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ABSTRACT

Mixture-of-Experts (MoE) based Large Language Models (LLMs), despite their
computational efficiency, face significant storage and memory challenges, which
hinder their deployment on edge devices. However, existing methods primarily fo-
cus on compressing at the expert level, resulting in the loss of specialized knowl-
edge. To address these challenges, we propose a novel framework termed RS-
MoE, which compresses MoE models by collaboratively decomposing the weights
of each expert into low-rank and sparse components. Through a preliminary in-
vestigation of the relationship between activations and weights, we identified two
key observations: (i) a small fraction of weight dimensions, identifiable by high
activation peaks, are critical and can be treated as a sparse component, and (ii)
the remaining weights, after removing these high-importance dimensions, exhibit
an inherent low-rank structure. Building on this, we developed a comprehen-
sive importance score based on activation peaks to apply a tailored policy: high-
importance dimensions are sparsely preserved, while the remaining dimensions
are approximated using a low-rank representation. Additionally, ridge regression
and mutual information techniques are incorporated to further minimize errors.
We performed a comprehensive evaluation of RS-MoE on several MoE LLMs, in-
cluding DeepSeekMoE-16B-Base, Mixtral-8x7B, and Qwen3-30B-A3B. The re-
sults demonstrate that our approach consistently outperforms existing monolithic
sparse or low-rank methods across a variety of downstream tasks, highlighting its
superior effectiveness and generalizability.

1 INTRODUCTION

Large Language Models (LLMs) based on the Mixture-of-Experts (MoE) architecture (Cai et al.,
20235])) offer an innovative approach to tackling issues associated with scaling models through sparse
activation (Kaplan et al.l 2020), while maintaining comparable computational efficiency. Several
representative models, including DeepSeek-V3 (DeepSeek-Al et al., 2025), Mixtral-MoE (Jiang
et al., 2024b)), and Qwen3-30B-A3B (Yang et al., [2025) have achieved outstanding performance
in translation, code generation, and question answering tasks, indicating the effectiveness of MoE
LLMs. However, the benefits of MoE’s computational efficiency can be offset by challenges such
as static storage overhead and memory access latency. It is becoming increasingly commonplace
in resource-constrained devices like edge devices (Zhong et al., 2025b), revealing the necessity for
MoE compression.

Several studies have focused on compression techniques to address the challenges mentioned above,
which can be mainly classified into two kinds: expert pruning and expert merging. Firstly, expert
pruning primarily achieves compression via removing redundant or low-importance experts from
the network. Methods such as MoE-12 (Yang et al., 2024), NAEE (Lu et al., 2024), and MoE-Pruner
(Xie et al., [2024) use different pruning strategies to assess the importance of each expert and perform
pruning. However, expert merging may result in significant performance degradation due to the loss
of specialized knowledge, especially at a high compression ratio. Secondly, expert merging identifies
similarities among experts to combine those that are highly similar. Techniques like MC-SMOoE (Li
et al.,|2024), HC-SMoE (Chen et al.| |2025)), and Sub-MoE (Li et al.,2025)) merge expert weights via
weighting or clustering. Although expert merging preserves the model’s functional integrity, it might
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dilute specialized expertise, leading to a degradation of overall performance. These drawbacks of
existing methods prompt us to consider: Is there a novel compression paradigm that can not only
preserve the diversity of experts but also avoid damaging the integrity of each expert?

The recent study leverages the sparsity of the
input activations and the low-rank approxima-
tion of the weights to achieve low-loss infer-
ence acceleration (Zhang et al., 2025)). Inspired
by this approach, we aim to determine whether
the weight matrix can be decomposed into its
sparse and low-rank components to capture the
essential information contained in the weights.
However, identifying an appropriate basis for
decomposing the weights presents an additional
challenge. Another research suggests that only
a small number of experts significantly influ-
ence the performance of the MoE (Su et al|
2025). Moreover, identifying these influential
experts relies more on the intensity of their ac-
tivation peaks rather than the magnitude of their
weights or the frequency of their activations.
Building upon this, we can access the impor-
tance of each dimension of the expert and de-
compose the weight into sparse and low-rank
components according to the activation peaks.
In order to validate this assumption, we exam-
ine the expert’s distributions of activation peaks
and the singular spectrum of the weight that is
whitened by the input of the expert, as illus-
trated in Figure [1| It becomes evident that the
distributions of activation peaks can be divided
into three categories: high importance, medium
importance, and low importance. Otherwise, it
can be observed that the energy of the weight
matrix, with its high-importance components
zeroed out, is concentrated in a few singular
vectors, revealing a low-rank structure. To sum-
marize, we can show that experts’ weights can
be approximated using sparsity and low-rank
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Figure 1: Analysis of Activation Sparsity and Low-
Rank Structure. (Top) The sorted activation peaks re-
veal a sparse pattern where only a few dimensions are
highly active. (Bottom) After pruning the top 10%
of rows identified by these activations, the remaining
weight matrix exhibits a strong low-rank property after
activation-aware SVD.

decomposition without significantly degrading information.

