

000 RS-MOE: COLLABORATIVE COMPRESSION FOR 001 MIXTURE-OF-EXPERTS LLMs BASED ON LOW-RANK 002 AND SPARSE APPROXIMATION 003 004

006 **Anonymous authors**

007 Paper under double-blind review
008
009
010

011 ABSTRACT 012

013 Mixture-of-Experts (MoE) based Large Language Models (LLMs), despite their
014 computational efficiency, face significant storage and memory challenges, which
015 hinder their deployment on edge devices. However, existing methods primarily fo-
016 cus on compressing at the expert level, resulting in the loss of specialized knowl-
017 edge. To address these challenges, we propose a novel framework termed RS-
018 MoE, which compresses MoE models by collaboratively decomposing the weights
019 of each expert into low-rank and sparse components. Through a preliminary in-
020 vestigation of the relationship between activations and weights, we identified two
021 key observations: (i) a small fraction of weight dimensions, identifiable by high
022 activation peaks, are critical and can be treated as a sparse component, and (ii)
023 the remaining weights, after removing these high-importance dimensions, exhibit
024 an inherent low-rank structure. Building on this, we developed a comprehen-
025 sive importance score based on activation peaks to apply a tailored policy: high-
026 importance dimensions are sparsely preserved, while the remaining dimensions
027 are approximated using a low-rank representation. Additionally, ridge regression
028 and mutual information techniques are incorporated to further minimize errors.
029 We performed a comprehensive evaluation of RS-MoE on several MoE LLMs, in-
030 cluding DeepSeekMoE-16B-Base, Mixtral-8x7B, and Qwen3-30B-A3B. The re-
031 sults demonstrate that our approach consistently outperforms existing monolithic
032 sparse or low-rank methods across a variety of downstream tasks, highlighting its
033 superior effectiveness and generalizability.

034 1 INTRODUCTION 035

036 Large Language Models (LLMs) based on the Mixture-of-Experts (MoE) architecture (Cai et al.,
037 2025) offer an innovative approach to tackling issues associated with scaling models through sparse
038 activation (Kaplan et al., 2020), while maintaining comparable computational efficiency. Several
039 representative models, including DeepSeek-V3 (DeepSeek-AI et al., 2025), Mixtral-MoE (Jiang
040 et al., 2024b), and Qwen3-30B-A3B (Yang et al., 2025) have achieved outstanding performance
041 in translation, code generation, and question answering tasks, indicating the effectiveness of MoE
042 LLMs. However, the benefits of MoE’s computational efficiency can be offset by challenges such
043 as static storage overhead and memory access latency. It is becoming increasingly commonplace
044 in resource-constrained devices like edge devices (Zhong et al., 2025b), revealing the necessity for
045 MoE compression.

046 Several studies have focused on compression techniques to address the challenges mentioned above,
047 which can be mainly classified into two kinds: expert pruning and expert merging. Firstly, expert
048 pruning primarily achieves compression via removing redundant or low-importance experts from
049 the network. Methods such as MoE-I² (Yang et al., 2024), NAAE (Lu et al., 2024), and MoE-Pruner
050 (Xie et al., 2024) use different pruning strategies to assess the importance of each expert and perform
051 pruning. However, expert merging may result in significant performance degradation due to the loss
052 of specialized knowledge, especially at a high compression ratio. Secondly, expert merging identifies
053 similarities among experts to combine those that are highly similar. Techniques like MC-SMoE (Li
et al., 2024), HC-SMoE (Chen et al., 2025), and Sub-MoE (Li et al., 2025) merge expert weights via
weighting or clustering. Although expert merging preserves the model’s functional integrity, it might

054 dilute specialized expertise, leading to a degradation of overall performance. These drawbacks of
 055 existing methods prompt us to consider: **Is there a novel compression paradigm that can not only
 056 preserve the diversity of experts but also avoid damaging the integrity of each expert?**

057 The recent study leverages the sparsity of the
 058 input activations and the low-rank approximation
 059 of the weights to achieve low-loss inference
 060 acceleration (Zhang et al., 2025). Inspired
 061 by this approach, we aim to determine whether
 062 the weight matrix can be decomposed into its
 063 sparse and low-rank components to capture the
 064 essential information contained in the weights.
 065 However, identifying an appropriate basis for
 066 decomposing the weights presents an additional
 067 challenge. Another research suggests that only
 068 a small number of experts significantly influence
 069 the performance of the MoE (Su et al.,
 070 2025). Moreover, identifying these influential
 071 experts relies more on the intensity of their ac-
 072 tivation peaks rather than the magnitude of their
 073 weights or the frequency of their activations.
 074 Building upon this, we can access the impor-
 075 tance of each dimension of the expert and de-
 076 compose the weight into sparse and low-rank
 077 components according to the activation peaks.
 078 In order to validate this assumption, we exam-
 079 ine the expert’s distributions of activation peaks
 080 and the singular spectrum of the weight that is
 081 whitened by the input of the expert, as illus-
 082 trated in Figure 1. It becomes evident that the
 083 distributions of activation peaks can be divided
 084 into three categories: high importance, medium
 085 importance, and low importance. Otherwise, it
 086 can be observed that the energy of the weight
 087 matrix, with its high-importance components
 088 zeroed out, is concentrated in a few singular
 089 vectors, revealing a low-rank structure. To sum-
 090 marize, we can show that experts’ weights can
 091 be approximated using sparsity and low-rank
 092 decomposition without significantly degrading
 093 information.

094 Building upon this, We propose a novel collaborative compression strategy for MoE LLMs, termed
 095 **RS-MoE**, which is developed based on the coupling relationships among internal weights within
 096 experts. Specifically, by analyzing the interactions between activation vectors and weight vectors,
 097 we establish a direct dimensional mapping relationship. This mapping couples the corresponding di-
 098 mensions of the three weight matrices within experts through intermediate activations. By applying
 099 a unified compression strategy to these coupled dimensions, we effectively mitigate errors arising
 100 from spatial misalignment. The **main contributions** of this paper are summarized as follows:

- 101 • To preserve the functional integrity within MoE experts, we propose a novel collaborative
 102 framework that couples the corresponding dimensions of the three expert weights into a
 103 collaborative unit and performs the same compression strategy.
- 104 • To distinguish sparse components from low-rank components, we design a comprehensive
 105 importance score to evaluate the importance of each weight dimension. Dimensions with
 106 high importance are regarded as sparse components, while those with medium and low im-
 107 portance are classified as low-rank components using activation-aware SVD. Subsequently,
 108 ridge regression is applied to learn a shared base weight that compensates for the overall
 109 reconstruction error.

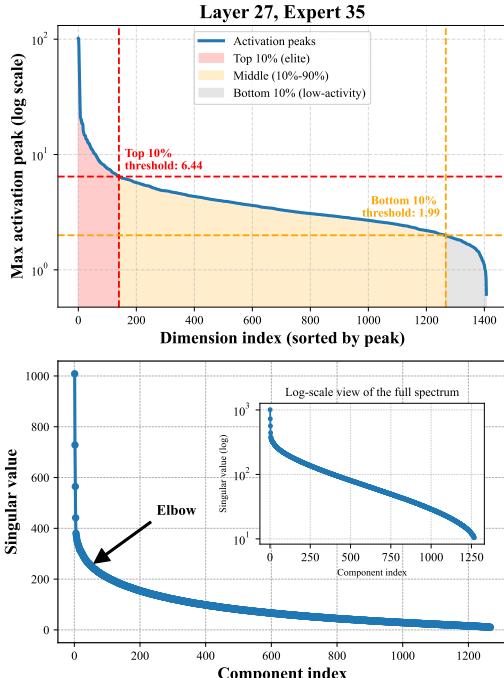


Figure 1: Analysis of Activation Sparsity and Low-Rank Structure. (Top) The sorted activation peaks reveal a sparse pattern where only a few dimensions are highly active. (Bottom) After pruning the top 10% of rows identified by these activations, the remaining weight matrix exhibits a strong low-rank property after activation-aware SVD. More detail can be found in Appendix A.4.

- 108 • To effectively allocate the sparsity ratio across layers, we estimate parameter redundancy in
109 each layer based on the mutual information of activations between adjacent layers, thereby
110 implementing a layer-aware compression strategy.
- 111 • To comprehensively evaluate the effectiveness of RS-MoE, we have conducted exten-
112 sive experiments on three representative MoE-based LLMs: DeepSeekMoE-16B-Base,
113 Mixtral-8×7B, and Qwen3-30B-A3B. The proposed RS-MoE demonstrates state-of-the-art
114 performance across a wide range of downstream tasks and sparsity rates. Notably, RS-MoE
115 exhibits significant advantages, particularly under high sparsity rates.

117 2 RELATED WORK

120 2.1 LARGE LANGUAGE MODELS COMPRESSION

122 LLMs require a tremendous amount of computational resources because of their parameter scale,
123 which limits their use on devices with restricted resources. In related research, many approaches
124 have been proposed to address LLMs’ high storage and computational demands. One common
125 method is model quantization, which reduces storage demands by converting model weights into
126 lower-bit representations (Dettmers et al., 2022; Frantar et al., 2022; Lin et al., 2024). Another ap-
127 proach is model pruning and sparsification, which removes redundant parameters while minimizing
128 performance degradation, thus refining the model structure (Ma et al., 2023; Frantar & Alistarh,
129 2023; Liu et al., 2023). Knowledge distillation is also a widely used technique for compressing
130 LLMs. It involves training a smaller “student” model to replicate the behavior of a larger “teacher”
131 model, enabling effective knowledge transfer (Acharya et al., 2024; Gu et al., 2025b). Otherwise,
132 low-rank decomposition is often used to reduce model complexity by factorizing weight matrices
133 and retaining their principal energy components (Wang et al., 2025c;a;b).

