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Abstract

As deep neural networks are highly expressive, it is important to find solutions with
small generalization gap (the difference between the performance on the training
data and unseen data). Focusing on the stochastic nature of training, we first present
a theoretical analysis in which the bound of generalization gap depends on what
we call inconsistency and instability of model outputs, which can be estimated on
unlabeled data. Our empirical study based on this analysis shows that instability
and inconsistency are strongly predictive of generalization gap in various settings.
In particular, our finding indicates that inconsistency is a more reliable indicator of
generalization gap than the sharpness of the loss landscape. Furthermore, we show
that algorithmic reduction of inconsistency leads to superior performance. The
results also provide a theoretical basis for existing methods such as co-distillation
and ensemble.

1 Introduction

As deep neural networks are highly expressive, the generalization gap (the difference between the
performance on the training data and unseen data) can be a serious issue. There has been intensive
effort to improve generalization, concerning, for example, network architectures [15, 11], the training
objective [10], strong data augmentation and mixing [6, 41, 39]. In particular, there has been extensive
effort to understand the connection between generalization and the sharpness of the loss landscape
surrounding the model [14, 20, 16, 18, 10]. [18] conducted large-scale experiments with a number of
metrics and found that the sharpness-based metrics predicted the generalization gap best. [10] has
shown that the sharpness measured by the maximum loss difference around the model (m-sharpness)
correlates well to the generalization gap, which justifies their proposed method sharpness-aware
minimization (SAM), designed to reduce the m-sharpness.

This paper studies generalization gap from a different perspective. Noting that the standard procedure
for neural network training is stochastic so that a different instance leads to a different model, we
first present a theoretical analysis in which the bound of generalization gap depends on inconsistency
and instability of model outputs, conceptually described as follows. Let P be a stochastic training
procedure, e.g., minimization of the cross-entropy loss by stochastic gradient descent (SGD) starting
from random initialization with a certain combination of hyperparameters. It can be regarded as a
random function that maps a set of labeled training data as its input to model parameter as its output.
We say procedure P has high inconsistency of model outputs if the predictions made by the models
trained with P using the same training data are very different from one another in expectation over
the underlying (but unknown) data distribution. We also say P has high instability of model outputs
if different sampling of training data changes the expected predictions a lot over the underlying
data distribution. Although both quantities are discrepancies of model outputs, the sources of the
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discrepancies are different. The term stability comes from the related concept in the literature [4, 31].
Inconsistency is related to the disagreement metric studied in [27, 17, 22], but there are crucial
differences between them, as shown later. Both inconsistency and instability of model outputs can be
estimated on unlabeled data.

Our high-level goal is to find the essential property of models that generalize well; such an insight
would be useful for improving training algorithms. With this goal, we empirically studied the
connection of inconsistency and instability with the generalization gap. As our bound also depends on
a property of model parameter distributions (for which we have theoretical insight but which we cannot
easily estimate), we first experimented to find the condition under which inconsistency and instability
of model outputs are highly correlated to generalization gap. The found condition – low randomness
in the final state – is consistent with the theory, and it covers practically useful settings. We also
found that when this condition is met, inconsistency alone is almost as predictive as inconsistency and
instability combined. This is a practical advantage since estimation of instability requires multiple
training sets and estimation of inconsistency does not. We thus focused on inconsistency, which
enabled the use of full-size training data, and studied inconsistency in comparison with sharpness in
the context of algorithmic reduction of these two quantities. We observed that while both sharpness
reduction and inconsistency reduction lead to better generalization, there are a number of cases where
inconsistency and generalization gap are reduced and yet sharpness remains relatively high. We view
it as an indication that inconsistency has a stronger (and perhaps more essential) connection with
generalization gap than sharpness.

Our contributions are as follows.

• We develop a theory that relates generalization gap to instability and inconsistency of model
outputs, which can be estimated on unlabeled data.

• Empirically, we show that instability and inconsistency are strongly predictive of generaliza-
tion gap in various settings.

• We show that algorithmic encouragement of consistency reduces inconsistency and improves
performance, which can lead to further improvement of the state of the art performance.

• Our results provide a theoretical basis for existing methods such as co-distillation and
ensemble.

2 Theory

The theorem below quantifies generalization gap by three quantities: inconsistency of model outputs,
instability of model outputs, and information-theoretic instability of model parameter distributions.

Notation Let f(θ, x) be the output of model θ on data point x in the form of probability estimates
(e.g., obtained by applying softmax). We use the upright bold font for probability distributions. Let
Z = (X,Y ) be a random variable representing a labeled data point (data point X and label Y ) with a
given unknown distribution Z. Let Zn = {(Xi, Yi) : i = 1, . . . , n} be a random variable representing
iid training data of size n drawn from Z. Let ΘP |Zn

be the distribution of model parameters resulting
from applying a (typically stochastic) training procedure P to training set Zn.

Inconsistency, instability, and information-theoretic instability Inconsistency of model outputs
CP (‘C’ for consistency) of training procedure P represents the discrepancy of outputs among the
models trained on the same training data:

CP = EZn
EΘ,Θ′∼ΘP |Zn

EXKL(f(Θ,X)||f(Θ′, X)) (Inconsistency of model outputs)

The source of inconsistency could be the random initialization, sampling of mini-batches, randomized
data augmentation, and so forth.

To define instability of model outputs, let f̄P |Zn
(x) be the expected outputs (for data point x) of the

models trained by procedure P on training data Zn: f̄P |Zn
(x) = EΘ∼ΘP |Zn

f(Θ, x). Instability of
model outputs SP (‘S’ for stability) of procedure P represents how much the expected prediction
f̄P |Zn

(x) would change with change of training data:

SP = EZn,Z′
n
EXKL(f̄P |Zn

(X)||f̄P |Z′
n
(X)) (Instability of model outputs)
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Finally, the instability of model parameter distributions IP is the mutual information between the
random variable ΘP , which represents the model parameters produced by procedure P , and the
random variable Zn, which represents training data. IP quantifies the dependency of the model
parameters on the training data, which is also called information theoretic (in)stability in [38]:

IP = I(ΘP ;Zn) = EZn
KL(ΘP |Zn

||EZ′
n
ΘP |Z′

n
) (Instability of model parameter distributions)

The second equality follows from the well-known relation of the mutual information to the KL
divergence. The rightmost expression might be more intuitive, which essentially represents how much
the model parameter distribution would change with change of training data.

Note that inconsistency and instability of model outputs can be estimated on unlabeled data. IP
cannot be easily estimated as it involves distributions over the entire model parameter space; however,
we have theoretical insight from its definition. (More precisely, it is possible to estimate IP by
sampling in theory, but practically, it is not quite possible to make a reasonably good estimate of IP
for deep neural networks with a reasonably small amount of computation.)
Theorem 2.1. Using the definitions above, we consider a Lipschitz loss function ϕ(f, y) ∈ [0, 1] that
satisfies |ϕ(f, y)− ϕ(f ′, y)| ≤ γ

2 ∥f − f
′∥1, where f and f ′ are probability estimates and γ/2 > 0

is the Lipschitz constant. Let ψ(λ) = eλ−λ−1
λ2 , which is an increasing function. Let DP = CP + SP .

Let ΦZ(θ) be test loss: ΦZ(θ) = EZ=(X,Y )ϕ(f(θ,X), Y ). Let Φ(θ, Zn) be empirical loss on
Zn = {(Xi, Yi)|i = 1, · · · , n}: Φ(θ, Zn) = 1

n

∑n
i=1 ϕ(f(θ,Xi), Yi). Then for a given training

procedure P , we have

EZn
EΘ∼ΘP |Zn

[ΦZ(Θ)− Φ(Θ,Zn)] ≤ inf
λ>0

[
γ2ψ(λ)λDP +

IP
λn

]
.

The theorem indicates that the upper bound of generalization gap depends on the three quantities,
instability of two types and inconsistency, described above. As a sanity check, note that right after
random initialization, generalization gap of the left-hand side is zero, and IP and SP in the right-hand
side are also zero, which makes the right-hand side zero as λ → 0. Also note that this analysis is
meant for stochastic training procedures. If P is a deterministic function of Zn and not constant, the
mutual information IP would become large while DP > 0, which would make the bound loose.

Intuitively, when training procedure P is more random, model parameter distributions are likely to be
flatter (less concentrated) and less dependent on the sampling of training data Zn, and so IP is lower.
However, high randomness would raise inconsistency of the model outputs CP , which would raise
DP . Thus, the theorem indicates that there should be a trade-off with respect to the randomness of
the training procedure.

The style of this general bound follows from the recent information theoretical generalization analyses
of stochastic machine learning algorithms [38, 30, 28] that employ IP as a complexity measure, and
such results generally hold in expectation. However, unlike the previous studies, we obtained a more
refined Bernstein-style generalization result. Moreover, we explicitly incorporate inconsistency and
instability of model outputs into our bound and show that smaller inconsistency and smaller instability
lead to a smaller generalization bound on the right-hand side. In particular, if IP is relatively small
so that we have IP ≤ nγ2DP , then setting λ =

√
IP /(nγ2DP ) and using ψ(λ) < 1 for λ ≤ 1, we

obtain a simpler bound

EZnEΘ∼ΘP |Zn
[ΦZ(Θ)− Φ(Θ,Zn)] ≤ 2γ

√
DPIP
n

.

Relation to disagreement It was empirically shown in [27, 17] that with models trained to
zero training error, disagreement (in terms of classification decision) of identically trained mod-
els is approximately equal to test error. When measured for the models that share training
data, disagreement is closely related to inconsistency CP above, and it can be expressed as
EZn

EΘ,Θ′∼ΘP |Zn
EXI [ c(Θ,X) ̸= c(Θ′, X) ], where c(θ, x) is classification decision c(θ, x) =

argmaxi f(θ, x)[i] and I is the indicator function I[u] = 1 if u is true and 0 otherwise. In spite
of the similarity, in fact, the behavior of disagreement and inconsistency CP can be quite different.
Disagreement is equivalent to sharpening the prediction to a one-hot vector and then taking 1-norm of
the difference: I [ c(θ, x) ̸= c(θ′, x) ] = 1

2 ∥onehot(f(θ, x))− onehot(f(θ′, x))∥1. This ultimate
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sharpening makes inconsistency and disagreement very different when the confidence-level of f(θ, x)
is low. This means that disagreement and inconsistency would behave more differently on more
complex data (such as ImageNet) on which it is harder to train models to a state of high confidence.
In Figure 10 (Appendix) we show an example of how different the behavior of disagreement and
inconsistency can be, with ResNet-50 trained on 10% of ImageNet.

3 Empirical study

Our empirical study consists of three parts. As the bound depends not only DP (= CP + SP ) but
also IP , we first seek the condition under which DP is predictive of generalization gap (Section
3.1). Noting that, when the found condition is met, inconsistency CP alone is as predictive of
generalization gap as DP , Section 3.2 focuses on inconsistency and shows that inconsistency is
predictive of generalization gap in a variety of realistic settings that use full-size training sets. Finally,
Section 3.3 reports on the practical benefit of encouraging low inconsistency in algorithmic design.
The details for reproduction are provided in Appendix C.

Remark: Predictiveness of DP is relative Note that we are interested in how well the change
in DP matches the change in generalization gap; thus, evaluation of the relation between DP and
generalization gap always involves multiple training procedures to observe the changes/differences.
Given set S of training procedures, we informally say DP is predictive of generalization gap for S if
the relative smallness/largeness of DP of the procedures in S essentially coincides with the relative
smallness/largeness of their generalization gap.

