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Abstract
We present Lean Finder, a semantic search engine
for Lean and mathlib that understands mathemati-
cians’ intents. Due to challenges of locating rel-
evant theorems and the steep learning curve of
Lean 4 language, the progress of formal theorem
proving is slow by tedious human efforts. Re-
cent Lean search engines, though helpful, only
passively consider informalization of statements,
largely overlooking the discrepancy from user
queries in the real world. In contrast, we pro-
pose a user-centered semantic search tailored to
the needs of working mathematicians. The key
idea is to first analyze and cluster the semantics
of public discussions on Lean, then fine-tune text
embeddings on synthesized queries that simulate
user intents. Our Lean Finder is thus encoded with
a rich awareness of mathematicians’ intents from
different perspectives. Evaluations on both real-
world queries by mathematicians and informal-
ized statements demonstrate that our Lean Finder
outperforms previous search engines by at least
19%. We promise to release both the code, model
checkpoints, datasets, and the web service for our
Lean Finder upon acceptance.

1. Introduction
Advances in Lean and mathlib (De Moura et al., 2015;
Moura & Ullrich, 2021) are turning mathematical discovery
into a collaborative and verifiable research workflow. On
this foundation, provers powered by large language models
(LLMs) have sprinted ahead (AlphaProof & teams, 2024;
Xin et al., 2024a;b; Ren et al., 2025; Lin et al., 2025). Par-
allel progress in autoformalization has shifted from hand-
written grammars to few-shot LLM translation, and large
corpora by back-translating Lean code (“informalization”)
have bootstrapped even stronger translators (Wu et al., 2022;
Jiang et al., 2024; Lu et al., 2024).

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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on Machine Learning (ICML). Do not distribute.

42.3% Upvote by
mathematician

Lean Finder

Figure 1: In the evaluation of real user queries, our Lean Finder
is preferred in 42.3% of cases, compared to only 23.1% for
LeanSearch (Gao et al., 2024a).

Despite these advances, state-of-the-art LLMs still cannot
solve math research problems. This underscores the con-
tinued need for substantial human efforts, which unfortu-
nately remain slow and labor-intensive for two bottlenecks.
First, locating the right lemma or theorem is frustrating:
search tools are rudimentary, naming conventions are of-
ten inconsistent, and high-quality Lean examples remain
scarce. Second, Lean’s syntax, grammar, and tactics incur
a steep learning curve. Even veteran mathematicians and
experienced programmers regularly report difficulties when
writing Lean (Zulip, 2021b; 2020b; 2021a; 2020a).

To facilitate mathematicians, search is vital to Lean for-
malization. Recent engines take informal statements or live
proof states and retrieve mathlib4 lemmas or tactic sugges-
tions, thereby aiding human Lean users (Gao et al., 2024a;b;
Tao et al., 2025; Shen et al., 2025; Ju & Dong, 2025; Asher,
2025). However, these search engines target machine trans-
lation rather than human use. They “informalize” statements
from a supposedly neutral viewpoint, whereas real users
bring inherent bias, typically seeking explanations from
their own specific perspective.

Consider the two queries below. The first is an informaliza-
tion of a formal statement that current Lean search engines
handle (Gao et al., 2024a;b; Ju & Dong, 2025; Asher, 2025):

Query 1: Let L/K be a field extension and
let x, y in L be algebraic elements over K
with the same minimal polynomial. Then the
K-algebra isomorphism algEquiv between the
simple field extensions K(x) and K(y) maps
the generator x of K(x) to the generator y
of K(y), i.e.,algEquiv(x) = y.

Target Statement 1:

1 theorem algEquiv_apply {x y : L} (hx :
IsAlgebraic K x) (h_mp : minpoly K
x = minpoly K y) : algEquiv hx h_mp
(AdjoinSimple.gen K x) =
AdjoinSimple.gen K y := by

1
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Real Queries by 
Mathematicians

Training Data
• Formal Statements
• Informalized Statements
• Proof Steps
• Proof States
• Synthesized User Query

Lean Finder

Sources of Formal Statements

“Reverse Engineering”
Informalized query w. 
di;erent perspectives

Zulip 
Discussions

Real Queries by 
Mathematicians

Semantic Clustering
à Query Perspectives

?
(Sec. 3.1.1)

(Sec. 3.1.2)

(Sec. 3.2)

retrieval

Figure 2: Overview of building our Lean Finder. We first analyze and cluster semantics of public queries by mathematicians (Section 3.1.1),
and then fine-tune LLM embeddings via a large amount of synthesized queries that simulate user intents (Section 3.1.2). Moreover, our
Lean Finder is further made more research-centered by including Lean 4 code from research papers and repositories (Section 3.2).

2 have hy : IsAlgebraic K y := ⟨minpoly
K x, ne_zero hx.isIntegral, (h_mp ▷
aeval _ _)⟩

3 rw [algEquiv, trans_apply, ←
adjoinRootEquivAdjoin_apply_root K
hx.isIntegral, symm_apply_apply,
trans_apply,
AdjoinRoot.algEquivOfEq_apply_root,
adjoinRootEquivAdjoin_apply_root K
hy.isIntegral]

However, a human query in practice may look like:

Query 2: I’m working with algebraic elements
over a field extension and I have two
elements, say x and y in L. I know x is
algebraic over K, and I’ve managed to show
that y is a root of the minimal polynomial
of x. Does this imply that the minimal
polynomials of x and y are actually equal?
Or do I need additional assumptions to
conclude that?

Target Statement 2:

1 theorem eq_of_root {x y : L} (hx :
IsAlgebraic K x) (h_ev :
Polynomial.aeval y (minpoly K x) =
0) : minpoly K y = minpoly K x :=

2 ((eq_iff_aeval_minpoly_eq_zero
hx.isIntegral).mpr h_ev).symm

Although both queries involve a similar mathematical con-
text (algebraic elements x, y in a field extension L/K and
their minimal polynomials), they concern different pur-
poses: the first asserts the explicit behavior of an isomor-
phism between field extensions generated by two algebraic
elements with the same minimal polynomial, whereas the
second seeks to decide whether the two minimal polynomi-
als are equal from the fact that y is a root of x’s minimal
polynomial. This user latent (motivation, perspective, level
of abstraction) cannot be inferred or encoded by a purely

syntactic informalization. Addressing this challenge calls
for Lean search engines that can understand a mathemati-
cian’s intent and discourse style, not merely surface-level
matches. We defer a more rigorous analysis in Section 2.2.

