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ABSTRACT

To train robust deep neural networks (DNNs), we systematically study several
target modification approaches, which include output regularisation, self and non-
self label correction (LC). Two key issues are discovered: (1) Self LC is the most
appealing as it exploits its own knowledge and requires no extra models. How-
ever, how to automatically decide the trust degree of a learner as training goes is
not well answered in the literature? (2) Some methods penalise while the others
reward low-entropy predictions, prompting us to ask which one is better?

To resolve the first issue, taking two well-accepted propositions—deep neural net-
works learn meaningful patterns before fitting noise (Arpit et al., 2017) and mini-
mum entropy regularisation principle (Grandvalet & Bengio, 2006)-we propose a
novel end-to-end method named ProSelfL.C, which is designed according to learn-
ing time and entropy. Specifically, given a data point, we progressively increase
trust in its predicted label distribution versus its annotated one if a model has been
trained for enough time and the prediction is of low entropy (high confidence). For
the second issue, according to ProSelfLC, we empirically prove that it is better to
redefine a meaningful low-entropy status and optimise the learner toward it. This
serves as a defence of entropy minimisation. We demonstrate the effectiveness of
ProSelfL.C through extensive experiments in both clean and noisy settings.

1 INTRODUCTION

There exist many target (label) modification approaches. They can be roughly divided into two
groups: (1) Output regularisation (OR), which is proposed to penalise overconfident predictions for
regularising deep neural networks. It includes label smoothing (LS) (Szegedy et al., 2016; Miiller
et al., 2019) and confidence penalty (CP) (Pereyra et al., 2017); (2) Label correction (LC). On the
one hand, LC regularises neural networks by adding the similarity structure information over training
classes into one-hot label distributions so that the learning targets become structured and soft. On
the other hand, it can correct the semantic classes of noisy label distributions. LC can be further
divided into two subgroups: Non-self LC and Self LC. The former requires extra learners, while the
latter relies on the model itself. A typical approach of Non-self LC is knowledge distillation (KD),
which exploits the predictions of other model(s), usually termed teacher(s) (Hinton et al., 2015).
Self LC methods include Pseudo-Label (Lee, 2013), bootstrapping (Boot-soft and Boot-hard) (Reed
et al.,, 2015), Joint Optimisation (Joint-soft and Joint-hard) (Tanaka et al., 2018), and Tf-KD, s
(Yuan et al., 2020). According to an overview in Figure 1 (detailed derivation is in Section 3 and
Table 1), in label modification, the output target of a data point is defined by combining a one-hot
label distribution and its corresponding prediction or a predefined label distribution.

Firstly, we present the drawbacks of existing approaches: (1) OR methods naively penalise confident
outputs without leveraging easily accessible knowledge from other learners or itself (Figure 1a); (2)
Non-self LC relies on accurate auxiliary models to generate predictions (Figure 1b). (3) Self LC is
the most appealing because it exploits its own knowledge and requires no extra learners. However,
there is a core question that is not well answered:

In Self LC, how much should we trust a learner to leverage its knowledge?

As shown in Figure 1b, in Self LC, for a data point, we have two labels: a predefined one-hot q and a
predicted structured p. Its learning target is (1 — €)q + €p, i.e., a trade-off between q and p, where €
defines the trust score of a learner. In existing methods, ¢ is fixed without considering that a model’s
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(a) OR includes LS (Szegedy et al., 2016) and CP (Pereyra et al., 2017). LS softens a target by adding a uniform
label distribution. CP changes the probability 1 to a smaller value 1 — € in the one-hot target. The double-ended
arrow means factual equivalence, because an output is definitely non-negative after a softmax layer.
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(b) LC contains Self LC (Lee, 2013; Reed et al., 2015; Tanaka et al., 2018; Yuan et al., 2020) and Non-self LC
(Hinton et al., 2015). The parameter e defines how much a predicted label distribution is trusted.

Figure 1: Target modification includes OR (LS and CP), and LC (Self LC and Non-self LC). Assume
there are three training classes. q is the one-hot target. u is a uniform label distribution. p denotes
a predicted label distribution. The target combination parameter is € € [0, 1].

knowledge grows as the training progresses. For example, in bootstrapping, e is fixed throughout
the training process. Joint Optimisation stage-wisely trains a model. It fully trusts predicted labels
and uses them to replace old ones when a stage ends, i.e., ¢ = 1. Tf-KDy,; s trains a model by two
stages: € = 0 in the first one while € is tuned for the second stage. Note that p is generated by a
preceding-stage model in stage-wise training, which requires significant human intervention and is
time-consuming in practice.

