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Abstract. Semi-supervised semantic segmentation methods leverage un-
labeled data by pseudo-labeling them. Thus the success of these methods
hinges on the reliablility of the pseudo-labels. Existing methods mostly
choose high-confidence pixels in an e!ort to avoid erroneous pseudo-
labels. However, high confidence does not guarantee correct pseudo-labels
especially in the initial training iterations. In this paper, we propose a
novel approach to reliably learn from pseudo-labels. First, we unify the
predictions from a trained object detector and a semantic segmentation
model to identify reliable pseudo-label pixels. Second, we assign di!erent
learning weights to pseudo-labeled pixels to avoid noisy training signals.
To determine these weights, we first use the reliable pseudo-label pixels
identified from the first step and labeled pixels to construct a prototype
for each class. Then, the per-pixel weight is the structural similarity
between the pixel and the prototype measured via rank-statistics simi-
larity. This metric is robust to noise, making it better suited for compar-
ing features from unlabeled images, particularly in the initial training
phases where wrong pseudo labels are prone to occur. We show that
our method can be easily integrated into four semi-supervised semantic
segmentation frameworks, and improves them in both Cityscapes and
Pascal VOC datasets. Code is available at https://github.com/cvlab-
stonybrook/Weighting-Pseudo-Labels.

1 Introduction
Semantic segmentation is essential for various applications, including autonomous
driving [3,26], and drone imagery [25,48]. However, current models require large-
scale pixel-level annotations for training, which are laborious and expensive to
collect [52–55]. Semi-supervised segmentation [1, 23] alleviates this data depen-
dency by learning from a limited set of labeled images and numerous unlabeled
images.

An e!ective semi-supervised strategy is pseudo-labeling via a teacher-student
framework [31,45,58,69]. This strategy typically involves using a teacher model
trained on limited labeled images to pseudo-label the unlabeled ones and then us-
ing these pseudo-labels as additional supervision to train the student model. The
correctness of the pseudo labels is a major concern, as wrongly pseudo-labeled
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(a) Original Image (b) Ground Truth (c) Threshold Weight
(Conventional Method)

(d) Per-Pixel Learning Weight
(Our Method)

Fig. 1: Per-pixel Learning Weight Visualization (heat-map). Our Per-pixel Learning
Weight shows that the weight on unreliable high-confidence pseudo-labels (dotted white
box) is reduced in contrast to conventional confidence thresholding (→ 0.95). Pseudo-
labels are generated using AugSeg [65] after 50 epochs for 1

16 Pascal VOC Dataset.

pixels might never be corrected throughout the training process, leading to “con-
firmation bias” [33,47]. To remedy this, previous works [1,14,23,34,45,65,70] only
pseudo-label pixels with high confidence scores. However, the confidence score
is a sub-optimal proxy for pseudo-label correctness, especially in early training
epochs. For example, in the initial training epochs on Pascal VOC dataset ( 1

16
data partition) with a confidence threshold of 0.95, →20% of the pseudo-labels
are still incorrect (see Section 5).

To address this issue, we introduce a novel approach for estimating the relia-
bility of each pixel’s pseudo-label and then assign a learning weight to each pixel
based on its reliability measure. The key observation is that pixels belonging to
the same category frequently share a subset of k maximally activated representa-
tion components, i.e., top-k rank statistics [19,56]. For example, considering the
last layer features of a network pre-trained on the Pascal VOC Dataset, we ob-
serve that pixel representations in the “dog” category typically exhibit the top-5
highest magnitudes in the 10th, 71st, 97th, 98th, and 111th dimensions of their
256-dim feature embeddings. Therefore, any pixel whose pixel representation ex-
hibits the top-5 highest magnitudes in the same feature dimensions (i.e., 10th,
71st, 97th, 98th, and 111th dimensions) has a high probability of belonging to the
“dog” category. Notably, this pattern of index-based consistency is present even
during the early stages of training the segmentation model with limited training
data (see Section 5). On the other hand, the magnitude of each component in the
embedding tends to vary significantly during the training, making value-based
metrics such as entropy or confidence-score less reliable. As can be seen in Fig.
1, even pixels with very high confidence scores (↑ 0.95) can still have incorrect
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pseudo-labels (Fig. 1 (c)). However, these pixels are assigned very small weights
by our method (Fig. 1 (d)) since their top-k maximally activated representation
components are inconsistent with the majority of the same category pixels.

The question is how to identify these subsets of k maximally activated rep-
resentation components for each class. To do so, we construct a class pixel-
prototype by using labeled pixel representations and selecting a set of highly
reliable pixel representations from unlabeled pixels. While previous methods
simply define reliable pixels as the ones with high confidence scores from the
segmentation model, we further improve this by training an additional object
detection model and use the trained segmentation and the object detection model
as an ensemble model to identify reliable pixels. We assert that if they predict
the same label for a pixel, then we consider the pseudo label of the pixel highly
reliable. The agreement between these two models indicate the pseudo-label’s
correctness because they have distinct underlying inductive mechanisms: while
the object detector assigns a single label to a group of pixels based on a holistic
view of the image crop, the segmentation model assigns a label for each pixel
based on the “ local ” patch and the surrounding context. In our experiments,
this ensemble model identifies these reliable pixels more accurately, compared
to a single segmentation model. Note that we only train this additional object
detector from scratch on the limited labeled images and only for object-based
categories. Reliable pixels for categories such as “sky” and “building” are obtained
only from labeled pixels.

We incorporate our method into the four semi-supervised segmentation method-
ologies—UniMatch [57], AugSeg [65], AEL [23], and U2PL [50]—notably improv-
ing segmentation results for each across all data partitions in Pascal VOC [13]
and Cityscapes [8] datasets. In summary, our contributions are:
1. We propose a novel method for weighing pseudo-labels to alleviate the poten-

tial noisy pseudo-label issue in semi-supervised segmentation via comparing
top k maximally activated representation components.

2. We propose a novel method to identify reliable pixels by unifying the pre-
dictions from object detection and semi-supervised semantic segmentation
models. The object detector is trained solely on the limited labeled data.