Therefore, we ask our core question:

How to make Lean search engine user-centered and
tailored to understand the intents and needs of work-
ing mathematicians?

In this paper, we aim to build a user-centered search engine
for Lean and mathlib4 that can understand the diverse in-
tents of mathematicians. The key method is to first analyze
and cluster the semantics of public queries by mathe-
maticians, and then fine-tune LLM embeddings via a large
amount of synthesized queries that simulate user intents
(Section 3.1, Section 3.5). This fine-tuning strategy can
enrich the awareness of real user intent from different per-
spectives. Moreover, our Lean Finder is further made more
research-centered by including Lean 4 code from research
papers and repositories (Section 3.2). We test our Lean
Finder via a vast amount of retrieval evaluations with both
informal statements and real user queries. We will release
our Lean Finder retrieval system as a web service to sup-
port mathematicians coding in Lean 4. A demo is shown in
Figure 4. We summarize our contributions below:

1. When evaluating on real-world queries by human math-
ematicians, our Lean Finder is upvoted 42.3% com-
pared to 23.1% from LeanSearch in an LMArena-style
test (Chiang et al., 2024).

2. Queried by informalized statements, Lean Finder also
outperforms LeanSearch (Gao et al., 2024a) by 27.3%
relative improvement on Recall@1.

3. We release the largest dataset for informal-formal pairs,
with 1222600 synthesized user query, 244521 informal-
ized statements, and 254811 Lean code snippets.

2
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2. Motivation
2.1. Background: Search Engine for Lean and Mathlib

Lean (De Moura et al., 2015; Moura & Ullrich, 2021) is an
interactive theorem prover based on dependent type theory
that lets mathematicians write proofs in a rigorously check-
able language. Its community-run library mathlib4 now
contains over 210k theorems and 100k definitions, orders of
magnitude more formal “entry points” than most program-
ming platforms (Python exposes only 89 built-in functions;
while the C++ standard library has 105 headers). Finding
the right item inside the ocean of mathlib4 is hard: the
official #find, library_search, and Loogle tools rely on exact
names or goal states and quickly miss relevant results when
naming conventions drift or examples are sparse. Recent
LLM-powered search engines (Gao et al., 2024a;b; Yang
et al., 2023; Tao et al., 2025; Shen et al., 2025; Ju & Dong,
2025; Asher, 2025; Zhu et al., 2025) embed informal queries
or proof goals and retrieve matching Lean statements, but
they are optimized for embedding similarity, not for the
rich, shifting intents of working mathematicians. In short,
sheer library scale and rudimentary search together make
locating lemmas a first-order pain point, even before one
tackles Lean’s non-trivial syntax and tactic language.

2.2. Current Search Engines Are Misaligned with the
Practical Needs of Mathematicians

Despite notable progress, current Lean search engines are
optimized for informalized statements, instead of questions
mathematicians actually pose. Most systems embed infor-
mal descriptions (natural languages) of statements or proof
states, together with possible context or dependencies, then
retrieve matching lemmas or tactics (Yang et al., 2023; Gao
et al., 2024a;b; Tao et al., 2025; Shen et al., 2025). Because
these informalizations are generated by LLMs rather than
user logs, we have no guarantee that their wording, granular-
ity, and purpose align with the queries real Lean practition-
ers type. This unexamined domain gap between LLM-
generated paraphrases and authentic human queries
has so far been largely ignored, leaving retrieval systems
potentially well-tuned to wrong distributions.

To justify this domain gap, we visualize distributions of
different queries embeddings generated via all-MiniLM-L6-
v2 (Wang et al., 2020) sentence-transformers and PCA. As
shown in Figure 3, the cluster of LLM-generated informal-
izations (blue) only spans over a subspace of the cluster
by queries collected from Zulip and Github (green), high-
lighting a clear domain gap between real user queries and
surrogate ones on which current Lean search engines are
trained. By contrast, embeddings of our synthesized user
queries (Section 3.1) are much more aligned with the hu-
man cluster, suggesting that they better capture the practical
needs of Lean mathematicians.

Figure 3: PCA of different queries. User queries are from Zulip
and Github; Lean Finder considers our synthesized user query (Sec-
tion 3.1), and informalization is from Herald (Gao et al., 2024b)

.
3. Methods
3.1. User-centered Query Synthesis

Section 2.2 underscores that effective Lean retrieval for
mathematicians requires authentic user queries, yet assem-
bling such data at scale is obstructed by two bottlenecks:

1. The volume of publicly available Lean questions by real
users is tiny (for example, we only fetched 693 answer-
able user queries from Zulip/GitHub), which is orders
of magnitude smaller than the billions-token corpora
consumed by modern LLMs;

2. Even when such real user queries exist, tracing the pre-
cise answer (formal statement) that eventually resolves
each query is often infeasible, due to open math problems
and evolving Lean/mathlib4 development.

Therefore, preparing a large fully annotated set of genuine
user queries is unrealistic. Instead, we propose a novel
reverse strategy to synthesize a large amount of diverse
and realistic queries. The core idea is: based on different
perspectives that mathematicians ask Lean/mathlib4-related
questions (Section 3.1.1), we prompt LLM generation to
simulate mathematicians’ intents (Section 3.1.2).

3.1.1. SEMANTIC ANALYSIS OF REAL HUMAN QUERY

The first step for user query synthesis is to systematically
collect real user discussions, and then analyze the diverse
semantics and intents of mathematicians coding in Lean 4.

1. Collect User Discussions. To achieve this semantic
analysis, we utilize Lean Zulip Chat1, the primary discus-
sion forum for Lean 4, as well as GitHub, as the main
sources of real-world queries. Using the Zulip API, we
extract user discussions, prioritizing high-quality and rele-
vant content by targeting five highly active and thematically

1https://leanprover.zulipchat.com/
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relevant channels: new members, lean4, mathlib4, Is there
code for X, and metaprogramming/tactics.