3.1 On the predictiveness of DP = Inconsistency CP + Instability SP

Inconsistency CP and instability SP were estimated as follows. For each training procedure P
(identified by a combination of hyperparameters such as the learning rate and training length), we
trained J models on each of K disjoint training sets. That is, K × J models were trained with each
procedure P . The expectation values involved in CP and SP were estimated by taking the average;
in particular, the expectation over data distribution Z was estimated on the held-out unlabeled data
disjoint from training data or test data. Disagreement was estimated similarly. (K,J) was set to
(4,8) for CIFAR-10/100 and (4,4) for ImageNet, and the size of each training set was set to 4K for
CIFAR-10/100 and 120K (10%) for ImageNet.

3.1.1 Results

We start with the experiments that varied the learning rate and the length of training fixing anything
else to see whether the change of DP is predictive of the change of generalization gap caused by the
change of these two hyperparameters. To avoid the complex effects of learning rate decay, we trained
models with SGD with a constant learning rate (constant SGD in short).

Constant SGD with iterate averaging (Fig 1,3) Although constant SGD could perform poorly
by itself, constant SGD with iterate averaging is known to be competitive [29, 16]. Figure 1 shows
DP (x-axis) and generalization gap (y-axis) of the training procedures that performed constant SGD
with iterate averaging. Iterate averaging was performed by taking the exponential moving average
with momentum 0.999. Each point represents a procedure (identified by the combination of the
learning rate and training length), and the procedures with the same learning rate are connected by a
line in the increasing order of training length. A positive correlation is observed between DP and
generalization gap on all three datasets. Figure 3 plots generalization gap (left) and DP (right) on
the y-axis and training loss on the x-axis for the same procedures as in Figure 1; observe that the
up and down of DP is remarkably similar to the up and down of generalization gap. Also note that
on CIFAR-10/100, sometimes generalization gap first goes up and then starts coming down towards
the low-training-loss end of the lines (increase of training loss in some cases is due to the effects of
weight decay). This ‘turning around’ of generalization gap (from going up to going down) in Figure
3 shows up as the ‘curling up’ of the upper-right end of the lines in Figure 1. It is interesting to see
that DP and generalization gap are matching at such a detailed level.
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Smallest learning rate
2nd smallest l.r.
3rd smallest l.r.

Largest l.r.

In Figures 1-4 and 6: Only the learning rate and the length of training are varied.  Each point represents 
a procedure.  The procedures with the same learning rate are connected by a line in the increasing order 
of training length; generally, training loss goes down and generalization gap goes up as the training 
length goes up, with some exceptions towards the end. 
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Figure 1: DP estimates (x-axis) and generalization
gap (y-axis). SGD with a constant learning rate and
iterate averaging. Only the learning rate and training
length were varied. A positive correlation is observed.
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Figure 2: DP estimates (x-axis) and generalization
gap (y-axis). Constant learning rates. No iterate
averaging. DP is predictive of generalization gap only
for the procedures that share the learning rate.
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Figure 3: Up and down of generalization gap (y-axis; left) and DP (y-axis; right) as training proceeds. The
x-axis is training loss. SGD with a constant learning rate with iterate averaging. The analyzed models and the
legend are the same as in Fig 1. For each dataset, the left graph looks very similar to the right graph; up and
down of DP as training proceeds is a good indicator of up and down of generalization gap.
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Figure 4: Inconsistency and instabil-
ity (x-axis) and generalization gap (y-
axis). Same procedures and legend as
in Fig 2. Instability is relatively unaf-
fected by the learning rate. CIFAR-100.
Similar results on CIFAR-10 and Ima-
geNet (Figure 11 in the Appendix).

Constant SGD without iterate averaging (Fig 2,4) While
DP is clearly predictive of generalization gap in the setting
above, the results in Figure 2 are more complex. This fig-
ure shows DP (x-axis) and generalization gap (y-axis) for the
training procedures that performed constant SGD and did not
perform iterate averaging. As before, only the learning rate
and training length were varied. In Figure 2, we observe that
DP is predictive only for those which share the learning rate.
For fixed generalization gap, DP is larger (instead of being the
same) for a larger learning rate. Inspection of inconsistency and
instability reveals that larger learning rates raise inconsistency
although instability is mostly unaffected (see Fig 4). This is
apparently the effect of high randomness/noisiness/uncertainty
of the final state. As the learning rate is constant, SGD updates

near the end of training bounce around the local minimum, and the random noise in the gradient
of the last mini-batch has a substantial influence on the final model parameter. The influence of
this noise is amplified by larger learning rates. On the other hand, IP is likely to be lower with
higher randomness since higher randomness should make model parameter distributions flatter (less
concentrated) and less dependent on the sampling of training data Zn. This means that in this case
(i.e., where the final randomness is high and varies a lot across the procedures), the interaction of IP
and DP in the theoretical bound is complex, and DP alone could be substantially less predictive than
what is indicated by the bound.

For DP to be predictive, final randomness should be equally low (Fig 5 (a)–(c)) Therefore,
we hypothesized and empirically confirmed that for DP to be predictive, the degrees of final ran-
domness/uncertainty/noisiness should be equally low, which can be achieved with either a vanishing
learning rate or iterate averaging. This means that, fortunately, DP is mostly predictive for high-
performing procedures that matter in practice.

Figure 5 (a)–(c) plot DP (x-axis) and generalization gap (y-axis) for the procedures that satisfy the
condition. In particular, those trained on CIFAR-10 include a wide variety of procedures that differ
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x: DP = CP + SP , y: generalization gap x: Inconsistency CP , y: generalization gap
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Figure 5: (a)–(c) DP (x-axis) and generalization gap (y-axis). (d)–(f) CP (x-axis) and generalization gap
(y-axis). Both DP and CP are predictive of generalization gap for training procedures with iterate averaging or a
vanishing learning rate (so that final randomness is low), irrespective of differences in the setting. In particular,
the CIFAR-10 results include the training procedures that differ in network architectures, mini-batch sizes, data
augmentation, weight decay parameters, learning rate schedules, learning rates and training lengths.

in network architectures, mini-batch sizes, presence/absence of data augmentation, learning rate
schedules (constant or vanishing), weight decay parameters, in addition to learning rates and training
lengths. A positive correlation between DP and generalization gap is observed on all three datasets.

Inconsistency CP vs. DP (Fig 5 (d)–(f)) Figure 5 (d)–(f) show that inconsistency CP is almost
as predictive as DP when the condition of low randomness of the final states is satisfied. This is a
practical advantage since unlike instability SP , inconsistency CP does not require multiple training
sets for estimation.

Disagreement (Fig 6,7) For the same procedures/models as in Figures 1 and 5, we show the
relationship between disagreement and test error in Figures 6 and 7, respectively. We chose test error
instead of generalization gap for the y-axis since the previous finding was ‘Disagreement ≈ Test
error’. The straight lines are y = x. The relation in Fig 6 (a) and Fig 7 (a) is close to equality, but the
relation appears to be more complex in the others. The procedures plotted in Fig 7 are those which
satisfy the condition for DP to be predictive of generalization gap; thus, the results indicate that the
condition for disagreement to be predictive of test error is apparently different.
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Figure 6: Disagreement (x-axis) and test error (y-
axis). SGD with a constant learning rate and iter-
ate averaging. Same models and legend as in Fig 1.
“Disagreement≈Test error” of the previous studies does
not quite hold in (b) and (c).
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Figure 7: Disagreement (x-axis) and test error (y-axis).
The models are the same as in Fig 5, which satisfy the
condition for DP to be predictive of generalization gap.
The results indicate that the condition for disagreement
to be predictive of test error is different.

Note that while the previous empirical study of disagreement [27, 17] focused on the models with
zero training error, we studied a wider range of models. Unlike CIFAR-10/100 (on which zero
training error can be quickly achieved), a common practice for datasets like ImageNet is budgeted
training [25] instead of training to zero error. Also note that zero training error does not necessarily
lead to the best performance, which, for example, has been observed in the ImageNet experiments of
this section.

3.2 On the predictiveness of inconsistency CP : from an algorithmic perspective

Based on the results above, this section focuses on inconsistency CP , which enables experiments with
larger training data, and studies the behavior of inconsistency in comparison with sharpness from an
algorithmic perspective.
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Table 1: Datasets. Mostly full-size natural images and 2 texts.

Name #class #train #dev #testprovided used
ImageNet [7] 1000 1.28M 1.27M 10K 50K
Food101 [3] 101 75750 70700 5050 25250
Dogs [21] 120 12000 10800 1200 8580
Cars [23] 196 8144 7144 1000 8041

CIFAR-10 [24] 10 50000 4000 5000 10000
MNLI [36] 3 392702 382902 9800 9815
QNLI [36] 2 104743 99243 5500 5463

Table 2: Networks.

Network #param Case
ResNet-50 [12] 24M 1
ViT-S/32 [9] 23M 2
ViT-B/16 [9] 86M 3
Mixer-B/16 [35] 59M 4
WRN-28-2 [40] 1.5M 5
EN-B0 [33] 4.2M 6,7
roberta-base[26] 124.6M 8,9
ResNet-18 [12] 11M 10

Training objectives Parallel to the fact that SAM seeks flatness of training loss landscape, a meta-
algorithm co-distillation (named by [1], and closely related to deep mutual learning [42], summarized
in Algorithm 1 in the Appendix) encourages consistency of model outputs. It simultaneously
trains two (or more) models with two (or more) different random sequences while penalizing the
inconsistency between the predictions of the two models. This is typically described as ‘teaching
each other’, but we take a different view of consistency encouragement. Note that the penalty term
merely ‘encourages’ low inconsistency. Since inconsistency by definition depends on the unknown
data distribution, it cannot be directly minimized by training. The situation is similar to minimizing
loss on the training data with the hope that loss will be small on unseen data. We analyzed the models
that were trained with one of the following training objectives (shown with the abbreviations used
below):

• ‘Standard’: the standard cross-entropy loss.
• ‘Consist.’: the standard loss with encouragement of consistency.
• ‘Flat.’: the SAM objective, which encourages flatness.
• ‘Consist+Flat’: encouraging both consistency and flatness. Coupling two instances of SAM

training with the inconsistency penalty term.

Cases We experimented with ten combinations (cases) of dataset, network architecture, and training
scenario. Within each case, we fixed the basic settings (e.g., weight decay, learning rate) to the ones
known to perform well from the previous studies, and only varied the training objectives so that
for each case we had at least four stochastic training procedures distinguished by the four training
objectives (for some cases, we had more than four due to testing multiple values of ρ for SAM). We
obtained four models (trained with four different random sequences) per training procedure. Tables
1 and 2 show the datasets and network architectures we used, respectively. Note that as a result of
adopting high-performing settings, all the cases satisfy the condition of low final randomness.

3.2.1 Results

As in the previous section, we quantify the generalization gap by the difference of test loss from
training loss (note that the loss is the cross-entropy loss; the inconsistency penalty or anything else
is not included); the inconsistency values were again measured on the held-out unseen unlabeled
data, disjoint from both training data and test data. Two types of sharpness values were measured,
1-sharpness (per-example loss difference in the adversarial direction) of [10] and the magnitude of
the loss Hessian (measured by the largest eigenvalue), which represent the sharpness of training loss
landscape and have been shown to correlate to generalization performance [10].