Building upon this, We propose a novel collaborative compression strategy for MoE LLMs, termed
RS-MoE, which is developed based on the coupling relationships among internal weights within
experts. Specifically, by analyzing the interactions between activation vectors and weight vectors,
we establish a direct dimensional mapping relationship. This mapping couples the corresponding di-
mensions of the three weight matrices within experts through intermediate activations. By applying
a unified compression strategy to these coupled dimensions, we effectively mitigate errors arising
from spatial misalignment. The main contributions of this paper are summarized as follows:

* To preserve the functional integrity within MoE experts, we propose a novel collaborative
framework that couples the corresponding dimensions of the three expert weights into a
collaborative unit and performs the same compression strategy.

* To distinguish sparse components from low-rank components, we design a comprehensive
importance score to evaluate the importance of each weight dimension. Dimensions with
high importance are regarded as sparse components, while those with medium and low im-
portance are classified as low-rank components using activation-aware SVD. Subsequently,
ridge regression is applied to learn a shared base weight that compensates for the overall

reconstruction error.
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* To effectively allocate the sparsity ratio across layers, we estimate parameter redundancy in
each layer based on the mutual information of activations between adjacent layers, thereby
implementing a layer-aware compression strategy.

* To comprehensively evaluate the effectiveness of RS-MoE, we have conducted exten-
sive experiments on three representative MoE-based LLMs: DeepSeekMoE-16B-Base,
Mixtral-8x7B, and Qwen3-30B-A3B. The proposed RS-MoE demonstrates state-of-the-art
performance across a wide range of downstream tasks and sparsity rates. Notably, RS-MoE
exhibits significant advantages, particularly under high sparsity rates.

2 RELATED WORK

2.1 LARGE LANGUAGE MODELS COMPRESSION

LLMs require a tremendous amount of computational resources because of their parameter scale,
which limits their use on devices with restricted resources. In related research, many approaches
have been proposed to address LLMs’ high storage and computational demands. One common
method is model quantization, which reduces storage demands by converting model weights into
lower-bit representations (Dettmers et al., [2022} |[Frantar et al., [2022} [Lin et al.| 2024). Another ap-
proach is model pruning and sparsification, which removes redundant parameters while minimizing
performance degradation, thus refining the model structure (Ma et al.| 2023} [Frantar & Alistarh,
2023} Liu et al., [2023). Knowledge distillation is also a widely used technique for compressing
LLMs. It involves training a smaller ’student” model to replicate the behavior of a larger “’teacher”
model, enabling effective knowledge transfer (Acharya et al, 2024} |Gu et al., 2025b). Otherwise,
low-rank decomposition is often used to reduce model complexity by factorizing weight matrices
and retaining their principal energy components (Wang et al.,2025cfafb)).

2.2 LOW-RANK AND SPARSE APPROXIMATION

Several studies have validated the effectiveness of low-rank approximation and sparsification for
model compression. First, the weights of LLMs are always over-parameterized, which means that
their intrinsic rank is usually lower than the original dimensions (Hu et al., 2022)). Methods such
as SVD or projection can extract the principal components of weight matrices, allowing for the ap-
proximation of the matrix using a low-rank representation (Yu & Wul 2023; Wang et al., [2025c)). In
addition, sparsification methods identify and remove redundant weights to accelerate inference and
reduce computational costs (Sun et al., 2024), which are often based on activation strength. Nev-
ertheless, both techniques are limited: low-rank approximation can struggle to represent high-rank
or multi-modally distributed weights. At the same time, structured sparsification cannot maintain
model performance at high compression rates. Recently, some studies have explored the combina-
tion of low-rank and sparse representations to reduce the number of parameters while preserving
critical structural information (Zhang et al.l 2025} Huang et al.| [2025). In this work, we leverage
the sparsity characteristics of activation peaks and focus on low-rank and sparse structures within
weight matrices. We achieved efficient model compression by retaining essential information in its
complete form.

3 METHODOLOGY

3.1 PRELIMINARIES

In this paper, we treat the compression of MoE LLMs as a layer-wise reconstruction problem, aim-
ing to minimize the adverse effects on the compressed output of each layer. Consider a typical
MOoE architecture, where each block contains three types of linear layers: attention weights, gating
weights, and expert weights. Notably, the expert weights typically constitute over 90% of the entire
model’s parameters. Consequently, we only compress the expert weights to meet the overall sparsity
ratio in the experiment.