For each thread within these channels, we retain up to the
first five user messages (sorted chronologically) as they
generally center around the context and core idea, and sub-
sequent replies are more likely off the topic.

Subsequently, we prompt GPT-4o to filter these messages,
retaining only discussions answerable by a formal Lean 4
statement, and paraphrasing the main query articulated
within the initial messages. This procedure yields a re-
fined collection of 693 high-quality discussions (600 from
Zulip2, 93 from GitHub).

2. Cluster User Intents. Mathematicians may ask
Lean/mathlib4-related questions from different perspectives
(see examples in Section 1 and our analysis in Figure 3),
therefore we need to identify the distinct types of queries
collected from Zulip/Github. We first prompt OpenAI o3 to
bootstrap the initial set of clusters from a subset of collected
queries. Then, the same model is fed with more user discus-
sions and is prompted to iteratively update existing clusters
or introduce new clusters if necessary. See Appendix E for
prompts we used. This process results in five distinct and
semantically meaningful clusters of queries, as shown in
Table 1, capturing a comprehensive range of intents from
which mathematicians ask about Lean/mathlib4.

3.1.2. QUERY SYNTHESIS WITH USER INTENTS

Based on semantic clusters of real queries in Table 1, we
synthesize a large-scale dataset of queries simulating diverse
user intents. Although it is typically challenging to resolve a
query with precise formal statements in Lean, we can still re-
versely synthesize the query, instead of the ground truth.
Specifically, we assume each formal Lean/mathlib4 state-
ment could be the ground-truth answer to some unknown
user queries, and now the key is to simulate or synthesize
queries of realistic user intents.

We aim to instruct the LLM to generate plausible user
queries that align with the specified cluster’s perspective
while remaining grounded in the given formal content. Con-
cretely, we prompt GPT-4.1 mini with: (i) the Lean 4 formal
statement, (ii) its informalization (Section 3.4), (iii) cluster
information (cluster name, semantic definition, and repre-
sentative 10-shot examples). See Figure 9 for our prompt.
For each formal statement, we iterate over all five clusters
in Table 1. This procedure yields a total of 1,222,600 syn-
thetic queries distributed across five distinct intent clusters,
enabling fine-tuning of embedding models better to meet
mathematicians’ needs on Lean search.

2Due to privacy concerns, we do not release Zulip collections.

3.2. Research-driven Data Collection

While mathlib4 remains the primary source of formal state-
ments for most Lean 4 search engines, it does not capture the
full breadth of formal mathematics. Many recent mathemat-
ical developments are formalized beyond mathlib4, often
in repositories associated with research papers or domain-
specific libraries. These statements can be more relevant to
working mathematicians, especially when formalizing new
results or building upon cutting-edge works.

To build a more comprehensive and representative corpus
of Lean 4 statements, we consider the following sources in
addition to mathlib4:

• Research-linked repository: GitHub projects that are
part of math papers, which often contain formalizations
of novel theorems and lemmas.

• Domain-specific library: Projects such as SciLean that
cover applied mathematical domains.

• Transitive dependency: Any Lean 4 project dependen-
cies required by the above repositories.

We use LeanDojo (Yang et al., 2023) to extract formal state-
ments from collected projects. The complete list of reposi-
tories in our data is shown in Table 10 in the Appendix.

This expanded collection ensures that our search engine is
equipped with the most relevant, diverse, and latest formal
statements to support both Lean practice and math research.

3.3. Informalization

To support retrievals by both informalized statements and
the generation of synthetic user queries (Section 3.1.2), we
convert formal Lean 4 statements into natural language de-
scriptions. Inspired by Herald (Gao et al., 2024b), for each
Lean 4 statement in our dataset, we provide rich context
information for GPT-4o to informalize. The context consists
of the following six components:

• Formal name: The full name of the statement to be
informalized.

• Formal statement code: The complete Lean 4 code,
including the statement header and body.

• Docstring: Any human-written docstring associated with
the statement in the codebase.

• Neighbor statement: The closest statement in the same
file, based on positional proximity. We include its full
code, as nearby statements often share related concepts.
This helps the model understand the local context and
inter-connectiness of the statement.

4
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Table 1: Five clusters of mathematicians’ intents categorized from our collections of real user queries from Zulip and GitHub.

Intent Cluster Semantic Definition Examples

Searching for
existing code /
lemmas

Whether a definition, data-structure implementation, lemma, or
theorem is already available in Mathlib/Lean, or if there is an
easy way to get the desired statement.

“Is there code for ...”, “Do we have ...”, “Is there a lemma
which ...”, “Where can I find ...”

Meta- / tactic-
programming
questions

Questions about Lean 4 metaprogramming: writing tac-
tics or elaborators, creating macros, manipulating Expr or
environments, controlling metavariables, interacting with
‘simp‘/‘aesop‘/‘omega‘ from meta code.

“Why doesn’t the code give an error about a cycle existing
when using Lean.MVarId.assign?”, “Is there a way to make
my first approach work to get Exp out of Q(Exp) using
expr% macro?”

Type-class, in-
stance, axiom

Proofs fail, or definitions cannot be written because Lean cannot
find (or should not use) certain type-class instances, or users
need advice on constructing/avoiding such instances and on the
correct logical meaning of such instances.

“How to define or derive instances...”, “Why certain
instance-search problems happen...”, “Whether particular
instances should exist at all...”

Proof engineer-
ing & everyday
Lean usage

Concrete goals or failing scripts around practical, day-to-day
proof writing in Lean.

How to: finish or shorten proofs, make simp, rw, omega,
linarith, etc. succeed, rewrite or unfold expressions, handle
coercions and subtypes, manipulate logical connectives
(∀, ∃,∧,∨), pattern-match over inductives, or split cases.

Library design
& large-scale
formalization

Conversations that concern the construction of large-scale state-
ments: proposing new mathematical structures or tactics, refac-
toring existing ones, performance trade-offs, big formalizations
or theorems.