Inconsistency correlates to generalization gap (Figure 8) Figure 8 shows inconsistency or
sharpness values (x-axis) and the generalization gap (y-axis). Each point in the figures represents a
model; i.e., in this section, we show model-wise quantities (instead of procedure-wise), simulating the
model selection setting. (Model-wise inconsistency for model θ trained on Zn with procedure P is
EΘ∼ΘP |Zn

EXKL(f(Θ,X)||f(θ,X)).) All quantities are standardized so that the mean is zero and
the standard deviation is 1. In the figures, we distinguish the four training objectives. In Figure 8 (b)
and (c), we confirm, by comparing the ‘Flat.’ models (×) with the baseline standard models (+), that
encouragement of flatness (by SAM) indeed reduces sharpness (x-axis) as well as the generalization
gap (y-axis). This serves as a sanity check of our setup.
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Figure 8: Inconsistency and sharpness (x-axis) and generalization gap (y-axis). Each point represents a model.
Note that each graph plots 16–20 points, and some of them are overlapping.

We observe in Figure 8 that inconsistency shows a clear positive correlation with the generalization
gap, but the correlation of sharpness with generalization gap is less clear (e.g., in (b)–(c), the
generalization gap of the ‘Consist.’ models (△) is much smaller than that of the ‘Flat.’ models (×),
but their sharpness is larger). This is a general trend observed across multiple network architectures
(ResNet, Transformers, MLP-Mixer, and so on), multiple datasets (images and texts), and multiple
training scenarios (from scratch, fine-tuning, and distillation); the Appendix provides the figures for
all 10 cases. Moreover, we found that while both sharpness reduction and inconsistency reduction lead
to better generalization, in a number of cases inconsistency and generalization gap are reduced and
yet sharpness remains relatively high. We view this phenomenon as an indication that inconsistency
has a stronger (and perhaps more essential) connection with generalization gap than sharpness.

Inconsistency is more predictive of generalization gap than sharpness (Table 3) Motivated by
the linearity observed in the figure above, we define a linear predictor of the generalization gap that
takes the inconsistency or sharpness value as input. We measure the predictive power of the metrics
through the prediction performance of this linear predictor trained with least square minimization. To
make the inconsistency and sharpness values comparable, we standardize them and also generalization
gap. For each case, we evaluated the metrics by performing the leave-one-out cross validation on the
given set of models (i.e., perform least squares using all models but one and evaluate the obtained
linear predictor on the left-out model; do this k times for k models and take the average). The results
in Table 3 show that inconsistency outperforms sharpness, and the superiority still generally holds
even when sharpness is given an ‘unfair’ advantage of additional labeled data.

Table 3: Generalization gap prediction error. The leave-one-out cross validation results, which average the
generalization gap prediction residuals, are shown. See Table 2 for the networks used for each case. Smaller is
better, and a value near 1.0 is very poor. Inconsistency: estimated on unlabeled data, 1-sharpness and Hessian:
sharpness of training loss landscape. Inconsistency outperforms the sharpness metrics. Noting that inconsistency
had access to additional data, even though unlabeled, we also show in the last 2 rows sharpness of test loss
landscape estimated on the development data (held-out labeled data), which gives the sharpness metrics an
‘unfair’ advantage by providing them with additional labels. With this advantage, the predictiveness of sharpness
mostly improves; however, still, inconsistency is generally more predictive. The bold font indicates that the
difference is statistically significant at 95% confidence level against all others including the last 2 rows. The
italic font indicates the best but not statistically significant.

Case# 1 2 3 4 5 6 7 8 9 10
Dataset ImageNet Food101 C10 Dog Car Mnli Qnli Food

Training scenario From scratch Fine-tuning Distill.
Inconsistency 0.13 0.10 0.17 0.27 0.15 0.09 0.19 0.15 0.18 0.19
1-sharpness 0.21 0.48 0.75 0.74 0.84 0.34 0.24 0.58 0.98 0.75

Hessian 0.50 1.00 0.77 0.72 0.78 0.70 0.68 0.59 0.87 0.59
Giving the sharpness metrics an ‘unfair’ advantage by providing additional labels:
1-sharpness of dev. loss 0.14 0.64 0.47 0.40 0.72 0.22 0.14 0.36 0.37 0.62

Hessian of dev. loss 0.45 0.82 0.58 0.75 0.13 0.27 0.15 0.91 0.81 0.89

3.3 Practical impact: algorithmic consequences

The results above suggest a strong connection of inconsistency of model outputs with generalization,
which also suggests the importance of seeking consistency in the algorithmic design. To confirm this
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point, we first experimented with two methods (ensemble and distillation) and found that in both,
encouraging low inconsistency in every stage led to the best test error. Note that in this section we
report test error instead of generalization gap in order to show the practical impact.
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(b) Distillation. Teacher’s knowledge level increases from left to right.

Figure 9: Inconsistency and test error with ensemble and distillation.
(a) Ensemble reduces inconsistency (x-axis) and test error (y-axis). + Non-ensemble (baseline), ∗ Ensemble of
standard models, • Ensemble of the models trained with consistency encouragement. RN18 on Food101.
(b) Test error (y-axis) and inconsistency of distilled models (x-axis). Without unlabeled data. + No distillation,
△ Standard distillation, ▲ Consistency encouragement for the student, • Consistency encouragement for both the
student and teacher. The best performance is obtained when consistency is encouraged for both the teacher and
student. Food101. Student: RN18, Teacher: RN18 (left), RN50 (middle), and fine-tuning of ImageNet-trained
ENB0 (right). In both (a) and (b), the average of 4 models is shown; see Appendix for the standard deviations.

Ensemble (Fig 9 (a)) Figure 9 (a) shows that, compared with non-ensemble models (+), ensemble
models (averaging logits of two models) reduce both inconsistency (x-axis) and test error (y-axis). It
is intuitive that averaging the logits would cancel out the dependency on (or particularities of) the
individual random sequences inherent in each single model; thus, outputs of ensemble models are
expected to become similar and so consistent (as empirically observed). Moreover, we presume that
reduction of inconsistency is the mechanism that enables ensemble to achieve better generalization.
The best test error was achieved when the ensemble was made by two models trained with consistency
encouragement (• in Fig 9 (a)).

Distillation (Fig 9 (b)) We experimented with distillation [13] with encouragement of consistency
for the teacher model and/or the student model. Figure 9 (b) shows the test error (y-axis) and the
inconsistency (x-axis). The standard model (+) serves as the baseline. The knowledge level of
teachers increases from left to right, and within each graph, when/whether to encourage consistency
differs from the point to point. The main finding here is that at all the knowledge levels of the teacher,
both inconsistency and test error go down as the pursuit of consistency becomes more extensive;
in each graph, the points for the distilled models form a nearly straight line. (The line appears to
shift away from the baseline (+) as the amount of external knowledge of the teacher increases. We
conjecture this could be due to the change in IP .) While distillation alone reduces inconsistency and
test error, the best results are obtained by encouraging consistency at every stage of training (i.e.,
training both the teacher and student with consistency encouragement). The results underscore the
importance of inconsistency reduction for better performance.

On the pursuit of the state of the art (Table 4,5) We show two examples of obtaining further
improvement of state-of-the-art results by adding consistency encouragement. The first example is
semi-supervised learning with CIFAR-10. Table 4 shows that the performance of a state-of-the-art
semi-supervised method can be further improved by encouraging consistency between two training
instances of this method on the unlabeled data (Algorithm 2 in the Appendix). The second example
is transfer learning. We fine-tuned a public ImageNet-trained EfficientNet with a more focused
dataset Food101. Table 5 shows that encouraging consistency between two instances of SAM training
improved test error. These examples demonstrate the importance of consistency encouragement in
the pursuit of the state of the art performance.

4 Limitations and discussion

Theorem 2.1 assumes a bounded loss ϕ(f, y) ∈ [0, 1] though the standard loss for classification is the
cross-entropy loss, which is unbounded. This assumption can be removed by extending the theorem
to a more complex analysis with other moderate assumptions. We, however, chose to present the
simpler and so more intuitive analysis with a bounded loss. As noted above, this theorem is intended
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Table 4: CIFAR-10 #train=4K, #unlabeled=41K,
WRN28-2. Average and standard deviation of 5 runs.

Methods Error (%)

Copied MixMatch [2] 6.42

from [32] UDA [37] 4.88
FixMatch [32] 4.26

Our results
FixMatch 4.25±0.15

UDA (no sharpening) 4.33±0.10

UDA + ‘Consist.’ 3.95±0.12

RandAugment [6] was used for UDA and FixMatch.

Table 5: Food101, EfficientNet-B4. The average and
standard deviation of 6 models are shown.

Methods Error (%)

Previous EN-B4 [33] 8.5

results EN-B7 [10] 7.17
EN-B7 SAM [10] 7.02

Our results EN-B4 SAM † 6.00±0.05

EN-B4 SAM + ‘Consist.’ 5.77±0.04

† The improvement over EN-B7 SAM of [10] is due
to the difference in the basic setting; see Appendix.

for stochastic training procedures. The bound may not be useful for deterministic procedures, and
this characteristics is not unique to our analysis but shared by the previous information-theoretic
analysis of stochastic machine learning algorithms [38, 30, 28].

We acknowledge that due to resource constraints, there was a limitation to the diversity of the training
procedures we empirically analyzed. In particular, our study of inconsistency and instability in
Section 3.1 started with simpler cases of constant learning rate SGD and later included the cases of
learning rate decay (Figure 5); consequently, the types of the training procedures studied in Section
3.1 were skewed towards the constant learning rate SGD. The models analyzed in Figure 5 were
less diverse with CIFAR-100 and ImageNet than with CIFAR-10, as noted above, and again this
asymmetry was due to the resource constraints. On the other hand, the models analyzed in this work
are in a sense more diverse than the previous empirical studies [27, 17] of the disagreement metric
(related to our inconsistency), which were restricted to the models with near zero train error.

In Section 3.2, we studied inconsistency from the algorithmic perspective in comparison with the
sharpness metrics. We chose sharpness for comparison due to its known correlation to generalization
performance and the existence of the algorithm (SAM) to reduce it. We acknowledge that there can
be other metrics that are predictive of generalization gap.

Although the correlation of the disagreement metric with generalization gap is relatively poor in
the settings of Section 3.1 (e.g., Figure 10), it is plausible that disagreement can be as predictive
of generalization gap as inconsistency in some settings, for example, when the confidence level of
predictions is sufficiently high since in that case, Theorem 2.1 should provide a theoretical basis also
for disagreement though indirectly (details are provided in Appendix D.3). Moreover, for improving
stochastic training of deep neural networks, it would be useful to understand the connection between
generalization performance and discrepancies of model outputs in general (whether instability,
inconsistency, disagreement, or something else), and we hope that this work contributes to pushing
forward in this direction.

5 Conclusion

We presented a theory that relates generalization gap to instability and inconsistency of model outputs,
which can be estimated on unlabeled data, and empirically showed that they are strongly predictive
of generalization gap in various settings. In particular, inconsistency was shown to be a more reliable
indicator of generalization gap than commonly used local flatness. We showed that algorithmic
encouragement of consistency reduces inconsistency as well as test error, which can lead to further
improvement of the state of art performance. Finally, our results provide a theoretical basis for
existing methods such as co-distillation and ensemble.
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Appendix

A Proof of Theorem 2.1

As in the main paper, let Z = (X,Y ) be a random variable representing a labeled data point (data
point X and label Y ) with distribution Z. Let Zn = {(Xi, Yi) : i = 1, 2, . . . , n} be a random
variable representing iid training data of size n drawn from Z.

We have the following lemma.