An expert is generally consist of three matrices: W, Wyare € R™*™ and Wy € R™*™, where
n and m respectively denote the dimension of model hidden and intermediate activations. The

computational process of the expert can be expressed as: ¥ = gH W;rown, where H = X WIP ®
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Figure 2: Overview of the RS-MoE. The process consists of three main steps: (1) Estimate mutual
information to obtain layer-wise sparsity ratios. (2) Evaluate importance using Anomalous Con-
tribution Integration, decompose weights into sparse and low-rank components. (3) Implement a
tailored strategy to compress weights collaboratively.

3.2 THE RS-MOE FRAMEWORK: COLLABORATIVE DECOMPOSITION

The traditional MoE compression method often regards each expert as an independent entity when
pruning or merging, which tends to destroy the complex relation inside the expert and cause severe
knowledge loss. Therefore, as shown in Figure [2} we introduce a novel framework named RS-MoE,
which treats the weights of experts as a coupled entity. This coupling is particularly evident in the
SwiGLU architecture, which is widely adopted in MoE LLMs. As mentioned in the former section,
the expert’s three weight matrices are directly mathematical linked via the intermediate activation [ .
Specifically, for a given input vector z, the dimension j of the intermediate activation is exclusively
resolved by the row j of Wy, and W g4.:

hj =0(x - Wate:) © (2 Wap,j.:)
Subsequently, this activation vector H is projected by W g5, to produce the output. We can regard

the output as a linear combination of the columns of W ,,,,, with the elements of H serving as the
coefficients.

m
Y = g Z hjwdown,:j
j=1
Therefore, we can unfold the exert computation into a single summation over its intermediate di-
mensions:

Y= g Z(O’(.’l? . Wgate,j7:> © (Z‘ : Wup,j,:»Wdowm:j
j=1

Apparently, this equation indicates that the column j of W, directly connects to the row j of
W, and W ., establishing a collaborative unit. Building upon this, we further propose a tailored
decomposition for fine-grained collaborative units based on their importance. We decompose each
weight into two components: (i) A sparse component, which preserves high-importance weight to
ensure the integrity of the vital knowledge. (ii) A low-rank component, whose energy is concentrated
in a few singular values, maintains the expressive capability with a small number of parameters. Our
collaborative decomposition strategy preserves the essential part of expert knowledge, preventing
information loss or blending.
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3.3 ANOMALOUS CONTRIBUTION INTEGRATION

To accurately evaluate the importance of each collaborative unit and thereby differentiate between
sparse and low-rank components, inspired by Su et al.| (2025), we analyze the distribution of the in-
termediate activations. As shown in Figure 1, the majority of activations are generally relatively low,
while only a few dimensions of activations reveal anomalous peaks. These anomalous activations are
usually related to an expert’s specific abilities. Traditional importance metrics, such as the £5 norm
and mean values, only capture global average properties, resulting in an inaccurate characterization
of an expert’s specialization. To address this challenge, we introduced the Anomalous Contribution
Integration (ACI), which can comprehensively evaluate the importance of each collaborative unit
from two perspectives: inner energy and downstream influence. Based on the H weighting by g, we
utilize mean magnitude, magnitude variance, and peak magnitude to form a comprehensive score via
a weighted sum. This score is then multiplied by the squared L5-norm of the corresponding column
in the W, to evaluate the dimension’s impact on the output collectively. Furthermore, as for
downstream influence, we consider that an anomalous activation must have an impact on both the
current layer and the next layer to ensure effective information delivery. Therefore, we approximate
this by calculating a weighted alignment score between W 4,,,, of the current expert and W, and
Wate in the next layer. The entire ACI is weighted by both inner energy and downstream influence,
creating a robust metric for evaluating the importance of each dimension. Algorithm [T]outlines the
concrete pseudocode.

Algorithm 1 ACI: importance scoring and global grouping

Require: For each expert e in E: activations H(®) € RV*P routing weights r(¢) € RY, down

weights Wé;lm € RHXD: hyperparams 7, Wnean, Woar Wpeak; layer |
1: Sglobal — []

2: for each expert e in layer [ do

Woer < H© . p(e)

Shyb — wmeanmean(‘WactP) + wvarvar(|Wact|2) + wpeak max ‘Wactl

(e) |12
down 112

Eproj < ||columns of W
Iinner — Shyb © Eproj

Vout (Wfl?wn)T; Vi ¢ Concat[(W
A |V, QT

9: Idownstream <~ A@HI‘OWS of Vrzn ||2

10: I < Linner +7 - norm(ldownstream,

11:  Append scores from e to Syiobal

12: end for

13: return Syiopal

(B')
gate

I+1
+WE) 2

A A A S

3.4 LOW-RANK AND SPARSE APPROXIMATION

Based on the ACI score we calculate, we can globally rank all the dimensions and partition them
into two groups: a high-importance group, which corresponds to the sparse component, and the
remaining dimensions, which are defined as the low-rank component. Each component is processed
with a tailored compression strategy to preserve the crucial expertise.