To improve Self LC, we propose a novel method named Progressive Self Label Correction (ProS-
elfL.C), which is end-to-end trainable and needs negligible extra cost. Most importantly, ProSelfLC
modifies the target progressively and adaptively as training goes. Two design principles of ProS-
elfL.C are: (1) When a model learns from scratch, human annotations are more reliable than its own
predictions in the early phase, during which the model is learning simple meaningful patterns before
fitting noise, even when severe label noise exists in human annotations (Arpit et al., 2017). (2) As
a learner attains confident knowledge as time progresses, we leverage it to revise annotated labels.
This is surrounded by minimum entropy regularisation, which is widely evaluated in unsupervised
and semi-supervised scenarios (Grandvalet & Bengio, 2005; 2006).

Secondly, note that OR methods penalise low entropy while LC rewards it, intuitively leading to a
second vital question:
Should we penalise a low-entropy status or reward it?

Entropy minimisation is the most widely used principle in machine learning (Hartigan & Wong,
1979; Rumelhart et al., 1986; Grandvalet & Bengio, 2005; 2006; LeCun et al., 2015). In standard
classification, minimising categorical cross entropy (CCE) optimises a model towards a low-entropy
status defined by human annotations, which contain noise in very large-scale machine learning. As a
result, confidence penalty becomes popular for reducing noisy fitting. In contrast, we prove that it is
better to reward a meaningful low-entropy status redefined by our ProSelfLC. Therefore, our work
offers a defence of entropy minimisation against the recent confidence penalty practice (Szegedy
et al., 2016; Miiller et al., 2019; Pereyra et al., 2017; Dubey et al., 2018).

Finally, we summarise our main contributions:

e We provide a theoretical study on popular target modification methods through entropy and
KL divergence (Kullback & Leibler, 1951). Accordingly, we reveal their drawbacks and
propose ProSelfL.C as a solution. ProSelfLC can: (1) enhance the similarity structure in-
formation over training classes; (2) correct the semantic classes of noisy label distributions.
ProSelfLC is the first method to trust self knowledge progressively and adaptively.

e Our extensive experiments: (1) defend the entropy minimisation principle; (2) demonstrate
the effectiveness of ProSelfL.C in both clean and noisy settings.
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2 RELATED WORK

Label noise and semi-supervised learning. We test target modification approaches in the setting of
label noise because it is generic and connected with semi-supervised learning, where only a subset of
training examples are annotated, leading to missing labels. Then the key to semi-supervised training
is to reliably fill them. When these missing labels are incorrectly filled, the challenge of semi-
supervised learning changes to noisy labels. For a further comparison, in semi-supervised learning,
the annotated set is clean and reliable, because the label noise only exists in the unannotated set.
While in our experimental setting, we are not given information on whether an example is trusted or
not, thus being even more challenging. We summarise existing approaches for solving label noise:
(1) Loss correction, in which we are given or we need to estimate a noise-transition matrix, which
defines the distribution of noise labels (Li et al., 2017; Goldberger & Ben-Reuven, 2017; Sukhbaatar
& Fergus, 2014; Vahdat, 2017; Yao et al., 2019; Han et al., 2018a; Patrini et al., 2017; Xiao et al.,
2015). A noise-transition matrix is difficult and complex to estimate in practice; (2) Exploiting an
auxiliary trusted training set to differentiate examples (Veit et al., 2017; Lee et al., 2018; Hendrycks
et al., 2018). This requires extra annotation cost; (3) Co-training strategies, which train two or more
learners (Malach & Shalev-Shwartz, 2017; Jiang et al., 2018; Han et al., 2018b; Yu et al., 2019;
Wei et al., 2020; Qiao et al., 2018) and exploit their ‘disagreement’ information to differentiate data
points; (4) Label engineering methods (Song et al., 2019; Lee, 2013; Reed et al., 2015; Tanaka
et al., 2018; Yao et al., 2019), which relate to our focus in this work. Their strategy is to annotate
unlabelled samples or correct noisy labels.

