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ABSTRACT

Mixture-of-Experts (MoE) based Large Language Models (LLMs), despite their
computational efficiency, face significant storage and memory challenges, which
hinder their deployment on edge devices. However, existing methods primarily fo-
cus on compressing at the expert level, resulting in the loss of specialized knowl-
edge. To address these challenges, we propose a novel framework termed RS-
MoE, which compresses MoE models by collaboratively decomposing the weights
of each expert into low-rank and sparse components. Through a preliminary in-
vestigation of the relationship between activations and weights, we identified two
key observations: (i) a small fraction of weight dimensions, identifiable by high
activation peaks, are critical and can be treated as a sparse component, and (ii)
the remaining weights, after removing these high-importance dimensions, exhibit
an inherent low-rank structure. Building on this, we developed a comprehen-
sive importance score based on activation peaks to apply a tailored policy: high-
importance dimensions are sparsely preserved, while the remaining dimensions
are approximated using a low-rank representation. Additionally, ridge regression
and mutual information techniques are incorporated to further minimize errors.
We performed a comprehensive evaluation of RS-MoE on several MoE LLMs, in-
cluding DeepSeekMoE-16B-Base, Mixtral-8x7B, and Qwen3-30B-A3B. The re-
sults demonstrate that our approach consistently outperforms existing monolithic
sparse or low-rank methods across a variety of downstream tasks, highlighting its
superior effectiveness and generalizability.

1 INTRODUCTION

Large Language Models (LLMs) based on the Mixture-of-Experts (MoE) architecture (Cai et al.,
2025) offer an innovative approach to tackling issues associated with scaling models through sparse
activation (Kaplan et al., 2020), while maintaining comparable computational efficiency. Several
representative models, including DeepSeek-V3 (DeepSeek-AI et al., 2025), Mixtral-MoE (Jiang
et al., 2024b), and Qwen3-30B-A3B (Yang et al., 2025) have achieved outstanding performance
in translation, code generation, and question answering tasks, indicating the effectiveness of MoE
LLMs. However, the benefits of MoE’s computational efficiency can be offset by challenges such
as static storage overhead and memory access latency. It is becoming increasingly commonplace
in resource-constrained devices like edge devices (Zhong et al., 2025b), revealing the necessity for
MoE compression.

Several studies have focused on compression techniques to address the challenges mentioned above,
which can be mainly classified into two kinds: expert pruning and expert merging. Firstly, expert
pruning primarily achieves compression via removing redundant or low-importance experts from
the network. Methods such as MoE-I2 (Yang et al., 2024), NAEE (Lu et al., 2024), and MoE-Pruner
(Xie et al., 2024) use different pruning strategies to assess the importance of each expert and perform
pruning. However, expert merging may result in significant performance degradation due to the loss
of specialized knowledge, especially at a high compression ratio. Secondly, expert merging identifies
similarities among experts to combine those that are highly similar. Techniques like MC-SMoE (Li
et al., 2024), HC-SMoE (Chen et al., 2025), and Sub-MoE (Li et al., 2025) merge expert weights via
weighting or clustering. Although expert merging preserves the model’s functional integrity, it might
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dilute specialized expertise, leading to a degradation of overall performance. These drawbacks of
existing methods prompt us to consider: Is there a novel compression paradigm that can not only
preserve the diversity of experts but also avoid damaging the integrity of each expert?
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Figure 1: Analysis of Activation Sparsity and Low-
Rank Structure. (Top) The sorted activation peaks re-
veal a sparse pattern where only a few dimensions are
highly active. (Bottom) After pruning the top 10%
of rows identified by these activations, the remaining
weight matrix exhibits a strong low-rank property after
activation-aware SVD. More detail can be found in Ap-
pendix A.4.

The recent study leverages the sparsity of the
input activations and the low-rank approxima-
tion of the weights to achieve low-loss infer-
ence acceleration (Zhang et al., 2025). Inspired
by this approach, we aim to determine whether
the weight matrix can be decomposed into its
sparse and low-rank components to capture the
essential information contained in the weights.
However, identifying an appropriate basis for
decomposing the weights presents an additional
challenge. Another research suggests that only
a small number of experts significantly influ-
ence the performance of the MoE (Su et al.,
2025). Moreover, identifying these influential
experts relies more on the intensity of their ac-
tivation peaks rather than the magnitude of their
weights or the frequency of their activations.
Building upon this, we can access the impor-
tance of each dimension of the expert and de-
compose the weight into sparse and low-rank
components according to the activation peaks.
In order to validate this assumption, we exam-
ine the expert’s distributions of activation peaks
and the singular spectrum of the weight that is
whitened by the input of the expert, as illus-
trated in Figure 1. It becomes evident that the
distributions of activation peaks can be divided
into three categories: high importance, medium
importance, and low importance. Otherwise, it
can be observed that the energy of the weight
matrix, with its high-importance components
zeroed out, is concentrated in a few singular
vectors, revealing a low-rank structure. To sum-
marize, we can show that experts’ weights can
be approximated using sparsity and low-rank
decomposition without significantly degrading
information.

Building upon this, We propose a novel collaborative compression strategy for MoE LLMs, termed
RS-MoE, which is developed based on the coupling relationships among internal weights within
experts. Specifically, by analyzing the interactions between activation vectors and weight vectors,
we establish a direct dimensional mapping relationship. This mapping couples the corresponding di-
mensions of the three weight matrices within experts through intermediate activations. By applying
a unified compression strategy to these coupled dimensions, we effectively mitigate errors arising
from spatial misalignment. The main contributions of this paper are summarized as follows:

• To preserve the functional integrity within MoE experts, we propose a novel collaborative
framework that couples the corresponding dimensions of the three expert weights into a
collaborative unit and performs the same compression strategy.