“How can I apply the coYoneda lemma or density theorem
to simplicial sets valued in an arbitrary universe without
restricting the variable?”

• Dependent statements: All the dependent statements
used in the body of the statement to be informalized, along
with their informalizations. This provides the necessary
prerequisite knowledge and semantic dependencies for
achieving high-quality informalization. See Appendix A.2
for details about acquiring dependent statements.

• Related statement in Herald (Gao et al., 2024b): A for-
mal statement and its corresponding informalization from
the Herald dataset that closely aligns with the target state-
ment. This example serves as an in-context demonstration
for GPT-4o, helping it generate a more accurate and stylis-
tically consistent informalization. See Appendix A.2 for
details on retrieving related statements.

3.4. Other Input Modalities

For the Lean code snippet input modality, we segment state-
ment body using newline characters (\n). This slicing strat-
egy helps preserve the semantic structure of the original
proof. The input sequences in our dataset contain 2 to 4
code segments, omitting single-line inputs, as individual
lines are often trivial (e.g., rfl) and provide limited se-
mantic value on their own. The statement definition input
modality excludes the body of the statement, and retains
only the statement header information.

We summarize our dataset by input modalities in Table 2
and by data sources in Table 3.

3.5. Training Lean Finder with Code Search

Our code search model, named Lean Finder, adopts
DeepSeek-Prover-V1.5-RL 7B (Xin et al., 2024b) as the
base model for fine-tuning, for its extensive pretraining on
Lean 4 syntax and theorem proving tasks. As a decoder-

Table 2: Overview of our dataset by input modalities.

Input Modality Samples Percent

Synthesized User Query 1222600 63%
Informalized Statements 244521 12%
Lean Code Snippet 254811 13%
Formal Statements 244521 12%

Table 3: Overview of our dataset by data sources.

Source Samples Percent

Mathlib 238021 97%
Research-linked repository 2198 1%
Lean 4 related libraries 4302 2%

only architecture, only the final token in each sequence has
access to the full context due to the causal self-attention.
Therefore, we extract the final hidden state of the last to-
ken in the last decoder layer to embed the entire sequence.
The model is fine-tuned with contrastive loss on “informal
query qi – formal code cj” pairs, which aims to align the
embeddings of matching pairs in a shared embedding space.

For each training pair (qi, cj), we create an augmented
version q∗i = Augment(qi), c∗i = Augment(ci). The
augmentation randomly selects 15% of tokens in the input
sequence, with (1) 80% of the selected tokens replaced with
a special [MASK] token, (2) 10% replaced with random
vocabulary tokens, (3) 10% unchanged. This augmentation
encourages robust embeddings to noisy or partial inputs.

Inspired by prior works in contrastive learning and code
search (Wang et al., 2023; Li et al., 2022; 2021), we use a
momentum decoder and maintain four queues of negative
examples: (1) unmasked queries, (2) masked queries, (3)
unmasked code, (4) masked code.

5
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Let D denote the main decoder that is updated via gradient,
and D′ denote the momentum decoder updated via expoen-
tial moving average of the main decoder D. For any input
sequence I , we denote its normalized embedding from the
main decoder as D(I), and from the momentum decoder as
D′(I). We define four similarities:

Sim(ci, qj) = D(ci)
⊤D′(qj) (1)

Sim(ci, q
∗
j ) = D(ci)

⊤D′(q∗j ) (2)

Sim(qi, cj) = D(qi)
⊤D′(cj) (3)

Sim(qi, c
∗
j ) = D(qi)

⊤D′(c∗j ) (4)

For each informal query and formal Lean code within a
batch of samples, we compute the temperature-scaled soft-
max similarity distributions:

P c→q(ci, qj) =
exp (Sim(ci, qj)/τ)∑M

m=1 exp (Sim(ci, qm)/τ)
(5)

P c→q∗(ci, qj) =
exp

(
Sim(ci, q

∗
j )/τ

)∑M
m=1 exp (Sim(ci, q∗m)/τ)

(6)

P q→c(qi, cj) =
exp (Sim(qi, cj)/τ)∑M

m=1 exp (Sim(qi, cm)/τ)
(7)

P q→c∗(qi, cj) =
exp (Sim(qi, c

∗
m)/τ)∑M

m=1 exp (Sim(qi, c∗m)/τ)
(8)

where M = B +K, where B is the batch size and K is the
queue size. τ is the temperature hyperparameter.

To mitigate semantic ambiguity in the input and reduce the
impact of noisy supervision (e.g. weakly correlated query-
code pairs), we employ a soft labeling strategy. Instead
of relying solely on hard one-hot labels, we generate soft
targets as a combination of a one-hot similarity vector and
pseudo-targets derived from the momentum decoder D′.
Specifically, we define the similarity between a query-code
pair using the momentum decoder as:

Sim′(qi, cj) = D′(qi)
⊤D′(cj) (9)

The soft target vector Y q→c
soft is computed as:

Y q→c
soft = (1− β) ∗ Y q→c

onehot + β ∗ Sq→c (10)

where β is a hyperparameter, Y q→c
onehot is a one-hot vector

with a value of 1 at the index of the positive target and 0
elsewhere, and Sq→c is a pseudo-target distribution over all
Lean 4 statement code embeddings in the queue computed
via softmax over momentum-based similarities:

Sq→c
ij =

exp
(
Sim′(qi, cj)/τ

)∑M
m=1 exp

(
Sim′(qi, cm)/τ

) . (11)

Let H be the cross-entropy loss, and D be the training set
of query-code pairs, our overall loss function is defined as:

L =
1

4
E(c,q)∼D

[
H(Ysoft

c→q,pc→q) + H(Ysoft
c→q∗ ,pc→q∗)

+H(Ysoft
q→c,pq→c) + H(Ysoft

q→c∗ ,pq→c∗)
]
.

4. Experiments
4.1. LLM Settings

We utilize the OpenAI API to synthesize user queries from
formal Lean statements as part of our dataset generation
pipeline. Please see Appendix B for details on API configu-
rations. For retrieval, we fine-tune DeepSeek-Prover-V1.5-
RL 7B using LoRA and a query-code contrastive learning
objective. Training settings are provided in Appendix C.