134 2.2 LOW-RANK AND SPARSE APPROXIMATION

136 Several studies have validated the effectiveness of low-rank approximation and sparsification for
137 model compression. First, the weights of LLMs are always over-parameterized, which means that
138 their intrinsic rank is usually lower than the original dimensions (Hu et al., 2022). Methods such
139 as SVD or projection can extract the principal components of weight matrices, allowing for the ap-
140 proximation of the matrix using a low-rank representation (Yu & Wu, 2023; Wang et al., 2025c). In
141 addition, sparsification methods identify and remove redundant weights to accelerate inference and
142 reduce computational costs (Sun et al., 2024), which are often based on activation strength. Nev-
143 ertheless, both techniques are limited: low-rank approximation can struggle to represent high-rank
144 or multi-modally distributed weights. At the same time, structured sparsification cannot maintain
145 model performance at high compression rates. Recently, some studies have explored the combina-
146 tion of low-rank and sparse representations to reduce the number of parameters while preserving
147 critical structural information (Li et al., 2023; Huang et al., 2025a;b). Nevertheless, LoSparse re-
148 quires expensive iterative retraining due to its additive decomposition. While SoLA is training-free,
149 it relies on simple activation norms that overlook the specific activation peaks critical for MoE ex-
150 perts. Furthermore, neither method addresses the structural coupling in SwiGLU-based experts. In
151 contrast, RS-MoE introduces a collaborative decomposition that preserves this functional alignment
152 and retains expert specialization without retraining.

153 3 METHODOLOGY

155 3.1 PRELIMINARIES

157 In this paper, we treat the compression of MoE LLMs as a layer-wise reconstruction problem, aim-
158 ing to minimize the adverse effects on the compressed output of each layer. Consider a typical
159 MoE architecture, where each block contains three types of linear layers: attention weights, gating
160 weights, and expert weights. Notably, the expert weights typically constitute over 90% of the entire
161 model’s parameters. Consequently, we only compress the expert weights to meet the overall sparsity
ratio in the experiment.

An expert is generally consist of three matrices: $\mathbf{W}_{up}, \mathbf{W}_{gate} \in \mathbb{R}^{m \times n}$ and $\mathbf{W}_{down} \in \mathbb{R}^{n \times m}$, where n and m respectively denote the dimension of model hidden and intermediate activations. The computational process of the expert can be expressed as: $Y = gH\mathbf{W}_{down}^\top$, where $H = X\mathbf{W}_{up}^\top \odot \sigma(X\mathbf{W}_{gate}^\top)$ and g represents the routing score assigned to the expert, as resolved by the gating network.

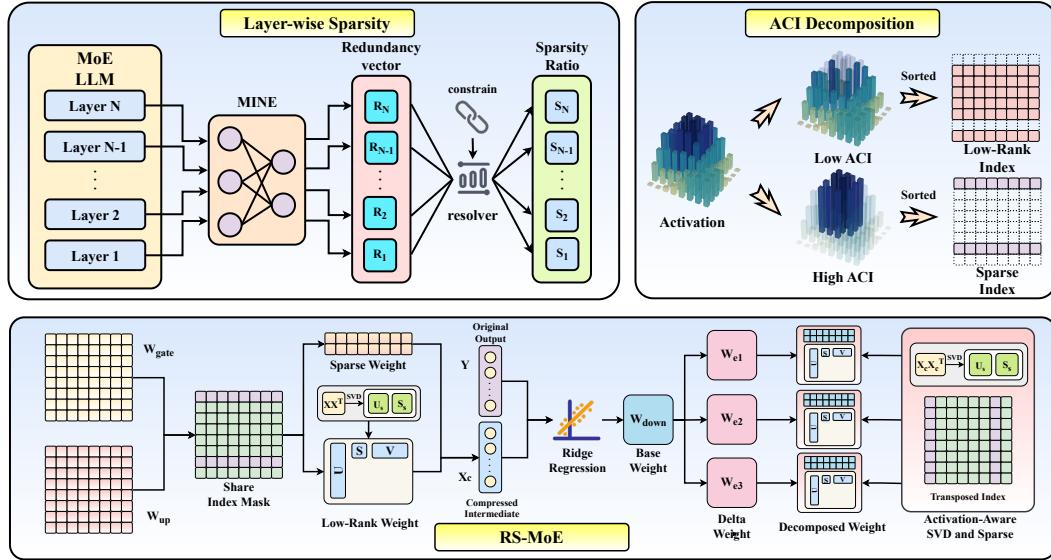


Figure 2: Overview of the RS-MoE. The process consists of three main steps: (1) Estimate mutual information to obtain layer-wise sparsity ratios. (2) Evaluate importance using Anomalous Contribution Integration, decompose weights into sparse and low-rank components. (3) Implement a tailored strategy to compress weights collaboratively.

3.2 THE RS-MOE FRAMEWORK: COLLABORATIVE DECOMPOSITION

The traditional MoE compression method often regards each expert as an independent entity when pruning or merging, which tends to destroy the complex relation inside the expert and cause severe knowledge loss. Therefore, as shown in Figure 2, we introduce a novel framework named RS-MoE, which treats the weights of experts as a coupled entity. This coupling is particularly evident in the SwiGLU architecture, which is widely adopted in MoE LLMs. As mentioned in the former section, the expert’s three weight matrices are directly mathematically linked via the intermediate activation H . Specifically, given an input vector $x \in \mathbb{R}^{1 \times n}$, the j -th component of the intermediate activation $h \in \mathbb{R}^{1 \times m}$ is exclusively determined by the j -th rows of the weight matrices $\mathbf{W}_{up}, \mathbf{W}_{gate} \in \mathbb{R}^{m \times n}$:

$$h_j = \sigma(x \cdot \mathbf{W}_{gate,j,:}) \odot (x \cdot \mathbf{W}_{up,j,:})$$

Subsequently, this activation vector H is projected by \mathbf{W}_{down} to produce the output. We can regard the output as a linear combination of the columns of \mathbf{W}_{down} with the elements of H serving as the coefficients.

$$Y = g \sum_{j=1}^m h_j \mathbf{W}_{down,:j}$$

Therefore, we can unfold the expert computation into a single summation over its intermediate dimensions:

$$Y = g \sum_{j=1}^m (\sigma(x \cdot \mathbf{W}_{gate,j,:}) \odot (x \cdot \mathbf{W}_{up,j,:})) \mathbf{W}_{down,:j}$$

Apparently, this equation indicates that the column j of \mathbf{W}_{down} directly connects to the row j of \mathbf{W}_{up} and \mathbf{W}_{gate} , establishing a collaborative unit. Building upon this, we further propose a tailored decomposition for fine-grained collaborative units based on their importance. We decompose each

216 weight into two components: (i) A sparse component, which preserves high-importance weight to
 217 ensure the integrity of the vital knowledge. (ii) A low-rank component, whose energy is concentrated
 218 in a few singular values, maintains the expressive capability with a small number of parameters. Our
 219 collaborative decomposition strategy preserves the essential part of expert knowledge, preventing
 220 information loss or blending.

222 3.3 ANOMALOUS CONTRIBUTION INTEGRATION

224 To accurately evaluate the importance of each collaborative unit and thereby differentiate between
 225 sparse and low-rank components, inspired by Su et al. (2025), we analyze the distribution of the in-
 226 termediate activations. As shown in Figure 1, the majority of activations are generally relatively low,
 227 while only a few dimensions of activations reveal anomalous peaks. These anomalous activations are
 228 usually related to an expert’s specific abilities. Traditional importance metrics, such as the \mathcal{L}_2 norm
 229 and mean values, only capture global average properties, resulting in an inaccurate characterization
 230 of an expert’s specialization. To address this challenge, we introduced the Anomalous Contribution
 231 Integration (ACI), which can comprehensively evaluate the importance of each collaborative unit
 232 from two perspectives: inner energy and downstream influence. Based on the H weighting by g , we
 233 utilize mean magnitude, magnitude variance, and peak magnitude to form a comprehensive score via
 234 a weighted sum. This score is then multiplied by the squared \mathcal{L}_2 -norm of the corresponding column
 235 in the \mathbf{W}_{down} to evaluate the dimension’s impact on the output collectively. Furthermore, as for
 236 downstream influence, we consider that an anomalous activation must have an impact on both the
 237 current layer and the next layer to ensure effective information delivery. Therefore, we approximate
 238 this by calculating a weighted alignment score between \mathbf{W}_{down} of the current expert and \mathbf{W}_{up} and
 239 \mathbf{W}_{gate} in the next layer. The entire ACI is weighted by both inner energy and downstream influence,
 240 creating a robust metric for evaluating the importance of each dimension. Algorithm 1 outlines the
 241 concrete pseudocode.