• To distinguish sparse components from low-rank components, we design a comprehensive
importance score to evaluate the importance of each weight dimension. Dimensions with
high importance are regarded as sparse components, while those with medium and low im-
portance are classified as low-rank components using activation-aware SVD. Subsequently,
ridge regression is applied to learn a shared base weight that compensates for the overall
reconstruction error.
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• To effectively allocate the sparsity ratio across layers, we estimate parameter redundancy in
each layer based on the mutual information of activations between adjacent layers, thereby
implementing a layer-aware compression strategy.

• To comprehensively evaluate the effectiveness of RS-MoE, we have conducted exten-
sive experiments on three representative MoE-based LLMs: DeepSeekMoE-16B-Base,
Mixtral-8×7B, and Qwen3-30B-A3B. The proposed RS-MoE demonstrates state-of-the-art
performance across a wide range of downstream tasks and sparsity rates. Notably, RS-MoE
exhibits significant advantages, particularly under high sparsity rates.

2 RELATED WORK

2.1 LARGE LANGUAGE MODELS COMPRESSION

LLMs require a tremendous amount of computational resources because of their parameter scale,
which limits their use on devices with restricted resources. In related research, many approaches
have been proposed to address LLMs’ high storage and computational demands. One common
method is model quantization, which reduces storage demands by converting model weights into
lower-bit representations (Dettmers et al., 2022; Frantar et al., 2022; Lin et al., 2024). Another ap-
proach is model pruning and sparsification, which removes redundant parameters while minimizing
performance degradation, thus refining the model structure (Ma et al., 2023; Frantar & Alistarh,
2023; Liu et al., 2023). Knowledge distillation is also a widely used technique for compressing
LLMs. It involves training a smaller ”student” model to replicate the behavior of a larger ”teacher”
model, enabling effective knowledge transfer (Acharya et al., 2024; Gu et al., 2025b). Otherwise,
low-rank decomposition is often used to reduce model complexity by factorizing weight matrices
and retaining their principal energy components (Wang et al., 2025c;a;b).

2.2 LOW-RANK AND SPARSE APPROXIMATION

Several studies have validated the effectiveness of low-rank approximation and sparsification for
model compression. First, the weights of LLMs are always over-parameterized, which means that
their intrinsic rank is usually lower than the original dimensions (Hu et al., 2022). Methods such
as SVD or projection can extract the principal components of weight matrices, allowing for the ap-
proximation of the matrix using a low-rank representation (Yu & Wu, 2023; Wang et al., 2025c). In
addition, sparsification methods identify and remove redundant weights to accelerate inference and
reduce computational costs (Sun et al., 2024), which are often based on activation strength. Nev-
ertheless, both techniques are limited: low-rank approximation can struggle to represent high-rank
or multi-modally distributed weights. At the same time, structured sparsification cannot maintain
model performance at high compression rates. Recently, some studies have explored the combina-
tion of low-rank and sparse representations to reduce the number of parameters while preserving
critical structural information (Li et al., 2023; Huang et al., 2025a;b). Nevertheless, LoSparse re-
quires expensive iterative retraining due to its additive decomposition. While SoLA is training-free,
it relies on simple activation norms that overlook the specific activation peaks critical for MoE ex-
perts. Furthermore, neither method addresses the structural coupling in SwiGLU-based experts. In
contrast, RS-MoE introduces a collaborative decomposition that preserves this functional alignment
and retains expert specialization without retraining.

3 METHODOLOGY

3.1 PRELIMINARIES

In this paper, we treat the compression of MoE LLMs as a layer-wise reconstruction problem, aim-
ing to minimize the adverse effects on the compressed output of each layer. Consider a typical
MoE architecture, where each block contains three types of linear layers: attention weights, gating
weights, and expert weights. Notably, the expert weights typically constitute over 90% of the entire
model’s parameters. Consequently, we only compress the expert weights to meet the overall sparsity
ratio in the experiment.
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An expert is generally consist of three matrices: Wup,Wgate ∈ Rm×n and Wdown ∈ Rn×m, where
n and m respectively denote the dimension of model hidden and intermediate activations. The
computational process of the expert can be expressed as: Y = gHW⊤

down, where H = XW⊤
up ⊙

σ(XW⊤
gate) and g represents the routing score assigned to the expert, as resolved by the gating

network.
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Figure 2: Overview of the RS-MoE. The process consists of three main steps: (1) Estimate mutual
information to obtain layer-wise sparsity ratios. (2) Evaluate importance using Anomalous Con-
tribution Integration, decompose weights into sparse and low-rank components. (3) Implement a
tailored strategy to compress weights collaboratively.

3.2 THE RS-MOE FRAMEWORK: COLLABORATIVE DECOMPOSITION

The traditional MoE compression method often regards each expert as an independent entity when
pruning or merging, which tends to destroy the complex relation inside the expert and cause severe
knowledge loss. Therefore, as shown in Figure 2, we introduce a novel framework named RS-MoE,
which treats the weights of experts as a coupled entity. This coupling is particularly evident in the
SwiGLU architecture, which is widely adopted in MoE LLMs. As mentioned in the former section,
the expert’s three weight matrices are directly mathematically linked via the intermediate activation
H . Specifically, given an input vector x ∈ R1×n, the j-th component of the intermediate activation
h ∈ R1×m is exclusively determined by the j-th rows of the weight matrices Wup,Wgate ∈ Rm×n:

hj = σ(x ·Wgate,j,:)⊙ (x ·Wup,j,:)

Subsequently, this activation vector H is projected by Wdown to produce the output. We can regard
the output as a linear combination of the columns of Wdown with the elements of H serving as the
coefficients.

Y = g

m∑
j=1

hjWdown,:j

Therefore, we can unfold the expert computation into a single summation over its intermediate
dimensions:

Y = g

m∑
j=1

(σ(x ·Wgate,j,:)⊙ (x ·Wup,j,:))Wdown,:j

Apparently, this equation indicates that the column j of Wdown directly connects to the row j of
Wup and Wgate, establishing a collaborative unit. Building upon this, we further propose a tailored
decomposition for fine-grained collaborative units based on their importance. We decompose each
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weight into two components: (i) A sparse component, which preserves high-importance weight to
ensure the integrity of the vital knowledge. (ii) A low-rank component, whose energy is concentrated
in a few singular values, maintains the expressive capability with a small number of parameters. Our
collaborative decomposition strategy preserves the essential part of expert knowledge, preventing
information loss or blending.