Lemma A.1. Given an arbitrary model parameter distribution Θ0, let

f̄P (x) =EZ′
n
f̄P |Z′

n
(x) = EZ′

n
EΘ∼ΘP |Z′

n
f(Θ, x),

ℓθ(z) =ϕ(f(θ, x), y)− ϕ(f̄P (x), y) where z = (x, y)

then

−nEZn
EΘ∼ΘP |Zn

lnEZ exp(−λℓΘ(Z)) ≤ EZn
EΘ∼ΘP |Zn

n∑
i=1

λℓΘ(Xi, Yi)+EZn
KL(ΘP |Zn

||Θ0).

Proof. Let Θ∗ be a model parameter distribution such that

Θ∗ ∝ Θ0 exp

[
n∑

i=1

(−λℓΘ(Xi, Yi)− lnEZ exp(−λℓΘ(Z)))

]
.

We have

EZn
exp

[
EΘ∼ΘP |Zn

n∑
i=1

(−λℓΘ(Xi, Yi)− lnEZ exp(−λℓΘ(Z)))−KL(ΘP |Zn
||Θ0)

]

≤EZn
sup
Θ

exp

[
EΘ∼Θ

n∑
i=1

(−λℓΘ(Xi, Yi)− lnEZ exp(−λℓΘ(Z)))−KL(Θ||Θ0)

]

=EZn sup
Θ

EΘ∼Θ0 exp

[
n∑

i=1

(−λℓΘ(Xi, Yi)− lnEZ exp(−λℓΘ(Z)))−KL(Θ||Θ∗)

]

=EZn
EΘ∼Θ0 exp

[
n∑

i=1

(−λℓΘ(Xi, Yi)− lnEZ exp(−λℓΘ(Z)))

]
= 1.

The first inequality takes sup over all probability distributions of model parameters. The first equality
can be verified using the definition of the KL divergence. The second equality follows from the fact
that the supreme is attained by Θ = Θ∗. The last equality uses the fact that (Xi, Yi) for i = 1, . . . , n
are iid samples drawn from Z. The desired bound follows from Jensen’s inequality and the convexity
of exp(·).

Proof of Theorem 2.1. Using the notation of Lemma A.1, we have

EΘ∼ΘP |Zn
lnEZ exp(−λℓΘ(Z)) ≤ EΘ∼ΘP |Zn

EZ [exp(−λℓΘ(Z)− 1]

≤ −λEΘ∼ΘP |Zn
EZℓΘ(Z) + ψ(λ)λ2EΘ∼ΘP |Zn

EZℓΘ(Z)
2

≤ −λEΘ∼ΘP |Zn
EZℓΘ(Z) +

γ2

4
ψ(λ)λ2EΘ∼ΘP |Zn

EX∥f(Θ,X)− f̄P (X)∥21. (1)

The first inequality uses lnu ≤ u− 1. The second inequality uses the fact that ψ(λ) is increasing in
λ and −λℓθ(z) ≤ λ. The third inequality uses the Lipschitz assumption of the loss function.
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We also have the following from the triangle inequality of norms, Jensen’s inequality, the relationship
between the 1-norm and the total variation distance of distributions, and Pinsker’s inequality.

EZn
EΘ∼ΘP |Zn

EX∥f(Θ,X)− f̄P (X)∥21
≤2EZn

EΘ∼ΘP |Zn
EX

[
∥f(Θ,X)− f̄P |Zn

(X)∥21 + ∥f̄P |Zn
(X)− f̄P (X)∥21

]
≤2EZnEΘ,Θ′∼ΘP |Zn

EX∥f(Θ,X)− f(Θ′, X)∥21 + 2EZnEX∥f̄P |Zn
(X)− f̄P (X)∥21

≤4EZn
EΘ,Θ′∼ΘP |Zn

EXKL(f(Θ,X)||f(Θ′, X)) + 2EZn
EX∥f̄P |Zn

(X)− f̄P (X)∥21
=4CP + 2EZnEX∥f̄P |Zn

(X)− f̄P (X)∥21 ≤ 4CP + 2EZnEZ′
n
EX∥f̄P |Zn

(X)− f̄P |Z′
n
(X)∥21

≤4CP + 4EZn
EZ′

n
EXKL(f̄P |Zn

(X)||f̄P |Z′
n
(X)) = 4 (CP + SP ) = 4DP . (2)

Using (1), (2), and Lemma A.1, we obtain

λEZn
EΘ∼ΘP |Zn

EZ

[
nℓΘ(Z)−

n∑
i=1

ℓΘ(Xi, Yi)

]
≤ nγ2ψ(λ)λ2DP + EZn

KL(ΘP |Zn
||Θ0).

(3)

Set Θ0 = EZ′
n
ΘP |Z′

n
so that we have

IP = EZn KL(ΘP |Zn
||Θ0). (4)

Also note that f̄P in ℓΘ cancels out since Zn is iid samples of Z, and so using the notation for the
test loss and empirical loss defined in Theorem 2.1, we have

λEZn
EΘ∼ΘP |Zn

EZ

[
nℓΘ(Z)−

n∑
i=1

ℓΘ(Xi, Yi)

]
= nλEZn

EΘ∼ΘP |Zn
[ΦZ(Θ)− Φ(Θ,Zn)] .

(5)

(3), (4) and (5) imply the result.

B Additional figures

Figure 10 supplements ‘Relation to disagreement’ at the end of Section 2. It shows an example where
the behavior of inconsistency is different from disagreement. Training was done on 10% of ImageNet
with the seed procedure (tuned to perform well) with training length variations described in Table 6
below. Essentially, in this example, inconsistency goes up like generalization gap, and disagreement
goes down like test error and goes up in the end, as training becomes longer.

Figure 11 supplements Figure 4 in Section 3.1. It shows inconsistency and instability of model
outputs of the models trained with SGD with constant learning rates without iterate averaging. In this
setting of high final randomness, larger learning rates make inconsistency larger while instability is
mostly unaffected. By contrast, Figure 12 shows that when final randomness is low (due to iterate
averaging in this case), both inconsistency and instability are predictive of generalization gap both
within and across the learning rates.

Figure 13–15 supplement Figure 8 in Section 3.2. These figures show the relation of inconsistency
and sharpness to generalization gap. Note that each graph has at least 16 points, and some of them
(typically for the models trained with the same procedure) are overlapping. Inconsistency shows a
stronger correlation with generalization gap than sharpness does.

C Experimental details

All the experiments were done using GPUs (A100 or older).

C.1 Details of the experiments in Section 3.1

The goal of the experiments reported in Section 3.1 was to find whether/how the predictiveness of
DP is affected by the diversity of the training procedures in comparison. To achieve this goal, we
chose the training procedures to experiment with in the following four steps.
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Figure 10: Inconsistency CP and disagreement (y-axis) in comparison with generalization gap and test error
(y-axis). The x-axis is train loss. The arrows indicate the direction of training becoming longer. Each point is the
average of 16 instances. Training was done on 10% of ImageNet with the seed procedure (tuned to perform well)
with training length variations; see Table 6. In this example, essentially, inconsistency goes up like generalization
gap, and disagreement goes down like test error and goes up in the end, as training becomes longer.

Smallest learning rate
2nd smallest l.r.
3rd smallest l.r.

Largest l.r.

In Figures 11-12: Only the learning rate and the length of training are varied.  Each point represents a 
procedure.  The procedures with the same learning rate are connected by a line in the increasing order 
of training length; generally, generalization gap goes up as the training length goes up, with some 
exceptions towards the end.  
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Figure 11: Inconsistency CP (left) and instability SP (right) (x-axis) and generalization gap (y-axis). Sup-
plement to Figure 4 in Section 3.1. SGD with a constant learning rate. No iterate averaging, and therefore,
high randomness in the final state. Same procedures (and models) as in Figure 2. A larger learning rate makes
inconsistency larger, but instability is mostly unaffected.
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Figure 12: Inconsistency CP (left) and instability SP (right) (x-axis) and generalization gap (y-axis). SGD
with a constant learning rate with iterate averaging, and therefore, low randomness in the final state. Same
procedures (and models) as in Figure 1. Both inconsistency and instability are predictive of generalization gap
across the learning rates.

1. Choose a network architecture and the size of training set. First, for each dataset, we chose
a network architecture and the size of the training set. The training set was required to
be smaller than the official set so that disjoint training sets can be obtained for estimating
instability. For the network architecture, we chose relatively small residual nets (WRN-28-2
for CIFAR-10/100 and ResNet-50 for ImageNet) to reduce the computational burden.

2. Choose a seed procedure. Next, for each dataset, we chose a procedure that performs
reasonably well with the chosen network architecture and the size of training data, and we
call this procedure a seed procedure. This was done by referring to the previous studies
[32, 10] and performing some tuning on the development data considering that the training
data is smaller than in [32, 10]. This step was for making sure to include high-performing
(and so practically interesting) procedures in our empirical study.

3. Make core procedures from the seed procedure. For each dataset, we made core pro-
cedures from the seed procedure by varying the learning rate, training length, and the
presence/absence of iterate averaging. Table 6 shows the resulting core procedures.

4. Diversify by changing an attribute. To make the procedures more diverse, for each dataset,
we generated additional procedures by changing one attribute of the core procedure. This
was done for all the pairs of the core procedures in Table 6 and the attributes in Table 7.
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Legend for Case#10 (distillation)
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Figure 13: Supplement to Figure 8 in Section 3.2. Inconsistency (x-axis) and generalization gap (y-axis) for
all the 10 cases. All values are standardized so that the average is 0 and the standard deviation is 1.
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Figure 14: Supplement to Figure 8 in Section 3.2. 1-sharpness (x-axis) and generalization gap (y-axis) for all
the 10 cases. All values are standardized. Same legend as in Figure 13.
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Figure 15: Supplement to Figure 8 in Section 3.2. Hessian (x-axis) and generalization gap (y-axis) for all the
10 cases. All values are standardized except that for the x-axis of Case#8 and 9, non-standardized values are
shown in the log-scale for better readability. Same legend as in Figure 13.
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Table 6: Core training procedures of the experiments in Section 3.1. The core training procedures consist of
the exhaustive combinations of these attributes. The seed procedure attributes are indicated by ∗ when there are
multiple values. The optimizer was fixed to SGD with Nesterov momentum 0.9.
† More precisely, { 25, 50, . . . , 250, 300, . . . , 500, 600, . . . , 1000, 1200, . . . , 2000 } so that the interval gradually
increased from 25 to 200. ‡ After training, a few procedures with very high training loss were excluded from
the analysis. The cut-off was 0.3 (CIFAR-10), 2.0 (CIFAR-100), and 3.0 (ImageNet), reflecting the number of
classes (10, 100, and 1000).
The choice of the constant scheduling is for starting the empirical study with simpler cases by avoiding the
complex effects of decaying learning rates, as mentioned in the main paper; also, we found that in these settings,
constant learning rates rival the cosine scheduling as long as iterate averaging is performed.

CIFAR-10/100 ImageNet
Network WRN-28-2 ResNet-50

Training data size 4K 120K
Learning rate {0.005, 0.01, 0.025∗, 0.05} {1/64, 1/32, 1/16∗, 1/8}
Weight decay 2e-3 1e-3

Schedule Constant Constant
Iterate averaging {EMA∗, None} {EMA∗, None}

Epochs { 25, . . . , 1000∗, . . . , 2000 }†‡ {10, 20, . . . , 200∗}‡
Mini-batch size 64 512

Data augmentation Standard+Cutout Standard
Label smoothing – 0.1

Table 7: Attributes that were varied for making variations of core procedures. Only one of the attributes was
varied at a time.

