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ABSTRACT

We study curriculum learning in goal-conditioned reinforcement learning (GCRL)
through the lens of data selection. Instead of sampling all goals uniformly, we
bias sampling toward underachieved goals, thereby shifting the state–goal distri-
bution seen by the agent. Using universal value function approximators (UVFAs)
with potential-based reward shaping in GridWorld, we compare uniform and
curriculum-guided training. Our results show that curricula alter goal coverage,
reduce approximation error, and improve success on difficult edge goals. These
findings highlight curriculum learning as a principled mechanism for selective
data acquisition, suggesting a pathway toward more persistent and open-ended
agents.

1 INTRODUCTION

Goal-conditioned reinforcement learning (GCRL) provides a flexible paradigm for training agents
to solve multiple tasks within the same environment by conditioning policies or value functions on a
goal state (Schaul et al., 2015). A persistent challenge in this setting is that many goals are difficult
to reach under uniform sampling, leading to extremely sparse rewards and poor signal for function
approximation (Andrychowicz et al., 2017). This challenge is magnified in open-ended learning
(OEL), where agents must continually acquire and refine skills over an unbounded set of goals or
tasks (Clune, 2019). Our own motivation for this paper stems directly from recent work by Hughes
et al. (2024), who highlight the need for algorithmic paths toward persistent, open-ended learning.
We view curriculum learning as one such path, offering a tractable starting point for shaping state–
goal distributions.

Curriculum learning has been widely explored as a remedy for sparsity and exploration issues, typ-
ically by sequencing goals from easy to hard (Bengio et al., 2009; Florensa et al., 2017; Portelas
et al., 2020). Prior work has developed handcrafted curricula (Bengio et al., 2009; Florensa et al.,
2017), teacher–student frameworks (Matiisen et al., 2019; Narvekar et al., 2020), and automated
goal-generation strategies (Held et al., 2018; Portelas et al., 2020). While these approaches differ in
implementation, they share a core intuition: curricula act as a mechanism to ensure agents remain
within their “zone of proximal development,” preventing stagnation on trivial tasks and collapse on
impossible ones (Matiisen et al., 2019).

Despite this progress, much of the literature treats curriculum as an exploration heuristic or as a
way to overcome reward sparsity. Far less attention has been paid to its effect on the distribution
of training data itself. In particular, curricula can be seen as a form of selective data acquisition,
biasing the state–goal visitation distribution toward goals that are currently underachieved. This
reframing highlights a structural rather than incidental role for curricula: by reshaping the data
distribution, they change the inductive biases of the learned function approximator. By focusing on
how curricula reshape state–goal distributions, we explicitly link curriculum design in GCRL to the
broader questions of persistence and adaptability central to OEL (Hughes et al., 2024).

In this work, we investigate this perspective empirically using Universal Value Function Approxi-
mators (UVFAs; (Schaul et al., 2015)) trained in GridWorld. We compare uniform goal sampling
to curriculum-biased sampling, analyzing how distributional shifts in data affect function approx-
imation and downstream policy success. We show that curricula concentrate data in informative

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

regions of the state–goal space, reduce approximation error on a shared evaluation set, and improve
policy success particularly on harder-to-reach goals. These findings suggest that curriculum learn-
ing should be understood not only as an exploration strategy, but also as a structural mechanism
for guiding data acquisition—one that provides a concrete entry point into the larger challenge of
scaling toward lifelong and open-ended learning.

2 METHODS

2.1 ENVIRONMENT SETUP

We use a deterministic GridWorld navigation environment where an agent must reach a goal location
specified at the start of each episode. Each state is defined by the agent’s current position, and
each task is defined by a desired goal cell. Episodes terminate either upon reaching the goal or
when a maximum horizon H is reached. This setting provides full observability, yet exposes the
challenges of goal-conditioned reinforcement learning: large goal spaces, varying difficulty across
cells (interior vs. edge), and sparse terminal rewards.

2.2 UNIVERSAL VALUE FUNCTION APPROXIMATORS (UVFAS)

We employ Universal Value Function Approximators (UVFAs; Schaul et al., 2015), which general-
ize value estimation across states and goals.

• Input: concatenation of agent state (x, y) and (gx, gy)

• Architecture: a multilayer perceptron (MLP) with ReLU activations and hidden dimension
64.

• Output: scalar estimate of the value function V (s, g)

• Training objective: mean squared error regression against pseudo-reward targets (see be-
low).

This formulation allows us to assess not only policy performance but also how curricula affect
function approximation quality across the entire state–goal space.

2.3 POTENTIAL-BASED REWARD SHAPING (PBRS)

To provide dense learning signals, we adopt Potential-Based Reward Shaping (PBRS; Ng et al.,
1999). The formula is defined as follows:

Define a potential ϕ(s, g) = −d(s, g) where d is the Manhattan distance between state and goal

The shaped reward is defined as:
rt = λ[γϕ(st + 1, g)− ϕ(st, g)]− c

where discount γ = .99, shaping coefficient λ = .5 and step cost c = .01. A terminal bonus of +1
is added on successful episodes.

