provide qualitative analysis of the visual quality of adversarial examples generated by Reason-
Break and baseline methods across different perturbation budgets. Figure 9 presents representa-
tive examples of adversarial images generated under ϵ = 8/255 and ϵ = 16/255 constraints. All
methods produce perturbations that remain largely imperceptible to human observers, ensuring that
privacy protection does not compromise image usability for legitimate sharing purposes. While the
overall visual impact is minimal across all methods, we observe distinct perturbation patterns. Base-
line methods (AnyAttack, M-Attack) exhibit subtle block-like artifacts, particularly noticeable in
high-resolution images. This occurs because these methods generate perturbations at lower resolu-
tions and resize them to match the target image dimensions, leading to slight pixelation effects. In
contrast, our concept-aware approach produces more naturally distributed perturbations that align
with semantic boundaries and geographic features, avoiding the block artifacts inherent in resize-
based approaches.

AnyAttack MAttack Ours

Original

Є
 =

 8
Є

 =
 1

6

Figure 9: Visual comparison of adversarial examples generated by different methods.

E QUALITATIVE EXAMPLES OF GEOPRIVACY-6K

To facilitate a deeper understanding of the GeoPrivacy-6K dataset and validate the effectiveness of
our automated annotation pipeline, we present representative visualizations in Figure 10. These
examples demonstrate the diversity of scenes covered, ranging from dense urban environments to
remote natural landscapes. As illustrated, the annotations generated by QwenVL 2.5 72B follow
a structured geographic reasoning chain. The process initiates with broad environmental classifi-
cation (e.g., “European-style urban infrastructure”) and progressively narrows down to localized,
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discriminative features (e.g., specific road markings or distinct mountain peaks). Crucially, each
reasoning step is grounded by a normalized square bounding box parameterized as [center x,
center y, size] alongside a confidence score.

step_1 | key_concept: "European-style urban infrastructure" 
| square_bbox: [0.5,0.5,1.0] | confidence: 0.9

step_2 | key_concept: "Red double-decker bus (UK icon)" | 
square_bbox: [0.7,0.45,0.1] | confidence: 0.95

step_3 | key_concept: "London-specific road markings" | 
square_bbox: [0.5,0.6,0.2] | confidence: 0.9

step_4 | key_concept: "'Achilles Way' street sign" | 
square_bbox: [0.75,0.5,0.05] | confidence: 0.95

step_1 | key_concept: "High-altitude snow-capped 
mountains" | square_bbox: [0.5,0.3,0.2] | confidence: 0.95

step_2 | key_concept: "Prominent Himalayan peak with 
sharp ridges" | square_bbox: [0.45,0.3,0.1] | confidence: 0.9

step_3 | key_concept: "Himalayan foothills with clear 
visibility" | square_bbox: [0.5,0.6,0.2] | confidence: 0.85

step_4 | key_concept: "Central peak resembling 
Kangchenjunga" | square_bbox: [0.45,0.3,0.1] | confidence: 
0.8

Figure 10: Visualization of hierarchical annotations in GeoPrivacy-6K. The figure displays two
samples with their corresponding automated reasoning chains.

Table 3: Privacy protection rates under different JPEG compression quality factors (Q) on InternVL
3.0 72B. The method demonstrates strong stability even under aggressive compression (Q = 50).

Quality Factor Region Metro. Tract Block

Q = 95 (Default) 10.8 0.0 33.3 58.3
Q = 75 11.1 0.0 33.3 58.3
Q = 50 9.3 0.0 30.0 58.3

F COMPUTATIONAL EFFICIENCY ANALYSIS

We evaluate the computational efficiency of ReasonBreak against the baseline methods, focusing
on both training overhead and inference latency. Regarding training costs, there are substantial
disparities among approaches. The generator-based baseline, AnyAttack, requires a computationally
intensive pre-training phase spanning approximately one week on three NVIDIA A100 GPUs. In
contrast, ReasonBreak significantly reduces this overhead, converging in 6 hours and 30 minutes on a
single GPU. The PGD-style baseline, M-Attack, incurs no training cost as it computes perturbations
dynamically at inference time.

For inference, we measured the time required to generate adversarial examples for DoxBench (≈500
images). M-Attack exhibits the highest latency (43 minutes and 30 seconds) due to the necessity
of iterative gradient optimization for each input. Generator-based methods demonstrate a marked
advantage in deployment efficiency: AnyAttack completes the process in 2 minutes and 30 seconds,
while ReasonBreak requires 5 minutes and 20 seconds. The marginal increase in our inference
time compared to AnyAttack is attributable to the adaptive decomposition and concept assignment
pre-processing steps. This indicates that ReasonBreak achieves a favorable balance, offering protec-
tion rates comparable to computationally expensive methods while maintaining the near real-time
inference capabilities of generator-based architectures.
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G ROBUSTNESS TO JPEG COMPRESSION

To verify the practicality of ReasonBreak in real-world social media environments, where uploaded
images typically undergo lossy compression, we evaluated the resilience of our generated perturba-
tions against varying levels of JPEG compression. It is important to note that all experimental results
reported in the main text were conducted using a standard JPEG quality factor (Q) of 95 to simulate
a realistic baseline. In this section, we perform a stress test by further reducing the quality factor to
Q = 75 and Q = 50. We utilize InternVL 3.0 72B as the target model for this evaluation.

As shown in Table 3, ReasonBreak exhibits remarkable stability. Reducing the quality factor from
95 to 75 results in virtually no degradation in protection performance. Even under aggressive com-
pression (Q = 50), the decline in protection rates is minimal. This resilience suggests that the
concept-aware perturbations generated by our method are structurally robust and can survive the
standard image processing pipelines employed by major social platforms.
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