Sparse Component Preservation. A few collaborative units identified as high-importance are con-
sidered to store professional knowledge, which is crucial for the function of experts. Therefore, to
prevent the loss of information, we regard the corresponding rows in W, and W g4, and columns
in W5, as the sparse components, which are preserved in their original form.

Low-rank Component Approximation. As shown in Figure [I] after removing the sparse compo-
nents and applying activation-aware SVD to the expert weights, we can observe that the energy of
the matrices is concentrated in a few of the largest singular values. This provides strong evidence
to perform a low-rank approximation for the remaining dimensions, rather than simply pruning.
To enhance the effectiveness of compression, we adapt an activation-aware SVD method, which is
proposed by [Wang et al.| (2025b)).
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First, we perform the eigenvalue decomposition on the Gram matrix from the activations X to ex-
tract the primary energy of the input features: £,V = EVD(X " X). Using the eigenvectors and
eigenvalues, we project the original weights W, into activation space and perform SVD on it:

UwSoV, =SVD(W,VE?)

Subsequently, after retaining the top k singular values, we obtain the low-rank factors Uy, Sk, and
V. Then, we reverse the initial transformation, projecting the weight back from the activation space:

Wi soa = UpSpVid E73V T

The final low-rank factors is represented as: Wy, = UpSk, Wiee = V,J—E 3V T, Moreover,
drawing inspiration from D2-MoE (Gu et al., 2025a)), we introduced incremental learning for W g
and obtained a base matrix. In contrast, we adapt ridge regression with a regularization term to
incorporate general knowledge and compensate for truncation errors, instead of relying on Fisher
information. The objective function for the ridge regression is as follows:

J(B) =Y — HB"| + A|B]|

where Y is the original output of the expert and H. is the intermediate output of compressed W g4
and W,,.

3.5 MUTUAL INFORMATION-GUIDED LAYER COMPRESSION

Deep neural networks usually exhibit discrepancies in information redundancy across different lay-
ers. Shallow layers typically focus on extracting versatile local and low-level features with low
redundancy. In contrast, deeper layers primarily produce high-level and abstract features that usu-
ally present higher redundancy. It makes them more suitable for compression. Several studies have
shown that using a uniform compression ratio across all layers often results in performance degra-
dation (Zhong et al.l 2025a; Ding et al.| [2025), which motivates the development of a layer-wise
allocation method. To accurately evaluate layer-wise redundancy, we propose a method based on
mutual information (MI) estimation. In our opinion, if the feature representation of a layer can be
inferred from its adjacent layers, its unique contribution is limited, indicating information redun-
dancy. Building upon this, we employ Mutual Information Neural Estimation (MINE) (Belghazi
et al., [2018)) to estimate mutual information via activation features, thereby capturing complex de-
pendencies between different layers. The specific procedure is as follows: Firstly, we randomly
sample some unlabeled texts and feed them into a pre-trained MoE LLMs to acquire the hidden
states Y of each layer. We then process these features using masked pooling to obtain the feature
encoding z!, which represents the i-th input sample at layer [. Next, by constructing joint samples
(21, 7]) and marginal samples (2}, 2, ), we train an MINE 7'(-, -; §) to approximate the Donsker-
Varadhan lower bound for each pair of adjacent layers (I,l + 1), thereby estimating the MI between
them. The MINE is optimized via the following loss function:

Zl Zl+1,
L(0) = — (EP(ZL,ZZH)[T(ZZ;ZIH;Q)] - IOg(EP(Z’)P(Z"H)[eT( ’ ’0)])>

where Ep (71 zi+1) and Ep(ziyp(zi+1) denote the expectations under the joint and marginal dis-
tribution of the layer activations, respectively. Furthermore, we define a redundancy score vector
R = [Ry1, Rs, ..., R,] and calculate the score of each layer by average the mutual information with
its neighbors. Finally, we formulate a constrained optimization problem to obtain the save ratio s; of
each layer, aiming to minimize an objective function that balances fidelity to the redundancy scores
with inter-layer smoothness. The objective function is defined as follows:

L(S) = Lﬁdelity(s) + )\smooth : Lsmooth(s) + )\reg ' Lreg(s)

where Agmooth and Areg are hyperparameters which control the smoothness and regularization penal-
ties, respectively. Due to the constraints on the global average sparsity ratio and per-layer bounds,
we adapt Quadratic Programming to solve this objective function.