3. We show that our method can be easily integrated into other approaches
by integrating it into four state-of-the-art approaches and getting consistent
improvements across all settings.

2 Related Work

Semi-supervised learning (SSL) is a heavily studied problem. Recent works in
SSL has been categorized into consistency regularization [2,11,12,15,38,41,58],
entropy minimization [5, 16] and pseudo-labeling [27–31, 45]. Here, we focus on
pseudo-labeling and consistency regularization.
Pseudo labeling: Pseudo-labeling [31,43] and self-training [36,59] aim to train
a model on labeled images to generate pseudo-labels for unlabeled data. Be-
cause pseudo-labels are noisy, most approaches [40, 42, 45, 69] are focused on
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refining pseudo-labels. For example, PseudoSeg [69] focuses on improving the
quality of pseudo-labels using grad-cam [42] based attention. To select reliable
pseudo-labels, FixMatch [45] uses confidence thresholding while UPS [40] uses
uncertainty. ST++ [58], prioritizes unlabeled images that can provide more reli-
able pseudo-pixels. Recent approaches, AEL [23], propose adaptive frameworks
to prefer under-performing categories. U2PL [50] considers extracting reliable
pseudo-labels from unreliable pseudo-labels. CFCG [32] proposed using cross
fusion and contour guidance to improve the pseudo-labels. However, all these
pseudo-labeling-based approaches rely on a segmentation network trained on
limited labeled images to generate pseudo-labels. They further select reliable
pseudo-labels based on high confidence (low entropy). Rizve et al. [40] observes
that these high confidence predictions on unlabeled images can be incorrect due
to poor network calibration [18]. A recent work [24] uses ground-truth bounding
box annotations in the unlabeled images to improve semi-supervised segmen-
tation. We on the contrary do not use any extra supervision in the unlabeled
data. We train our object detector solely on the limited labeled data to generate
object proposals in the unlabeled data.
Consistency Regularization: Consistency Learning [45] enforces consistent
predictions across di!erent augmentations of unlabeled data. UniMatch [57] uses
perturbation in the feature space to generate di!erent augmentations of unla-
beled data. ICT [49] uses Mixup [62] augmentation for consistency regularization.
Recently, many methods [15,58,60] use Cutout [10], Cutmix [61], Classmix [37]
as strong data augmentation. Consistency Regularization is used with pseudo-
labeling techniques in Mixmatch [4] and TC-SSL [67]. In our work, we use a set
of weak and strong data augmentations [1, 37,57] to generate pseudo-labels.

3 Proposed Method

In semi-supervised semantic segmentation, we are given two distinct data sources:
a set of labeled images denoted as Dl = {xl

i
,y

l

i
}Nl
i=1 and a collection of unlabeled

images denoted as Du = {xu

i
}Nu
i=1, where |Du| ↓ |Dl|. The central aim is to

develop a semantic segmentation model that utilizes the knowledge from labeled
and unlabeled data. This section first discusses the basic framework of semi-
supervised semantic segmentation in Preliminary (Section 3.1). Next, we provide
an overview of our proposed method (Section 3.2). Then we introduce the two
steps that underpin our proposed novel method: (1) Reliable Pseudo-label Pixel
Identification (Section 3.3), (2) Pseudo-label Pixel Weighting (Section 3.4).

3.1 Preliminary

The conventional framework of semi-supervised semantic segmentation [1, 23,
65] is built on top of a student/teacher model. The teacher model shares the
same architecture with the student model but uses a di!erent set of parameters,
which are updated by the exponential moving average (EMA) of the student
model [23]. The teacher model generates a set of pseudo labels ŷu on the weakly
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Fig. 2: Overall Pipeline of our novel pseudo-labeling based semantic seg-

mentation: (a) End-to-end Teacher-Student Pipeline (b) We first identify pixels with
reliable pseudo-labels using an object detector and segmentation model. The reliable
pseudo-label pixels are defined as ones being labeled as the same class by both the
detection and segmentation models with high confidence scores. (c) We constructed a
pixel-representation prototype for each class using labeled images and identified reli-
able pseudo-label pixels. We then use rank statistics [19] to weight the pseudo-labels
predicted by the teacher network.

augmented unlabeled data Du. Subsequently, the student model is trained on
both weakly augmented labeled data Dl with the ground truth and strongly
augmented unlabeled data Du with the generated pseudo labels ŷ

u. The overall
loss consists of the supervised loss Ls and the unsupervised loss Lu:

Ls =
1

|Dl|
∑

xl→Dl

1

WH

WH∑

i=1

lce(y
l

i
,p(xw,l

i
)) (1)

Lu =
1

|Du|
∑

xu→Du

1

WH

WH∑

i=1

(max(p(xw,u

i
)) ↑ ω)lu

i
(2)

l
u

i
= lce(ŷ

u

i
,p(xs,u

i
)) (3)

where x
w,l and x

w,u are weak augmentations of xl and x
u respectively, xs,u is

strong augmentation of xu. W and H correspond to the width and height of the
input image, lce denotes the standard pixel-wise cross-entropy loss, p(·) is the
network prediction for labeled and unlabeled images, C is the number of classes.
ω is a predefined threshold to filter noisy labels. Further ŷ

u

i
= argmax(p(xw,u

i
))

corresponds to the teachers prediction under weak augmentation view.
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Consequently, the overall loss function can be defined as:

L = Ls + εLu (4)

where ε controls the contribution of the unsupervised loss.

3.2 Overview

Fig. 2(a) presents a comprehensive view of our teacher-student framework method.
There are two main ideas: we employ an additional object detector for better
identifying reliable pseudo-label pixels, and we use rank statistics with class
prototypes to assign a per-pixel learning weight for each pseudo-labeled pixel.

First, we use an ensemble model comprising of the teacher model and an
additional Faster-RCNN [39] model to identify reliable pseudo-label pixels (Fig.
2(b)). We assert that if both models predict the same label for a pixel, then we
consider the pseudo label highly certain. We use these reliable pseudo-label pixels
and the pixels from the labeled images to construct class prototypes. The class
prototypes are used to compute a per-pixel learning weight via rank statistics
for training the network - Fig. 2(c).