242 **Algorithm 1** ACI: importance scoring and global grouping

243 **Require:** For each expert e in E : activations $H^{(e)} \in \mathbb{R}^{N \times D}$, routing weights $r^{(e)} \in \mathbb{R}^N$, down
 244 weights $W_{down}^{(e)} \in \mathbb{R}^{H \times D}$; hyperparams $\gamma, w_{mean}, w_{var}, w_{peak}$; layer l
 245 1: $\mathcal{S}_{global} = \emptyset$
 2: **for** each expert e in layer l **do**
 3: $W_{act} \leftarrow H^{(e)} \cdot r^{(e)}$
 4: $S_{hyb} \leftarrow w_{mean} \text{mean}(|W_{act}|^2) + w_{var} \text{var}(|W_{act}|^2) + w_{peak} \max |W_{act}|$
 5: $E_{proj} \leftarrow \|\text{columns of } \mathbf{W}_{down}^{(e)}\|_2^2$
 6: $I_{inner} \leftarrow S_{hyb} \odot E_{proj}$
 7: $V_{out} \leftarrow (\mathbf{W}_{down}^{(e)})^\top$; $V_{in} \leftarrow \text{Concat}[(\mathbf{W}_{gate}^{(E^{l+1})} + \mathbf{W}_{up}^{(E^{l+1})})/2]$
 8: $A \leftarrow |V_{out} @ V_{in}^\top|$
 9: $I_{downstream} \leftarrow A @ \|\text{rows of } V_{in}\|_2$
 10: $I \leftarrow I_{inner} + \gamma \cdot \text{norm}(I_{downstream})$
 11: Append scores from e to \mathcal{S}_{global}
 12: **end for**
 13: **return** \mathcal{S}_{global}

261 3.4 LOW-RANK AND SPARSE APPROXIMATION

263 Based on the ACI score we calculate, we can globally rank all the dimensions and partition them into
 264 two groups: a high-importance group, corresponding to the sparse component, and the remaining
 265 dimensions, which are defined as the low-rank component. Each element is processed with a tailored
 266 compression strategy to preserve the crucial expertise.

267 **Sparse Component Preservation.** A few collaborative units identified as high-importance are con-
 268 sidered to store professional knowledge, which is crucial for the function of experts. Therefore, to
 269 prevent the loss of information, we regard the corresponding rows in \mathbf{W}_{up} and \mathbf{W}_{gate} and columns
 in \mathbf{W}_{down} as the sparse components, which are preserved in their original form.

270 **Low-rank Component Approximation.** As shown in Figure 1, after removing the sparse components and applying activation-aware SVD to the expert weights, we can observe that the energy of the matrices is concentrated in a few of the largest singular values. This provides strong evidence to perform a low-rank approximation for the remaining dimensions, rather than simply pruning. To enhance the effectiveness of compression, we adapt an activation-aware SVD method, which is proposed by Wang et al. (2025b).

271 First, we perform the eigenvalue decomposition on the Gram matrix from the activations X to extract the primary energy of the input features: $E, V = \text{EVD}(X^\top X)$. Using the eigenvectors and eigenvalues, we project the original weights \mathbf{W}_{lr} into activation space and perform SVD on it:

$$272 \quad U_w S_w V_w^\top = \text{SVD}(\mathbf{W}_{lr} V E^{\frac{1}{2}})$$

273 Subsequently, after retaining the top k singular values, we obtain the low-rank factors U_k, S_k , and V_k . Then, we reverse the initial transformation, projecting the weight back from the activation space:

$$274 \quad \mathbf{W}_{lr_svd} = U_k S_k V_k^\top E^{-\frac{1}{2}} V^\top$$

275 The final low-rank factors are represented as: $\mathbf{W}_{com} = U_k S_k$, $\mathbf{W}_{rec} = V_k^\top E^{-\frac{1}{2}} V^\top$. Moreover, drawing inspiration from D^2 -MoE (Gu et al., 2025a), we introduced incremental learning for \mathbf{W}_{down} and obtained a base matrix. In contrast, we adapt ridge regression with a regularization term to incorporate general knowledge and compensate for truncation errors, instead of relying on Fisher information. The objective function for the ridge regression is as follows:

$$276 \quad \mathcal{J}(\mathbf{B}) = \|Y - H_c \mathbf{B}^\top\|_F^2 + \lambda \|\mathbf{B}\|_F^2$$

277 where Y is the original output of the expert and H_c is the intermediate output of compressed \mathbf{W}_{gate} and \mathbf{W}_{up} . Here, $\|\cdot\|_F$ denotes the Frobenius norm, and λ is the regularization coefficient obtained via grid search.

294 3.5 MUTUAL INFORMATION-GUIDED LAYER COMPRESSION

295 Deep neural networks usually exhibit discrepancies in information redundancy across different layers. Shallow layers typically focus on extracting versatile local and low-level features with low redundancy. In contrast, deeper layers primarily produce high-level and abstract features that usually present higher redundancy. It makes them more suitable for compression. Several studies have shown that using a uniform compression ratio across all layers often results in performance degradation (Zhong et al., 2025a; Ding et al., 2025), which motivates the development of a layer-wise allocation method. To accurately evaluate layer-wise redundancy, we propose a method based on mutual information (MI) estimation. In our opinion, if the feature representation of a layer can be inferred from its adjacent layers, its unique contribution is limited, indicating information redundancy. Building upon this, we employ Mutual Information Neural Estimation (MINE) (Belghazi et al., 2018) to estimate mutual information via activation features, thereby capturing complex dependencies between different layers. The specific procedure is as follows: Firstly, we randomly sample some unlabeled texts and feed them into a pre-trained MoE LLMs to acquire the hidden states Y of each layer. We then process these features using masked pooling to obtain the feature encoding z_i^l , which represents the i -th input sample at layer l . Next, by constructing joint samples (z_k^i, z_k^j) and marginal samples (z_k^i, z_m^j) , we train an MINE $T(\cdot, \cdot; \theta)$ to approximate the Donsker-Varadhan lower bound for each pair of adjacent layers $(l, l+1)$, thereby estimating the MI between them. The MINE is optimized via the following loss function:

$$296 \quad \mathcal{L}(\theta) = - \left(\mathbb{E}_{P(Z^l, Z^{l+1})} [T(z^l, z^{l+1}; \theta)] - \log(\mathbb{E}_{P(Z^l)P(Z^{l+1})} [e^{T(z^l, z^{l+1}; \theta)}]) \right)$$

297 where $\mathbb{E}_{P(Z^l, Z^{l+1})}$ and $\mathbb{E}_{P(Z^l)P(Z^{l+1})}$ denote the expectations under the joint and marginal distribution of the layer activations, respectively. Furthermore, we define a redundancy score vector $\mathbf{R} = [R_1, R_2, \dots, R_n]$ and calculate the score of each layer by average the mutual information with its neighbors. Finally, we formulate a constrained optimization problem to obtain the save ratio s_l of each layer, aiming to minimize an objective function that balances fidelity to the redundancy scores with inter-layer smoothness. The objective function is defined as follows:

$$298 \quad L(\mathbf{s}) = L_{\text{fidelity}}(\mathbf{s}) + \lambda_{\text{smooth}} \cdot L_{\text{smooth}}(\mathbf{s}) + \lambda_{\text{reg}} \cdot L_{\text{reg}}(\mathbf{s})$$

299 where λ_{smooth} and λ_{reg} are hyperparameters which control the smoothness and regularization penalties, respectively. Due to the constraints on the global average sparsity ratio and per-layer bounds, we adapt Quadratic Programming to solve this objective function.

324 4 EXPERIMENTS

326 In this section, we evaluate our proposed RS-MoE across multiple tasks and compare it with many
 327 state-of-the-art MoE compression methods. Additionally, we also conduct ablation studies to ana-
 328 lyze the contribution of each component.

331 Ratio	332 Method	333 Wiki.	334 PTB	335 C4	336 ARC-e	337 HellaS.	338 Math.	339 Openb.	340 PIQA	341 WinoG.	342 Avg.
Deepseek-MoE-16B-base											
333 0%	334 Original	335 6.51	336 9.74	337 10.20	338 0.77	339 0.58	340 0.32	341 0.33	342 0.79	343 0.72	344 0.59
334 20%	NAEE	7.58	13.73	14.01	0.71	0.55	0.29	0.32	0.77	0.67	0.55
	D^2 -MoE	7.02	11.56	12.62	0.74	0.54	0.31	0.30	0.75	0.69	0.56
	RS-MoE	6.74	10.42	11.28	0.76	0.56	0.32	0.33	0.77	0.71	0.58
337 40%	NAEE	8.57	14.41	18.12	0.67	0.41	0.26	0.23	0.70	0.67	0.49
	D^2 -MoE	8.30	14.58	17.64	0.69	0.45	0.27	0.26	0.72	0.65	0.51
	RS-MoE	8.15	13.26	14.93	0.67	0.48	0.28	0.28	0.73	0.68	0.52
340 60%	NAEE	19.08	35.92	38.11	0.49	0.33	0.23	0.18	0.61	0.57	0.40
	D^2 -MoE	12.25	27.79	30.76	0.54	0.34	0.24	0.20	0.63	0.60	0.43
	RS-MoE	9.95	18.29	22.52	0.59	0.40	0.26	0.26	0.68	0.65	0.47
Mixtral-8x7B											
344 0%	345 Original	346 3.98	347 14.56	348 7.14	349 0.84	350 0.65	351 0.41	352 0.36	353 0.82	354 0.76	355 0.64
345 20%	NAEE	4.72	16.84	9.11	0.77	0.60	0.40	0.32	0.78	0.72	0.60
	D^2 -MoE	4.67	16.52	8.96	0.80	0.61	0.39	0.32	0.81	0.75	0.61
	RS-MoE	4.70	16.49	8.52	0.81	0.62	0.39	0.33	0.80	0.75	0.62
348 40%	NAEE	6.51	21.83	13.97	0.63	0.48	0.35	0.25	0.72	0.64	0.51
	D^2 -MoE	5.97	21.66	11.87	0.78	0.54	0.33	0.29	0.77	0.71	0.57
	RS-MoE	5.83	18.23	12.54	0.78	0.56	0.33	0.30	0.78	0.70	0.58
351 60%	NAEE	10.84	35.23	24.17	0.51	0.38	0.27	0.19	0.62	0.58	0.43
	D^2 -MoE	7.83	26.73	15.85	0.68	0.50	0.29	0.27	0.71	0.69	0.52
	RS-MoE	7.74	23.43	15.36	0.71	0.51	0.31	0.26	0.71	0.67	0.53
Qwen3-30B-A3B											
355 0%	356 Original	357 8.65	358 13.41	359 13.17	360 0.78	361 0.69	362 0.58	363 0.42	364 0.79	365 0.70	366 0.66
356 20%	NAEE	8.95	14.18	13.77	0.76	0.68	0.51	0.42	0.78	0.69	0.64
	D^2 -MoE	9.12	17.64	18.28	0.73	0.64	0.49	0.41	0.76	0.66	0.62
	RS-MoE	8.87	13.93	13.36	0.77	0.68	0.53	0.42	0.79	0.67	0.64
359 40%	NAEE	10.07	15.28	14.93	0.70	0.63	0.44	0.40	0.75	0.65	0.60
	D^2 -MoE	14.47	26.58	21.72	0.67	0.59	0.40	0.37	0.72	0.62	0.56
	RS-MoE	9.48	15.10	15.05	0.71	0.65	0.44	0.39	0.77	0.66	0.60
362 60%	NAEE	13.76	19.22	20.01	0.65	0.58	0.35	0.34	0.70	0.60	0.54
	D^2 -MoE	21.76	38.84	36.55	0.60	0.52	0.33	0.29	0.65	0.58	0.50
	RS-MoE	13.56	20.17	20.12	0.63	0.60	0.39	0.34	0.71	0.61	0.55

365 Table 1: Performance comparison of RS-MoE on three mainstream MoE models, with the original
 366 model included as a baseline. The best results are marked in bold.