CIFAR-10 CIFAR-100 ImageNet
Network WRN-16-4 – –

Weight decay 5e-4 – 1e-4
Schedule Cosine Cosine Cosine

Mini-batch size 256 256 –
Data augmentation None – –

Table 8: The values of the fixed attributes of the procedures shown in Figures 1–4 and 6 as well as 11–12. The
training length and the learning rate were varied as shown in Table 6. The presence/absence of iterate averaging
is indicated in each figure.

CIFAR-10 CIFAR-100 ImageNet
Network WRN-28-2 ResNet-50

Training data size 4K 120K
Weight decay 2e-3 1e-3

Schedule Constant Constant
Mini-batch size 256 64 512

Data augmentation Standard+Cutout Standard
Label smoothing – 0.1

Table 9: The values of the fixed attributes of the procedures shown in Figures 16–19. The training length and
the learning rate were varied as shown in Table 6. The presence/absence of iterate averaging is indicated in each
figure. The rest of the attributes are the same as in Table 8

CIFAR-10 CIFAR-100 ImageNet
Weight decay 5e-4 2e-3 1e-4

Mini-batch size 64 256 512

Note that after training, a few procedures with very high training loss were excluded from the
analysis (see Table 6 for the cut-off). Right after the model parameter initialization, inconsistency
CP is obviously not predictive of generalization gap since it is non-zero merely reflecting the initial
randomness while generalization gap is zero. Similar effects of initial randomness are expected in the
initial phase of training; however, these near random models are not of practical interest. Therefore,
we excluded from our analysis.
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C.1.1 SGD with constant learning rates (Figures 1–4 and 6)

In Section 3.1, we first focused on the effects of varying learning rates and training lengths while
fixing anything else, with the training procedures that use a constant learning rate with or without
iterate averaging. We analyzed all the subsets of the procedures that met this condition, and reported
the common trend. That is, when the learning rate is constant, with iterate averaging, DP is predictive
of generalization gap within and across the learning rates, and without iterate averaging, DP is
predictive of generalization gap only for the procedures that share the learning rate; moreover,
without iterate averaging, larger learning rates cause DP to overestimate generalization gap by larger
amounts. Figures 1–4 and 6 show one particular subset for each dataset, and Table 8 shows the values
of the attributes fixed in these subsets. To demonstrate the generality of the finding, we show the
corresponding figures for one more subset for each dataset in Figures 16–19. The values of the fixed
attributes in these subsets are shown in Table 9.

Smallest learning rate
2nd smallest l.r.
3rd smallest l.r.

Largest l.r.

In Figures 16-19: Only the learning rate and the length of training are varied.  Each point represents a 
procedure.  The procedures with the same learning rate are connected by a line in the increasing order 
of training length; generally, generalization gap goes up as the training length goes up, with some 
exceptions towards the end.  

0.4

0.6

0.8

1

0 0.5 1

G
a
p

D
P

(a) CIFAR-10

1

2

3

4

1 2 3

G
a
p

D
P

(b) CIFAR-100

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2

G
a
p

D
P

(c) ImageNet

Figure 16: DP (x-axis) and generalization gap (y-
axis). SGD with a constant learning rate and iterate
averaging. Only the learning rate and training length
were varied as in Figure 1 and the attributes were fixed
to the values different from Figure 1; see Table 9 for the
fixed values. As in Figure 1, a positive correlation is
observed between DP and generalization gap.
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Figure 17: DP (x-axis) and generalization gap (y-
axis). Constant learning rates. No iterate averaging.
Only the learning rate and training length were varied
as in Figure 2 and the attributes were fixed to the values
different from Figure 2; see Table 9 for the fixed the val-
ues. As in Figure 2, DP is predictive of generalization
gap for the procedures that share the learning rate, but
not clear otherwise.
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Figure 18: Inconsistency CP (left) and instability SP (right) (x-axis) and generalization gap (y-axis). Same
procedures (and models) as in Figure 17 (no iterate averaging). As in Figures 4 and 11 (also no iterate
averaging), a larger learning rate makes inconsistency larger, but instability is mostly unaffected.
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Figure 19: Disagreement (x-axis) and test error (y-
axis). Same models and legend as in Fig 16.

C.1.2 Procedures with low final randomness (Figures 5 and 7)

The procedures shown in Figures 5 and 7 are subsets (three subsets for three datasets) of all the
procedures (the core procedures in Table 6 times the attribute changes in Table 7). The subsets consist
of the procedures with either iterate averaging or a vanishing learning rate (i.e., going to zero) so
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that they meet the condition of low final randomness. These subsets include those with the cosine
learning rate schedule. With the cosine schedule, we were interested in not only letting the learning
rate go to zero but also stopping the training before the learning rate reaches zero and setting the
final model to be the iterate averaging (EMA) at that point, which is well known to be useful (e.g.,
[32]). Therefore, we trained the models with the cosine schedule for { 250, 500, 1000, 2000 } epochs
(CIFAR-10/100) or 200 epochs (ImageNet), and saved the iterate averaging of the models with the
interval of one tenth (CIFAR-10/100) or one twentieth (ImageNet) of the entire epochs.

C.2 Details of the experiments in Section 3.2

Section 3.2 studied inconsistency in comparison with sharpness in the settings where these two
quantities are reduced by algorithms. The training algorithm with consistency encouragement
(co-distillation) is summarized in Algorithm 1. These experiments were designed to study

• practical models trained on full-size training data, and
• diverse models resulting from diverse training settings,

in the situation where algorithms are compared after basic tuning is done, rather than the hyperparam-
eter tuning-like situation in Section 3.1.

C.2.1 Training of the models

Table 10: Basic settings shared by all the models for each case (Case#1–7,10; images)
Training type From scratch Fine-tuning Distillation
Dataset ImageNet Food101 CIFAR10 Cars / Dogs Food101
Network ResNet50 ViT ViT / Mixer WRN28-2 EN-B0 ResNet-18
Batch size 512 4096 512 64 256 512
Epochs 100 300 200 / 100 – – 400
Update steps – – – 500K 4K / 2K –
Warmup steps 0 10K 0 0 0 0
Learning rate 0.125 3e-3 3e-3 0.03 0.1 0.125
Schedule Cosine Linear/Cosine Cosine Constant Cosine
Optimizer Momentum AdamW AdamW Momentum Momentum Momentum
Weight decay 1e-4 0.3 0.3 5e-4 1e-5 1e-3
Label smooth 0.1 0 0.1 0 0 0
Iterate averaging – – – EMA EMA –
Gradient clipping – 1.0 1.0 – 20.0 –
Data augment Standard Cutout Standard
Reference [10] [5] [5] [10],[32] [10],[33] [10]
Case# 1 2 3 / 4 5 6 / 7 10
‘Momentum’: SGD with Nesterov momentum 0.9.

This section describes the experiments for producing the models used in Section 3.2.

Basic settings Within each of the 10 cases, we used the same basic setting for all, and these shared
basic settings were adopted/adapted from the previous studies when possible. Tables 10 and 11

Table 11: Basic settings shared by all the models for each case (Case#8–9; text). Hyperparameters for Case#8–9
(text) basically followed the RoBERTa paper [26]. The learning rate schedule was equivalent to early stopping of
10-epoch linear schedule after 4 epochs. Although it appears that [26] tuned when to stop for each run, we used
the same number of epochs for all. Iterate averaging is our addition, which consistently improved performance.

Initial learning rate η0 1e-5
Learning rate schedule Linear from η0 to 0.6η0
Epochs 4
Batch size 32
Optimizer AdamW (β1=0.9, β2=0.98, ϵ=1e-6)
Weight decay 0.1
Iterate averaging EMA with momentum 0.999
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describe the basic settings and the previous studies that were referred to. Some changes to the
previous settings were made for efficiency in our computing environment (no TPU); e.g., for Case#1,
we changed the batch size from 4096 to 512 and accordingly the learning rate from 1 to 0.125. When
adapting the previous settings to new datasets, minimal tuning was done for obtaining reasonable
performance, e.g., for Cases#3 and 4, we changed batch size from 4096 to 512 and kept the learning
rate without change as it performed better.

For CIFAR-10, following [32], we let the learning rate decay to 0.2η0 instead of 0 and set the final
model to the EMA of the models with momentum 0.999. For Cases#6–7 (fine-tuning), we used a
constant learning rate and used the EMA of the models with momentum 0.999 as the final model,
which we found produced reasonable performance with faster training. Cases#6–7 fine-tuned the
publicly available EfficientNet-B02 pretrained with ImageNet by [33]. The dropout rate was set to
0.1 for Case#3, and the stochastic depth drop rate was set to 0.1 for Case#4. The teacher models for
Case#10 (distillation) were ensembles of ResNet-18 trained with label smoothing 0.1 for 200 epochs
with the same basic setting as the student models (Table 10) otherwise.

For CIFAR-10, the standard data augmentation (shift and horizontal flip) and Cutout [8] were applied.
For the other image datasets, only the standard data augmentation (random crop with distortion and
random horizontal flip) was applied; the resolution was 224×224.

Table 12: Hyperparameters for SAM.

Case# 1 2 3 4 5 6 7 8,9 10
m-sharpness 128 256 32 32 32 16 16 2 128

ρ 0.05,0.1 0.05 0.1 0.1 0.1,0.2 0.1,0.2 0.1 0.005,0.01 0.1

Hyperparameters for SAM There are two values that affect the performance of SAM, m for
m-sharpness and the diameter of the neighborhood ρ. Their values are shown in Table 12. [10]
found that smaller m performs better. However, a smaller m can be less efficient as it can reduce
the degree of parallelism, depending on the hardware configuration. We made m no greater than
the reference study in most cases, but for practical feasibility we made it larger for Case#2. ρ was
either set according to the reference when possible or chosen on the development data otherwise,
from {0.05, 0.1, 0.2} for images and from {0.002, 0.005, 0.01, 0.02, 0.05, 0.1} for texts. For some
cases (typically those with less computational burden), we trained the models for one additional value
of ρ to have more data points.

Hyperparameters for the inconsistency penalty term The weight of the inconsistency penalty
term for encouraging consistency was fixed to 1.

Number of the models For each training procedure (identified by the training objective within each
case), we obtained 4 models trained with 4 distinct random sequences. Cases#1–9 consisted of either
4 or 6 procedures depending on the number of the values chosen for ρ for SAM. Case#10 (distillation)
consisted of 6 procedures3, resulting from combining the choice of the training objectives for the
teacher and the choice for the student. In total, we had 52 procedures and 208 models.

C.2.2 Estimation of the model-wise inconsistency and sharpness in Section 3.2

When the expectation over the training set was estimated, for a large training set such as ImageNet,
20K data points were sampled for this purpose. As described above, we had 4 models for each
of the training procedures. For the procedure without encouragement of low inconsistency, the
expectation of the divergence of each model was estimated by taking the average of the divergence
from the three other models. As for the procedure with encouragement of low inconsistency, the four
models were obtained from two runs as each run produced two models, and so when averaging for
estimating inconsistency, we excluded the divergence between the models from the same run due to
their dependency.

2 https://github.com/google-research/sam
3Although the number of all possible combinations is 16, considering the balance with other cases, we chose

to experiment with the following: teacher { ‘Standard’, ‘Consist.’, ‘Consist+Flat’} × student { ‘Standard’,
‘Consist.’}
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Algorithm 1: Training with consistency encouragement. Co-distillation (named by [1], closely
related to deep mutual learning [42]). Without additional unlabeled data.
Input & Notation: Labeled set Zn, β (default: 1), learning rate η. Let ϕ be loss, and let f(θ, x)
be the model output in the form of probability estimate.