3.3 Reliable Pseudo-label Pixel Identification

Semi-supervised segmentation aims to identify reliable pseudo-labels from the
unlabeled images and use them for training. Existing methods [40,45,57,58,68,69]
pseudo-label unlabeled images after filtering the pseudo-labels predicted by the
teacher segmentation network based on confidence or entropy thresholds.

However, these reliable pseudo labels used during the training process are
noisy, especially in the initial stages of training, due to the limited labeled data
for training and poor model calibration [40]. To overcome this challenge, we
propose a solution to reduce the reliance on segmentation model confidence by
using an ensemble of teacher and an additional object detection model (Faster
R-CNN [39]). Specifically, we first train a Faster R-CNN [39] only on the lim-
ited labeled data Dl. We use the generated object proposals to complement the
segmentation network in identifying a set of reliable pseudo-label pixels. We use
two criteria to determine if a pixel is a reliable pseudo-label:

1. The segmentation and the detection model label the pixel as the same class.
2. The pixel confidence is higher than a predefined threshold.

The first criterion ensures that we exclusively consider pixels within the object
proposal that share the same class as predicted by the segmentation network, i.e.,
only “bus” pixels in Fig. 2 (b). The second criterion considers pixels within the
object proposal, on which the segmentation network is most confident, similar
to previous work [1, 17, 57, 63]. Applying these two criteria, we identify a set of
reliable pseudo-labeled pixels from the unlabeled images. The key point here is
that if the two models agree over the label of a pixel, we consider the pseudo-
label highly reliable because they have distinct underlying inductive mechanisms.
While the object detector assigns a single label to a group of pixels based on the
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holistic view of the image crop, the segmentation model assigns a label for each
pixel based on the “ local ” patch and the surrounding context.

Note that we only re-purpose the segmentation labels in Dl to train the Faster
R-CNN model. Given an image and its semantic segmentation mask, for each
category, we define an object box for each set of connected pixels as the smallest
bounding box containing them. Each box might contain more than one object,
but it is not an issue for our semi-supervised segmentation method. We discard
bounding boxes of background classes such as sky, vegetation, or buildings since
their bounding boxes tend to cover almost the entire image. As we do not train
the object detector on those background classes, reliable pixels for those classes
only come from labeled images.

1 2 3 4 5 61 2 3 4 5 6

1 2 3 4 5 61 2 3 4 5 6
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Fig. 3: Demonstration of Pseudo-label Pixel Weighting via rank-statistics:

This diagram shows the top-2 ranking based pseudo-pixel weighing for two pixels xu
i

and xu
j in unlabeled mage xu. PL class is Pseudo-label class, GT class is Ground Truth

class. Note, top-2 ranking is same between xu
i and bus pixel prototype, while

di!erent between xu
j and car pixel prototype.

3.4 Pseudo-label Pixel Weighting

We assign an adaptive per-pixel learning weight to each pseudo-labeled pixel to
avoid noisy training signals. To determine this weight, we first use the identified
reliable pseudo-label (Section 3.3) and labeled pixels to construct a prototype
for each class. Then, the per-pixel weight is the structural similarity between the
pixel and the prototype measured via rank-statistics [19, 56]. This metric only
considers the overlap between indices of the highest value elements (top-K) of
the two representation vectors, i.e., which feature components are activated the
most. Specifically, given two features zi and zj , we rank the feature dimensions
in the vector zi and zj by their magnitude. We consider two features belonging to
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the same class if the set of their top-k ranking of their feature dimensions match
{topk(zi) = topk(zj)}. Rank statistics similarity is not based on raw feature mag-
nitudes but rather the structural similarity between vector representations, mak-
ing rank statistics similarity more robust to noise [9, 35,44,56] when comparing
high-dimensional feature representations. Thus, it is better suited for compar-
ing features in the initial training stages of semi-supervised segmentation when
the model is poorly calibrated, and the features and predictions are noisy [40]
(See Section 5 for analysis on rank statistics being more robust to noise). Here,
we use rank statistics for features extracted from the second-to-last layer of the
segmentation model [1]. It serves as a secondary source of confirmation besides
the confidence score to verify the correctness of the pseudo-labels.

Specifically, we first construct a per-class feature prototype using pixel fea-
tures in labeled images and reliable pseudo-label pixels in unlabeled images (Sec-
tion 3.3). The prototype is the mean of the pixels’ latent embeddings, which are
the outputs of the penultimate layer of the segmentation model at the pixel
locations. It is computationally expensive to extract features from all labeled
and unlabeled images in each iteration. So, we save their features in a feature
memory bank [1], which we query to generate the per-class feature prototype
(more details on memory bank in supplementary material for details).

For each unlabeled image x
u, we compute a per-pixel learning weight WPL ↔

W↑H , where W and H are the width and height of the image. We use a soft
extension of ranking statistics [19] proposed in [64] as our similarity metric. It
measures the similarity between two features as the number of shared elements
in their sets of top-k ranking. The per-pixel learning weight WPL of the pseudo-
label at the position i in an unlabeled image x

u, which has been assigned a
pseudo-label of class c by the teacher model, is defined as WPL

i
= s

k
. Here, s

represents the count of common elements within the sets of top-k ranking of
the pixel feature at position j and the feature prototype for class c (we use
k = 5 for all our experiments). We illustrate in Fig. 3 that per-pixel weighting
based on our approach for top-2 ranking based feature similarity. We observe
that pseudo-labels misclassified as “car” are provided lower weights than pseudo-
labels correctly classified as “Bus”.