4.2. Evaluation Settings and Data

To evaluate the performance of our Lean Finder, we compare
it with LeanSearch (Gao et al., 2024a;b), a widely used
search engine for Lean 4. To the best of our knowledge,
LeanSearch is currently the only search engine that supports
Lean retreival for Mathlib statements using either natural
language queries or Lean 4 code.

We assess retrieval performance using the following metrics,
both higher the better:

• Recall@K: This measures the proportion of relevant re-
sults within the top K retrieved results.

• Mean Reciprocal Rank (MRR): This calculates the av-
erage of the reciprocal ranks of the first relevant result
for each query. It is defined as: MRR = 1

N

∑N
i=1

1
ranki

,
where N is the number of queries, and ranki is the rank
position of the first relevant result for query i.

We evaluate our Lean Finder across four input modalities:
informalized statement, synthetic user query, statement defi-
nition, and Lean code snippet.

Informalized Statement. To ensure a fair comparison,
we impose two constraints: 1) The ground-truth formal
statement must exist in the LeanSearch database (other-
wise LeanSearch would always fail to retrieve it). 2) The
corresponding informal query must not appear in either
the LeanSearch database or our training data (otherwise
LeanSearch would retrieve it perfectly, and our model would
already have seen a near-duplicate). Therefore, we randomly
select 150 Lean 4 statements from LeanSearch’s database,
and informalize them using a simplified prompt without ad-
ditional context (dependent theorems, related theorems, etc.)
used in our model. These newly informalized statements
constitute a fair test set for comparison.

6
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Synthetic User Query. For the synthetic user query
modality, we generate 150 queries evenly distributed across
five clusters, using the 30 of the newly informalized state-
ments as part of the prompt for LeanSearch comparison.

Statement Definition. To evaluate with the statement def-
inition, we sample 100 Lean 4 statements from our dataset
and their corresponding definitions that are not in our train-
ing set of Lean Finder. To simulate noisy queries and test
model robustness, we randomly replace 20% of the words
in the query with tokens sampled from the vocabulary. To
avoid invalid characters introduced by the retrieval model’s
tokenizer during augmentation, we use a custom tokenizer
when augmenting the statement definitions.

Lean Code Snippet. Finally, for the code snippet modal-
ity, we sample 100 examples of code snippets from our
dataset not present in our training set, and we do not apply
augmentation.

All evaluation on LeanSearch is done manually using their
web service3.

4.3. Results on Synthetic Queries

Table 4: Retrieval by informalized statement.

Models R@1 R@5 R@10 MRR

LeanSearch 0.487 0.700 0.773 0.599
Lean Finder (ours) 0.620 0.893 0.933 0.735

Table 5: Retrieval by synthetic user query.

Models R@1 R@5 R@10 MRR

LeanSearch 0.333 0.593 0.713 0.465
Lean Finder (ours) 0.407 0.693 0.780 0.537

Table 6: Retrieval by statement definition.

Models R@1 R@5 R@10 MRR

LeanSearch 0.620 0.840 0.870 0.716
Lean Finder (ours) 0.650 0.940 0.960 0.784

Table 7: Retrieval by Lean code snippets

Models R@1 R@5 R@10 MRR

LeanSearch 0.090 0.260 0.330 0.182
Lean Finder (ours) 0.56 0.81 0.86 0.678

From results in Table 4, 5, 6, and 7, we observe that our
Lean Finder consistently outperforms LeanSearch across
all evaluated input modalities. Notably, for informalized
statements, synthetic user queries, and Lean code snippets,
our model achieves substantial performance gains. These
improvements highlight the model’s superior ability to cap-
ture user intent and generalize across diverse query formats,

3https://leansearch.net/

making it a more versatile and effective tool for supporting
Lean 4 developers in real-world theorem proving workflows.

4.4. Results on Real User Queries

Table 8: Retrieval by real user query. “Preferred Method”: by
which method the user-preferred answer is retrieved. “Tied”: re-
trievals by LeanSearch (Gao et al., 2024a) and ours are comparable.

Preferred Method Count Percentage

LeanSearch 12 23.1%
Lean Finder (ours) 22 42.3%
Tied 18 34.6%

Table 9: User preference (Table 8) by intents. Cluster 1: Searching
for existing code/lemmas. Cluster 3: Type-class, instance, axiom.
Cluster 4: Proof engineering & everyday Lean usage.

Clusters Ours Preferred LeanSearch Preferred Tied

Cluster 1 11 3 3
Cluster 3 1 1 0
Cluster 4 10 8 15

To further evaluate Lean Finder’s effectiveness in real-world
scenarios, we conduct a user study using Lean queries made
by humans. We select 52 high-quality answerable user
queries from GitHub and retrieve the top-3 statements from
both LeanSearch and our Lean Finder for each query. The
evaluation follows a style similar to LMArena (Chiang et al.,
2024), where the order of the retrieval method is randomly
shuffled for each query. As shown in Table 8, our Lean
Finder was preferred in 42.3% of cases, substantially outper-
forming LeanSearch (23.1%), demonstrating the model’s
superior ability to capture user intent and provide satisfying
answers to real user queries.

We further analyze this user preference by clustering these
evaluated real user queries, and show user preference per
cluster in Table 9. We find that our Lean Finder demon-
strates stronger performance in Clusters 1 and 4.

4.5. Lean Finder’s User Interface

To facilitate Lean users, we also develop and deploy our user
interface, as shown in Figure 4. We retrieve formal state-
ments and also report their matching scores. We turn our
web service offline to avoid disclosing identity information.