4 EXPERIMENTS

In this section, we evaluate our proposed RS-MoE across multiple tasks and compare it with many
state-of-the-art MoE compression methods. Additionally, we also conduct ablation studies to ana-
lyze the contribution of each component.
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Ratio | Method | Wiki. PTB  C4 | ARC-e HellaS. Math. Openb. PIQA WinoG. Avg.

Deepseek-MoE-16B-base
0% | Original | 6.51 9.74 1020 | 0.77 058 032 033 079 072 059

NAEE 7.58 1373 14.01 0.71 055 029 032 077 067 055
20% | D?*-MoE | 7.02 11.56 12.62 0.74 054 031 030 075 0.69  0.56
RS-MoE | 6.74 10.42 11.28 0.76 056 032 033 077 071 0.58

NAEE 857 1441 18.12 0.67 041 026 023 070 067 049
40% | D*>-MoE | 830 14.58 17.64 0.69 045 027 026 072 065 051
RS-MoE | 815 13.26 14.93 0.67 048 028 028 073 0.68 0.52

NAEE 19.08 3592 38.11 0.49 033 023 018 0.6l 0.57  0.40
60% | D?*-MoE | 1225 27.79 30.76 0.54 034 024 020 063 060 043
RS-MoE | 9.95 18.29 22.52 0.59 040 026 026 0.68 0.65 0.47

Mixtral-8x7B
0% \ Original 398 1456 7.14 \ 0.84 0.65 0.41 036 0.82 0.76  0.64

NAEE 472 16.84 09.11 0.77 060 040 032 078 072 0.60
20% | D?>-MoE | 4.67 16.52 8.96 0.80 061 039 032 081 075 0.61
RS-MoE | 4.70 16.49 8.52 0.81 062 039 033 080 075 0.62

NAEE 6.51 21.83 13.97 0.63 048 035 025 072 064 051
40% | D?*-MoE | 597 21.66 11.87 0.78 054 033 029 077 071 057
RS-MoE | 5.83 1823 1254 0.78 056 033 030 078 070 0.58

NAEE 10.84 35.23 24.17 0.51 038 027 019 062 058 043
60% | D?-MoE | 7.83 26.73 15.85 0.68 050 029 027 071 0.69 0.52
RS-MoE | 7.74 23.43 15.36 0.71 051 031 026 071 067 0.53

Qwen3-30B-A3B
0% | Original 8.65 1341 13.17 | 0.78 069 058 042 079 070 0.66

NAEE 895 14.18 13.77 0.76 068 051 042 078 0.69 0.64
20% | D*-MoE | 9.12 17.64 18.28 0.73 064 049 041 076 0.66 0.62
RS-MoE | 8.87 13.93 13.36 0.77 068 053 042 079 067 0.64

NAEE 10.07 15.28 14.93 0.70 063 044 040 0.75 0.65 0.60
40% | D?-MoE | 14.47 26.58 21.72 0.67 059 040 037 072 062 0.56
RS-MoE | 948 15.10 15.05 0.71 065 044 039 077 0.66 0.60

NAEE 13.76 19.22 20.01 0.65 058 035 034 070 060 0.54
60% | D?-MoE | 21.76 38.84 36.55 0.60 052 033 029 065 058 0.50
RS-MoE | 13.56 20.17 20.12 0.63 060 039 034 071 061 0.55

Table 1: Performance comparison of RS-MoE on three mainstream MoE models, with the original
model included as a baseline. The best results are marked in bold.

4.1 GENERAL SETUP

Models and Datasets. To assess the effectiveness of our RS-MoE, we conduct comprehensive ex-
periments on three open-source MoE LLMs: DeepSeekMoE-16B-Base (Dai et al., 2024), Qwen3-
30B-A3B (Yang et al., 2025), and Mixtral-8x7B (Jiang et al., [2024a)). Regarding datasets, we eval-
uated our method for two types of tasks: (1) language modeling tasks, including Wikitext2 (Merity
et al.,[2017), PTB (Marcus et al.,|1993)), and C4 (Raffel et al.,[2020), which are evaluated by perplex-
ity. (2) downstream tasks, including ARC-easy (Clark et al.,|2018]), HellaSwag (Zellers et al.,|2019),
MathQA (Amini et al.,[2019), OpenbookQA (Mihaylov et al 2018)), PIQA (Bisk et al.,2020), and
WinoGrande (Sakaguchi et al.}|2020), which are evaluated by accuracy.