1 Sample θa and θb from the initial distribution.
2 for t = 1, . . . , T do
3 Sample two labeled mini-batches Ba and Bb from Zn.

4 θa←θa−ηt∇θa

[
1

|Ba|
∑

(x,y)∈Baϕ(f(θa,x),y)+β 1
|Ba|

∑
(x,·)∈BaKL(f(θb,x)||f(θa,x))

]
5 θb←θb−ηt∇θb

[
1

|Bb|
∑

(x,y)∈Bbϕ(f(θb,x),y)+β 1
|Bb|

∑
(x,·)∈BbKL(f(θa,x)||f(θb,x))

]

1-sharpness requires ρ (the diameter of the local region) as input. We set it to the best value for SAM.

C.3 Details of the experiments in Sections 3.3

The optimizer was SGD with Nesterov momentum 0.9.

Table 13: Supplement to Figure 9 (a). Error rate (%) and inconsistency of ensembles in comparison with
non-ensemble models (+). Food101, ResNet-18. The average and standard deviation of 4 are shown. Ensemble
reduces test error and inconsistency.

Training method Test error(%) inconsistency
+ Non-ensemble 17.09±0.20 0.30±0.001

∗ Ensemble of standard models 14.99±0.05 0.14±0.001

• Ensembles of Consist. models 14.07±0.08 0.10±0.001

C.3.1 Ensemble experiments (Figure 9 (a))

The models used in the ensemble experiments were ResNet-18 trained for 200 epochs with label
smoothing 0.1 with the basic setting of Case#10 in Table 10 otherwise. Table 13 shows the standard
deviation of the values presented in Figure 9 (a). The ensembles also served as the teachers in the
distillation experiments.

C.3.2 Distillation experiments (Figure 9 (b))

The student models were ResNet-18 trained for 200 epochs with the basic setting of Case#10 of
Table 10 otherwise. The teachers for Figure 9(b) (left) were ResNet-18 ensemble models trained
as described in C.3.1. The teachers for Figure 9(b) (middle) were ResNet-50 ensemble models
trained similarly. The teachers for Figure 9(b) (right) were EfficientNet-B0 models obtained by
fine-tuning the public ImageNet-trained model (footnote 2); fine-tuning was done with encouragement
of consistency and flatness (with ρ=0.1) with batch size 512, weight decay 1e-5, the initial learning
rate 0.1 with cosign scheduling, gradient clipping 20, and 20K updates. Table 14 shows the standard
deviations of the values plotted in Figure 9 (b).

Table 14: Supplement to Figure 9 (b). Test error (%) and inconsistency of distilled-models in comparison with
standard models (+). The average and standard deviation of 4 are shown.

Test error (%) inconsistency
left middle right left middle right

+ 17.09±0.20 0.30±0.001

△ 15.74±0.09 14.95±0.17 14.61±0.14 0.19±0.001 0.21±0.001 0.22±0.002

▲ 14.99±0.07 14.28±0.11 13.89±0.08 0.14±0.001 0.15±0.001 0.14±0.002

• 14.41±0.05 13.63±0.09 13.06±0.06 0.10±0.001 0.12±0.001 0.08±0.001
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Algorithm 2: Our semi-supervised variant of co-distillation.
Input & Notation: Labeled set Zn, unlabeled set U , β (default: 1), τ (default: 0.5), learning rate
η, momentum of EMA (default: 0.999). Let ϕ be loss, and let f(θ, x) be the model output in the
form of probability estimate.

1 Initialize θa, θb, θ̄a, and θ̄b.
2 for t = 1, . . . , T do
3 Sample labeled mini-batches Ba and Bb from Zn, and sample an unlabeled mini-batch BU

from U .
4 Let ψ(θ, θ̄, x) = βI(maxi f(θ̄;x)[i] > τ)KL(f(θ̄, x)||f(θ, x)) where I is the indicator

function.
5 θa ← θa − ηt∇θa

[
1

|Ba|
∑

(x,y)∈Ba ϕ(f(θa, x), y) + 1
|BU |

∑
x∈BU

ψ(θa, θ̄b, x)
]

6 θb ← θb − ηt∇θb

[
1

|Bb|
∑

(x,y)∈Bb ϕ(f(θb, x), y) + 1
|BU |

∑
x∈BU

ψ(θb, θ̄a, x)
]

7 θ̄a and θ̄b keep the EMA of θa and θb, with momentum µ, respectively.

C.3.3 Semi-supervised experiments reported in Table 4

The unlabeled data experiments reported in Table 4 used our modification of Algorithm 1, taylored
for use of unlabeled data, and it is summarized in Algorithm 2. It differs from Algorithm 1 in two
ways. First, to compute the inconsistency penalty term, the model output is compared with that of
the exponential moving average (EMA) of the other model, reminiscent of Mean Teacher [34]. The
output of the EMA model during the training typically has higher confidence (or lower entropy) than
the model itself, and so taking the KL divergence against EMA of the other model serves the purpose
of sharpening the pseudo labels and reducing the entropy on unlabeled data. Second, we adopted the
masked divergence from Unsupervised Data Augmentation (UDA) [37], which masks (i.e., ignores)
the unlabeled instances for which the confidence level of the other model is less than threshold. These
changes are effective in the semi-supervised setting (but not in the supervised setting) for preventing
the models from getting stuck in a high-entropy region.

In the experiments reported in Table 4, we penalized inconsistency between the model outputs of two
training instances of Unsupervised Data Augmentation (UDA) [37], using Algorithm 2, by replacing
loss ϕ(θ, x) with the UDA objective. The UDA objective penalizes discrepancies between the model
outputs for two different data representations (a strongly augmented one and a weakly augmented
one) on the unlabeled data (the UDA penalty). The inconsistency penalty term of Algorithm 2 also
uses unlabeled data, and for this purpose, we used a strongly augmented unlabeled batch sampled
independently of those for the UDA penalty. UDA ‘sharpens’ the model output on the weakly
augmented data by scaling the logits, which serves as pseudo labels for unlabeled data, and the degree
of sharpening is a tuning parameter. However, we tested UDA without sharpening and obtained better
performance on the development data (held-out 5K data points) than reported in [32], and so we
decided to use UDA without sharpening for our UDA+‘Consist.’ experiments. We obtained test error
3.95% on the average of 5 independent runs, which is better than 4.33% of UDA alone and 4.25%
of FixMatch. Note that each of the 5 runs used a different fold of 4K examples as was done in the
previous studies.

Following [32], we used labeled batch size 64, weight decay 5e-4, and updated the weights 500K
times with the cosine learning rate schedule decaying from 0.03 to 0.2×0.03. We set the final model
to the average of the last 5% iterates (i.e., the last 25K snapshots of model parameters). We used
these same basic settings for all (UDA, FixMatch, and UDA+‘Consist.’). The unlabeled batch size
for testing UDA and FixMatch was 64×7, as in [32]. For computing each of the two penalty terms
for UDA+‘Consist.’, we set the unlabeled batch size to 64×4, which is approximately one half of that
for UDA and FixMatch. We made it one half so that the total number of unlabeled data points used
by each model (64×4 for the UDA penalty plus 64×4 for the inconsistency penalty) becomes similar
to that of UDA or FixMatch. RandAugment with the same modification as described in the FixMatch
study was used as strong augmentation, and the standard data augmentation (shift and flip) was used
as weak augmentation. The threshold for masking was set to 0.5 for both the UDA penalty and the
inconsistency penalty and the weights of the both penalties were set to 1. Note that we fixed the
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weights of penalties to 1, and only tuned the threshold for masking by selecting from {0, 0.5, 0.7} on
the development data (5K examples).

C.3.4 Fine-tuning experiments in Table 5

The EfficientNet-B4 (EN-B4) fine-tuning experiments reported in Table 5 were done with weight
decay 1e-5 (following [10]), batch size 256 and number of updates 20K following the previous
studies. We set the learning rate to 0.1 and performed gradient clipping with size 20 to deal with
a sudden surge of the gradient size. The diameter of the local region ρ for SAM was chosen from
{0.05, 0.1, 0.2} based on the performance of SAM on the development data, and the same chosen
value 0.2 was used for both SAM and SAM+‘Consist.’ Following the EN-B7 experiments of [10], the
value m for m-sharpness was set to 16. Since SAM+‘Consist.’ is approximately twice as expensive
as SAM as a result of training two models, we also tested SAM with 40K updates (20K×2) and
found that it did not improve performance. We note that our baseline EN-B4 SAM performance is
better than the EN-B7 SAM performance of [10]. This is due to the difference in the basic setting. In
[10], EN-B7 was fine-tuned with a larger batch size 1024 with a smaller learning rate 0.016 while
the batch normalization statistics was fixed to the pre-trained statistics. Our basic setting allowed a
model to go farther away from the initial pre-trained model. Also note that we experimented with
smaller EN-B4 instead of EN-B7 due to resource constraints.

D Additional information

D.1 Additional correlation analyses using the framework of Jiang et al. (2020)

This section reports on the additional correlation analysis using the rigorous framework of Jiang et al.
(2020) [18] and shows that the results are consistent with the results in the main paper and the previous
work. The analysis uses correlation metrics proposed by [18], which seek to mitigate the effect of
what [18] calls spurious correlations that do not reflect causal relationships with generalization. For
completeness, we briefly describe below these metrics, and [18] should be referred to for more details
and justification.

Notation In this section, we write π for a training procedure (or equivalently, a combination of
hyperparameters including the network architecture, the data augmentation method, and so forth).
Let g(π) be the generalization gap of π, and let µ(π) be the quantity of interest such as inconsistency
or disagreement.

Ranking-based Let T be the set of the corresponding pairs of generalization gap and the quantity of
interest to be considered: T := ∪π {(µ(π), g(π))}. Then the standard Kendall’s ranking coefficient
τ of T can be expressed as:

τ(T ) := 1

|T |(|T | − 1)

∑
(µ1,g1)∈T

∑
(µ2,g2)∈T \(µ1,g1)

sign(µ1 − µ2)sign(g1 − g2)

[18] defines granulated Kendall’s coefficient Ψ as:

Ψ :=
1

n

n∑
i=1

ψi, ψi :=
1

mi

∑
π1∈Π1

· · ·
∑

πi−1∈Πi−1

∑
πi+1∈Πi+1

· · ·
∑

πn∈Πn

τ (∪πi∈Πi
(µ(π), g(π))) (6)

where πi is the i-th hyperparameter so that π = (π1, π2, · · · , πn), Πi is the set of all possible values
for the i-th hyperparameter, and mi := |Π1 × · · · ×Πi−1 ×Πi+1 × · · · ×Πn|.