We modify the unsupervised loss of the conventional teacher-student frame-
work (Equation 2) to incorporate the per-pixel learning weight WPL. Hence, the
unsupervised loss for our approach is:

Lu =
1

|Du|
∑

xu→Du

1

WH

WH∑

i=1

(max(p(xw,u

i
)) ↑ ω)lu

i
(5)

l
u

i
= WPL

i
lce(ŷ

u

i
,p(xs,u

i
)) (6)

Thus, our overall loss function consists of the supervised loss (Equation 1) and
the unsupervised loss (Equation 5), is:

L = Ls + εLu (7)

where ε controls the amount of contribution of the unsupervised loss.
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4 Experiments

4.1 Setup

Datasets: The PASCAL VOC 2012 dataset [13] is a widely recognized bench-
mark for semantic segmentation, with 20 object categories and an additional
background class. It is partitioned into training, validation, and testing sub-
sets, containing 1464, 1449, and 1556 images (Classic), respectively. Follow-
ing [7, 65], we also include the additional augmented dataset [20] (Blender),
which includes a collection of 10582 training images. We adopt the same par-
tition protocols in [7, 65] to evaluate our method in both Classic and Blender
sets. The Cityscapes dataset [8], tailored for urban scene analysis, comprises of
30 classes, though only 19 of these are employed for scene parsing assessments.
This dataset is divided into 2975 training images, 500 validation images, and
1525 testing images.
Implementation Details: For fair comparison, we adopt DeepLabv3+ [6] as
the decoder in all of our experimental setups, and compare with both ResNet-101
and ResNet-50 [21] as the backbone architecture. We incorporate our method
into the framework of four semi-supervised segmentation methods: AugSeg [65],
AEL [23] ,U2PL [50] and Unimatch [57]. Our method serves as a pseudo-label
weighting strategy to alleviate the influence of confident, noisy pseudo-labels
during training, without changing their original architecture and training pro-
cedures. Consistent with common practices [50], we train our models on the
Cityscapes and Pascal datasets at resolutions of 801 and 513, respectively. It
is important to note that in the interest of maintaining a fair comparison, our
approach, labeled as “UniMatch+Ours” employs a training resolution of 321,
aligning with the resolution used by UniMatch for training on the Classic set
of the Pascal VOC dataset. Further when training a baseline integrated with
our method, we use the same weak and strong augmentations as used by the
corresponding baseline.

After the Faster R-CNN is trained on only the limited labeled dataset, the
confidence threshold to select bounding boxes in unlabeled images is set at 0.95
for Cityscapes and 0.85 for the Pascal Dataset, respectively. In all our experi-
ments we set K = 5 for rank statistics.

4.2 Comparison with State-of-the-Art Methods

We conduct experiments on two popular benchmarks: PASCAL VOC 2012 and
Cityscapes. We integrate our method to four semi-supervised methods: AugSeg
[65], AEL [23] ,U2PL [50] and Unimatch [57]. Note, UniMatch [57] is a consis-
tency regularization based method. The results demonstrate consistent improve-
ment in performance over the corresponding baselines across all partitions. This
notable improvement across datasets robustly validates the e!ectiveness of our
proposed approach.
PASCAL VOC 2012 Dataset. Table 1 presents a comparative analysis with
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other SOTA methods for both the Classic and Blender sets. Our method con-
sistently enhances the performance of all baseline methods across all data par-
titions for both the Classic and Blender sets. In particular, the most significant
improvements are observed in the partition with the least labeled data ( 1

16 ),
where our method boosts the performance of AugSeg [65], AEL [23] ,U2PL [50]
and Unimatch [57] by 2.0%, 3.7%,3.1% and 1.5% respectively on the Classic set
and 1.9%, 3.3%,2.9% and 2.1% respectively on the Blender set.
Cityscapes Dataset. Table 2 presents a comparative analysis with other SOTA
methods. Our method consistently enhances the performance of all baseline
methods across all data partitions. We observe that similar to results in PASCAL
VOC 2012 dataset, our method brings the biggest improvement for the least
labeled data partition ( 1

16 ), improving performance of AugSeg [65], AEL [23]
,U2PL [50] and Unimatch [57] by 2.1%, 3.4%,3.1% and 1.8% respectively for
ResNet-101 based encoder.

The consistent improvement in semi-supervised segmentation performance in
both datasets and its ability to integrate in di!erent methods substantiates the
importance of our method for segmentation in the limited data domain.

Table 1: Quantitative results of di!erent semi-supervised segmentation methods on
Pascal VOC classic and blender set. We report Mean IoU under various partition
protocols and show the improvements (ω) over corresponding baseline.

Method Classic Blender
1/16 1/8 1/4 1/2 Full 1/16 1/8 1/4

ResNet-50

Supervised 44.0 52.3 61.7 66.7 72.9 - - -
PC2Seg [66] [CVPR’21] 56.9 64.6 67.6 70.9 72.3 - - -
PseudoSeg [69] [ICLR’21] 56.9 64.6 67.6 70.9 72.2 - - -
ST++ [58] [CVPR’22] - - - - - 72.6 74.4 75.4
AugSeg [65] [CVPR’23] 64.2 72.1 76.1 77.4 78.8 77.2 78.2 78.2
AugSeg + Ours/ω 66.4/2.2 73.9/1.8 77.6/1.5 78.3/0.9 79.3/0.5 79.5/2.3 79.1/0.9 79.8/1.6
AEL [23] [NeurIPS’21] 62.9 64.1 70.3 72.7 74.0 74.1 76.1 77.9
AEL + Ours/ω 66.1/3.2 66.4/2.3 72.2 /1.9 74.3/1.6 74.9/0.9 77.0/2.9 78.1/2.0 79.2/1.3
U2PL [50] [CVPR’22] 63.3 65.5 71.6 73.8 75.1 74.7 77.4 77.5
U2PL + Ours/ω 66.0/2.7 67.6/2.1 73.2/1.6 75.5/1.7 75.9/0.8 77.7/3.0 79.8/2.4 79.4/1.9
UniMatch [57] [CVPR’23] 71.9 72.5 76.0 77.4 78.7 78.1 79.0 79.1
UniMatch + Ours/ω 73.9/2.0 74.3/1.8 77.3/1.3 78.8/1.4 79.6/0.9 80.2/2.1 80.6/1.6 80.2/1.1
ResNet-101