5. Related Works
Code Search and Lean Retrieval. Code search, aimed at
retrieving the most semantically relevant code snippets from
a codebase according to a specified natural language query,
is a common activity that plays an important role in soft-
ware development (Husain et al., 2019; Wang et al., 2023)
and aligns closely with premise selection: both problems

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Lean Finder: Semantic Search for Mathlib That Understands User Intents

Figure 4: Web user interface of our Lean Finder.

require retrieving a small set of code blocks that are help-
ful for downstream tasks. Early methods relied on lexical
heuristics (Alama et al., 2014; Urban, 2004), while recent
work leverages neural encoders (Irving et al., 2016; Wang
& Deng, 2020; Mikuła et al., 2023; Yeh et al., 2023) and
dense retrieval models (Karpukhin et al., 2020; Qu et al.,
2020) by learning semantic embeddings. In formal domains
like Lean, retrieval systems like LeanSearch (Gao et al.,
2024a;b) assist users by allowing them to search for relevant
mathlib statements using natural language queries. These
systems primarily function by matching the natural language
translation of a formal statement to other formal statements
in mathlib. While effective in some settings, this approach
supports only narrow input types and treats informal queries
as approximate paraphrases of formal code and focuses on
surface-level alignment, without capturing the diverse in-
tents behind real-world user questions or the broader context
in which they arise. Lean Finder addresses this gap by in-
troducing a user-centered, intent-aware retrieval framework
for Lean that supports a broad range of input modalities and
explicitly bridges the gap between the natural queries posed
by mathematicians and the formal statements stored in Lean
projects. By modeling real user intent and query diversity,
Lean Finder achieves consistently strong retrieval perfor-
mance across all modalities and demonstrates substantial
gains over existing systems in a user study based on real
Lean queries.

AutoFormalization. Autoformalization, the automated
translation of informal mathematics into formal proof-
assistant code, has become a key strategy for addressing the
scarcity of high-quality formal data. Early neural encoders
for statement formalization (Wang et al., 2018) have been
eclipsed by LLM-based pipelines that translate at scale with
few-shot prompting or fine-tuning (Wu et al., 2022; 2024;
Xin et al., 2024a;b). Systems such as DeepSeek-Prover and
InternLM2.5-StepProver formalize vast Lean corpora for

expert iteration (Xin et al., 2024a; Wu et al., 2024), while
others generate synthetic formal proofs without informal
seeds (Wu et al., 2020; Wang & Deng, 2020; Poesia et al.,
2024). Projects such as MMA, Lean-STaR, TheoremL-
lama, and Lean Workbook create natural-language/formal-
language (NL–FL) pairs to mitigate data scarcity (Jiang
et al., 2023; Lin et al., 2024; Wang et al., 2024; Ying et al.,
2024); yet LLM brittleness still introduces subtle logical
errors. Recent LLM tools embedded in user workflows (e.g.,
LeanDojo, LeanCopilot, LLM-Step) further streamline man-
ual formalization by suggesting premises and proof tactics
(Yang et al., 2023; Song et al., 2023; Welleck & Saha, 2023).
Our work tackles the complementary challenge of autofor-
malization: synthesizing intent-rich, user-style queries from
formal Lean statements to better serve practitioners. Unlike
previous informalization approaches that simply translate
formal statements into natural language, our pipeline ex-
plicitly models user intent and query phrasing. Injecting
this intent-aware signal during fine-tuning yields significant
retrieval improvements on real user queries, and bridges the
gap between informal user needs and the formal knowledge
encoded in Lean libraries.

6. Conclusion
We present Lean Finder, a significant advancement in the
development of search tools for formal mathematics. By
centering on real user intent and leveraging synthesized
queries, semantic clustering, and fine-tuned embeddings,
it bridges the gap between mathematicians’ informal rea-
soning and formal theorem proving in Lean. Its superior
performance over existing search tool demonstrate both
practical utility and academic impact. Lean Finder not only
enhances accessibility to mathlib4 but also lays the ground-
work for future intelligent systems that assist in rigorous,
collaborative mathematical discovery.
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A. Details for Dataset Construction
A.1. Data Source Details

Table 10: Lean sources included in our dataset beyond mathlib4.
Project name Category URL

Mathlib4 Domain-specific library https://github.com/leanprover-community/Mathlib4

SciLean Domain-specific library https://github.com/lecopivo/SciLean

A formalization of Borel determinacy
in Lean (Manthe, 2025)

Research-linked repository https://github.com/sven-manthe/A-formalization-of-Borel-
determinacy-in-Lean

Optlib (Li et al., 2025a;b) Research-linked repository https://github.com/optsuite/optlib

Formalising Fermat’s Last Theorem
for Exponent 3 (Monticone, 2024)

Research-linked repository https://github.com/riccardobrasca/flt3

Formalisation of constructable num-
bers (Monnerjahn, 2024)

Research-linked repository https://github.com/Louis-Le-Grand/Formalisation-of-
constructable-numbers

Plausible Transitive dependency https://github.com/leanprover-community/plausible

ProofWidgets4 Transitive dependency https://github.com/leanprover-community/ProofWidgets4

Aesop Transitive dependency https://github.com/leanprover-community/aesop

Batteries Transitive dependency https://github.com/leanprover-community/batteries

A.2. Informalization Details

To support the inclusion of dependent statements during informalization, we construct a directed acyclic graph in which
each node represents a Lean 4 statement and edges capture dependency relationships between statements. We ensure all
dependencies of a given statement are informalized before the statement itself.

We use DeepSeekProver to retrieve the most relevant statements from Herald, and use the top-matching informal statement
along with its corresponding formal statement as the related statement in the prompt for informalization.

B. OpenAI API Configurations
We prompt OpenAI models during data collection and generation, and we describe the detailed configurations below.

Informalization. We leverage the GPT-4o API to convert formal Lean 4 statements into informal statements (Section 3.4).
The temperature is set to 0.2 and the maximum output token limit is 1000. Inspired by Herald (Gao et al., 2024b), the
prompt used for informalization is shown in Figure 5.

User Query Filtering. We employ GPT-4o to filter out user queries that cannot be addressed by any Lean 4 formal
statement (Section 3.1.1). The temperature is set to 0.0 with a maximum of 500 output tokens. The prompted used for query
filtering is shown in Figure 6.

User Intent Clustering. To cluster user intents (Section 3.1.1), we use the o3 API. The process involves two stages:

• Bootstrap Categorization. An initial set of representative user queries is clustered using a temperature of 1.0 and a
token limit of 20000. The prompt used for initial cluster generation is shown in Figure 7.