3.3 ANOMALOUS CONTRIBUTION INTEGRATION

To accurately evaluate the importance of each collaborative unit and thereby differentiate between
sparse and low-rank components, inspired by Su et al. (2025), we analyze the distribution of the in-
termediate activations. As shown in Figure 1, the majority of activations are generally relatively low,
while only a few dimensions of activations reveal anomalous peaks. These anomalous activations are
usually related to an expert’s specific abilities. Traditional importance metrics, such as the L2 norm
and mean values, only capture global average properties, resulting in an inaccurate characterization
of an expert’s specialization. To address this challenge, we introduced the Anomalous Contribution
Integration (ACI), which can comprehensively evaluate the importance of each collaborative unit
from two perspectives: inner energy and downstream influence. Based on the H weighting by g, we
utilize mean magnitude, magnitude variance, and peak magnitude to form a comprehensive score via
a weighted sum. This score is then multiplied by the squared L2-norm of the corresponding column
in the Wdown to evaluate the dimension’s impact on the output collectively. Furthermore, as for
downstream influence, we consider that an anomalous activation must have an impact on both the
current layer and the next layer to ensure effective information delivery. Therefore, we approximate
this by calculating a weighted alignment score between Wdown of the current expert and Wup and
Wgate in the next layer. The entire ACI is weighted by both inner energy and downstream influence,
creating a robust metric for evaluating the importance of each dimension. Algorithm 1 outlines the
concrete pseudocode.

Algorithm 1 ACI: importance scoring and global grouping

Require: For each expert e in E: activations H(e) ∈ RN×D, routing weights r(e) ∈ RN , down
weights W (e)

down ∈ RH×D; hyperparams γ,wmean, wvar, wpeak; layer l
1: Sglobal = ∅
2: for each expert e in layer l do
3: Wact ← H(e) · r(e)
4: Shyb ← wmeanmean(|Wact|2) + wvarvar(|Wact|2) + wpeak max |Wact|
5: Eproj ← ∥columns of W(e)

down∥22
6: Iinner ← Shyb ⊙ Eproj

7: Vout ← (W(e)
down)

⊤; Vin ← Concat[(W(El+1)
gate + W(El+1)

up )/2]

8: A← |Vout@V ⊤
in |

9: Idownstream ← A@∥rows of Vin∥2
10: I ← Iinner + γ · norm(Idownstream)
11: Append scores from e to Sglobal
12: end for
13: return Sglobal

3.4 LOW-RANK AND SPARSE APPROXIMATION

Based on the ACI score we calculate, we can globally rank all the dimensions and partition them into
two groups: a high-importance group, corresponding to the sparse component, and the remaining
dimensions, which are defined as the low-rank component. Each element is processed with a tailored
compression strategy to preserve the crucial expertise.

Sparse Component Preservation. A few collaborative units identified as high-importance are con-
sidered to store professional knowledge, which is crucial for the function of experts. Therefore, to
prevent the loss of information, we regard the corresponding rows in Wup and Wgate and columns
in Wdown as the sparse components, which are preserved in their original form.
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Low-rank Component Approximation. As shown in Figure 1, after removing the sparse compo-
nents and applying activation-aware SVD to the expert weights, we can observe that the energy of
the matrices is concentrated in a few of the largest singular values. This provides strong evidence
to perform a low-rank approximation for the remaining dimensions, rather than simply pruning.
To enhance the effectiveness of compression, we adapt an activation-aware SVD method, which is
proposed by Wang et al. (2025b).

First, we perform the eigenvalue decomposition on the Gram matrix from the activations X to ex-
tract the primary energy of the input features: E, V = EVD(X⊤X). Using the eigenvectors and
eigenvalues, we project the original weights Wlr into activation space and perform SVD on it:

UwSwV
⊤
w = SVD(WlrV E

1
2 )

Subsequently, after retaining the top k singular values, we obtain the low-rank factors Uk, Sk, and
Vk. Then, we reverse the initial transformation, projecting the weight back from the activation space:

Wlr svd = UkSkV
⊤
k E− 1

2V ⊤

The final low-rank factors are represented as: Wcom = UkSk, Wrec = V ⊤
k E− 1

2V ⊤. Moreover,
drawing inspiration from D2-MoE (Gu et al., 2025a), we introduced incremental learning for Wdown

and obtained a base matrix. In contrast, we adapt ridge regression with a regularization term to
incorporate general knowledge and compensate for truncation errors, instead of relying on Fisher
information. The objective function for the ridge regression is as follows:

J (B) = ∥Y −HcB⊤∥2F + λ∥B∥2F
where Y is the original output of the expert and Hc is the intermediate output of compressed Wgate

and Wup. Here, || · ||F denotes the Frobenius norm, and λ is the regularization coefficient obtained
via grid search.