369 4.1 GENERAL SETUP

371 **Models and Datasets.** To assess the effectiveness of our RS-MoE, we conduct comprehensive ex-
 372 periments on three open-source MoE LLMs: DeepSeekMoE-16B-Base (Dai et al., 2024), Qwen3-
 373 30B-A3B (Yang et al., 2025), and Mixtral-8x7B (Jiang et al., 2024a). Regarding datasets, we eval-
 374 uated our method for two types of tasks: (1) language modeling tasks, including WikiText2 (Merity
 375 et al., 2017), PTB (Marcus et al., 1993), and C4 (Raffel et al., 2020), which are evaluated by perplex-
 376 ity. (2) downstream tasks, including ARC-easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019),
 377 MathQA (Amini et al., 2019), OpenbookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), and
 378 WinoGrande (Sakaguchi et al., 2020), which are evaluated by accuracy.

378 **Baseline.** We conducted comparative experiments with three other state-of-the-art methods for MoE
 379 compression, including NAAE (Lu et al., 2024), MoE-I² (Yang et al., 2024) and D^2 -MoE (Gu et al.,
 380 2025a).

381 **Implementation details.** For all experiments, we randomly sampled 128 samples from the Wiki-
 382 text2 datasets, which are truncated to a sequence length of 2048 tokens. All experiments were
 383 performed on NVIDIA A800 GPUs. Further details can be found in Appendix A.2.

385 4.2 MAIN RESULTS

386 As shown in Table 1, we conducted a comprehensive comparison of our RS-MoE against three state-
 387 of-the-art methods under different sparsity ratios. Experimental results demonstrate that RS-MoE
 388 achieves outstanding performance across different baselines, tasks, and sparsity ratios. In particular,
 389 under a 20% sparsity ratio, RS-MoE achieves a perplexity (PPL) of 9.48 in language modeling tasks
 390 and a downstream task accuracy of 58% with Deepseek-MoE-16B-base, surpassing other methods.
 391 Notably, as the sparsity ratio increases, the performance of our method becomes more remarkable
 392 than that of other methods. For instance, when the sparsity ratio increases from 20% to 60%, the
 393 performance degradation of RS-MoE increases from 2% to 20%, whereas that of D^2 -MoE escalates
 394 from 3.5% to 27%. This strong performance extends to larger models. For the Qwen3-30B-A3B
 395 at 20% sparsity, RS-MoE attains a PPL of 8.87, nearly matching the original model’s 8.65, while
 396 maintaining a competitive accuracy of 64%.

397 4.3 ABLATION STUDY

401 **Collaborative Decomposition.** To further validate the effectiveness of our collaborative decom-
 402 position, we calculate the ACI of \mathbf{W}_{gate} , \mathbf{W}_{up} , and \mathbf{W}_{down} independently. As shown in Table 2,
 403 under different compression ratios, the perplexity and precision of our collaborative decomposition
 404 always perform better than compressing each matrix independently. The result demonstrates that
 405 our framework effectively leverages the correlations among expert matrices, thereby reducing the
 406 parameters while minimizing the loss of local information.

407 Ratio	408 Method	409 Wiki.	410 PTB	411 C4	412 ARC-e	413 HellaS.	414 Math.	415 Openb.	416 PIQA	417 WinoG.	418 Avg.
409 0%	410 Original	411 6.51	412 9.74	413 10.20	414 0.77	415 0.58	416 0.32	417 0.33	418 0.79	419 0.72	420 0.59
410 20%	411 Independence	412 7.17	413 11.13	414 12.03	415 0.74	416 0.54	417 0.31	418 0.33	419 0.77	420 0.70	421 0.57
	411 Collaboration	412 6.74	413 10.42	414 11.28	415 0.76	416 0.56	417 0.32	418 0.33	419 0.77	420 0.71	421 0.58
410 40%	411 Independence	412 8.38	413 13.70	414 15.42	415 0.66	416 0.47	417 0.26	418 0.27	419 0.70	420 0.67	421 0.51
	411 Collaboration	412 8.15	413 13.26	414 14.93	415 0.67	416 0.48	417 0.28	418 0.28	419 0.73	420 0.68	421 0.52
410 60%	411 Independence	412 10.97	413 19.36	414 23.91	415 0.58	416 0.39	417 0.24	418 0.21	419 0.66	420 0.64	421 0.45
	411 Collaboration	412 9.95	413 18.29	414 22.52	415 0.59	416 0.40	417 0.26	418 0.26	419 0.68	420 0.65	421 0.47

417 Table 2: Performance comparison between collaborative decomposition and independent decom-
 418 position based on DeepSeekMoE-16B-Base, with the original model included as a baseline. The best
 419 results are marked in bold.

421 **Layerwise Sparsity Allocation.** We investigate the effects of layerwise sparsity on model perfor-
 422 mance. Specifically, we adjust the parameters of different layers to maintain a fixed sparsity ratio.
 423 Table 3 reveals the result with a different proportion. It can be observed that our method, which
 424 assigns lower sparsity to lower layers and higher sparsity to higher layers, outperforms both uniform
 425 allocation and the inverse strategy (i.e., higher sparsity for lower layers, lower sparsity for higher
 426 layers).

427 **Effectiveness of Sparse and Low-Rank Components.** Table 4 compares RS-MoE with struc-
 428 tured pruning, standard SVD, and activation-aware SVD. To ensure a fair comparison, a consistent
 429 workflow was applied to all methods, resulting in a 60% compression ratio on the Deepseek-MoE-
 430 16B-base. The experimental results reveal that RS-MoE consistently outperforms structured pruning
 431 strategies, reducing the PPL by approximately 10%. Additionally, the activation-aware SVD out-
 432 performs the Standard SVD because it contains feature information.

432

433 Table 3: Results of different sparsity allocation.

Strategy	WikiText-2	PTB	C4	Average
Uniform	8.12	13.59	15.20	12.30
Reverse	8.10	13.94	15.46	12.50
RS-MoE	8.15	13.26	14.93	12.11

434

435

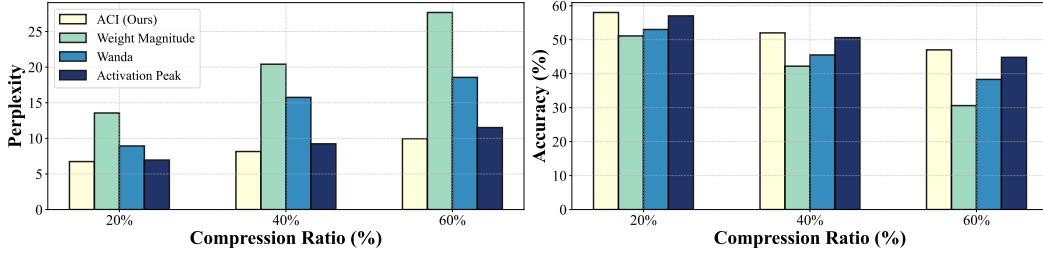
Methods	WikiText-2	PTB	C4	Average
Original	6.51	9.74	10.20	8.82
Pruning	10.27	19.71	24.59	18.19
Standard SVD	10.23	19.37	24.10	17.90
RS-MoE	9.95	18.29	22.52	16.92

436

437

438

439



440

441

442

443

444

445

446

447

448

449

450

451

452

453 **Comparison of Grouping Metrics.** We show the impact of different grouping metrics on the LLM’s

454 perplexity in Figure 3. The evaluation was conducted across various sparsity ratios, comparing

455 four metrics: ACI, weight magnitude, activation magnitude (as used in Wanda (Sun et al., 2024)),

456 and activation peak. It can be concluded that ACI can effectively identify the critical parts of the

457 weights, resulting in a decrease in compression error. For instance, the PPL of ACI is about 17

458 points lower than that of the common weight magnitude method. Compared to the simple activation

459 peak, it remains approximately 20% lower. Otherwise, as the sparsity increases, the benefit of ACI

460 is particularly pronounced.

461 **Robustness to Calibration Samples.** We at-

462 tempt a different number of calibration samples,

463 ranging from 8 to 256. As revealed in Figure 4,

464 compared with the D^2 -MoE, RS-MoE is more ro-

465 bust when only a few calibration samples are pro-

466 vided.