• Progressive Clustering. Remaining queries are progressively categorized with the same temperature and token settings.
The prompt used for this part is shown in Figure 8.

User Query Generation. To synthesize diverse user queries (Section 3.1.2), we use the GPT-4.1 mini API with a
temperature of 0.7 and a maximum output of 1000 tokens. The prompt used is shown in Figure 9.
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C. Training Details
We fine-tune our Lean Finder based on the DeepSeek-Prover-V1.5-RL 7B (Xin et al., 2024b), using a query–code contrastive
learning objective. We apply LoRA (Hu et al., 2021) with a rank r = 32 and α = 64. We train Lean Finder for 2 epochs
with a per-GPU batch size of 10, gradient accumulation steps of 6, and 4 NVIDIA A100 GPUs. We use the AdamW
optimizer with a learning rate of 2× 10−5 and ϵ = 1× 10−8. The learning rate is linearly warmed up over the first 1,210
steps, then decayed to 0 using a cosine schedule. The momentum decoder is updated using a momentum coefficient of 0.99,
and the temperature τ for scaling the similarity distributions is set to 0.7. We set the momentum queue size to K = 640. For
soft labeling, the weight β begins at 0 and is linearly increased to 0.4 over the course of training. Due to imbalanced input
modalities in our training data (Table 2), we adopt a weighted sampler assigning higher sampling probabilities to examples
from the underrepresented modality.

D. Privacy and Data Release
To protect user privacy, we do not release any real user discussion data collected from Lean Zulip. All training of Lean
Finder involving Zulip-derived queries are based solely on synthetic user queries that are reverse-engineered from formal
Lean statements. We will only release these synthetic queries, along with queries from other input modalities. No identifiable
information or original messages from Zulip users are included in our datasets.

E. Prompts

You are an expert mathematician and an expert in Lean and Mathlib.
**Instruction**:
Your task is to first translate the formal theorem provided below into an informal statement that is more accessible to mathematicians and written in LaTeX. There are six 
parts of information as inputs:
1. Formal name: The formal name of the theorem you need to translate.
2. Formal statement: The formal statement of the theorem you need to translate.
3. Docstrings: A list of natural language comments written by humans in the theorem
4. Neighbor statement: The statement located in the same file and closest in position to the formal theorem you need to translate.
5. Dependent theorems: These are JSON list of dependent theorems at which the theorem you need to translate uses, and their informal statements and name.
6. Related statement: This is a JSON object for the statement from mathlib4 that has related meaning as the current theorem at which you need to translate. The related 
statement formal statement, informal statements, and informal name are provided.

Then create an informal name. Use the provided formal name of the statement according to the naming conventions. Utilize the informal statement written in the first task. 
Make sure you follow the principles of informal naming when creating informal names. Principles of informal statements should also be followed as much as possible.

**Principles of Informal Statements**:
The informal statement should be written using human-used mathematical notations and formulas in LaTeX as much as possible, while also explaining the meaning of the 
symbols involved.
Explain more detailed mathematical setup only if the definition appearing in the statement is not commonly accepted. Both the inputs and values of the definition should be 
expressed using mathematical formulas as much as possible.

*Example*:
DO NOT use "Real.log";
Use $\log$ instead.

**Principles of Informal Names**:
Emphasize the core concepts in the definition. The definition name should not merely list concepts; use words that indicate logical relationships and clearly state the 
conclusion.

*Example*:
Use "A equals B" or "A implies B" (or simply "$A = B$" and "$A \to B$"), instead of "theorem of A and B" when the theorem states the result of A = B or A → B. Both the 
inputs and values of the definition should be expressed using mathematical formulas as much as possible.

 **Input**:
 *Formal name*: <>
 *Formal Statement*: <>
 *Docstring*: <>
 *Neighbor statement:* <>
 *Dependent theorems*: <>
 *Related theorem*: <>

 **Output**:
 Return *only* a JSON object with keys  
  "informal name"  
  "informal statement"

Figure 5: Prompt used for Lean statement informalization.
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You are an expert at Lean 4 and an experienced user of Lean Zulip Chat.
**Instruction**:
Your task is to first read the excerpt provided below that contains the first 5 messages from a discussion thread in Lean 
Zulip Chat and then decide to accept or reject the excerpt based on the following criteria:
1. You should accept the excerpt if the main user question in the excerpt can be answered at least partially by providing 
a Lean 4 statement.
2. You should accept the excerpt if showing a pre-existing Lean 4 statement will move the discussion forward in a 
meaningful way.
3. You should reject the excerpt if none of the above is true for this excerpt.
4. When uncertain, use your best judgment.
Then identify the main question in this discussion thread based on the excerpt provided below. The main question is the 
one that the user who initiated the discussion wants an answer for.
                                  
**Examples (not exhaustive)**:
ACCEPT:
• The user is asking “Is there a lemma/theorem/definition that …?
• The user needs a property that already exists as a lemma (e.g. “`map_prod` preserves multiplication”).
• The user doesn't directly ask for a statement, but providing an example statement to the user can address part of the 
problem.
REJECT:
• Library infrastructure, version bumps, build tools, CI, style.

**Input**:
{input_block}

**Output**:
Return *only* a JSON object with keys  
  “decision”  
  “main_question”
Where the value for decision must be *exactly* one word ACCEPT or REJECT

Figure 6: Prompt used user query filtering.
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You are an expert at Lean 4 and an experienced user of Lean Zulip Chat.
    **Instruction**:
You will be provided below with 50 excerpts that contain the first few messages from discussion threads in Lean Zulip Chat and the main user question that is being 
asked in that discussion thread. Each excerpt has been filtered so that the main user question can be answered at least partially by a statement written in Lean 4 or 
showing a pre-existing Lean 4 statement will move the discussion forward in a meaningful way. You need to do the following task:
Group the following 50 excerpts into clusters by their query purpose/type, and follow the instruction below:
* Each cluster should represent a distinct type of query based on the underlying intent or perspective of the main question in the excerpt.
* Give each cluster a descriptive name (a few words) that summarizes that query type.
* For each cluster, give a detailed description of what the cluster represents. This should include the common properties shared by the queries that belong in these 
clusters, and the description of the underlying intent or perspective of the queries made by the user. This must be detailed enough, such that a person reading this 
description can create new queries for a Lean 4 statement that belong in this cluster.
* For each cluster, include at most 5 representative example queries that best define this cluster in the description. The chosen example queries must be the 
main_question provided in the input for the excerpt.