LC and knowledge distillation (KD) (Bucila et al., 2006; Hinton et al., 2015). Mathematically, we
derive that some KD methods also modify labels. We use the term label correction instead of KD
for two reasons: (1) label correction is more descriptive; (2) the scope of KD is not limited to label
modification. For example, multiple networks are trained for KD (Furlanello et al., 2018). When
two models are trained, the consistency between their predictions of a data point is promoted in
(Ba & Caruana, 2014; Zhang et al., 2018), while the distance between their feature maps is reduced
in (Romero et al., 2015). Regarding self KD, two examples of the same class are constrained to
have consistent output distributions (Xu & Liu, 2019; Yun et al., 2020). In another self KD (Zhang
et al., 2019), the deepest classifier provides knowledge for shallower classifiers. In a recent self KD
method (Yuan et al., 2020), Tf-KD,; s applies two-stage training. In the second stage, a model is
trained by exploiting its knowledge learned in the first stage. Our focus is to improve the end-to-end
self LC. Finally, we acknowledge that exploiting ProSelfL.C to improve non-self KD and stage-wise
approaches is an area for future work, e.g., a better teacher model can be trained using ProSelfLC.

3 MATHEMATICAL ANALYSIS AND THEORY

Let X = {(x;,v:)}; represent N training examples, where (x;,y;) denotes i—th sample with
input x; € R? and label y; € {1,2,...,C}. C is the number of classes. A deep neural network z
consists of an embedding network f(-) : RP? — RX and a linear classifier g(-) : RX — R, i.e.,
z; = 2(x;) = g(f(x;)) : RP — RY. For the brevity of analysis, we take a data point and omit
its subscript so that it is denoted by (x,y). The linear classifier is usually the last fully-connected
layer. Its output is named logit vector z € R®. We produce its classification probabilities p by
normalising the logits using a softmax function:

p(ilx) = exp(z;)/3"_ explzn). ()

where p(j|x) is the probability of x belonging to class j. Its corresponding ground-truth is usually
denoted by a one-hot representation q: q(j|x) = 1if j = y, q(j|x) = 0 otherwise.

3.1 SEMANTIC CLASS AND SIMILARITY STRUCTURE IN A LABEL DISTRIBUTION

Definition 1 (Semantic Class). Given a target label distribution ¢(x) € R, the semantic class is
defined by arg max; q(j|x), i.e., the class whose probability is the largest.

Definition 2 (Similarity Structure). In q(x), x has C probabilities of being predicted to C classes.
The similarity structure of x versus C' classes is defined by these probabilities and their differences.
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Table 1: Summary of CCE, LS, CP and LC.

CCE LS CP LC
Learning Target q qus = (1 —e)g+eu qep = (1 —e)q —ep qurc = (1 —€)q +ep
CrossEntropy  Eq(—log p)  Egs(—logp)  Eagp(—logp)  Egc(—logp)

. (1 —e)KL(allp) (1 —e)KL(allp) (1 —e)KL(allp)

KL Divergence KLalle) oKL, (ullp) +eKL(p||u) ~eKL(p||u)
Entropy minimisation - Penalise over CCE | Penalise over CCE | Reward over CCE
Semantic class Annotated Annotated Annotated Annotated and Learned
Similarity structure No No No Yes

3.2 REVISIT OF CCE, LS, CP AND LC

Standard CCE. For any input (x, y), the minimisation objective of standard CCE is:

LCCE(‘L p) = H(q7 p) = Eq(* lOg p)a (2)

where H(-, -) represents the cross entropy. Eq(—log p) denotes the expectation of negative log-
likelihood, and q is the probability mass function.

Label smoothing. In LS (Szegedy et al., 2016; Hinton et al., 2015), we soften one-hot targets by
adding a uniform distribution: grs = (1 — €)q + eu, u € RY, and Vj, u; = % Consequently:

Lece+is(a, pie) = H(qus, p) = Eg 5 (— log p) = (1 — ¢)H(q, p)+€H(u, p). 3)
Confidence penalty. CP (Pereyra et al., 2017) penalises highly confident predictions:
Lece+cr(q, ps€) = (1 — €)H(q, p)—eH(p, p). 4)

Label correction. As illustrated in Figure 1, LC is a family of algorithms, where a one-hot label
distribution is modified to a convex combination of itself and a predicted distribution:
duc = (1 —€)a+ep = Lece+re(a, pie) =H(Aue, p) = (1 — ¢)H(q, p)+eH(p,p). ()

We remark: (1) p provides meaningful information about an example’s relative probabilities of
being different training classes; (2) If € is large, and p is confident in predicting a different class,
i.e., argmax; p(j|x) # arg max; q(j[x), qrc defines a different semantic class from q.

3.3 THEORY

Proposition 1. LS, CP and LC modify the learning targets of standard CCE.