3.5 MUTUAL INFORMATION-GUIDED LAYER COMPRESSION

Deep neural networks usually exhibit discrepancies in information redundancy across different lay-
ers. Shallow layers typically focus on extracting versatile local and low-level features with low
redundancy. In contrast, deeper layers primarily produce high-level and abstract features that usu-
ally present higher redundancy. It makes them more suitable for compression. Several studies have
shown that using a uniform compression ratio across all layers often results in performance degra-
dation (Zhong et al., 2025a; Ding et al., 2025), which motivates the development of a layer-wise
allocation method. To accurately evaluate layer-wise redundancy, we propose a method based on
mutual information (MI) estimation. In our opinion, if the feature representation of a layer can be
inferred from its adjacent layers, its unique contribution is limited, indicating information redun-
dancy. Building upon this, we employ Mutual Information Neural Estimation (MINE) (Belghazi
et al., 2018) to estimate mutual information via activation features, thereby capturing complex de-
pendencies between different layers. The specific procedure is as follows: Firstly, we randomly
sample some unlabeled texts and feed them into a pre-trained MoE LLMs to acquire the hidden
states Y of each layer. We then process these features using masked pooling to obtain the feature
encoding zli, which represents the i-th input sample at layer l. Next, by constructing joint samples
(zik, z

j
k) and marginal samples (zik, z

j
m), we train an MINE T (·, ·; θ) to approximate the Donsker-

Varadhan lower bound for each pair of adjacent layers (l,l + 1), thereby estimating the MI between
them. The MINE is optimized via the following loss function:

L(θ) = −
(
EP (Zl,Zl+1)[T (z

l, zl+1; θ)]− log(EP (Zl)P (Zl+1)[e
T (zl,zl+1;θ)])

)
where EP (Zl,Zl+1) and EP (Zl)P (Zl+1) denote the expectations under the joint and marginal dis-
tribution of the layer activations, respectively. Furthermore, we define a redundancy score vector
R = [R1, R2, . . . , Rn] and calculate the score of each layer by average the mutual information with
its neighbors. Finally, we formulate a constrained optimization problem to obtain the save ratio sl of
each layer, aiming to minimize an objective function that balances fidelity to the redundancy scores
with inter-layer smoothness. The objective function is defined as follows:

L(s) = Lfidelity(s) + λsmooth · Lsmooth(s) + λreg · Lreg(s)

where λsmooth and λreg are hyperparameters which control the smoothness and regularization penal-
ties, respectively. Due to the constraints on the global average sparsity ratio and per-layer bounds,
we adapt Quadratic Programming to solve this objective function.
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4 EXPERIMENTS

In this section, we evaluate our proposed RS-MoE across multiple tasks and compare it with many
state-of-the-art MoE compression methods. Additionally, we also conduct ablation studies to ana-
lyze the contribution of each component.

Ratio Method Wiki. PTB C4 ARC-e HellaS. Math. Openb. PIQA WinoG. Avg.

Deepseek-MoE-16B-base
0% Original 6.51 9.74 10.20 0.77 0.58 0.32 0.33 0.79 0.72 0.59

20%
NAEE 7.58 13.73 14.01 0.71 0.55 0.29 0.32 0.77 0.67 0.55

D2-MoE 7.02 11.56 12.62 0.74 0.54 0.31 0.30 0.75 0.69 0.56
RS-MoE 6.74 10.42 11.28 0.76 0.56 0.32 0.33 0.77 0.71 0.58

40%
NAEE 8.57 14.41 18.12 0.67 0.41 0.26 0.23 0.70 0.67 0.49

D2-MoE 8.30 14.58 17.64 0.69 0.45 0.27 0.26 0.72 0.65 0.51
RS-MoE 8.15 13.26 14.93 0.67 0.48 0.28 0.28 0.73 0.68 0.52

60%
NAEE 19.08 35.92 38.11 0.49 0.33 0.23 0.18 0.61 0.57 0.40

D2-MoE 12.25 27.79 30.76 0.54 0.34 0.24 0.20 0.63 0.60 0.43
RS-MoE 9.95 18.29 22.52 0.59 0.40 0.26 0.26 0.68 0.65 0.47

Mixtral-8×7B
0% Original 3.98 14.56 7.14 0.84 0.65 0.41 0.36 0.82 0.76 0.64

20%
NAEE 4.72 16.84 9.11 0.77 0.60 0.40 0.32 0.78 0.72 0.60

D2-MoE 4.67 16.52 8.96 0.80 0.61 0.39 0.32 0.81 0.75 0.61
RS-MoE 4.70 16.49 8.52 0.81 0.62 0.39 0.33 0.80 0.75 0.62

40%
NAEE 6.51 21.83 13.97 0.63 0.48 0.35 0.25 0.72 0.64 0.51

D2-MoE 5.97 21.66 11.87 0.78 0.54 0.33 0.29 0.77 0.71 0.57
RS-MoE 5.83 18.23 12.54 0.78 0.56 0.33 0.30 0.78 0.70 0.58

60%
NAEE 10.84 35.23 24.17 0.51 0.38 0.27 0.19 0.62 0.58 0.43

D2-MoE 7.83 26.73 15.85 0.68 0.50 0.29 0.27 0.71 0.69 0.52
RS-MoE 7.74 23.43 15.36 0.71 0.51 0.31 0.26 0.71 0.67 0.53

Qwen3-30B-A3B
0% Original 8.65 13.41 13.17 0.78 0.69 0.58 0.42 0.79 0.70 0.66

20%
NAEE 8.95 14.18 13.77 0.76 0.68 0.51 0.42 0.78 0.69 0.64

D2-MoE 9.12 17.64 18.28 0.73 0.64 0.49 0.41 0.76 0.66 0.62
RS-MoE 8.87 13.93 13.36 0.77 0.68 0.53 0.42 0.79 0.67 0.64

40%
NAEE 10.07 15.28 14.93 0.70 0.63 0.44 0.40 0.75 0.65 0.60

D2-MoE 14.47 26.58 21.72 0.67 0.59 0.40 0.37 0.72 0.62 0.56
RS-MoE 9.48 15.10 15.05 0.71 0.65 0.44 0.39 0.77 0.66 0.60

60%
NAEE 13.76 19.22 20.01 0.65 0.58 0.35 0.34 0.70 0.60 0.54

D2-MoE 21.76 38.84 36.55 0.60 0.52 0.33 0.29 0.65 0.58 0.50
RS-MoE 13.56 20.17 20.12 0.63 0.60 0.39 0.34 0.71 0.61 0.55

Table 1: Performance comparison of RS-MoE on three mainstream MoE models, with the original
model included as a baseline. The best results are marked in bold.