Supervised 45.1 55.3 64.8 69.7 73.5 70.6 75.0 76.5
CPS [7] [CVPR’21] 64.1 67.4 71.7 75.9 - 72.2 75.8 77.6
PS-MT [34] [CVPR’22] 65.8 69.6 76.6 78.4 80.0 75.5 78.2 78.7
PCR [51] [NeurIPS’22] 70.1 74.7 77.2 78.5 80.7 78.6 80.7 80.8
DAW [46] [NeurIPS’23] 74.8 77.4 79.5 80.6 81.5 78.5 78.9 79.6
CFCG [32] [ICCV’23] - - - - - 77.4 79.4 80.4
AugSeg [65] [CVPR’23] 71.1 75.5 78.8 80.3 81.4 79.3 81.5 80.5
AugSeg + Ours/ω 73.1/2.0 77.2/1.7 80.3/1.5 81.1/0.8 81.8/0.4 81.2/1.9 82.8/1.3 81.2/0.7
AEL [23] [NeurIPS’21] 66.1 68.3 71.9 74.4 78.9 77.2 77.6 78.1
AEL+ Ours/ω 69.8/3.7 71.6/3.3 74.0/2.1 76.1/1.7 80.3/1.4 80.5/3.3 80.6/3.0 80.8/2.7
U2PL [50] [CVPR’22] 68.0 69.2 73.7 76.2 79.5 77.2 79.0 79.3
U2PL + Ours /ω 71.1/3.1 72.0/2.8 75.6/1.9 78.0/1.8 81.0/1.5 80.1/2.9 81.5/2.5 81.6/2.3
UniMatch [57] [CVPR’23] 75.2 77.2 78.8 79.9 81.2 80.9 81.9 80.4
UniMatch + Ours /ω 76.7 /1.5 78.5/1.3 80.0/1.2 80.9/1.0 81.7/0.5 83.0/2.1 83.5/1.6 81.4/1.0
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Table 2: Quantitative results of di!erent semi-supervised segmentation methods on
the Cityscapes validation set. We report Mean IoU under various partition protocols
and show the improvements (ω) over the corresponding baseline.

Method ResNet-50 ResNet-101

1/16 1/8 1/4 1/2 1/16 1/8 1/4 1/2
Supervised 63.34 68.73 74.14 76.62 66.3 72.8 75.0 78.0
CPS [7] [CVPR’21] 69.79 74.39 76.85 78.64 69.8 74.3 74.6 76.8
PS-MT [34] [CVPR’22] - 75.76 76.92 77.64 - 76.9 77.6 79.1
PCR [51] [NeurIPS’22] - - - - 73.4 76.3 78.4 79.1
CFCG [32] [ICCV’23] 76.1 78.9 79.3 80.1 77.8 79.6 80.4 80.9
AugSeg [65] [CVPR’23] 73.7 76.4 78.7 79.3 75.2 77.8 79.6 80.4
AugSeg + Ours/ω 76.0/2.3 78.3/1.9 80.2/1.5 80.3/1.0 77.3/2.1 79.3/1.5 81.4/1.8 81.3/0.9
AEL [23] [NeurIPS’21] 68.2 72.7 74.9 77.5 74.5 75.6 77.5 79.0
AEL + Ours/ω 71.6/3.4 75.4/2.7 77.0/2.1 79.9/2.4 77.9/3.4 78.8/3.2 79.6/2.1 80.1/1.1
U2PL [50] [CVPR’22] 69.0 73.0 76.3 78.6 74.9 76.5 78.5 79.1
U2PL + Ours/ω 71.9/2.9 75.8/2.8 77.9/1.6 79.9/1.3 78.0/3.1 79.5/3.0 80.0/1.5 79.7/0.6
UniMatch [57] [CVPR’23] 75.0 76.8 77.5 78.6 76.6 77.9 79.2 79.5
UniMatch + Ours/ω 77.1/2.1 78.5/1.7 78.7/1.2 79.3/0.7 78.4/1.8 79.6/1.7 80.5/1.3 80.7/1.2

(a) Original Image (b) Ground Truth (c) UniMatch (d) UniMatch + Ours (e) AugSeg (f) AugSeg + Ours

Fig. 4: Qualitative Results on Pascal VOC From left to right: original image,
ground truth, UniMatch [57], UniMatch [57] + Ours, AugSeg [65], AugSeg [65] + Ours.
The dotted white box shows the regions where our method improves the baseline.

Qualitative Results Figure 4 shows the results of di!erent methods evaluated
on the Pascal Validation set. Our method incorporated into both UniMatch [57]
and AugSeg [65] shows clear improvements over their baselines. Both baselines
get benefited from per-pixel pseudo label weighting, helping them achieve better
segmentation performance. All methods are trained on 1

16 data partition.

5 Ablation Studies

We conduct extensive experiments to study the impact of various components of
our approach. Our experiments were conducted using the Pascal VOC dataset
(Classic), focusing on one of its most challenging data partitions, 1

16 . For each
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of these studies in this section, we have selected UniMatch [57] as the baseline.
Analysis of pseudo-label noise and ranking based feature similarity

The crux of our approach is we rely on the ranking of feature dimensions based
on their magnitudes rather than their raw magnitudes in finding reliable pseudo-
labels. Here we analyse high confidence noisy pseudo-labels during training and
the rationale behind using ranking of feature dimensions as similarity measure.
Conventional pseudo-labeling approaches remove noisy pseudo-labels by con-
fidence based thresholding. We observe in Fig. 5 (a) that even high confi-

dence (↑ 0.95 ) pseudo-labels have significant proportions of incorrect

pseudo-labels. This observation validates that in the initial training epochs,
the teacher network is miscalibrated leading to noisy pseudo-labels having high
confidence [40].

Further, we analyse the features of the classes to understand why feature
dimension based ranking is a good similarity metric. We first compare the vari-
ance of the features of correct pseudo-labels of 4 random classes in Fig. 5 (b).
Further, we generated feature prototypes based on the most confident correct
predictions (confidence threshold ↑ 0.95) of these classes in the labeled images.
From the the class feature prototypes and the correct pseudo-labels we gener-
ate binary embeddings with the same dimension as the original features. With
the indexes set to 1 based on the indexes of the original features with top-5
highest magnitudes. We calculate per-class hamming distance between the cor-
responding binary embeddings of the prototype and the correct pseudo-labels,
as illustrated in Fig. 5 (c). Based on results in Fig. 5 (b) and (c), we observe

that feature values show more variation compared to indexes of the

top-5 indexes based on magnitude. This observation that rank ordering of
the feature dimensions have less variation than their magniitudes aligns with
previous works [9, 35,44,56].