Mutual information-based Define Vg(π, π
′) := sign(g(π) − g(π′)), and similarly define

Vµ(π, π
′) := sign(µ(π) − µ(π′)). Let US be a random variable representing the values of the

hyperparameter types in S (e.g., S = { learning rate, batch size }). Then I(Vµ, Vg|US), the con-
ditional mutual information between µ and g given the set S of hyperparameter types, and the
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Table 15: Correlation scores of inconsistency and disagreement. For the training procedures with low final
randomness (as in Figure 5), model-wise quantities (one model per procedure) were analyzed. (a)–(c) differ
in the restriction on training loss; (b) and (c) exclude the models with high training loss while (a) does not.
The average and standard deviation of 4 independent runs (that use 4 distinct subsamples of training sets as
training data and distinct random seeds) are shown. Correlation scores: Two types of mutual information-
based scores (‘K’ as in (7) and ‘|S|=0’: I(Vµ,Vg|US)

H(Vg|US)
with |S|=0) and two types of Kendall’s rank-correlation

coefficient-based scores (Ψ as in (6) and overall τ ). A larger number indicates a higher correlation. The highest
numbers are highlighted. Tested quantities: ‘Inconsist.’: Inconsistency, ‘Disagree.’: Disagreement, ‘Random’
(baseline): random numbers drawn from the normal distribution, ‘Canonical’ (baseline): a slight extension of
the canonical ordering in [18]; it heuristically determines the order of two procedures by preferring smaller
batch size, larger weight decay, larger learning rate, and presence of data augmentation (which are considered
to be associated with better generalization) by adding one point for each and breaking ties randomly. Target
quantities: Generalization gap (test loss minus training loss) as defined in the main paper, test error, and test
error minus training error. Observation: Inconsistency correlates well to generalization gap, and disagreement
correlates well to test error. With more aggressive exclusion of the models with high training loss (going from
(a) to (c)), the correlation of disagreement to generalization gap improves and approaches that of inconsistency.

(a) No restriction on training loss
CIFAR-10 CIFAR-100 ImageNet

K |S|=0 Ψ τ K |S|=0 Ψ τ K |S|=0 Ψ τ
Correlation to generalization gap (‘test loss - training loss’)
Inconsist. 0.23±.01 0.38±.01 0.60±.05 0.69±.01 0.51±.01 0.55±.01 0.68±.06 0.81±.01 0.75±.01 0.75±.01 0.73±.17 0.92±.00

Disagree. 0.14±.01 0.26±.01 0.54±.05 0.58±.01 0.11±.01 0.11±.01 0.48±.06 0.39±.01 0.11±.01 0.16±.01 0.53±.07 0.47±.01

Random 0.00±.00 0.00±.00 -0.02±.04 0.01±.03 0.00±.00 0.00±.00 -0.01±.07 0.02±.02 0.00±.00 0.01±.00 -0.00±.11 -0.04±.08

Canonical 0.01±.00 0.10±.00 0.32±.03 0.37±.01 0.00±.00 0.09±.00 0.14±.05 0.36±.01 0.00±.00 0.07±.00 0.36±.05 0.32±.00

Correlation to test error
Inconsist. 0.08±.01 0.16±.01 0.51±.04 0.46±.01 0.00±.00 0.01±.00 0.33±.01 0.14±.01 0.03±.00 0.03±.00 0.20±.03 -0.20±.00

Disagree. 0.31±.01 0.37±.00 0.58±.05 0.68±.00 0.19±.01 0.31±.02 0.57±.05 0.63±.01 0.04±.00 0.05±.00 0.30±.07 0.25±.01

Random 0.00±.00 0.00±.00 0.02±.03 0.00±.01 0.00±.00 0.00±.00 -0.05±.07 -0.00±.04 0.00±.00 0.00±.00 -0.07±.08 0.01±.04

Canonical 0.01±.00 0.03±.00 0.15±.02 0.20±.01 0.00±.00 0.19±.01 0.31±.15 0.49±.01 0.00±.00 0.03±.00 0.08±.03 0.18±.00

Correlation to ‘test error - training error’
Inconsist. 0.11±.00 0.25±.01 0.53±.04 0.57±.01 0.41±.01 0.48±.01 0.60±.02 0.77±.01 0.73±.01 0.73±.00 0.91±.03 0.91±.00

Disagree. 0.16±.01 0.28±.01 0.54±.07 0.60±.01 0.12±.01 0.12±.01 0.45±.05 0.40±.01 0.12±.01 0.16±.01 0.52±.06 0.46±.01

Random 0.00±.00 0.00±.00 0.03±.04 0.00±.02 0.00±.00 0.00±.00 0.01±.07 -0.01±.03 0.00±.00 0.00±.00 0.06±.17 -0.03±.07

Canonical 0.01±.00 0.07±.00 0.31±.06 0.31±.01 0.00±.00 0.09±.00 0.21±.09 0.35±.01 0.00±.00 0.07±.00 0.24±.02 0.32±.00

(b) Excluding the models with very high training loss, as described in Appendix C.1 and Table 6.
CIFAR-10 CIFAR-100 ImageNet

K |S|=0 Ψ τ K |S|=0 Ψ τ K |S|=0 Ψ τ
Correlation to generalization gap (‘test loss - training loss’)
Inconsist. 0.37±.01 0.57±.01 0.64±.05 0.83±.01 0.47±.01 0.52±.01 0.68±.07 0.79±.01 0.74±.01 0.75±.01 0.74±.16 0.92±.00

Disagree. 0.34±.02 0.53±.02 0.61±.05 0.80±.02 0.26±.03 0.33±.01 0.60±.05 0.65±.01 0.24±.02 0.33±.02 0.61±.07 0.65±.01

Random 0.00±.00 0.00±.00 -0.01±.05 -0.00±.03 0.00±.00 0.00±.00 0.06±.06 -0.01±.03 0.00±.00 0.00±.00 -0.10±.07 -0.05±.07

Canonical 0.02±.00 0.15±.00 0.28±.04 0.44±.01 0.00±.00 0.21±.01 0.23±.06 0.52±.01 0.00±.00 0.10±.00 0.46±.16 0.38±.00

Correlation to test error
Inconsist. 0.10±.00 0.18±.01 0.51±.04 0.49±.01 0.01±.00 0.10±.01 0.42±.00 0.36±.02 0.01±.00 0.01±.00 0.21±.02 -0.10±.00

Disagree. 0.27±.00 0.33±.01 0.57±.06 0.65±.00 0.15±.01 0.27±.01 0.56±.05 0.59±.01 0.02±.00 0.02±.00 0.25±.07 0.16±.01

Random 0.00±.00 0.00±.00 0.03±.03 0.01±.02 0.00±.00 0.00±.00 0.04±.07 0.02±.02 0.00±.00 0.00±.00 0.04±.10 0.01±.06

Canonical 0.01±.00 0.03±.00 0.14±.02 0.21±.01 0.00±.00 0.20±.01 0.25±.14 0.51±.01 0.00±.00 0.02±.00 0.41±.03 0.19±.00

Correlation to ‘test error - training error’
Inconsist. 0.19±.01 0.37±.01 0.57±.04 0.69±.01 0.35±.01 0.44±.01 0.60±.02 0.74±.01 0.72±.01 0.73±.00 0.93±.03 0.91±.00

Disagree. 0.35±.02 0.52±.02 0.60±.06 0.80±.01 0.30±.03 0.35±.01 0.57±.05 0.67±.01 0.25±.02 0.32±.01 0.61±.06 0.64±.01

Random 0.00±.00 0.00±.00 0.01±.06 -0.02±.01 0.00±.00 0.00±.00 -0.01±.08 0.01±.03 0.00±.00 0.00±.00 -0.02±.09 -0.06±.06

Canonical 0.01±.00 0.10±.00 0.29±.03 0.36±.01 0.00±.00 0.20±.01 0.23±.06 0.50±.01 0.00±.00 0.11±.00 0.65±.03 0.38±.00

(c) Excluding the models with high training loss more aggressively with smaller cut-off values (one half of (b))
CIFAR-10 CIFAR-100 ImageNet

K |S|=0 Ψ τ K |S|=0 Ψ τ K |S|=0 Ψ τ
Correlation to generalization gap (‘test loss - training loss’)
Inconsist. 0.36±.01 0.57±.01 0.65±.05 0.82±.01 0.44±.01 0.50±.01 0.69±.06 0.78±.01 0.77±.01 0.79±.01 0.74±.16 0.93±.00

Disagree. 0.39±.01 0.57±.01 0.62±.05 0.82±.01 0.31±.02 0.43±.01 0.65±.05 0.73±.01 0.43±.01 0.53±.01 0.69±.06 0.80±.01

Random 0.00±.00 0.00±.00 0.02±.03 0.00±.02 0.00±.00 0.00±.00 0.03±.11 0.04±.02 0.00±.00 0.00±.00 -0.05±.12 -0.02±.03

Canonical 0.02±.00 0.14±.00 0.36±.04 0.44±.01 0.00±.00 0.27±.01 0.23±.06 0.60±.01 0.00±.00 0.13±.00 0.44±.09 0.42±.00

Correlation to test error
Inconsist. 0.12±.01 0.21±.01 0.53±.04 0.53±.01 0.04±.00 0.19±.01 0.48±.00 0.50±.02 0.01±.00 0.01±.00 0.31±.02 0.13±.00

Disagree. 0.27±.00 0.35±.01 0.58±.06 0.66±.01 0.19±.02 0.34±.01 0.58±.06 0.65±.01 0.05±.00 0.05±.00 0.27±.08 0.25±.00

Random 0.00±.00 0.00±.00 -0.01±.03 0.01±.03 0.00±.00 0.00±.00 0.01±.11 0.01±.04 0.00±.00 0.00±.00 -0.01±.15 -0.01±.01

Canonical 0.01±.00 0.03±.00 0.25±.03 0.22±.01 0.00±.00 0.24±.01 0.25±.03 0.56±.01 0.00±.00 0.06±.00 0.20±.10 0.29±.01

Correlation to ‘test error - training error’
Inconsist. 0.18±.01 0.37±.01 0.58±.04 0.68±.01 0.30±.01 0.42±.01 0.61±.02 0.72±.01 0.72±.01 0.76±.00 0.93±.03 0.92±.00

Disagree. 0.37±.01 0.54±.01 0.61±.06 0.80±.01 0.37±.03 0.46±.01 0.63±.05 0.75±.01 0.44±.01 0.52±.01 0.69±.06 0.79±.01

Random 0.00±.00 0.00±.00 0.01±.05 0.02±.02 0.00±.00 0.00±.00 0.00±.04 0.02±.03 0.00±.00 0.00±.00 -0.05±.18 -0.04±.04

Canonical 0.01±.00 0.09±.00 0.28±.04 0.35±.01 0.00±.00 0.26±.01 0.24±.02 0.58±.01 0.00±.00 0.14±.00 0.42±.09 0.44±.00
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conditional entropy H(Vg|US) can be expressed as follows.

I(Vµ, Vg|US) =
∑
US

p(US)
∑

Vµ∈{±1}

∑
Vg∈{±1}

p(Vµ, Vg|US) log

(
p(Vµ, Vg|US)

p(Vµ|US)p(Vg|US)

)
H(Vg|US) = −

∑
US

p(US)
∑

Vg∈{±1}

p(Vg|US) log(p(Vg|US))

Dividing I(Vµ, Vg|US) by H(Vg|US) for normalization and restricting the size of S for enabling
computation, [18] defines the metric K(µ) as:

K(µ) := min
US s.t.|S|≤2

I(Vµ, Vg|US)

H(Vg|US)
. (7)

Results (Tables 15–16) In Table 15, we show the average and standard deviation of the
correlation scores of model-wise quantities (for one model per training procedure), follow-
ing [18]. The model-wise inconsistency for model θ trained on Zn with procedure P is
EΘ∼ΘP |Zn

EXKL(f(Θ,X)||f(θ,X)), and Zn was fixed here; similarly, model-wise disagreement
is EΘ∼ΘP |Zn

EXI [ c(Θ,X) ̸= c(θ,X) ] where c(θ, x) is the classification decision of model θ on
data point x. The average and standard deviation were computed over 4 independent runs that used 4
distinct subsamples of training sets as training data Zn and distinct random seeds for model parameter
initialization, data mini-batching, and so forth.