Proof. Leceycp(q, s €) = (1—€)H(q, p)—eH(p, p) = E(1—c)q—ep(—log p). Therefore, gcp =
(1 — €)gq—ep. Additionally, qrs = (1 — €)q+eu, Qrc = (1 — €)q+ep. |
Proposition 2. Some KD methods, which aim to minimise the KL divergence between predictions of
a teacher and a student, belong to the family of label correction.

Proof. In general, a loss function of such methods can be defined to be Lxp(q,pt,p) = (1 —
e)H(q, p) + eKL(p||p) (Yuan et al., 2020). KL(+||-) denotes the KL divergence. As KL(p;||p) =
H(p+, p)—H(p:, pt), pt is from a teacher and fixed when training a student. We can omit H(p;, p:):

Lxp(a,pt,p) = (1 — €)H(q,p) + eH(pt, P) = E(1_¢)q+ep, (—10g P) = @D = (1 — €)q + ept. (6)
Consistent with LC in Eq (5), Lkp(q, pt, p) revises a label using p;. O
Proposition 3. Compared with CCE, LS and CP penalise entropy minimisation while LC reward it.

Proposition 4. In CCE, LS and CP, a data point x has the same semantic class. In addition, X has
an identical probability of belonging to other classes except for its semantic class.

The proof of propositions 3 and 4 is presented in the Appendix A. Only LC exploits informative
information and has the ability to correct labels, while LS and CP only relax the hard targets. We
summarise CCE, LS, CP and LC in Table 1. Constant terms are ignored for concision.

4 PROSELFLC: PROGRESSIVE AND ADAPTIVE LABEL CORRECTION

In standard CCE, a semantic class is considered while the similarity structure is ignored. It is
mainly due to the difficulty of annotating the similarity structure for every data point, especially
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Table 2: Instantiating eposelfr,c under different cases. For all terms, we use concrete values for
concise interpretation. We bold the special case when the semantic class is changed.

I(p): Consistency is defined by whether p and g share the semantic class or not.

0.1(non-confident)  0.9(confidently consistent) 0.9(confidently inconsistent)

Earlier phase g(t) = 0.1 0.01 0.09 0.09
Later phase ¢(t) = 0.9 0.09 0.81 0.81

when C' is large (Xu et al., 2020). Fortunately, recent progress demonstrates that there are some
effective approaches to define the similarity structure of data points without annotation: (1) In KD,
an auxiliary teacher model can provide a student model the similarity structure information (Hinton
et al., 2015; Miiller et al., 2019); (2) In Self LC, e.g., Boot-soft, a model helps itself by exploiting
the knowledge it has learned so far. We focus on studying the end-to-end Self LC.

In Self LC, e indicates how much a predicted label distribution is trusted. In ProSelfLC, we propose
to set it automatically according to learning time ¢ and prediction entropy H(p), i.e., ProSelfL.C
trusts self knowledge according to training time and confidence. For any x, we summarise:

Loss: L(QproselfLC P; €ProseliL.c) = H(AProselfL.cs P) = Egprosamc (— 108 P).
Label: qproseifLc = (1 — €proselfL.c)d + €ProselfLCP-

g(t) = h(t/T — 0.5, B) € (0,1),

l(p) =1—H(p)/H(u) € (0,1).

t and I" are the iteration counter and the number of total iterations, respectively. h(n,B) =
1/(1 4+ exp(—n x B)). B,T are task-dependent and searched on a validation set. We clarify:
Global trust score g(t) denotes how much we trust a learner. It is independent of data points, thus
being global. g(t) grows as ¢ rises. B adjusts the exponentiation’s base and growth speed of g(t).
The local trust score /(p) indicates how much we trust an output distribution p, which is data-
dependent. [(p) rises as H(p) becomes lower, rewarding a confident distribution.

(7
Self trust: eproself.c = g(t) X l(p) {

Design reason. (1) Regarding ¢(t), in the earlier learning phase, i.e., t < I'/2, g(t) < 0.5 =
eproseifLc < 0.5,Vp, so that the human annotations dominate and ProSelfLC only modifies the
similarity structure. When a learner has not seen the training data for enough time at the earlier stage,
its knowledge is less reliable and a wrong confident prediction may occur. Our design assuages the
bad impact of such unexpected cases. When it comes to the later training phase, i.e., t > I'/2, we
have g(¢) > 0.5 as it has been trained for more than half of entire iterations. (2) Regarding I(p),
it affects the later learning phase. If p is less confident, I(p) will be smaller, then epyoseieLc Will
be smaller, hence we trust p less when it is of higher uncertainty. If p is highly confident, we trust
its confident knowledge. Ablation study of our design is in Figure 2, where three variants of € are
presented. In our experiments, note that when ¢ is fixed, we try three values (0.125, 0.25, 0.50) and
display the best instantiation, i.e., € = 0.50.