Baseline. We conducted comparative experiments with three other state-of-the-art methods for MoE
compression, including NAEE (Lu et al., 2024)), MoE-1? (Yang et al.,|2024) and D?-MOoE (Guet al.,
2025a)).

Implementation details. For all experiments, we randomly sampled 128 samples from the Wiki-
text2 datasets, which are truncated to a sequence length of 2048 tokens. All experiments were
performed on NVIDIA A800 GPUs. Further details can be found in Appendix
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4.2 MAIN RESULTS

As shown in Table[T} we conducted a comprehensive comparison of our RS-MoE against three state-
of-the-art methods under different sparsity ratios. Experimental results demonstrate that RS-MoE
achieves outstanding performance across different baselines, tasks, and sparsity ratios. In particular,
under a 20% sparsity ratio, RS-MoE achieves a perplexity (PPL) of 16.92 in language modeling
tasks and a downstream task accuracy of 58% for the Deepseek-MoE-16B-base, surpassing other
methods. Notably, as the sparsity ratio increases, the performance of our method becomes more
remarkable than that of other methods. For instance, when the sparsity ratio increases from 20% to
60%, the performance degradation of RS-MoE increases from 2% to 20%, whereas that of D?-MoE
escalates from 3.5% to 27%. This strong performance extends to larger models. For the Qwen3-
30B-A3B at 20% sparsity, RS-MoE attains a PPL of 8.87, nearly matching the original model’s 8.65,
while maintaining a competitive accuracy of 64%.

4.3 ABLATION STUDY

Layerwise Sparsity Allocation. We investigate the effects of layerwise sparsity on model perfor-
mance. Specifically, we adjust the parameters of different layers to maintain a fixed sparsity ratio.
Table [2] reveals the result with a different proportion. It can be observed that our method, which
assigns lower sparsity to lower layers and higher sparsity to higher layers, outperforms both uniform
allocation and the inverse strategy (i.e., higher sparsity for lower layers, lower sparsity for higher
layers).

Table 3: Efficiency Analysis of RS-MoE

Table 2: Results of different sparsity allocation.

Strategy | Wikitext-2 PTB  C4 | Average Methods | Wikitext:2 PTB C4 | Average
- Original | 651 974 1020 | 8.82
Uniform 8.12 13.59 15.20 12.30 p— 027 071 215 e
Reverse 8.10 13.94  15.46 12.50 funing : : : :
Standard SVD 10.23 1937 2410 | 17.90
RS-MoE 8.15 1326 1493 | 12.11 RS-MoE 9.95 1829 2252 | 1692

Effectiveness of Sparse and Low-Rank Components. Table [3|compares RS-MoE with structured
pruning, standard SVD, and activation-aware SVD. To ensure a fair comparison, a consistent work-
flow was applied to all methods, resulting in a 60% sparsity ratio on the Deepseek-MoE-16B-base.
The experimental results reveal that RS-MoE consistently outperforms structured pruning strategies,
reducing the PPL by approximately 10%. Additionally, the activation-aware SVD outperforms the
Standard SVD because it contains feature information.
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Figure 3: Comparison results of Deepseek-MoE-16B-base.

Comparison of Grouping Metrics. We show the impact of different grouping metrics on the LLM’s
perplexity in Figure[3] The evaluation was conducted across various sparsity ratios, comparing four
metrics: ACI, weight magnitude, activation magnitude (as used in Wanda (Sun et al., 2024))), and
activation peak. It can be concluded that ACI can effectively identify the crucial part of weights,
resulting in a decrease in error due to compression. For instance, it can be seen that the PPL of ACI
is about 17 points lower than the common weight magnitude method. Compared to the simple
activation peak, it remains approximately 20% lower. Otherwise, as the sparsity increases, the
benefit of ACI is particularly pronounced.
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Robustness to Calibration Samples. We at-
tempt a different number of calibration samples, 35 '\\ ~ = RS-MeE
ranging from 8 to 256. As revealed in Figure [4] 0] N D™Mok
compared with the D?-MoE, RS-MoE is more ro- o \\
bust when only a few calibration samples are pro- ~ E *°] %
vided. T
~ "
Base Weight Construction. In this experiment, 151
we validate the effectiveness of the proposed
method for constructing the base matrix, which is 10 Pl S -
based on ridge regression. Table 4] compared our 8 16 2 64 128 256

method with the following merging approaches: Calibration Samples

Fisher merging (Matena & Raffel, 2022), fre-
quency merging, mean value merging, TIES (Ya-
dav et al.,|2023)) and PCB (Du et al.,2024). Obvi-
ously, although both Fisher merging (PPL 18.31)
and frequency merging (PPL 23.03) achieve a great performance, the ridge regression approach more
effectively compensates for the error between the true output and the compressed output, achieving
a superior performance (PPL 16.92).