467 **Base Weight Construction.** In this experiment,

468 we validate the effectiveness of the proposed

469 method for constructing the base matrix, which is

470 based on ridge regression. Table 5 compared our

471 method with the following merging approaches:

472 Fisher merging (Matena & Raffel, 2022), fre-

473 quency merging, mean value merging, TIES (Ya-

474 dav et al., 2023) and PCB (Du et al., 2024). Obvi-

475 ously, although both Fisher merging (PPL 18.31)

476 and frequency merging (PPL 23.03) achieve high

477 performance, the ridge regression approach more effectively compensates for the error between the

478 actual and compressed outputs, achieving superior performance (PPL 16.92).

479

Table 5: Results of different Base Weights.

Methods	WikiText-2	PTB	C4	Average
Mean	13.74	30.18	35.83	26.58
Frequency	12.83	26.54	29.72	23.03
PCB	17.85	39.56	46.94	34.78
TIES	23.38	51.64	71.27	48.76
Fisher	10.34	19.75	24.84	18.31
Ours	9.95	18.29	22.52	16.92

Table 4: Comparison of compression strategies

Methods	WikiText-2	PTB	C4	Average
Original	6.51	9.74	10.20	8.82
Pruning	10.27	19.71	24.59	18.19
Standard SVD	10.23	19.37	24.10	17.90
RS-MoE	9.95	18.29	22.52	16.92

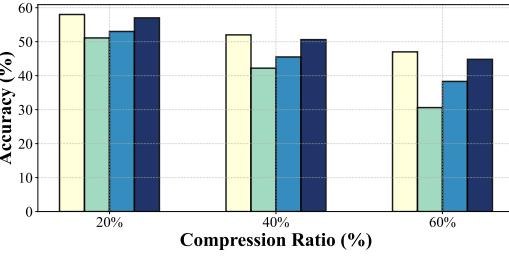


Figure 4: Impact of calibration samples.

Table 6: Efficiency analysis of RS-MoE

Ratio	Cost of Time (ms)		
	Deepseek	Mixtral	Qwen
0%	2.11	43.99	1.22
20%	1.99 (1.06×)	33.19 (1.33×)	1.24 (0.98×)
40%	1.43 (1.48×)	25.96 (1.69×)	1.07 (1.14×)
60%	1.14 (1.85×)	17.67 (2.49×)	0.65 (1.88×)

486
487

4.4 EFFICIENCY ANALYSIS

488
489
490
491
492
493
494
495

Each expert network consists of three components: \mathbf{W}_{gate} , \mathbf{W}_{up} and \mathbf{W}_{down} . We selected a sequence length of 2048 to measure the latency of matrix multiplication for three models at various compression rates, both before and after decomposition. Table 6 presents the average time consumption in milliseconds and the corresponding speedup ratios after 500 iterations. For Mixtral-8x7B, RS-MoE accelerates the matrix multiplication speed by $1.33\times$ at a 20% compression ratio. This speedup further increases to $2.49\times$ at a 60% compression ratio. The result demonstrates that RS-MoE effectively accelerates computation by replacing weight matrices with smaller ones and leveraging existing hardware capabilities. More details can be found in Appendix A.5.

496
497

5 CONCLUSION

498

499
500
501
502
503
504
505
506
507
508
509
510
511

In this paper, we introduce RS-MoE, a novel compression framework tailored for MoE LLMs, specifically designed to mitigate the substantial storage and memory challenges inherent to these models. Our approach is built upon the key observation that an expert’s weights can be collaboratively decomposed into two components: a sparse component capturing critical, specialized knowledge, and a low-rank component representing more general features. By leveraging the sparse structure within intermediate activation peaks, our method collaboratively decomposes the expert weights into these sparse and low-rank components, thus maintaining the integrity and specialized functionality of each expert. Our framework systematically integrates several techniques to achieve efficient and performance-preserving compression. These include a comprehensive importance score (ACI) based on activation peaks to guide the decomposition, a mutual information-based strategy for layer-wise sparsity allocation, and activation-aware SVD combined with ridge regression to minimize reconstruction errors. Extensive experiments on models such as Deepseek-MoE-16B-base, Mixtral-8x7B, and Qwen3-30B-A3B demonstrate that RS-MoE consistently outperforms state-of-the-art methods across various downstream tasks, especially at high compression ratios.

512

513
514

ETHICS STATEMENT

515
516
517
518
519

This research strictly adheres to the ICLR Code of Ethics. The research process involved no human or animal experiments, and no personally identifiable information was used. All datasets were handled in compliance with their terms of use and privacy policies. We are committed to mitigating bias and discrimination in our methodology and ensuring the transparency and integrity of our work.

520
521

REPRODUCIBILITY STATEMENT

522

523
524
525
526
527

To ensure our results are fully reproducible, we have included our code in the supplementary materials. This paper provides a detailed description of the experimental setup, covering model configurations, training procedures, and the hardware environment. To facilitate replication, a comprehensive explanation of our core contribution is also included. Our evaluation process relies on public datasets, such as WikiText2, to ensure consistent benchmarking.

528

529

REFERENCES

530

531
532

Kamal Acharya, Alvaro Velasquez, and Houbing Herbert Song. A survey on symbolic knowledge distillation of large language models. *IEEE Trans. Artif. Intell.*, 5(12):5928–5948, 2024.

533
534
535
536
537

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based formalisms. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)*, pp. 2357–2367. Association for Computational Linguistics, 2019.

538
539

Ishmael Belghazi, Sai Rajeswar, Aristide Baratin, R. Devon Hjelm, and Aaron C. Courville. MINE: mutual information neural estimation. *CoRR*, abs/1801.04062, 2018.

540 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
 541 about physical commonsense in natural language. In *The Thirty-Fourth AAAI Conference on*
 542 *Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelli-*
 543 *gence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial*
 544 *Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020*, pp. 7432–7439. AAAI Press,
 545 2020.

546 Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
 547 mixture of experts in large language models. *IEEE Transactions on Knowledge and Data Engi-*
 548 *neering*, pp. 1–20, 2025. ISSN 2326-3865.

549

550 I-Chun Chen, Hsu-Shen Liu, Wei-Fang Sun, Chen-Hao Chao, Yen-Chang Hsu, and Chun-Yi Lee.
 551 Retraining-free merging of sparse moe via hierarchical clustering, 2025.

552 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 553 Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
 554 *CoRR*, abs/1803.05457, 2018.

555

556 Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
 557 Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong
 558 Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization
 559 in mixture-of-experts language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
 560 (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*
 561 (*Volume 1: Long Papers*), *ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 1280–1297.
 562 Association for Computational Linguistics, 2024.

563

564 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, et al. Deepseek-v3
 565 technical report, 2025.

566

567 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
 568 plication for transformers at scale. *CoRR*, abs/2208.07339, 2022.

569

570 Xuan Ding, Rui Sun, Yunjian Zhang, Xiu Yan, Yueqi Zhou, Kaihao Huang, Suzhong Fu, Chuanlong
 571 Xie, and Yao Zhu. Dipsvd: Dual-importance protected svd for efficient llm compression. *arXiv*
 572 preprint *arXiv:2506.20353*, 2025.

573

574 Guodong Du, Junlin Lee, Jing Li, Runhua Jiang, Yifei Guo, Shuyang Yu, Hanting Liu, Sim Kuan
 575 Goh, Ho-Kin Tang, Daojing He, and Min Zhang. Parameter competition balancing for model
 576 merging. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*
 577 (*NeurIPS*), 2024.

578

579 Elias Frantar and Dan Alistarh. Sparsegt: Massive language models can be accurately pruned
 580 in one-shot. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
 581 Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023,*
 582 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of *Proceedings of Machine Learning Re-*
 583 *search*, pp. 10323–10337. PMLR, 2023.

584

585 Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: accurate post-training
 586 quantization for generative pre-trained transformers. *CoRR*, abs/2210.17323, 2022.

587

588 Hao Gu, Wei Li, Lujun Li, Zhu Qiyuan, Mark G. Lee, Shengjie Sun, Wei Xue, and Yike Guo. Delta
 589 decompression for MoE-based LLMs compression. In *Proceedings of the 41th International*
 590 *Conference on Machine Learning, ICML 2025*, 2025a.

591

592 Yuxian Gu, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Miniplm: Knowledge distil-
 593 lation for pre-training language models. In *The Thirteenth International Conference on Learning*
 594 *Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025b.

595

596 Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
 597 Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In *Proceedings of the*
 598 *29th International Conference on Neural Information Processing Systems - Volume 1*, NIPS’15,
 599 pp. 1693–1701, Cambridge, MA, USA, 2015. MIT Press.

594 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 595 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *The Tenth Interna-*
 596 *tional Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.*
 597 OpenReview.net, 2022.

598 Weizhong Huang, Yuxin Zhang, Xiaowu Zheng, Yang Liu, Jing Lin, Yiwu Yao, and Rongrong Ji.
 599 Dynamic low-rank sparse adaptation for large language models. In *The Thirteenth Interna-*
 600 *tional Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.* OpenRe-
 601 view.net, 2025a.

602 Xinhao Huang, You-Liang Huang, and Zeyi Wen. Sola: Leveraging soft activation sparsity and
 603 low-rank decomposition for large language model compression. In Toby Walsh, Julie Shah, and
 604 Zico Kolter (eds.), *AAAI-25, Sponsored by the Association for the Advancement of Artificial In-*
 605 *telligence, February 25 - March 4, 2025, Philadelphia, PA, USA*, pp. 17494–17502. AAAI Press,
 606 2025b.

607 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
 608 Bamford, Devendra Singh Chaplot, Diego de Las Casas, Emma Bou Hanna, Florian Bressand, Gi-
 609 anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
 610 Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
 611 Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
 612 Mixtral of experts. *CoRR*, abs/2401.04088, 2024a.