Fig. 5: (a) The distribution of correct and incorrect pseudo-labels on Pascal VOC
dataset above the confidence threshold of 0.95. (b) the variation of the features of
correct pseudo-labels of 4 random classes, (c) the hamming distance between the binary
embeddings of class prototypes of the most confident correct predictions in labeled
images and the features of correct pseudo-labels.

Comparison with cosine similarity Our approach uses rank statistics to
calculate the similarity between pixel features at a pseudo-pixel with a class
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Fig. 6: Comparison of pseudo-labeling accuracy in the Pascal VOC unlabeled dataset,
between two approaches of measuring similarity to assign the per-pixel Learning Weight
WPL (Section 3.4).

prototype to assign per-pixel leaning weights (Section 3.4). A conventional ap-
proach is to use cosine-similarity. We compare the two approaches based on
pseudo-label accuracy on both 1

16 and 1
8 partitions of the Pascal VOC dataset

(Fig. 6). This confirms that rank statistics-based similarity performs better in
comparing noisy features [56]. A plausible reason is, unlike cosine similarity, rank
statistics matches features that share the same feature index ranking rather than
their magnitude.
The E!ectiveness of Di!erent Components of Our Approach We ablate
each component of our method step by step. Table 3 reports the studies. We
use the basic teacher-student framework in Section 3.1 as our baseline, which
achieves MIoU of 63.1, 67.4 and 70.18 under 1

16 , 1
8 and 1

4 partition protocols
respectively. As shown in the table, Pseudo-label Pixel Weighting (PPW) in-
troduces a prototype-based pseudo-label per-pixel learning weight achieving an
improvement of 3.9%, 2.7% and 2.5% under 1

16 , 1
8 and 1

4 partition protocols re-
spectively (class prototypes are only from labeled pixels). Reliable Pseudo-label
Pixel Identification (RPPI) and and PPW together boost the performance by
7.4%, 5.9%, and 4.3%, demonstrating the e!ectiveness of our method (class pro-
totypes from labeled pixels and reliable pseudo-labels).
Impact of k in top-k rank statistics We analyze how our method performs
with respect to k. The results on the 1/16 and 1/8 partition protocols of the
Pascal VOC dataset are in Fig. 7. We observe that k = {5,7} gave the best
results, further low values of k lead to lower semi-supervised segmentation per-
formance. A potential reason is that the number of dimensions to match is too
few thus multiple prototypes can share the same top-k dimensions, leading to
pixels being matched with the wrong prototypes. A large value of k, however,
makes it harder to match pixels with a prototype. This observation validates
that in the context of ranking, that agreement among high-ranking coe"cients
is more important than the rest [9, 44]. For all our experiments we use k = 5.
Per-class performance of our method We compare the per-class perfor-
mance of our method incorporated into UniMatch [57] with respect to the base-
line under 1

16 Pascal VOC (Classic) partition. Table 4 shows the results. We
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Fig. 7: Performance evolution with re-
spect to k, for 1/16 and 1/8 partition
protocols Pascal VOC Dataset

RPPI PPW
1/16
(92)

1/8
(183)

1/4
(366)

63.1 67.4 70.8
↭ 67.0 70.1 73.3

↭ ↭ 70.5 73.3 75.1

Table 3: Ablation study of di!erent
components: Reliable Pseudo-label Pixel
Identification (RPPI) and Pseudo-label
Pixel Weighting (PPW). RPPI and PPW
both improve the performance

observe that our method improves the baseline across all classes. Using our rank
statistics based pseudo-label weighting approach improves the performance of
confusing classes like Sheep (3.7%) and Sofa (3.4%). These classes are often
confused with Dog and Chair respectively.

Table 4: Per-class performance of our method incorporated into UniMatch [57], with
respect to the baseline. Both methods are trained on 1

16 Pascal (Classic) set.
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UniMatch [57] 75.2 93.6 88.0 67.0 90.7 72.0 74.0 93.2 86.2 93.9 13.9 90.9 52.5 90.1 91.9 80.7 82.0 54.7 87.7 22.3 87.4 66.3

UniMatch + Ours 76.7 94.0 90.9 67.8 91.1 73.7 74.8 93.3 86.3 94.2 15.2 94.2 54.2 91.1 92.1 81.5 82.2 60.9 91.4 25.7 88.1 68.3

6 Conclusion

In this paper, we propose a novel approach that reduces the reliance on segmen-
tation scores of the trained teacher model in pseudo-labeling unlabeled images.
To do so, we propose a two-step approach. First, an ensemble of segmentation
and detection models is used to identify reliable pseudo-labeled pixels. Second,
a per-pixel weight is calculated to weigh the pseudo-labeled pixels. To determine
this weight we first construct a prototype based on the labeled pixels and the
reliable pseudo-labeled pixels identified from the first stage. Then the per-pixel
weight is the similarity between the pixel and the prototype via rank–statistics.
We show that our approach can be easily integrated into other approaches by
integrating it into four approaches, which improves their performance in all data
partitions if two recognized segmentation datasets, Cityscapes and Pascal VOC.
Acknowledgement. This work is supported by the National Science Founda-
tion (IIS-2123920, IIS-2212046).



Weighting Pseudo-Labels via High-Activation
Feature Index Similarity and Object Detection

for Semi-Supervised Segmentation
Supplementary Material

Summary: We provide additional analyses and results of our method, in-
cluding:
– Obtaining Pseudo Object Detection Training Data from Segmentation Masks
– The E!ect of the Object Detector in Improving Pseudo Label Accuracy
– Analysis of pseudo-labeling accuracy
– Analysis of training hyper-parameters
– Memory bank and the e!ect of its memory size
– Analysis of top-rank indices of class prototypes throughout training
– Comparison of pseudo-labeling accuracy with Euclidean distance
– Visualizing the top-ranked features
– Adapting our method to Transformer-based models
– Evaluation of performance on MS COCO
– Qualitative results

1 Obtaining Pseudo Object Detection Training Data
from Segmentation Masks

We train the object detector from scratch using only the labeled segmentation
data. Given an image and its semantic segmentation mask, we first separate the
mask of each category into separate connected components. For each component,
we extract the smallest bounding box containing it to use as pseudo-training data
for the object detector. Apparently, each box might contain more than one object
instance. Thus, our object detector is essentially trained to detect bounding
boxes containing groups of pixels belonging to the same category rather than
bounding boxes containing single object. This su"ces for semantic segmentation
tasks such as ours where instance di!erentiation is not necessary.