Figure 4: Impact of calibration samples.

Table 4: Results of different Base Weights.

Table 5: Efficiency Analysis of RS-MoE

Methods | WikiText-2 PTB  C4 | Average

Method | TFLOPs Tokens/sec PPL
Mean 13.74 30.18 35.83 26.58
Frequency 12.83 26.54 29.72 23.03 NAEE 512 243.17 31.03
PCB 17.85 39.56 4694 34.78 D?-MoE 507 242.48 16.80
TIES 2338 5164 7127 | 4876 RS-MoEsosigh 638 221.63 15.51
Fisher 10.34 19.75  24.84 18.31 RS'MOEloo%high 419 279.36 16.56
Ours 9.95 18.29 22.52 16.92

4.4 EFFICIENCY ANALYSIS

Table [5] presents statistical metrics of RS-MoE applied to Mixtral-8x7B under 60% sparsity ratios,
including the floating point operations per second (FLOPs) and throughput. As shown in Table [3]
the results indicate that our RS-MOoE offers a flexible trade-off between efficiency and performance.
For instance, when we set the budget of sparse components to 100% of the entire parameter budget
(RS-MoEgo%nigh- it reveals outstanding efficiency, surpassing other methods in both FLOPs (419
TFLOPs) and throughput (279.36 tokens/sec). Meanwhile, it maintains good performance over other
methods with a PPL of 15.51. In addition, although RS-MoEggg4n, increases the cost of compu-
tation, it achieved the best performance among all methods. In summary, our approach provides a
choice between computational efficiency and compression performance.

5 CONCLUSION

In this paper, we introduce RS-MoE, a novel compression framework tailored for MoE LLMs,
specifically designed to mitigate the substantial storage and memory challenges inherent to these
models. Our approach is built upon the key observation that an expert’s weights can be collabora-
tively decomposed into two components: a sparse component capturing critical, specialized knowl-
edge, and a low-rank component representing more general features. By leveraging the sparse struc-
ture within intermediate activation peaks, our method collaboratively decomposes the expert weights
into these sparse and low-rank components, thus maintaining the integrity and specialized function-
ality of each expert. Our framework systematically integrates several techniques to achieve efficient
and performance-preserving compression. These include a comprehensive importance score (ACI)
based on activation peaks to guide the decomposition, a mutual information-based strategy for layer-
wise sparsity allocation, and activation-aware SVD combined with ridge regression to minimize re-
construction errors. Extensive experiments on models like Deepseek-MoE-16B-base, Mixtral-8x7B,
and Qwen3-30B-A3B demonstrate that RS-MoE consistently outperforms existing state-of-the-art
methods across various downstream tasks, especially at high compression ratios.
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6 ETHICS STATEMENT

This research strictly adheres to the ICLR Code of Ethics. The research process involved no human
or animal experiments, and no personally identifiable information was used. All datasets were han-
dled in compliance with their terms of use and privacy policies. We are committed to mitigating bias
and discrimination in our methodology and ensuring the transparency and integrity of our work.

7 REPRODUCIBILITY STATEMENT

To ensure our results are fully reproducible, we have included our code in the supplementary mate-
rials. This paper provides a detailed description of the experimental setup, covering model configu-
rations, training procedures, and the hardware environment. To facilitate replication, a comprehen-
sive explanation of our core contribution is also included. Our evaluation process relies on public
datasets, such as Wikitext2, to ensure consistent benchmarking.
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A APPENDIX

A.1 STATEMENT ON LLM USAGE

In accordance with the ICLR 2026 policies concerning the utilization of LLMs, it is hereby disclosed
that the exclusive function of LLMs in this work was to provide writing assistance in the preparation
of this manuscript. Specifically, we employed Gemini exclusively for language polishing, including
improving grammatical accuracy and enhancing sentence clarity and readability.

It is emphasized that all research ideas, methodologies, experimental designs, and scientific con-
tributions presented in this paper are original work by the authors. The experimental results, data
analysis, and conclusions were produced entirely by the authors without any assistance from an
LLM. The utilization of Gemini was strictly constrained to enhancing the linguistic exposition of
our research findings, without impacting or contributing to the technical content or scientific merit
of this work.

The authors accept full responsibility for all content presented in this submission, including the
accuracy of all claims, the validity of experimental results, and the appropriateness of conclusions
drawn.

A.2 IMPLEMENTATION DETAIL

In this section, we provide the detailed implementation of our RS-MoE framework to ensure the
reproducibility of our experiments.