4.1 GENERAL SETUP

Models and Datasets. To assess the effectiveness of our RS-MoE, we conduct comprehensive ex-
periments on three open-source MoE LLMs: DeepSeekMoE-16B-Base (Dai et al., 2024), Qwen3-
30B-A3B (Yang et al., 2025), and Mixtral-8×7B (Jiang et al., 2024a). Regarding datasets, we eval-
uated our method for two types of tasks: (1) language modeling tasks, including Wikitext2 (Merity
et al., 2017), PTB (Marcus et al., 1993), and C4 (Raffel et al., 2020), which are evaluated by perplex-
ity. (2) downstream tasks, including ARC-easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019),
MathQA (Amini et al., 2019), OpenbookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), and
WinoGrande (Sakaguchi et al., 2020), which are evaluated by accuracy.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Baseline. We conducted comparative experiments with three other state-of-the-art methods for MoE
compression, including NAEE (Lu et al., 2024), MoE-I2 (Yang et al., 2024) and D2-MoE (Gu et al.,
2025a).

Implementation details. For all experiments, we randomly sampled 128 samples from the Wiki-
text2 datasets, which are truncated to a sequence length of 2048 tokens. All experiments were
performed on NVIDIA A800 GPUs. Further details can be found in Appendix A.2.

4.2 MAIN RESULTS

As shown in Table 1, we conducted a comprehensive comparison of our RS-MoE against three state-
of-the-art methods under different sparsity ratios. Experimental results demonstrate that RS-MoE
achieves outstanding performance across different baselines, tasks, and sparsity ratios. In particular,
under a 20% sparsity ratio, RS-MoE achieves a perplexity (PPL) of 9.48 in language modeling tasks
and a downstream task accuracy of 58% with Deepseek-MoE-16B-base, surpassing other methods.
Notably, as the sparsity ratio increases, the performance of our method becomes more remarkable
than that of other methods. For instance, when the sparsity ratio increases from 20% to 60%, the
performance degradation of RS-MoE increases from 2% to 20%, whereas that of D2-MoE escalates
from 3.5% to 27%. This strong performance extends to larger models. For the Qwen3-30B-A3B
at 20% sparsity, RS-MoE attains a PPL of 8.87, nearly matching the original model’s 8.65, while
maintaining a competitive accuracy of 64%.

4.3 ABLATION STUDY

Collaborative Decomposition. To further validate the effectiveness of our collaborative decom-
position, we calculate the ACI of Wgate, Wup, and Wdown independently. As shown in Table 2,
under different compression ratios, the perplexity and precision of our collaborative decomposition
always perform better than compressing each matrix independently. The result demonstrates that
our framework effectively leverages the correlations among expert matrices, thereby reducing the
parameters while minimizing the loss of local information.

Ratio Method Wiki. PTB C4 ARC-e HellaS. Math. Openb. PIQA WinoG. Avg.

0% Original 6.51 9.74 10.20 0.77 0.58 0.32 0.33 0.79 0.72 0.59

20% Independence 7.17 11.13 12.03 0.74 0.54 0.31 0.33 0.77 0.70 0.57
Collaboration 6.74 10.42 11.28 0.76 0.56 0.32 0.33 0.77 0.71 0.58

40% Independence 8.38 13.70 15.42 0.66 0.47 0.26 0.27 0.70 0.67 0.51
Collaboration 8.15 13.26 14.93 0.67 0.48 0.28 0.28 0.73 0.68 0.52

60% Independence 10.97 19.36 23.91 0.58 0.39 0.24 0.21 0.66 0.64 0.45
Collaboration 9.95 18.29 22.52 0.59 0.40 0.26 0.26 0.68 0.65 0.47

Table 2: Performance comparison between collaborative decomposition and independent decompo-
sition based on DeepSeekMoE-16B-Base, with the original model included as a baseline. The best
results are marked in bold.

Layerwise Sparsity Allocation. We investigate the effects of layerwise sparsity on model perfor-
mance. Specifically, we adjust the parameters of different layers to maintain a fixed sparsity ratio.
Table 3 reveals the result with a different proportion. It can be observed that our method, which
assigns lower sparsity to lower layers and higher sparsity to higher layers, outperforms both uniform
allocation and the inverse strategy (i.e., higher sparsity for lower layers, lower sparsity for higher
layers).
Effectiveness of Sparse and Low-Rank Components. Table 4 compares RS-MoE with struc-
tured pruning, standard SVD, and activation-aware SVD. To ensure a fair comparison, a consistent
workflow was applied to all methods, resulting in a 60% compression ratio on the Deepseek-MoE-
16B-base. The experimental results reveal that RS-MoE consistently outperforms structured pruning
strategies, reducing the PPL by approximately 10%. Additionally, the activation-aware SVD out-
performs the Standard SVD because it contains feature information.
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Table 3: Results of different sparsity allocation.
Strategy Wikitext-2 PTB C4 Average
Uniform 8.12 13.59 15.20 12.30
Reverse 8.10 13.94 15.46 12.50
RS-MoE 8.15 13.26 14.93 12.11

Table 4: Comparison of compression strategies
Methods Wikitext-2 PTB C4 Average
Original 6.51 9.74 10.20 8.82

Pruning 10.27 19.71 24.59 18.19
Standard SVD 10.23 19.37 24.10 17.90
RS-MoE 9.95 18.29 22.52 16.92
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Figure 3: Comparison results of Deepseek-MoE-16B-base.

Comparison of Grouping Metrics. We show the impact of different grouping metrics on the LLM’s
perplexity in Figure 3. The evaluation was conducted across various sparsity ratios, comparing
four metrics: ACI, weight magnitude, activation magnitude (as used in Wanda (Sun et al., 2024)),
and activation peak. It can be concluded that ACI can effectively identify the critical parts of the
weights, resulting in a decrease in compression error. For instance, the PPL of ACI is about 17
points lower than that of the common weight magnitude method. Compared to the simple activation
peak, it remains approximately 20% lower. Otherwise, as the sparsity increases, the benefit of ACI
is particularly pronounced.
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Figure 4: Impact of calibration samples.