Further, we discard bounding boxes of background classes such as sky, vege-
tation, and buildings since their bounding boxes tend to cover almost the entire
image. Specifically, for the Pascal VOC dataset, we generate bounding boxes
for all classes except for “background ”. For the Cityscapes dataset, we generate
bounding boxes for the foreground classes: Person, Rider, Car, Bicycle, Motor-
cycle, Train, Truck, Bus, Tra"c Light, and Tra"c Sign.
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2 The E!ect of the Object Detector in Improving Pseudo
Label Accuracy

The detection model is used in an ensemble with a segmentation model to identify
reliable pseudo-label pixels. Here we analyze the performance of the detection
model in limited labeled data scenarios and also how it improves the reliability
of pseudo-labeled pixels when using together with the segmentation network.
For our analysis, we use a Deeplabv3+ segmentation model with ResNet-101
backbone [6] and a Faster R-CNN object model. Both are trained on the 1

16 split
of the Pascal VOC dataset (Classic) containing 92 labeled images.

The performance of the Faster R-CNN is shown in the first row in Table 1,
denoted as Faster R-CNN. We report the box-level accuracy for all detected
bounding boxes with confidence scores ↑ 0.85. A detected box is considered
“correct” if its IoU ↑ 0.8 with a ground truth bounding box (discussed in Sec.
1) and “incorrect” otherwise. As can be seen, bounding boxes predicted by this
Faster R-CNN model are fairly accurate: above 80% in all cases, even with only
92 training images.

More importantly, we show that this object detector improves the pseudo-
label accuracy when used together with the segmentation network. We consider
three group of pixels: 1) a baseline pseudo-labeling method that select pixels
with high confidence scores from the segmentation model (denoted as “Pixel”
in Table 1), 2) all pixels in the first group that are labeled as the same class by
the object detector ( denoted as “Pixel ↗ BBOX” in Table 1) and 3) all pixels
in the first group that do not intersect with any detected bounding boxes of the
same category (denoted as “Pixel \ BBOX” in Table 1). As can be seen, pixels
that are labeled as the same classes by both models are more reliable than just
using the segmentation model.

Table 1: Analysis of the performance of Faster R-CNN trained on limited labeled
data and pseudo-label accuracy of pixels based on an ensemble of object detector and
segmentation model on 1

16 Pascal (Classic) set. The first row reports the bounding box
accuracy of Faster R-CNN. Pixel denotes the pseudo-labels by Deeplabv3+(ResNet-
101) [6], BBox denotes bounding boxes generated by Faster R-CNN [39].
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Faster R-CNN - 83.7 89.6 80.4 83.9 87.5 82.3 90.1 92.6 80.1 92.3 80.4 94.7 93.9 80.7 93.6 81.3 82.5 80.8 83.1 84.7

Pixel 80.2 71.9 55.1 83.4 79.7 73.3 68.2 87.4 82.2 32.8 80.2 46.5 70.9 85.4 74.7 57.4 45.1 72.0 40.3 67.1 79.6
Pixel↑BBOX - 78.6 60.2 88.5 83.9 79.2 71.1 88.1 87.4 41.7 83.5 52.9 77.6 87.1 76.6 62.6 57.9 79.3 59.6 75.6 84.8

Pixel\BBOX - 54.1 43.3 61.2 60.1 71.4 37.2 75.6 60.1 6.8 73.1 13.3 53.0 74.5 56.0 36.2 12.7 56.8 11.1 21.4 70.5



Weighting Pseudo-Labels 17

Fig. 1: Pseudo-labeling accuracy in Pascal VOC unlabeled images

3 Analysis of Pseudo-label Accuracy

We analyze how our method, when integrated into UniMatch [57], can improve
the pseudo-label accuracy of this method. We train a vanilla UniMatch model
and a UniMatch model with out method with 1/16 data partition of the Pascal
VOC dataset (Classic). As shown in Fig. 1, our method pseudo-label pixels with
up to 90% accuracy and is consistently more accurate than UniMatch throughout
the whole training process.

4 Analysis of Hyper-Parameters

In this section, we analyze the e!ects of di!erent training hyper-parameters used
by our method. We integrate our method into UniMatch [57] and train with 1/16
and 1/8 partition protocols of the Pascal VOC dataset (Classic)

4.1 Analysis of the hyper-parameter ω of semi-supervised

segmentation loss

We analyze how our approach performs with di!erent values of ε, which is used
to balance the supervised loss and the unsupervised loss. The results of our
approach are in Table 2.

4.2 Analysis of Bounding Box Confidence Thresholds

We analyze how our method performs with di!erent bounding box confidence
thresholds. As shown in Table 3, the performance decreases with a very high
confidence threshold. This is because the number of bounding boxes drastically
reduces when increasing the threshold.
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Table 2: Analysis of (ε) of semi-supervised segmentation loss (1/16 and 1/8 partition
protocols of Pascal VOC Dataset)

ε 1/16 1/8

0 45.1 55.3
0.2 75.1 78.0
0.4 76.7 78.5

0.6 76.3 78.1
0.8 75.5 77.8

Table 3: Analysis of BBox confidence threshold (1/16 and 1/8 partition protocols of
Pascal VOC Dataset)

BBox Confidence 1/16 1/8
0.80 76.1 78.3
0.85 76.7 78.5

0.90 75.9 77.4
0.95 75.7 77.0

5 Memory Bank Implementation Details

We use a memory bank to store features of labeled pixels and reliable pseudo-
label pixels in each iteration, which is used to construct the per-class prototype.
Since available memory is limited, only a random subset of features per class
are included in the memory bank. Performing random sampling of the features
to update the memory during training leads to a more diverse set of features
per class. The memory follows First In First Out (FIFO) queue per class for
computation and time e"ciency [1]. This helps in maintaining recent high-quality
feature vectors.