Targets are constructed as discounted returns-to-go under this shaped reward. For evaluation, we
negate returns so that greedy action selection corresponds to argmax over predicted values.

2.4 CURRICULUM DESIGN

We compare two data acquisition strategies:

1. Uniform (NoCurr): goals are sampled uniformly from all valid grid cells
2. Edge-Weighted Curriculum (Curr): sampling distribution is biased toward harder-to-reach

goals, defined as those on the grid periphery. Empirically, edge cells are less frequently
reached under uniform sampling, leading to underrepresentation in training data

In all cases, we collect fixed-size datasets per seed and train UVFAs with identical architectures,
isolating the effect of curriculum-induced distributional shifts.
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Figure 1: Edge vs. Interior Curriculum. Success rates at horizon H = 16 for agents trained with
uniform sampling (NoCurr) versus edge-biased curriculum (Curr). Results are averaged across three
seeds; bars show mean ± one standard deviation. Curriculum improves performance on harder edge
goals while maintaining comparable performance overall.

2.5 TRAINING PROTOCOL

Data collection: For each seed, we roll out 1000 episodes with greedy action selection under PBRS
shaping. Each trajectory is stored as a JSONL file and converted into a PBRS dataset (*.npz).

UVFA training: Models are trained for 50 epochs using Adam with learning rate 10−3 and batch
size 256. Each run is repeated across three seeds for robustness.

Evaluation: Trained UVFAs are evaluated zero-shot on held-out goals with varying horizons (H ∈
{30, 20, 16, 12}).Success is measured as the fraction of goals achieved within horizon H , reported
separately for interior and edge subsets.

3 RESULTS

3.1 BASELINE: UNIFORM VS. CURRICULUM SAMPLING

We first compare universal value function approximators (UVFAs) trained on uniformly sampled
goals (NoCurr) with those trained using a manual curriculum that upweights edge goals (Curr). All
agents were trained on N = 1000 episodes per seed (three seeds, max steps = 30). Evaluation was
performed using greedy policies at varying horizons H ∈ {30, 20, 16, 12, 10}.

Success rates Across seeds, the curriculum models showed modest but consistent improvements
on harder edge goals, with comparable overall performance. At H = 16, uniform (NoCurr) achieved
0.361±0.060 overall and 0.183±0.131 on edge goals, whereas curriculum (Curr) achieved 0.370±
0.151 overall and 0.217± 0.125 on edge goals (Fig. 2). While not universally stronger in aggregate,
the curriculum condition tended to improve performance on the harder subset, consistent with the
idea that selective sampling reshapes the state–goal distribution.

Distributional shifts. We confirm that edge-biased curricula shift the training distribution (Fig. 2),
with increased density of trajectories targeting harder edge goals. These shifts translate into modest
but measurable improvements in function approximation and policy success in these regions, sup-
porting our hypothesis that curriculum should be viewed as selective data acquisition. While gains
are not uniform across all goals, the evidence suggests that even simple hand-crafted curricula can
systematically bias training data toward underachieved subsets and thereby improve performance
where uniform sampling struggles.

To test the effect of curriculum design choices, we compared two variants against uniform sampling
(NoCurr). The baseline curriculum biased sampling toward edge goals with a fixed proportion,
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Figure 2: Edge vs. Interior Curriculum. Training distributions and success rates at horizon H = 16
for agents trained with uniform sampling (NoCurr) versus edge-biased curriculum (Curr). Results
are averaged across three seeds; bars show mean ± one standard deviation. Curriculum biases
data toward harder edge goals, yielding modest improvements in those regions while maintaining
comparable performance overall.

Figure 3: Curriculum variants. Success rates at horizon H = 16 for agents trained with uniform
sampling (NoCurr), baseline curriculum (Curr), and weighted curriculum (Curr-W). Results are
averaged across three seeds; bars show mean ± one standard deviation. Both curricula improve
edge-goal success, with weighting amplifying the effect.

while the weighted curriculum further increased edge sampling to match their empirical difficulty
under NoCurr. This weighting scheme was intended to strengthen the effect of curriculum as selec-
tive data acquisition, especially on harder goals.

3.2 CURRICULUM VARIANTS: BASELINE VS. WEIGHTED

Figure 3 summarizes the results. Overall performance remained comparable across conditions, but
both curriculum variants improved success on edge goals, with the weighted curriculum showing
the strongest gains (∆edge ≈ +0.18). These findings highlight how curricula reshape the state–goal
distribution: by allocating more data to underachieved regions, they systematically improve function
approximation where it matters most.

3.3 SUMMARY

Overall, our experiments support the interpretation of curriculum as selective data acquisition. By bi-
asing training toward underachieved goals—here instantiated as edge-aligned subsets—curricula re-
shape the state–goal visitation distribution and improve approximation in targeted regions of the uni-
versal value function approximator (UVFA). While gains were modest in aggregate, both the base-
line and weighted curricula consistently provided benefits on harder edge goals, with the weighted
variant amplifying these improvements. This underscores the role of curriculum as a structural
mechanism for guiding data rather than an incidental exploration heuristic.