The input will be a list of excerpts, where each excerpt will have the following contents:
1. channel: This contains the name of the channel that the excerpt is collected from in the Lean Zulip Chat.
2. topic: This contains the name of the discussion thread the excerpt is collected from.
3. main_question: This contains the main user question that is being asked in the excerpt.
4. messages: This contains a list of initial messages from the discussion thread. Each message in the list contains the full name of the sender and the content of the 
message.

**Input**:
{input_excerpts}
**Output**:
Return only a JSON object with a key "clusters", and the value for the key is a list of cluster objects.
Each cluster object must have keys: "cluster_name", "cluster_description", and "examples".
The value of the key "cluster_name" should be the name of that cluster.
The value of the key "cluster_description" should be the detailed description of that cluster.
The value for the key "examples" should be a list of main_question from the chosen excerpts in the input.

*Example output JSON*:
{
    "clusters": [
        {
            "cluster_name": "the name of the first cluster",
            "cluster_description": "the detailed description for the first cluster",
            "examples": ["main_question 1", "main_question 2"]
         },
         {
            "cluster_name": "the name of the second cluster",
            "cluster_description": "the detailed description for the second cluster",
            "examples": ["main_question 3"]
         } 
    ] 

Figure 7: Prompt used for generating initial clusters of user queries.
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You are an expert at Lean 4 and an experienced user of Lean Zulip Chat.
**Instructions**: 
You will be provided below with 25 excerpts that contain the first few messages from discussion threads in Lean Zulip Chat and the main user question that is being asked in that 
discussion thread. Each excerpt has been filtered so that the main user question can be answered at least partially by a statement written in Lean 4 or showing a pre-existing Lean 4 
statement will move the discussion forward in a meaningful way. You will also be provided with the current clusters of queries based on previous excerpts. Each cluster represents a 
distinct type of query based on the underlying intent or perspective of the main question in the excerpt. You need to do the following:
*Task A -- Fitting new excerpts* :
1. For each input excerpt, try to fit the excerpt into an existing cluster based on the cluster's description and representative examples provided for queries in that cluster.
2. If new excerpts fit into an existing cluster of queries and the new excerpts reveal nuances that the current description of the cluster does not capture, you should append at most one 
new sentence to an existing cluster description.
3. If new excerpt fit into an existing cluster of queries and the main_question in the new excerpts reveal nuances that the current examples for that cluster does not capture, you should 
add at most one new example to an existing cluster examples.
4. DO NOT remove any description and examples in the existing cluster. You are only allowed to add new ones when needed.
If the excerpt DOES NOT fit into an existing cluster, do *Task B*, otherwise skip *Task B*

*Task B – New cluster proposal (if needed)*  
1. If the input excerpt doesn't fit into any existing cluster, then you should propose one new cluster.
2. The new cluster must have a descriptive name and a detailed description of what the cluster represents. The description should include the property of the query in this new cluster, 
and the description of underlying intent or perspective of the query made by the user. This must be detailed enough, such that a person reading this description can create new queries 
for a Lean 4 statement that belongs in this cluster.
3. The new cluster must include at most 5 representative example queries that best define this cluster. The chosen example queries must be the main_question provided in the input for 
the excerpt. Each included example must illustrate different situations within the cluster, so that a reader can generalise and invent many other queries that would still belong here.

**Important**:
DO NOT remove existing clusters, even if they are not used by the new excerpts. 
DO NOT remove existing description and examples from existing clusters, You are only allowed add new clusters or add new description/examples to existing clusters.

The input will be a list of excerpts and a list of clusters. 
Each excerpt will have the following contents:
1. channel: This contains the name of the channel that the excerpt is collected from in the Lean Zulip Chat.
2. topic: This contains the name of the discussion thread the excerpt is collected from.
3. main_question: This contains the main user question that is being asked in the excerpt.
4. messages: This contains a list of initial messages from the discussion thread. Each message in the list contains the full name of the sender and the content of the message.

Each cluster will have the following contents:
1. cluster_name: the name of the cluster
2. cluster_description: the detailed description of what this cluster represents
3. examples: representative examples in this cluster

**Inputs**:
List of excerpts:
{list_of_excerpts}
List of clusters:
{list_of_clusters}

**Output**:
Return only a JSON object with a key "clusters", and the value for the key is a list of cluster objects. 
Each cluster object must have keys:  "cluster_name", "cluster_description", and "examples".

Figure 8: Prompt used for progressive clustering of user queries.
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You are an expert Lean 4 user and an experienced participant in the Lean Zulip chat. You know how people 
usually phrase questions when they are searching for existing Lean statements..
**Instructions**: 
You will be given:
1. The name, description, and 10 canonical examples of a specific cluster of queries from Lean Zulip or 
GitHub. The queries in this cluster share the same underlying intent or perspective, precisely captured by the 
description.
2. A single Lean 4 formal statement, formal name, informal name, and the natural language description of the 
statement.  
Write one realistic user query that:
1. Clearly belongs in this cluster –- the intent and perspective of the query should mirror the description and 
examples.  
2. Could be answered at least partially by showing the Lean 4 statement you were given, or would be moved 
forward in a meaningful way by that statement.  
3. Does not explicitly reveal the statement.
4. Feels like a genuine message a mathematician or Lean 4 user would post (natural tone, sensible level of 
detail).  
5. Stands alone – no references to “the cluster” or to these instructions.

**Input**:
Cluster:
{cluster}

Statement:
{statement}

**Output**:
Return only a JSON object with a single key "generated_query". The value for the key is the generated query 
for the input statement that belongs to the input cluster.

Figure 9: Prompt used for generating user queries.
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