We conduct the case analysis of ProSelfLC in Table 2 and summarise its core tactics as follows:

(1) Correct the similarity structure for every data point in all cases, thanks to exploiting the self
knowledge of a learner, i.e., p. (2) Revise the semantic class when ¢ is large enough and p
is confidently inconsistent. As highlighted in Table 2, when two conditions are met, we have
€proseliLc > 0.5 and arg max; p(j|x) # arg max; d(j|x), then p redefines the semantic class.
For example’ if P = [09570017004]7q = [0707 1}?€PrOSelfLC = 03 = qPrOSelfLC = (1 -
€proSelfL.C ) A+ €proselit.cP = [0.76,0.008, 0.232]. Note that ProSelfL.C also becomes robust against
lengthy exposure to the training data, as demonstrated in Figures 2 and 3.

5 EXPERIMENTS

In our experiments, we re-implement CCE, LS and CP. Regarding Self LC methods, we re-
implement Boot-soft (Reed et al., 2015), where € is fixed throughout training. We do not re-
implement stage-wise Self LC and KD methods, e.g., Joint Optimisation and Tf-KDs,;; respec-
tively, because time-consuming tuning is required. We fix the random seed and do not use any
random accelerator for an entirely fair comparison. In standard and synthetic cases, we train on
80% training data (corrupted in synthetic cases) and use 20% trusted training data as a validation set
to search hyperparameters, e.g., €, I, B and settings of an optimiser. Note that I" and an optimiser’s
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Figure 2: Comparison of setting € using different schemes. Experiments are done on CIFAR-100
with asymmetric label noise » = 0.4. For data-dependent items, mean results are reported.

settings are searched first and then shared by all methods. Finally, we retrain a model on the entire
training data (corrupted in synthetic cases) and report its accuracy on the test data to fairly compare
with prior results. In real-world label noise, the used dataset has a separate clean validation set for
searching hyperparameters. Code will be released once this work is accepted.

5.1 STANDARD IMAGE CLASSIFICATION

Datasets and training details. (1) CIFAR-100 (Krizhevsky, 2009) has 20 coarse classes, each
containing 5 fine classes. There are 500 and 100 images per class in the training and testing sets,
respectively. The image size is 32 x 32. We apply simple data augmentation (He et al., 2016), i.e.,
we pad 4 pixels on every side of the image, and then randomly crop it with a size of 32 x 32. Finally,
this crop is horizontally flipped with a probability of 0.5. We choose SGD with its settings as: (a)
a learning rate of 0.1; (b) a momentum of 0.9; (c) a weight decay of 5e — 4; (d) the batch size is
256 and the number of training iterations is 30k. We divide the learning rate by 10 at 15k and 22k
iterations, respectively. (2) We train ResNet-50 (He et al., 2016) on ImageNet 2012 classification
dataset, which has 1k classes and 50k images in the test set (Russakovsky et al., 2015). We use SGD
with a start learning rate of 2e — 3. A polynomial learning rate decay with a power of 2 is used. We
set the momentum to 0.95 and the weight decay to 1e — 4. We train on a single V100 GPU and the
batch size is 64. We report the final test accuracy when the training ends at 500k iterations. We use
the standard data augmentation: an original image is warped to 256 x 256, followed by a random
crop of 224 x 224. This crop is randomly flipped. We fix common settings to fairly compare CCE,
LS, CP, Boot-soft and ProSelfLC.

Result analysis. In Table 3, we observe the superiority of ProSelfLC in standard setting without
considering label noise. Being probably surprising, LS and CP reduce the performance consistently
as e increases on ImageNet. Instead, Boot-soft and ProSelfLC improve versus CCE. We remark that
both test sets are large so that their differences are noticeable.

5.2 SYNTHETIC LABEL NOISE

Noise generation. (1) Symmetric label noise: the original label of an image is uniformly changed
to one of the other classes with a probability of r; (2) Asymmetric label noise: we follow (Wang
et al., 2019) to generate asymmetric label noise to fairly compare with their reported results. Within
each coarse class, we randomly select two fine classes A and B. Then we flip 7 x 100% labels of A
to B, and r x 100% labels of B to A. We remark that the overall label noise rate is smaller than 7.
Baselines.! We compare with the results reported recently in SL (Wang et al., 2019). Forward is
a loss correction approach that uses a noise-transition matrix (Patrini et al., 2017). D2L monitors
the subspace dimensionality change at training (Ma et al., 2018). GCE denotes generalised cross
entropy (Zhang & Sabuncu, 2018) and SL is symmetric cross entropy (Wang et al., 2019). They are
robust losses designed for solving label noise. Training details are the same as Section 5.1.