613 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
 614 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
 615 anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
 616 Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
 617 Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
 618 Mixtral of experts, 2024b.

619 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 620 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 621 models, 2020.

622 Lujun Li, Zhu Qiyuan, Jiacheng Wang, Wei Li, Hao Gu, Sirui Han, and Yike Guo. Sub-moe:
 623 Efficient mixture-of-expert llms compression via subspace expert merging, 2025.

624 Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong
 625 Chen. Merge, then compress: Demystify efficient smoe with hints from its routing policy. In *The*
 626 *Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May*
 627 *7-11, 2024.* OpenReview.net, 2024.

628 Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
 629 Losparse: Structured compression of large language models based on low-rank and sparse ap-
 630 proximation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
 631 Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023,*
 632 *23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Re-*
 633 *search*, pp. 20336–20350. PMLR, 2023.

634 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization*
 635 *Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
 636 tics.

637 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Guangxuan Xiao, and Song Han. AWQ: activation-
 638 aware weight quantization for on-device LLM compression and acceleration. *GetMobile Mob.*
 639 *Comput. Commun.*, 28(4):12–17, 2024.

640 Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
 641 Ce Zhang, Yuandong Tian, Christopher Ré, and Beidi Chen. Deja vu: Contextual sparsity for
 642 efficient llms at inference time. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
 643 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine*
 644 *Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of*
 645 *Machine Learning Research*, pp. 22137–22176. PMLR, 2023.

648 Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
 649 Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large
 650 language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of*
 651 *the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 652 *Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 6159–6172. Association for
 653 Computational Linguistics, 2024.

654 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
 655 language models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
 656 and Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Con-*
 657 *ference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,*
 658 *December 10 - 16, 2023*, 2023.

659 Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
 660 corpus of english: The penn treebank. *Comput. Linguistics*, 19(2):313–330, 1993.

662 Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging. In Sanmi
 663 Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in*
 664 *Neural Information Processing Systems 35: Annual Conference on Neural Information Process-*
 665 *ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*,
 666 2022.

667 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 668 models. In *5th International Conference on Learning Representations, ICLR 2017, Toulon,*
 669 *France, April 24-26, 2017, Conference Track Proceedings*. OpenReview.net, 2017.

671 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 672 electricity? A new dataset for open book question answering. In Ellen Riloff, David Chiang,
 673 Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical*
 674 *Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018*,
 675 pp. 2381–2391. Association for Computational Linguistics, 2018.

676 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 677 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 678 transformer. *J. Mach. Learn. Res.*, 21:140:1–140:67, 2020.

680 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An ad-
 681 versarial winograd schema challenge at scale. In *The Thirty-Fourth AAAI Conference on Artifi-*
 682 *cial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence*
 683 *Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial In-*
 684 *telligence, EAAI 2020, New York, NY, USA, February 7-12, 2020*, pp. 8732–8740. AAAI Press,
 685 2020.

686 Zunhai Su, Qingyuan Li, Hao Zhang, YuLei Qian, Yuchen Xie, and Kehong Yuan. Unveiling super
 687 experts in mixture-of-experts large language models, 2025.

689 Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
 690 for large language models. In *The Twelfth International Conference on Learning Representations*,
 691 *ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.

692 Qinsi Wang, Jinghan Ke, Masayoshi Tomizuka, Kurt Keutzer, and Chenfeng Xu. Dobi-svd: Differ-
 693 entiable SVD for LLM compression and some new perspectives. In *The Thirteenth International*
 694 *Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenRe-
 695 view.net, 2025a.

697 Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, and Mi Zhang. SVD-LLM V2: optimizing
 698 singular value truncation for large language model compression. In Luis Chiruzzo, Alan Ritter,
 699 and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter*
 700 *of the Association for Computational Linguistics: Human Language Technologies, NAACL 2025 -*
 701 *Volume 1: Long Papers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025*, pp. 4287–4296.
 Association for Computational Linguistics, 2025b.

702 Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: truncation-aware singular value
 703 decomposition for large language model compression. In *The Thirteenth International Conference*
 704 *on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025c.
 705

706 Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang Song, Xin Liu, Yanzhi Wang, Xue Lin, and
 707 An Xu. Moe-pruner: Pruning mixture-of-experts large language model using the hints from its
 708 router, 2024.

709 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A. Raffel, and Mohit Bansal. Ties-merging:
 710 Resolving interference when merging models. In Alice Oh, Tristan Naumann, Amir Globerson,
 711 Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing*
 712 *Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,*
 713 *New Orleans, LA, USA, December 10 - 16, 2023*, 2023.

714 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, et al. Qwen3 techni-
 715 cal report, 2025.

716 Cheng Yang, Yang Sui, Jinqi Xiao, Lingyi Huang, Yu Gong, Yuanlin Duan, Wenqi Jia, Miao Yin,
 717 Yu Cheng, and Bo Yuan. MoE-i²: Compressing mixture of experts models through inter-expert
 718 pruning and intra-expert low-rank decomposition. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
 719 Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp.
 720 10456–10466, Miami, Florida, USA, November 2024. Association for Computational Linguis-
 721 tics.

722 Hao Yu and Jianxin Wu. Compressing transformers: features are low-rank, but weights are not!
 723 In *Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth*
 724 *Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on*
 725 *Educational Advances in Artificial Intelligence, AAAI’23/IAAI’23/EAAI’23*. AAAI Press, 2023.
 726 ISBN 978-1-57735-880-0.

727 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 728 chine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluís Màrquez (eds.),
 729 *Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019,*
 730 *Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers*, pp. 4791–4800. Association for
 731 Computational Linguistics, 2019.

732 Zhenyu Zhang, Zechun Liu, Yuandong Tian, Harshit Khaitan, Zhangyang Wang, and Steven Li.
 733 R-sparse: Rank-aware activation sparsity for efficient LLM inference. In *The Thirteenth Inter-
 734 national Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*.
 735 OpenReview.net, 2025.

736 Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. Blockpruner: Fine-
 737 grained pruning for large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
 738 and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics,*
 739 *ACL 2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 5065–5080. Association for Compu-
 740 tational Linguistics, 2025a.

741 Shuzhang Zhong, Ling Liang, Yuan Wang, Runsheng Wang, Ru Huang, and Meng Li. *AdapMoE:*
 742 *Adaptive Sensitivity-based Expert Gating and Management for Efficient MoE Inference*. Associa-
 743 tion for Computing Machinery, New York, NY, USA, 2025b. ISBN 9798400710773.

744 A APPENDIX

745 A.1 STATEMENT ON LLM USAGE

746 In accordance with the ICLR 2026 policies concerning the utilization of LLMs, it is hereby disclosed
 747 that the exclusive function of LLMs in this work was to provide writing assistance in the preparation
 748 of this manuscript. Specifically, we employed Gemini exclusively for language polishing, including
 749 improving grammatical accuracy and enhancing sentence clarity and readability.

756 It is emphasized that all research ideas, methodologies, experimental designs, and scientific contributions
 757 presented in this paper are original work by the authors. The experimental results, data analysis,
 758 and conclusions were produced entirely by the authors without any assistance from an LLM. The utilization of Gemini was strictly constrained to enhancing the linguistic exposition of
 759 our research findings, without impacting or contributing to the technical content or scientific merit
 760 of this work.

761 The authors accept full responsibility for all content presented in this submission, including the
 762 accuracy of all claims, the validity of experimental results, and the appropriateness of conclusions
 763 drawn.

764 A.2 IMPLEMENTATION DETAIL

765 In this section, we provide the detailed implementation of our RS-MoE framework to ensure the
 766 reproducibility of our experiments.

767 All experiments were conducted on NVIDIA A800 GPUs using core libraries such as PyTorch,
 768 Transformers, and Datasets. We utilized the `torch.bfloat16` data type for all model weights and
 769 computations to strike a balance between precision and efficiency.

770 **Calibration and Feature Collection.** For all models, we performed calibration using 128 samples
 771 randomly selected from the Wikitext2 training dataset, with the random seed set to 42 for consistency.
 772 Each sample was truncated to a sequence length of 2048 tokens.

773 **Anomalous Contribution Integration (ACI).** The ACI score, which is central to our method, is
 774 calculated with specific hyperparameters to identify critical collaborative units robustly. The score is
 775 a composite of inner energy and downstream influence. The inner energy component is a weighted
 776 sum of normalized mean energy ($w_{mean} = 0.4$), variance of energy ($w_{var} = 0.05$), and peak
 777 activation magnitude ($w_{peak} = 0.8$). The downstream influence, which measures the alignment
 778 with subsequent layers, is incorporated with a weighting factor of $\gamma = 0.05$. These parameters were
 779 determined through empirical validation to distinguish specialized knowledge from general features
 780 effectively.

781 **Low-Rank and Sparse Approximation.** Our collaborative decomposition strategy is guided by
 782 the ACI scores and a layer-wise sparsity ratio derived from Mutual Information Neural Estimation
 783 (MINE). High-importance units are preserved in their original form. Medium-importance units
 784 undergo activation-aware SVD, where the rank is dynamically determined based on the allocated
 785 parameter budget for that expert group, aiming to retain essential information while maximizing
 786 compression. Low-importance units are structurally pruned by setting their corresponding weights to
 787 zero. For the \mathbf{W}_{down} , we employ ridge regression to learn a shared base weight that compensates for
 788 global reconstruction error, with a regularization parameter of $\lambda = 1e-3$. The final compressed model
 789 is instantiated by replacing the original MoE layers with a highly optimized custom module that
 790 efficiently reconstructs expert outputs from the preserved sparse components and low-rank factors
 791 during inference.