5.1 E!ect of Memory Size

The e!ect of the memory bank size (per-class) is studied in Table 4. We observe
that higher memory size leads to better performance, although from 256 the
performance tends to stabilise. Since all elements from the memory bank are
used during the prototype generation, the computation and memory complexity
increases with a larger memory bank, we selected a size of 256 as a good tradeo!.

Table 4: E!ect of our memory bank size (features per-class) ϑ. (1/16 partition protocol
of Pascal VOC Dataset)

ϑ 32 64 128 256 512

mIoU 74.6 75.1 75.9 76.7 76.2
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Fig. 2: Analysis of top-rank indices of
class prototypes

Fig. 3: Pseudo-labeling accuracy with
euclidean distance

6 Visualizing the top-ranked features

Top-ranked (TR) features often highlight discriminative object parts. In Fig. 4
we show gradcam visualization of a common TR feature between “car" and “bus"
in the first two images and then show two di!erent TR features, exclusive for
each class, to illustrate the distinct regions each feature focuses on.

Fig. 4: Visualizing the top-ranked (TR) features

7 Adapting our method to Transformer-based models

We analyse how our method improves the transformer-based models. We exper-
iment with SemiVL [22] on Cityscapes and show the results in the Table 5. We
use the image embeddings prior to similarity map generation, to generate class
prototypes and incorporate our per-pixel learning weight to the CLIP guidance
loss.

8 Evaluation of performance on MS COCO

In Table 6, when using our method on UniMatch [57] (Xception-65) on MS
COCO. We observe that performance improves across all data splits.
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Table 5: Quantitative results of on the Cityscapes dataset

Method Net 1/30 1/16 1/8 1/2
SemiVL [22] Vit-B/16 76.2 77.9 79.4 80.6
SemiVL [22] + Ours Vit-B/16 77.5 79.1 80.4 81.4

Table 6: Quantitative results of on the MS COCO dataset

Method 1/512 1/256 1/128 1/64 1/32
UniMatch [57] 31.9 38.9 44.4 48.2 49.8
UniMatch [57] + Ours 33.7 40.5 46.6 50.3 51.7

9 Qualitative results

– Detections: In Fig. 5, we train a Faster R-CNN on 1
16 of Cityscapes labeled

data and visualize the detection results (confidence ↑ 0.9) on Cityscapes un-
labeled images. It can be observed that the detection boxes are relatively
accurate when trained on limited labeled data.

– Pascal VOC: In Fig. 8, Fig. 9, Fig. 10 and Fig. 11 we compare our method
integrated into UniMatch [57], AugSeg [65], U2PL [50] and AEL [23] respec-
tively, with the corresponding baselines (UniMatch, AugSeg, U2PL and AEL).
The visualization of the segmentation results indicate that our method im-
proves the segmentation performance of all four baselines: UniMatch, AugSeg,
U2PL and AEL.
Note, all methods have been trained on 1

16 data partition of Pascal VOC
dataset (Classic) and all visualizations are on Pascal VOC validation set.

– Cityscapes: In Fig. 6, Fig. 7, we compare our method integrated into Uni-
Match [57] and AugSeg [65] respectively, with the corresponding baselines
(UniMatch and AugSeg). The visualization of the segmentation results indi-
cate that our method improves the segmentation performance of both base-
lines: UniMatch and AugSeg.
Note, all methods have been trained on 1

16 data partition of the Cityscapes
dataset, and all visualizations are on the Cityscapes validation set.
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(a) Car (b) Person (c) Traffic Light (d) Bicycle

Fig. 5: Detection results on Cityscapes unlabeled images Faster R-CNN model
trained on 1/16 labeled data in Cityscapes dataset and confidence → 0.9. From left to
right: Car, Person, Tra"c Light, Bicycle.

(a) Original Image (b) Ground Truth (c) UniMatch (d) UniMatch + Ours

Fig. 6: Qualitative Results on Cityscapes dataset: (a) original image, (b) ground
truth, (c) segmentations generated by UniMatch [57] compared to (d) which are seg-
mentations generated when our method is integrated to UniMatch. The white boxes
show the areas where our method improves the baseline [57].
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(a) Original Image (b) Ground Truth (c) AugSeg (d) AugSeg + Ours

Fig. 7: Qualitative Results on Cityscapes dataset: (a) original image, (b) ground
truth, (c) segmentations generated by AugSeg [65] compared to (d) which are segmen-
tations generated when our method is integrated to AugSeg. The white boxes show the
areas where our method improves the baseline [65].
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(a) Original Image (b) Ground Truth (c) UniMatch (d) UniMatch + Ours

Fig. 8: Qualitative Results on Pascal dataset: (a) original image, (b) ground
truth, (c) segmentations generated by UniMatch [57] compared to (d) which are seg-
mentations generated when our method is integrated to UniMatch. The white boxes
show the areas where our method improves the baseline [57].
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(a) Original Image (b) Ground Truth (c) AugSeg (d) AugSeg + Ours

Fig. 9: Qualitative Results on Pascal dataset: (a) original image, (b) ground
truth, (c) segmentations generated by AugSeg [65] compared to (d) which are segmen-
tations generated when our method is integrated to AugSeg. The white boxes show the
areas where our method improves the baseline [65].
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(a) Original Image (b) Ground Truth (c) U2PL (d) U2PL + Ours

Fig. 10: Qualitative Results on Pascal dataset: (a) original image, (b) ground
truth, (c) segmentations generated by U2PL [50] compared to (d) which are segmen-
tations generated when our method is integrated to U2PL. The white boxes show the
areas where our method improves the baseline [50].
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(a) Original Image (b) Ground Truth (c) AEL (d) AEL + Ours

Fig. 11: Qualitative Results on Pascal dataset: (a) original image, (b) ground
truth, (c) segmentations generated by AEL [23] compared to (d) which are segmen-
tations generated when our method is integrated to AEL. The white boxes show the
areas where our method improves the baseline [23].
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