Robustness to Calibration Samples. We at-
tempt a different number of calibration samples,
ranging from 8 to 256. As revealed in Figure 4,
compared with the D2-MoE, RS-MoE is more ro-
bust when only a few calibration samples are pro-
vided.

Base Weight Construction. In this experiment,
we validate the effectiveness of the proposed
method for constructing the base matrix, which is
based on ridge regression. Table 5 compared our
method with the following merging approaches:
Fisher merging (Matena & Raffel, 2022), fre-
quency merging, mean value merging, TIES (Ya-
dav et al., 2023) and PCB (Du et al., 2024). Obvi-
ously, although both Fisher merging (PPL 18.31)
and frequency merging (PPL 23.03) achieve high
performance, the ridge regression approach more effectively compensates for the error between the
actual and compressed outputs, achieving superior performance (PPL 16.92).

Table 5: Results of different Base Weights.
Methods WikiText-2 PTB C4 Average
Mean 13.74 30.18 35.83 26.58
Frequency 12.83 26.54 29.72 23.03
PCB 17.85 39.56 46.94 34.78
TIES 23.38 51.64 71.27 48.76
Fisher 10.34 19.75 24.84 18.31
Ours 9.95 18.29 22.52 16.92

Table 6: Efficiency analysis of RS-MoE

Ratio Cost of Time (ms)
Deepseek Mixtral Qwen

0% 2.11 43.99 1.22
20% 1.99 (1.06×) 33.19 (1.33×) 1.24 (0.98×)
40% 1.43 (1.48×) 25.96 (1.69×) 1.07 (1.14×)
60% 1.14 (1.85×) 17.67 (2.49×) 0.65 (1.88×)
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4.4 EFFICIENCY ANALYSIS

Each expert network consists of three components: Wgate, Wup and Wdown. We selected a se-
quence length of 2048 to measure the latency of matrix multiplication for three models at various
compression rates, both before and after decomposition. Table 6 presents the average time con-
sumption in milliseconds and the corresponding speedup ratios after 500 iterations. For Mixtral-
8x7B, RS-MoE accelerates the matrix multiplication speed by 1.33× at a 20% compression ratio.
This speedup further increases to 2.49× at a 60% compression ratio. The result demonstrates that
RS-MoE effectively accelerates computation by replacing weight matrices with smaller ones and
leveraging existing hardware capabilities. More details can be found in Appendix A.5.

5 CONCLUSION

In this paper, we introduce RS-MoE, a novel compression framework tailored for MoE LLMs,
specifically designed to mitigate the substantial storage and memory challenges inherent to these
models. Our approach is built upon the key observation that an expert’s weights can be collabora-
tively decomposed into two components: a sparse component capturing critical, specialized knowl-
edge, and a low-rank component representing more general features. By leveraging the sparse struc-
ture within intermediate activation peaks, our method collaboratively decomposes the expert weights
into these sparse and low-rank components, thus maintaining the integrity and specialized function-
ality of each expert. Our framework systematically integrates several techniques to achieve effi-
cient and performance-preserving compression. These include a comprehensive importance score
(ACI) based on activation peaks to guide the decomposition, a mutual information-based strategy for
layer-wise sparsity allocation, and activation-aware SVD combined with ridge regression to mini-
mize reconstruction errors. Extensive experiments on models such as Deepseek-MoE-16B-base,
Mixtral-8x7B, and Qwen3-30B-A3B demonstrate that RS-MoE consistently outperforms state-of-
the-art methods across various downstream tasks, especially at high compression ratios.

ETHICS STATEMENT

This research strictly adheres to the ICLR Code of Ethics. The research process involved no human
or animal experiments, and no personally identifiable information was used. All datasets were han-
dled in compliance with their terms of use and privacy policies. We are committed to mitigating bias
and discrimination in our methodology and ensuring the transparency and integrity of our work.

REPRODUCIBILITY STATEMENT

To ensure our results are fully reproducible, we have included our code in the supplementary mate-
rials. This paper provides a detailed description of the experimental setup, covering model configu-
rations, training procedures, and the hardware environment. To facilitate replication, a comprehen-
sive explanation of our core contribution is also included. Our evaluation process relies on public
datasets, such as Wikitext2, to ensure consistent benchmarking.
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A APPENDIX

A.1 STATEMENT ON LLM USAGE

In accordance with the ICLR 2026 policies concerning the utilization of LLMs, it is hereby disclosed
that the exclusive function of LLMs in this work was to provide writing assistance in the preparation
of this manuscript. Specifically, we employed Gemini exclusively for language polishing, including
improving grammatical accuracy and enhancing sentence clarity and readability.
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It is emphasized that all research ideas, methodologies, experimental designs, and scientific con-
tributions presented in this paper are original work by the authors. The experimental results, data
analysis, and conclusions were produced entirely by the authors without any assistance from an
LLM. The utilization of Gemini was strictly constrained to enhancing the linguistic exposition of
our research findings, without impacting or contributing to the technical content or scientific merit
of this work.

The authors accept full responsibility for all content presented in this submission, including the
accuracy of all claims, the validity of experimental results, and the appropriateness of conclusions
drawn.

A.2 IMPLEMENTATION DETAIL

In this section, we provide the detailed implementation of our RS-MoE framework to ensure the
reproducibility of our experiments.

All experiments were conducted on NVIDIA A800 GPUs using core libraries such as PyTorch,
Transformers, and Datasets. We utilized the torch.bfloat16 data type for all model weights and
computations to strike a balance between precision and efficiency.

Calibration and Feature Collection. For all models, we performed calibration using 128 samples
randomly selected from the Wikitext2 training dataset, with the random seed set to 42 for consis-
tency. Each sample was truncated to a sequence length of 2048 tokens.