792 A.3 LAYER-WISE PARAMETER BUDGET

793 To achieve efficient compression, we leverage MINE to evaluate the redundancy of each MoE layer
 794 and dynamically allocate parameter budgets accordingly. In principle, layers with higher mutual
 795 information are considered more redundant and are thus assigned a smaller parameter budget. We
 796 compute the final budget allocation using a Quadratic Programming (QP) solver with a smoothness
 797 constraint. Figure 5 below illustrates the parameter budget allocated by our method to each MoE
 798 layer across three overall compression ratios (20%, 40%, and 60%). It clearly shows that the
 799 parameter budget allocation exhibits a complex, fluctuating pattern, rather than a simple monotonic
 800 decrease with layer depth. For instance, there are noticeable budget drops around layers 5 and 20,
 801 and a significant peak around layer 9. Importantly, this allocation pattern remains highly consistent
 802 across the different overall sparsity ratios, demonstrating that our method can stably identify the
 803 relative importance of different layers within the model. Meanwhile, as the overall sparsity ratio
 804 increases (from 0.2 to 0.6), the parameter budget for all layers is reduced proportionally.

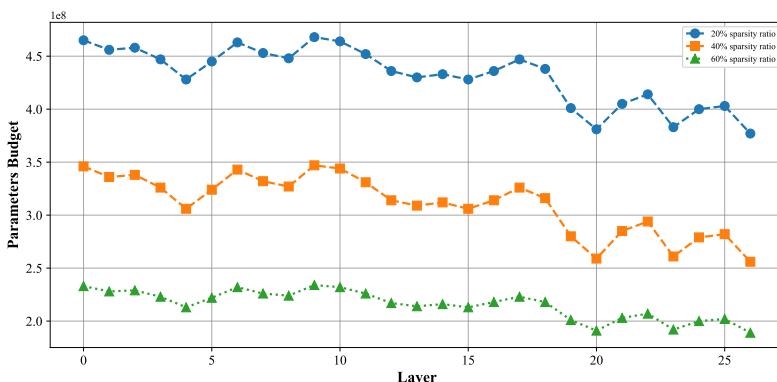


Figure 5: Parameter budget of each layer for Deepseek-MoE-16B-base.

A.4 ANALYSIS OF SPARSITY AND LOW-RANK PROPERTIES IN EXPERTS FROM DIFFERENT LAYERS

In Figure 1, we motivated our RS-MoE method by illustrating the sparsity of activation and the low-rank weight structure of a representative expert (Expert 35 in Layer 27). To demonstrate that these properties are not isolated cases but are intrinsic to the model architecture, we provide a comprehensive statistical analysis of *all* experts in Layers 1, 9, 18, and 27 in this section.

Data Preprocessing for Visualization. We observed significantly high activation magnitudes in specific experts: Experts 14 and 43 in Layer 1, and Experts 54 and 62 in Layer 27. To prevent these extreme outliers from skewing the vertical scale and obscuring the distribution details of other experts, we clipped the top 2% of the activation values for these specific experts in the visualization.

Distribution Analysis. As evidenced by the consistent patterns across the four analysed layers, the majority of experts exhibit a significant concentration of energy within the top singular values (indicated by the rapid transition from dark to light colours in the heatmaps). Meanwhile, their activation statistics exhibit a highly skewed distribution: a small subset of neurons receives strong activation, whereas the vast majority retain negligible magnitude. This universality strongly supports the robustness of the activation sparsity and low-rank assumption underlying our proposed method.

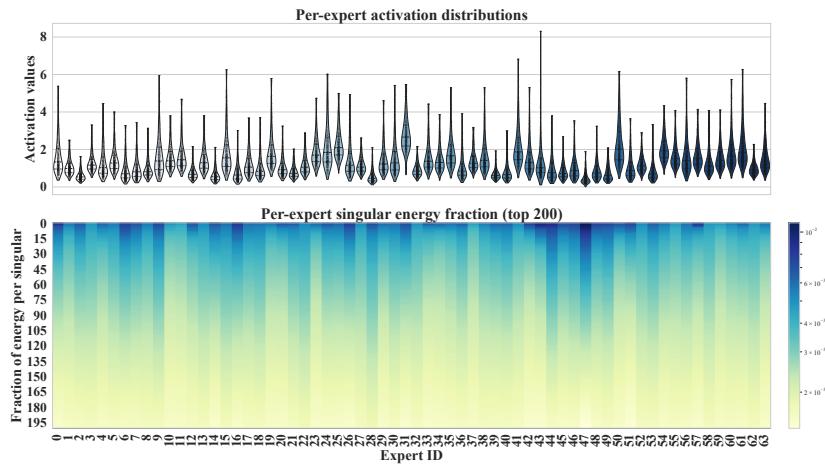


Figure 6: Activation and singular value distribution for all experts in Layer 1.

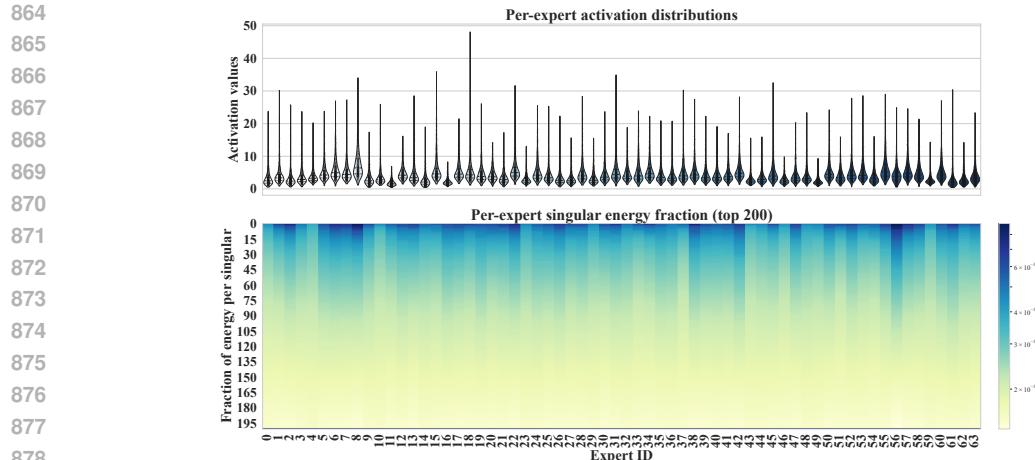


Figure 7: Activation and singular value distribution for all experts in Layer 9.

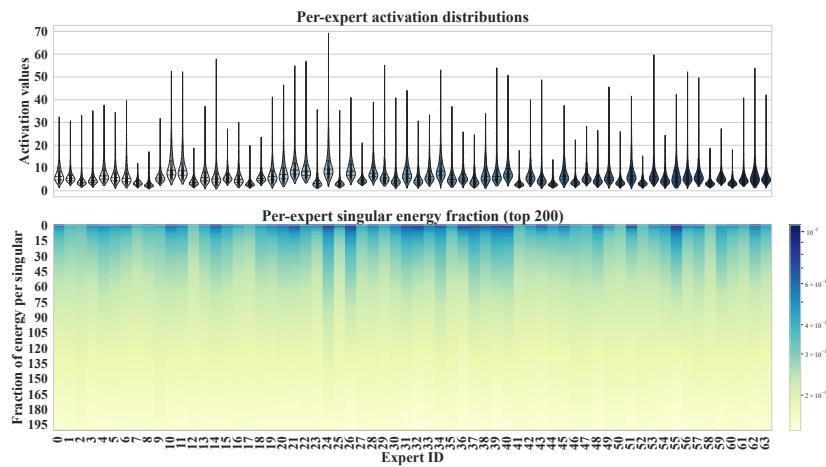


Figure 8: Activation and singular value distribution for all experts in Layer 18.

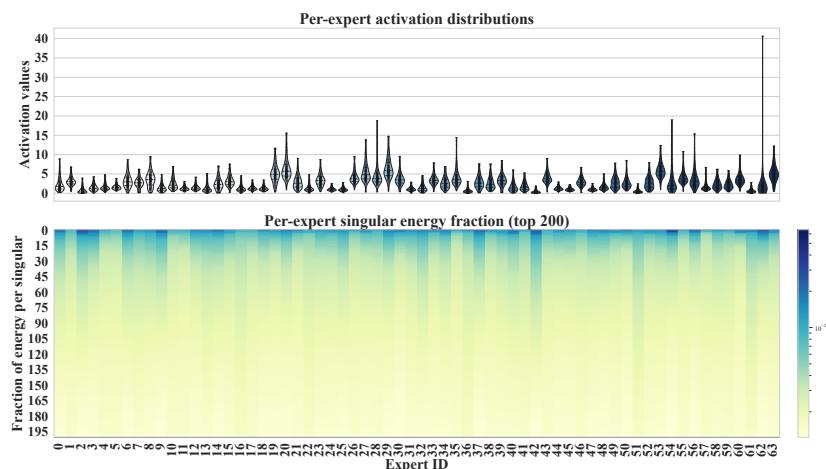


Figure 9: Activation and singular value distribution for all experts in Layer 27.

918 A.5 COMPUTATIONAL COST DISCUSSION OF RS-MOE
919

920 In this section, we provide more details about offline compression cost and online inference effi-
921 ciency. The RS-MoE process consists of three stages. First, MINE estimates mutual information
922 and allocates layerwise compression ratios, a step that takes approximately 2 minutes to set the com-
923 pression ratio and save a cache file when running on DeepSeekMoE-16B. Next, we calculate ACI
924 based on activations to provide evidence for decomposition; this requires about 6 minutes. Finally,
925 we slice and perform SVD on the expert matrix using ACI, with both operations together taking 24
926 minutes. These steps collectively describe the computational cost and efficiency of our workflow.
927 Computational cost of other models is shown in Table 7.