To ensure the reproducibility of our experiments, this section provides a detailed overview of the
RS-MoE framework’s implementation. All experiments were conducted on NVIDIA A800 GPUs
using core libraries such as PyTorch, Transformers, and Datasets. We utilized the torch.bfloat16 data
type for all model weights and computations to strike a balance between precision and efficiency.

Calibration and Feature Collection. For all models, we performed calibration using 128 samples
randomly selected from the Wikitext2 training dataset, with the random seed set to 42 for consis-
tency. Each sample was truncated to a sequence length of 2048 tokens.

Anomalous Contribution Integration (ACI). The ACI score, which is central to our method, is
calculated with specific hyperparameters to identify critical collaborative units robustly. The score is
a composite of inner energy and downstream influence. The inner energy component is a weighted
sum of normalized mean energy (Wymeqan = 0.4), variance of energy (w,.» = 0.05), and peak
activation magnitude (wpeak = 0.8). The downstream influence, which measures the alignment
with subsequent layers, is incorporated with a weighting factor of v = 0.05. These parameters were
determined through empirical validation to distinguish specialized knowledge from general features
effectively.

Low-Rank and Sparse Approximation. Our collaborative decomposition strategy is guided by
the ACI scores and a layer-wise sparsity ratio derived from Mutual Information Neural Estimation
(MINE). High-importance units are preserved in their original form. Medium-importance units
undergo activation-aware SVD, where the rank is dynamically determined based on the allocated
parameter budget for that expert group, aiming to retain essential information while maximizing
compression. Low-importance units are structurally pruned by setting their corresponding weights to
zero. For the W 4,,,,, we employ ridge regression to learn a shared base weight that compensates for
global reconstruction error, with a regularization parameter of A = 1e-3. The final compressed model
is instantiated by replacing the original MoE layers with a highly optimized custom module that
efficiently reconstructs expert outputs from the preserved sparse components and low-rank factors
during inference.

A.3 LAYER-WISE PARAMETER BUDGET

To achieve efficient compression, we leverage Mutual Information Neural Estimation (MINE) to
evaluate the redundancy of each MoE layer and dynamically allocate parameter budgets accord-
ingly. In principle, layers with higher mutual information are considered more redundant and are
thus assigned a smaller parameter budget. We compute the final budget allocation using a Quadratic
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Programming (QP) solver with a smoothness constraint. Figure [5] below illustrates the parameter
budget allocated by our method to each MoE layer under three different overall model sparsity ra-
tios (20%, 40%, and 60%). It clearly shows that the parameter budget allocation exhibits a complex,
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Figure 5: Parameter budget of each layer for Deepseek-MoE-16B-base.

fluctuating pattern, rather than a simple monotonic decrease with layer depth. For instance, there
are noticeable budget drops around layers 5 and 20, and a significant peak around layer 9. Impor-
tantly, this allocation pattern remains highly consistent across the different overall sparsity ratios,
demonstrating that our method can stably identify the relative importance of different layers within
the model. Meanwhile, as the overall sparsity ratio increases (from 0.2 to 0.6), the parameter budget
for all layers is reduced proportionally.

A.4 ANALYSIS OF SPARSITY AND LOW-RANK PROPERTIES IN EXPERTS FROM OTHER
LAYERS

In the main body of this paper (Figure [T), we demonstrated the activation peak distribution and
the low-rank property of the weight matrix for Expert 35 in Layer 27, which serves as the core
motivation for our RS-MoE method. To show that this is a general property within the model rather
than an isolated case, this appendix provides additional visual analyses from different layers and
experts.

These figures follow the same format as Figure 1: the top plot shows the maximum activation value
per dimension, sorted by peak, while the bottom plot displays the singular value spectrum of the
remaining weight matrix after removing 10% of dimensions with the highest activation peaks.

Figure[6} Analysis of activation sparsity and low-rank structure for Expert 21 in Layer 1. Consistent
with the observations in the main text, this expert also exhibits a clear activation sparsity pattern
(top plot), where a few dimensions have extremely high activation values while the rest remain at
a low level. After removing these high-activation dimensions, the singular values of the remaining
weights decay rapidly, indicating a strong low-rank property (bottom plot).

Figure [T} Analysis of activation sparsity and low-rank structure for Expert 59 in Layer 27. This
figure further confirms that even in the middle layers of the model, the expert weights generally
have a structure that can be decomposed into a combination of sparse and low-rank components.
This consistent pattern indicates that the underlying assumption of our method is robust.

15



Under review as a conference paper at ICLR 2026
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Figure 6: Sparsity and low-rank structure for Expert 21 in Layer 1.
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Layer 27, Expert 59
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Figure 7: Sparsity and low-rank structure for Expert 59 in Layer 27.
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