Table 15 compares inconsistency and disagreement in terms of their correlations with the gener-
alization gap (test loss minus training loss as defined in the main paper), test error, and test error
minus training error. The training procedures analyzed here are the procedures that achieve low final
randomness by either a vanishing learning rate or iterate averaging as in Figure 5. Tables (a), (b),
and (c) differ in the models included in the analysis. As noted in Appendix C.1, since near-random
models in the initial phase of training are not of practical interest, procedures with very high training
loss were excluded from the analysis in the main paper. Similarly, Table 15-(b) excludes the models
with high training loss using the same cut-off values as used in the main paper, and (c) does this with
smaller (and therefore more aggressive) cut-off values (one half of (b)), and (a) does not exclude any
model. Consequently, the average training loss is the highest in (a) and lowest in (c).

Let us first review Table 15-(a). The results show that inconsistency correlates well to generalization
gap (test loss minus training loss) as suggested by our theorem, and disagreement correlates well
to test error as suggested by the theorem of the original disagreement study [17]. Regarding ‘test
error minus training error’ (last 4 rows): on CIFAR-10, training error is relatively small and so it
approaches test error, which explains why disagreement correlates well to it; on the other datasets,
‘test error minus training error’ is more related to ‘test loss minus training loss’, which explains why
inconsistency correlates well to it. The standard deviations are relatively small, and so the results are
solid. (The standard deviation of Ψ tends to be higher than the others for all quantities including the
baseline ‘Random’, and this is due to the combination of the macro averaging-like nature of Ψ and
the smallness of |Πi| for some i’s, independent of the nature of inconsistency or disagreement.)

The overall trend of Table 15-(b) and (c) is similar to (a). That is, inconsistency correlates well to
generalization gap (test loss minus training loss) while disagreement correlates well to test error,
consistent with the results in the main paper and the original disagreement study. Comparing (a),
(b), and (c), we also note that as we exclude the models with high training loss more aggressively
(i.e., going from (a) to (c)), the correlation of disagreement to generalization gap (relative to that of
inconsistency) improves and approaches that of inconsistency. For example, on CIFAR-100, the ratio
of K for (disagreement, generalization gap) with respect to K for (inconsistency, generalization gap)
improves from (a) 0.11/0.51=22% to (b) 0.26/0.47=55% to (c) 0.31/0.44=70%. With these models,
empirically, high training loss roughly corresponds to the low confidence-level on unseen data, and
so this observation is consistent with the theoretical insight that when the confidence-level on unseen
data is high, disagreement should correlate to generalization gap as well as inconsistency, which is
discussed in more detail in Appendix D.3.

Table 16 shows that the correlation of the estimate of CP (defined in Section 2) to the generalization
gap is generally as good as the estimate of DP (defined in Theorem 2.1), which is consistent with the
results in the main paper.
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Table 16: Correlation analyses of the estimates of CP and DP (as defined in Section 2) using the rank-based
and mutual information-based metrics from [18]. Training procedures with low final randomness of Figure 5.
Correlation scores: see the caption of Table 15. Target quantities: Generalization gap (test loss minus training
loss) analyzed in Theorem 2.1. Observation: The correlation of CP to generalization gap is generally as good
as DP , which is consistent with the results in the main paper.

CIFAR-10 CIFAR-100 ImageNet
MI-based Ranking MI-based Ranking MI-based Ranking
K |S|=0 Ψ τ K |S|=0 Ψ τ K |S|=0 Ψ τ

CP 0.38 0.59 0.71 0.83 0.49 0.53 0.80 0.80 0.75 0.75 0.59 0.92
DP 0.38 0.59 0.80 0.84 0.42 0.47 0.75 0.76 0.81 0.81 0.60 0.94

D.2 Training error

Tables 17 and 18 show the training error values (the average, minimum, median, and the maximum)
associated with the empirical results reported in Section 3.1 and 3.2, respectively.

Table 17: Training error of the models analyzed in Section 3.1. The four numbers represent the average,
minimum, median, and maximum values (%).

CIFAR-10 CIFAR-100 ImageNet
Figure 1,3,6 0.4 0.0 0.0 8.8 4.7 0.0 0.1 53.6 24.9 3.0 23.5 56.6

Figure 2 3.3 0.0 2.6 10.9 18.2 0.2 13.6 56.3 44.5 16.8 45.6 65.3
Figure 5,7 0.5 0.0 0.0 10.1 4.0 0.0 0.0 54.5 16.3 0.1 11.3 59.0

Table 18: Training error of the models analyzed in Section 3.2. The four numbers represent the average,
minimum, median, and maximum values (%).

Case#1 Case#2 Case#3 Case#4 Case#5
10.0 8.8 10.1 11.6 4.5 2.1 4.5 6.7 0.06 0.02 0.04 0.17 0.04 0.01 0.03 0.11 0.0 0.0 0.0 0.0

Case#6 Case#7 Case#8 Case#9 Case#10
0.7 0.3 0.8 1.1 0.1 0.1 0.1 0.2 4.8 3.9 4.9 5.5 2.7 1.9 2.9 3.3 2.8 0.5 1.8 6.5

D.3 More on inconsistency and disagreement

Inconsistency takes how strongly the models disagree on each data point into account while disagree-
ment ignores it. That is, the information disagreement receives on each data point is binary (whether
the classification decisions of two models agree or disagree) while the information inconsistency
receives is continuous and more complex. On the one hand, this means that inconsistency could use
information ignored by disagreement and thus it could behave quite differently from disagreement
as seen in our empirical study. On the other hand, it should be useful also to consider the situation
where inconsistency and disagreement are highly correlated since in this case our theoretical results
can be regarded as providing a theoretical basis for the correlation of not only inconsistency but also
disagreement with generalization gap though indirectly.

To simplify the discussion towards this end, let us introduce a slight variation of Theorem 2.1, which
uses 1-norm instead of the KL-divergence since disagreement is related to 1-norm as noted in Section
2.
Proposition D.1 (1-norm variant of Theorem 2.1). Using the notation of Section 2, define 1-norm
inconsistency C1,P and 1-norm instability S1,P which use the squared 1-norm of the difference in
place of the KL-divergence as follows.

C1,P = EZnEΘ,Θ′∼ΘP |Zn
EX∥f(Θ,X)− f(Θ′, X)∥21 (1-norm inconsistency)

S1,P = EZn,Z′
n
EX∥f̄P |Zn

(X)− f̄P |Z′
n
(X)∥21 (1-norm instability)

Then with the same assumptions and definitions as in Theorem 2.1, we have

EZnEΘ∼ΘP |Zn
[ΦZ(Θ)− Φ(Θ,Zn)] ≤ inf

λ>0

[
γ2

2
ψ(λ)λ (C1,P + S1,P ) +

IP
λn

]
.
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Sketch of proof. Using the triangle inequality of norms and Jensen’s inequality, replace inequality (2)
of the proof of Theorem 2.1

EZnEΘ∼ΘP |Zn
EX∥f(Θ,X)− f̄P (X)∥21 ≤ 4 (CP + SP ) (2)

with the following,

EZnEΘ∼ΘP |Zn
EX∥f(Θ,X)− f̄P (X)∥21

≤2EZn
EΘ∼ΘP |Zn

EX

[
∥f(Θ,X)− f̄P |Zn

(X)∥21 + ∥f̄P |Zn
(X)− f̄P (X)∥21

]
≤2EZn

EΘ,Θ′∼ΘP |Zn
EX∥f(Θ,X)− f(Θ′, X)∥21 + 2EZn

EZ′
n
EX∥f̄P |Zn

(X)− f̄P |Z′
n
(X)∥21

=2 (C1,P + S1,P ) .

Now suppose that with the models of interest, the confidence level of model outputs is always high
so that the highest probability estimate is always near 1, i.e., for any model θ of interest, we have
1−maxi f(x, θ)[i] < ϵ for a positive constant ϵ such that ϵ ≈ 0 on any unseen data point x. Let c(θ, x)
be the classification decision of θ on data point x as in Section 2: c(θ, x) = argmaxi f(θ, x)[i].
Then it is easy to show that we have

1

2
∥f(θ, x)− f(θ′, x)∥1 ≈ I [ c(θ, x) ̸= c(θ′, x) ] . (8)

Disagreement measured for shared training data can be expressed as

EZnEΘ,Θ′∼ΘP |Zn
EXI [ c(Θ,X) ̸= c(Θ′, X) ] . (9)

Comparing (9) with the definition of C1,P above and considering (8), it is clear that under this high-
confidence condition, disagreement (9) and 1-norm inconsistency C1,P should be highly correlated;
therefore, under this condition, Proposition D.1 suggests the relation of disagreement (measured for
shared training data) to generalization gap indirectly through C1,P .

While this paper focused on the KL-divergence-based inconsistency motivated by the use of the
KL-divergence by the existing algorithm for encouraging consistency, the proposition above suggests
that 1-norm-based inconsistency might also be useful. We have conducted limited experiments in this
regard and observed mixed results. In the settings of Appendix D.1, the correlation scores of 1-norm
inconsistency with respect to generalization gap are generally either similar or slightly better, which
is promising. As for consistency encouragement during training, we have not seen a clear advantage
of using 1-norm inconsistency penalty over using the KL-divergence inconsistency penalty as is done
in this paper, and more experiments would be required to understand its advantage/disadvantage.

In our view, however, for the purpose of encouraging consistency during training, KL-divergence
inconsistency studied in this paper is more desirable than 1-norm inconsistency in at least three
ways. First, minimization of the KL-divergence inconsistency penalty is equivalent to minimization
of the standard cross-entropy loss with soft labels provided by the other model; therefore, with
the KL-divergence penalty, the training objective can be regarded as a weighted average of two
cross-entropy loss terms, which are in the same range (while 1-norm inconsistency is not). This
makes tuning of the weight for the penalty more intuitive and easier. Second, optimization of the
standard cross-entropy loss term with the KL-divergence inconsistency penalty has an interpretation
of functional gradient optimization, as shown in [19]. The last (but not least) point is that optimization
may be easier with KL-divergence inconsistency, which is smooth, than with 1-norm inconsistency,
which is not smooth.

Related to the last point, disagreement, which involves argmax in the definition, cannot be easily
integrated into the training objective, and this is a crucial difference between inconsistency and
disagreement from the algorithmic viewpoint.

Finally, we believe that for improving deep neural network training, it is useful to study the con-
nection between generalization and discrepancies of model outputs in general including instability,
inconsistency, and disagreement, and we hope that this work contributes to progress in this direction.

27


	Introduction
	Theory
	Empirical study
	On the predictiveness of DP= Inconsistency CP+ Instability SP
	Results

	On the predictiveness of inconsistency CP: from an algorithmic perspective
	Results

	Practical impact: algorithmic consequences

	Limitations and discussion
	Conclusion
	Proof of Theorem 2.1
	Additional figures
	Experimental details
	Details of the experiments in Section 3.1
	SGD with constant learning rates (Figures 1–4 and 6)
	Procedures with low final randomness (Figures 5 and 7)

	Details of the experiments in Section 3.2
	Training of the models
	Estimation of the model-wise inconsistency and sharpness in Section 3.2

	Details of the experiments in Sections 3.3
	Ensemble experiments (Figure 9 (a))
	Distillation experiments (Figure 9 (b))
	Semi-supervised experiments reported in Table 4
	Fine-tuning experiments in Table 5


	Additional information
	Additional correlation analyses using the framework of Jiang et al. (2020)
	Training error
	More on inconsistency and disagreement