928
929 Table 7: **Offline Compression Cost.** Compressing time and memory used of different models
930

Stage	Metric	DeepSeekMoE-16B	Mixtral-8x7B	Qwen3-30B-A3B
MINE	Time Cost	2 mins	5 mins	4 mins
	Peak VRAM	35.72 GB	122.47 GB	72.02 GB
ACI	Time Cost	6 mins	9 mins	8 mins
	Peak VRAM	34.86 GB	121.56 GB	71.37 GB
Slice & SVD	Time Cost	24 mins	61 mins	43 mins
	Peak VRAM	42.82 GB	125.67 GB	71.58 GB

931
932 Furthermore, we chose a sequence length of 2048 to evaluate the online inference efficiency of our
933 method. Specifically, we conducted 500 iterations on NVIDIA A800 GPUs using float32 precision
934 to measure the average matrix multiplication runtime for W_{gate} , W_{up} , and W_{down} across various
935 models and compression ratios. The results are presented in Table 8.

936
937 Table 8: **Online Inference Efficiency.** Matrix multiplication runtime of different components.
938

Model	Ratio	Operations(ms)			Total (speedup)
		Gate	Up	Down	
DeepSeekMoE-16B	0%	0.69	0.69	0.73	2.11
	20%	0.65	0.65	0.69	1.99 (1.06×)
	40%	0.47	0.47	0.49	1.43 (1.48×)
	60%	0.36	0.37	0.41	1.14 (1.85×)
Mixtral-8x7B	0%	13.35	14.09	16.55	43.99
	20%	10.96	10.88	11.35	33.19 (1.33×)
	40%	8.09	8.12	9.75	25.96 (1.69×)
	60%	5.65	5.81	6.21	17.67 (2.49×)
Qwen3-30B-A3B	0%	0.39	0.40	0.43	1.22
	20%	0.40	0.40	0.44	1.24 (0.98×)
	40%	0.34	0.36	0.37	1.07 (1.14×)
	60%	0.21	0.21	0.23	0.65 (1.88×)

939 A.6 HYPERPARAMETER SENSITIVITY ANALYSIS
940

941 To validate the robustness of our proposed ACI score, we conducted a sensitivity analysis on its
942 most critical hyperparameter, w_{peak} . We evaluated perplexity on the WikiText-2 dataset using the
943 DeepSeekMoE-16B model at 60% sparsity, varying w_{peak} from 0.4 to 1.2. As illustrated in Figure
944 10, the best performance is achieved around our default setting of $w_{peak} = 0.8$. In addition, within
945 the robustness zone, RS-MoE maintains high performance even as w_{peak} fluctuates between 0.9
946 and 1.3. It confirms the importance of activation peaks. The slight degradation at lower values
947 ($w_{peak} < 0.5$) further underscores the necessity of prioritizing peak activations in the importance
948 scoring mechanism.

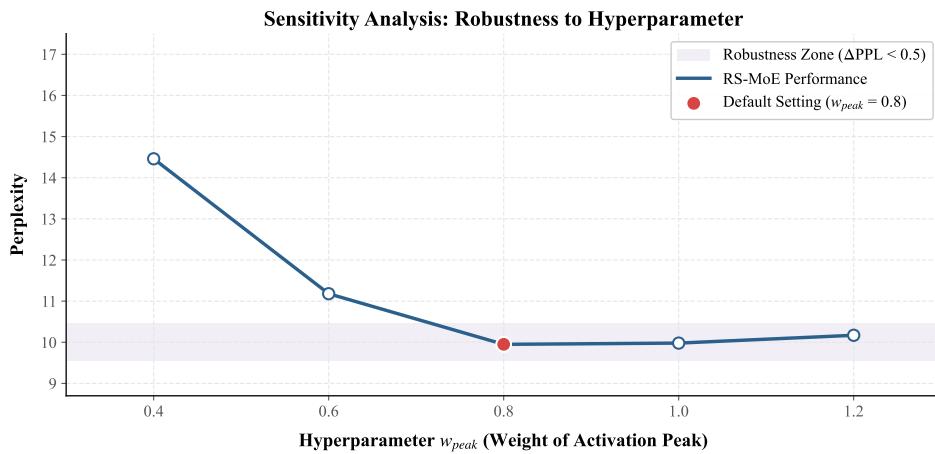


Figure 10: The perplexity on Wikitext-2 using DeepSeekMoE-16B (60% sparsity) as w_{peak} varies. The "Robustness Zone" indicates stable performance.

We further decouple the contribution of inner activation statistics and downstream influence. "Full ACI" represents our proposed method. As revealed in Table 9, the results confirm that incorporating downstream influence (γ) further improves performance, while activation peaks are the most critical factor.

Table 9: Ablation Study of ACI Components on DeepSeekMoE-16B (60% Sparsity).

Method Variant	Inner Stats (w_{peak})	Downstream (γ)	PPL (Wikitext2)
Full ACI (Ours)	✓	✓	9.95
w/o Downstream	✓	✗	10.12
w/o Peak (Mean+Var only)	✗	✓	15.76
Weight Magnitude	✗	✗	21.35

A.7 EVALUATION ON GENERATIVE SUMMARIZATION TASKS

To further investigate whether RS-MoE preserves the model's ability to generate coherent, accurate long-form text, we experimented on the CNN/DailyMail summarization dataset (Hermann et al., 2015) using DeepSeekMoE-16B. We assessed performance across varying sparsity levels (20%, 40%, and 60%) against the uncompressed original model (0% sparsity). The result is revealed in Table 10. It can be seen that although ROUGE-1, ROUGE-2, and ROUGE-L scores (Lin, 2004) decrease due to compression, they retain a substantial degree of their generative quality.

Table 10: ROUGE scores on CNN/DailyMail for DeepSeekMoE-16B.

Method	Ratio	CNN/DailyMail (ROUGE)		
		R-1	R-2	R-L
Original Model	0%	21.81	6.88	16.00
RS-MoE	20%	18.09	4.47	13.48
RS-MoE	40%	17.56	4.24	13.19
RS-MoE	60%	15.76	3.98	12.75

1026
1027

A.8 ANALYSIS OF EXPERT ROUTING CONSISTENCY

1028
1029
1030

To validate whether RS-MoE might lead to mode collapse or alter the intrinsic routing logic, we conducted both qualitative and quantitative analyses of the expert utilisation distribution on the WikiText2 dataset.

1031
1032
1033
1034
1035

Qualitative Visualization. Figure 11 reveals expert activation frequency across all layers. Comparing the original DeepseekMoE-16B with RS-MoE (60% sparsity), the heatmaps exhibit highly consistent patterns. There is no obvious sign of mode collapse, which would manifest as single-expert dominance.

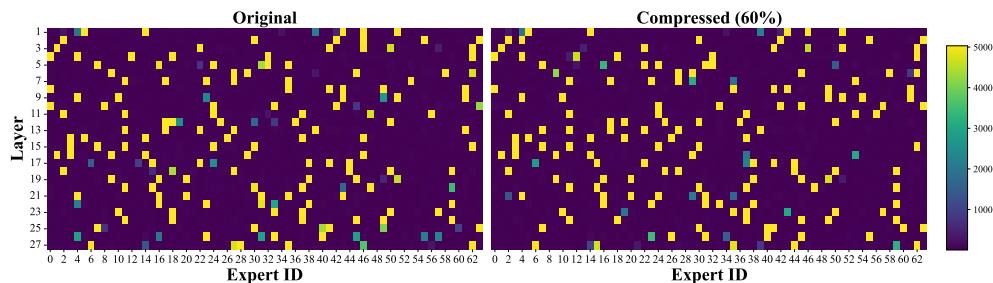
1036
1037
1038
1039
1040
1041
1042
1043
1044
10451046
1047

Figure 11: Comparison of expert activation frequency before and after compression.

1048
1049
1050
1051
1052
1053
1054

Quantitative Metric (Entropy). We further quantified load balance using expert utilization entropy, calculated as $H = -\sum_{i=1}^N p_i \log p_i$, where N is the number of experts and p_i is the utilization frequency of the i -th expert. The average entropy of the original model is 2.1415, whereas RS-MoE maintains a comparable value of 2.1273. It confirms that RS-MoE effectively preserves the diversity of expert selection and maintains the router’s decision boundaries even at high compression rates.

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

A.9 ABLATION OF LOW-RANK RANK SELECTION

To isolate the benefit of our rank selection, we detail the energy-aware allocation. Unlike fixed-rank methods, we distribute the low-rank budget $B_{lr}^{(l)}$ among expert matrices \mathbf{W}_{gate} , \mathbf{W}_{up} , and \mathbf{W}_{down} based on spectral complexity.

We first compute the target rank $r_{99}^{(m)}$ required to capture 99% of the activation-weighted spectral energy for each matrix m :

$$r_{99}^{(m)} = \min \left\{ k : \frac{\sum_{i=1}^k \sigma_i^2}{\sum_j \sigma_j^2} \geq 0.99 \right\}$$

The actual rank $k^{(m)}$ is then allocated proportionally: $k^{(m)} \propto r_{99}^{(m)} \times B_{lr}^{(l)}$. This prioritizes matrices with slower spectral decay. As shown in Table 11, this adaptive strategy outperforms the fixed-rank baseline.

Rank Allocation Strategy	PPL
Standard SVD (Fixed Rank)	17.03
RS-MoE (Energy-based Adaptive)	16.92

Table 11: Ablation study of rank allocation strategies on WikiText-2. Our energy-based adaptive strategy significantly outperforms the fixed-rank baseline.

This strategy ensures matrices with slower spectral decay receive a larger share of the budget. As shown in Table 11, our adaptive approach achieves a PPL of 16.92, outperforming the 17.90 PPL of standard fixed-rank decomposition. This confirms that respecting distinct spectral characteristics is vital for performance.