Anomalous Contribution Integration (ACI). The ACI score, which is central to our method, is
calculated with specific hyperparameters to identify critical collaborative units robustly. The score is
a composite of inner energy and downstream influence. The inner energy component is a weighted
sum of normalized mean energy (wmean = 0.4), variance of energy (wvar = 0.05), and peak
activation magnitude (wpeak = 0.8). The downstream influence, which measures the alignment
with subsequent layers, is incorporated with a weighting factor of γ = 0.05. These parameters were
determined through empirical validation to distinguish specialized knowledge from general features
effectively.

Low-Rank and Sparse Approximation. Our collaborative decomposition strategy is guided by
the ACI scores and a layer-wise sparsity ratio derived from Mutual Information Neural Estimation
(MINE). High-importance units are preserved in their original form. Medium-importance units
undergo activation-aware SVD, where the rank is dynamically determined based on the allocated
parameter budget for that expert group, aiming to retain essential information while maximizing
compression. Low-importance units are structurally pruned by setting their corresponding weights to
zero. For the Wdown, we employ ridge regression to learn a shared base weight that compensates for
global reconstruction error, with a regularization parameter of λ = 1e-3. The final compressed model
is instantiated by replacing the original MoE layers with a highly optimized custom module that
efficiently reconstructs expert outputs from the preserved sparse components and low-rank factors
during inference.

A.3 LAYER-WISE PARAMETER BUDGET

To achieve efficient compression, we leverage MINE to evaluate the redundancy of each MoE layer
and dynamically allocate parameter budgets accordingly. In principle, layers with higher mutual
information are considered more redundant and are thus assigned a smaller parameter budget. We
compute the final budget allocation using a Quadratic Programming (QP) solver with a smoothness
constraint. Figure 5 below illustrates the parameter budget allocated by our method to each MoE
layer across three overall compression ratios (20%, 40%, and 60%). It clearly shows that the pa-
rameter budget allocation exhibits a complex, fluctuating pattern, rather than a simple monotonic
decrease with layer depth. For instance, there are noticeable budget drops around layers 5 and 20,
and a significant peak around layer 9. Importantly, this allocation pattern remains highly consistent
across the different overall sparsity ratios, demonstrating that our method can stably identify the
relative importance of different layers within the model. Meanwhile, as the overall sparsity ratio
increases (from 0.2 to 0.6), the parameter budget for all layers is reduced proportionally.
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Figure 5: Parameter budget of each layer for Deepseek-MoE-16B-base.

A.4 ANALYSIS OF SPARSITY AND LOW-RANK PROPERTIES IN EXPERTS FROM DIFFERENT
LAYERS

In Figure 1, we motivated our RS-MoE method by illustrating the sparsity of activation and the low-
rank weight structure of a representative expert (Expert 35 in Layer 27). To demonstrate that these
properties are not isolated cases but are intrinsic to the model architecture, we provide a comprehen-
sive statistical analysis of all experts in Layers 1, 9, 18, and 27 in this section.

Data Preprocessing for Visualization. We observed significantly high activation magnitudes in
specific experts: Experts 14 and 43 in Layer 1, and Experts 54 and 62 in Layer 27. To prevent
these extreme outliers from skewing the vertical scale and obscuring the distribution details of other
experts, we clipped the top 2% of the activation values for these specific experts in the visualization.

Distribution Analysis. As evidenced by the consistent patterns across the four analysed layers,
the majority of experts exhibit a significant concentration of energy within the top singular values
(indicated by the rapid transition from dark to light colours in the heatmaps). Meanwhile, their
activation statistics exhibit a highly skewed distribution: a small subset of neurons receives strong
activation, whereas the vast majority retain negligible magnitude. This universality strongly supports
the robustness of the activation sparsity and low-rank assumption underlying our proposed method.
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Figure 6: Activation and singular value distribution for all experts in Layer 1.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0

10

20

30

40

50

A
ct

iv
at

io
n 

va
lu

es

Per-expert activation distributions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Expert ID

0
15
30
45
60
75
90

105
120
135
150
165
180
195Fr

ac
tio

n 
of

 e
ne

rg
y 

pe
r 

si
ng

ul
ar

Per-expert singular energy fraction (top 200)

2 × 10−3

3 × 10−3

4 × 10−3

6 × 10−3
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Figure 8: Activation and singular value distribution for all experts in Layer 18.
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A.5 COMPUTATIONAL COST DISCUSSION OF RS-MOE

In this section, we provide more details about offline compression cost and online inference effi-
ciency. The RS-MoE process consists of three stages. First, MINE estimates mutual information
and allocates layerwise compression ratios, a step that takes approximately 2 minutes to set the com-
pression ratio and save a cache file when running on DeepSeekMoE-16B. Next, we calculate ACI
based on activations to provide evidence for decomposition; this requires about 6 minutes. Finally,
we slice and perform SVD on the expert matrix using ACI, with both operations together taking 24
minutes. These steps collectively describe the computational cost and efficiency of our workflow.
Computational cost of other models is shown in Table 7.

Table 7: Offline Compression Cost. Compressing time and memory used of different models
Stage Metric DeepSeekMoE-16B Mixtral-8x7B Qwen3-30B-A3B

MINE Time Cost 2 mins 5 mins 4 mins
Peak VRAM 35.72 GB 122.47 GB 72.02 GB

ACI Time Cost 6 mins 9 mins 8 mins
Peak VRAM 34.86 GB 121.56 GB 71.37 GB

Slice & SVD Time Cost 24 mins 61 mins 43 mins
Peak VRAM 42.82 GB 125.67 GB 71.58 GB

Furthermore, we chose a sequence length of 2048 to evaluate the online inference efficiency of our
method. Specifically, we conducted 500 iterations on NVIDIA A800 GPUs using float32 precision
to measure the average matrix multiplication runtime for Wgate, Wup, and Wdown across various
models and compression ratios. The results are presented in Table 8.