As shown in Table 1, curriculum improves overall success by +0.02 on average and edge-goal suc-
cess by +0.08. These gains, though modest in absolute terms, consistently favor the curriculum
condition on harder subsets. This provides evidence for our central claim: curricula act not merely
as exploration heuristics but as structural mechanisms for data acquisition that enhance learning in
regions where UVFA generalization is weakest.

4 DISCUSSION

Our findings suggest that curriculum learning in goal-conditioned reinforcement learning (GCRL) is
best interpreted as selective data acquisition rather than merely an exploration heuristic. By biasing
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Setting (H=16) Uniform (NoCurr) Curriculum (Curr) ∆ (Curr–NoCurr)
Overall Success 0.276 ± 0.055 0.297 ± 0.056 +0.021
Edge-Goal Success 0.060 ± 0.055 0.143 ± 0.107 +0.083

Table 1: Pc

training toward goals that are harder to achieve under uniform sampling, curricula reshape the state–
goal visitation distribution and improve value approximation in targeted regions of the space. This
effect is particularly evident in subsets of goals at the periphery or in empirically defined “zones of
proximal development,” where uniform sampling struggles to provide sufficient coverage.

At the same time, our experiments show that the benefits of curricula are not uniform. Improvements
are strongest on hard-to-reach goals but less consistent across easier subsets. In some cases, the
curriculum bias may even reduce performance on goals already well-represented under uniform
sampling. This reinforces the idea that curricula act as structural biases: their effectiveness depends
on how well the sampling emphasis aligns with the learning bottlenecks of the agent.

Importantly, our weighted curriculum experiment provides further evidence for this interpretation.
By explicitly rebalancing the goal distribution to upweight harder regions, we observed amplified
gains on edge goals compared to the baseline curriculum. This suggests that the magnitude and
direction of curriculum effects depend critically on how the sampling distribution is shaped. Rather
than treating curricula as one-size-fits-all exploration strategies, they should be viewed as tunable
mechanisms for structuring data acquisition in line with task difficulty and representational limits.

4.1 LIMITATIONS AND FUTURE WORK

Our study has several limitations. First, we evaluate curricula in relatively small GridWorld envi-
ronments with hand-designed goal distributions. While this setting allows clear analysis of distribu-
tional shifts, it limits direct applicability to more complex domains. Second, our curricula remain
manually specified, with the edge–interior and weighted sampling schemes serving as simple prox-
ies for more principled strategies. As a result, gains were modest and sometimes inconsistent across
seeds.

Future work should focus on more robust manual curricula that better capture the “zone of prox-
imal development” (ZPD), as well as the development of automated approaches that adaptively
adjust sampling distributions in response to an agent’s progress (e.g., teacher–student or adversarial
frameworks). Another promising direction is testing curriculum-driven selective data acquisition in
environments with more complex goals or continuous control settings, where distributional bias may
have stronger effects on function approximation. Ultimately, advancing toward automated and gen-
eralizable curriculum mechanisms offers a more practical pathway to open-ended learning (Hughes
et al., 2024).

5 CONCLUSION

We conclude that curriculum learning provides a structural mechanism for shaping the training dis-
tribution in goal-conditioned reinforcement learning (GCRL). By reallocating data toward under-
achieved goals, curricula improve value approximation and policy success in targeted regions of the
state–goal space. Although our experiments are preliminary and limited to small GridWorld set-
tings, they support reframing curriculum as selective data acquisition rather than a mere exploration
aid. Using universal value function approximators (UVFAs) as our testbed, we showed how curricu-
lum biases reshape state–goal visitation and guide function approximation. Looking forward, the
integration of curricula with UVFAs offers a promising pathway toward more persistent and open-
ended agents, connecting this line of work with recent efforts in lifelong learning and open-ended
systems (?). This perspective motivates future research on more robust manual strategies, automated
curriculum generation, and generalization to richer goal spaces and environments.

See Bengio et al. (2009) for early work on curricula.
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Sébastien Racanière, Aleksandar Botev, David Reichert, Razvan Pascanu, Oriol Vinyals, Raia Had-
sell, and Nicolas Heess. Automated curricula through self-play. In International Conference on
Learning Representations, 2020.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International Conference on Machine Learning, pp. 1312–1320, 2015.

DeepMind Team. Open-ended learning leads to generally capable agents. Nature, 600:595–602,
2021. arXiv preprint arXiv:2109.07438.

First Wang and Others. Title placeholder for wang et al. 2024. arXiv preprint, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Finetuned language models are
zero-shot learners. arXiv preprint arXiv:2109.01652, 2021.

A APPENDIX

7


	Introduction
	Methods
	Environment Setup
	Universal Value Function Approximators (UVFAs)
	Potential-Based Reward Shaping (PBRS)
	Curriculum Design
	Training Protocol

	Results
	Baseline: Uniform vs. Curriculum Sampling
	Curriculum Variants: Baseline vs. Weighted
	Summary

	Discussion
	Limitations and Future Work

	Conclusion
	Appendix