Table 8: Online Inference Efficiency. Matrix multiplication runtime of different components.

Model Ratio Operations(ms) Total (speedup)Gate Up Down

DeepSeekMoE-16B

0% 0.69 0.69 0.73 2.11
20% 0.65 0.65 0.69 1.99 (1.06×)
40% 0.47 0.47 0.49 1.43 (1.48×)
60% 0.36 0.37 0.41 1.14 (1.85×)

Mixtral-8x7B

0% 13.35 14.09 16.55 43.99
20% 10.96 10.88 11.35 33.19 (1.33×)
40% 8.09 8.12 9.75 25.96 (1.69×)
60% 5.65 5.81 6.21 17.67 (2.49×)

Qwen3-30B-A3B

0% 0.39 0.40 0.43 1.22
20% 0.40 0.40 0.44 1.24 (0.98×)
40% 0.34 0.36 0.37 1.07 (1.14×)
60% 0.21 0.21 0.23 0.65 (1.88×)

A.6 HYPERPARAMETER SENSITIVITY ANALYSIS

To validate the robustness of our proposed ACI score, we conducted a sensitivity analysis on its
most critical hyperparameter, wpeak. We evaluated perplexity on the WikiText-2 dataset using the
DeepSeekMoE-16B model at 60% sparsity, varying wpeak from 0.4 to 1.2. As illustrated in Figure
10, the best performance is achieved around our default setting of wpeak = 0.8. In addition, within
the robustness zone, RS-MoE maintains high performance even as wpeak fluctuates between 0.9
and 1.3. It confirms the importance of activation peaks. The slight degradation at lower values
(wpeak < 0.5) further underscores the necessity of prioritizing peak activations in the importance
scoring mechanism.
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Figure 10: The perplexity on Wikitext-2 using DeepSeekMoE-16B (60% sparsity) as wpeak varies.
The ”Robustness Zone” indicates stable performance.

We further decouple the contribution of inner activation statistics and downstream influence. ”Full
ACI” represents our proposed method. As revealed in Table 9, the results confirm that incorporating
downstream influence (γ) further improves performance, while activation peaks are the most critical
factor.

Table 9: Ablation Study of ACI Components on DeepSeekMoE-16B (60% Sparsity).
Method Variant Inner Stats (wpeak) Downstream (γ) PPL (Wikitext2)
Full ACI (Ours) ✓ ✓ 9.95
w/o Downstream ✓ × 10.12
w/o Peak (Mean+Var only) × ✓ 15.76
Weight Magnitude × × 21.35

A.7 EVALUATION ON GENERATIVE SUMMARIZATION TASKS

To further investigate whether RS-MoE preserves the model’s ability to generate coherent, accurate
long-form text, we experimented on the CNN/DailyMail summarization dataset (Hermann et al.,
2015) using DeepSeekMoE-16B. We assessed performance across varying sparsity levels (20%,
40%, and 60%) against the uncompressed original model (0% sparsity). The result is revealed in
Table 10. It can be seen that although ROUGE-1, ROUGE-2, and ROUGE-L scores (Lin, 2004)
decrease due to compression, they retain a substantial degree of their generative quality.

Table 10: ROUGE scores on CNN/DailyMail for DeepSeekMoE-16B.

Method Ratio CNN/DailyMail (ROUGE)
R-1 R-2 R-L

Original Model 0% 21.81 6.88 16.00

RS-MoE 20% 18.09 4.47 13.48
RS-MoE 40% 17.56 4.24 13.19
RS-MoE 60% 15.76 3.98 12.75
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A.8 ANALYSIS OF EXPERT ROUTING CONSISTENCY

To validate whether RS-MoE might lead to mode collapse or alter the intrinsic routing logic, we con-
ducted both qualitative and quantitative analyses of the expert utilisation distribution on the Wiki-
text2 dataset.

Qualitative Visualization. Figure 11 reveals expert activation frequency across all layers. Com-
paring the original DeepseekMoE-16B with RS-MoE (60% sparsity), the heatmaps exhibit highly
consistent patterns. There is no obvious sign of mode collapse, which would manifest as single-
expert dominance.
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Figure 11: Comparison of expert activation frequency before and after compression.

Quantitative Metric (Entropy). We further quantified load balance using expert utilization entropy,
calculated as H = −

∑N
i=1 pi log pi, where N is the number of experts and pi is the utilization

frequency of the i-th expert. The average entropy of the original model is 2.1415, whereas RS-MoE
maintains a comparable value of 2.1273. It confirms that RS-MoE effectively preserves the diversity
of expert selection and maintains the router’s decision boundaries even at high compression rates.

A.9 ABLATION OF LOW-RANK RANK SELECTION

To isolate the benefit of our rank selection, we detail the energy-aware allocation. Unlike fixed-rank
methods, we distribute the low-rank budget B(l)

lr among expert matrices Wgate,Wup, and Wdown

based on spectral complexity.

We first compute the target rank r
(m)
99 required to capture 99% of the activation-weighted spectral

energy for each matrix m:

r
(m)
99 = min

{
k :

∑k
i=1 σ

2
i∑

j σ
2
j

≥ 0.99

}

The actual rank k(m) is then allocated proportionally: k(m) ∝ r
(m)
99 ×B

(l)
lr . This prioritizes matrices

with slower spectral decay. As shown in Table 11, this adaptive strategy outperforms the fixed-rank
baseline.

Rank Allocation Strategy PPL

Standard SVD (Fixed Rank) 17.03
RS-MoE (Energy-based Adaptive) 16.92

Table 11: Ablation study of rank allocation strategies on WikiText-2. Our energy-based adaptive
strategy significantly outperforms the fixed-rank baseline.

This strategy ensures matrices with slower spectral decay receive a larger share of the budget. As
shown in Table 11, our adaptive approach achieves a PPL of 16.92, outperforming the 17.90 PPL of
standard fixed-rank decomposition. This confirms that respecting distinct spectral characteristics is
vital for performance.
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