Result analysis. For all methods, we directly report their final results when training terminates.
Therefore, we test the robustness of a model against not only label noise, but also a long time being

"We do not consider DisturbLabel (Xie et al., 2016), which flips labels randomly and is counter-intuitive. It
weakens the generalisation because generally the accuracy drops as the uniform label noise increases.
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Table 3: Test accuracy (%) in the standard setting. We report three settings of hyperparameters.
LS (e) CP (e) Boot-soft (€) ProSelfLC (B)
0.125 0.25 0.50 0.125 0.25 0.50 0.125 0.25 0.50 8 10 12

CIFAR-100 69.0 699 696 684 695 693 687 689 69.1 69.1 70.1 703 6938
ImageNet 2012 755 753 752 749 752 748 746 757 758 758 76.0 76.0 759
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Figure 3: Comprehensive learning dynamics on CIFAR-100 with asymmetric label noise » = 0.4.
For data-dependent items, mean results are reported. At training, a learner is NOT GIVEN whether
a label is trusted or not. 'We store intermediate models and analyse them when the training ends.

exposed to the data. In Table 4, we observe that: (1) ProSelfLC outperforms all baselines, which
is significant in most cases; (2) In both implementation, Boot-hard and Boot-soft perform worse
than the others. However, our ProSelfLC makes Self LC the best solution. Furthermore, learning
dynamics are visualised in Figure 3, which helps to understand why ProSelfLC works better.

Results of different B, € are in Table 5. Appendix B shows the learning dynamics when r changes.

Revising the semantic class and similarity structure. In Figures 3b and 3c, we show dynamic
statistics of different approaches on fitting wrong labels and correcting them. ProSelfL.C is much
better than its counterparts. Semantic class correction reflects the change of similarity structure.

To redefine and reward a low-entropy status. On the one hand, we observe that LS and CP work
well, being consistent with prior claims. In Figures 3d and 3e, the entropies of both clean and
noisy subsets are much higher in LS and CP, correspondingly their generalisation is the best except
for ProSelfL.C in Figure 3f. On the other hand, ProSelfLC has the lowest entropy while performs
the best, which proves that a learner’s confidence does not necessarily weaken its generalisation
performance. Instead, a model needs to be careful with what to be confident in. As shown by
Figures 3b and 3c, ProSelfLC has the least wrong fitting and most semantic class correction, which
indicates that a meaningful low-entropy status is redefined.

5.3 REAL-WORLD LABEL NOISE

Clothing 1M (Xiao et al., 2015) has around 38.46% label noise in the training data and about 1
million images of 14 classes from shopping websites. Its internal noise structure is agnostic.

Baselines. For loss correction and estimating the noise-transition matrix, S-adaption (Goldberger &
Ben-Reuven, 2017) uses an extra softmax layer, while Masking (Han et al., 2018a) exploits human
cognition. MD-DYR-SH (Arazo et al., 2019) is a combination of three techniques: dynamic mixup
(MD), dynamic bootstrapping together with label regularisation (DYR) and soft to hard (SH). The
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Table 4: Accuracy (%) on the CIFAR-100 clean test set. All compared methods use ResNet-44.

Asymmetric Noisy Labels Symmetric Noisy Labels
Method r=0.2 r=0.3 r=04 r=0.2 r=04 r=0.6
Boot-hard 63.4 63.2 62.1 57.9 48.2 12.3
Results From Forward 64.1 64.0 60.9 59.8 53.1 24.7
SL (Wa}l ot al 2019) D2L 62.4 63.2 61.4 59.2 52.0 353
g ” GCE 63.0 63.2 61.7 59.1 53.3 36.2
SL 65.6 65.1 63.1 60.0 53.7 41.5
CCE 66.6 63.4 59.5 58.0 50.1 37.9
Our Trained LS 67.9 66.4 65.0 63.8 57.2 46.5
Results CpP 67.7 66.0 64.4 64.0 56.8 44.1
S Boot-soft 66.9 65.3 61.0 63.2 59.0 44.8
ProSelfLC 68.7 68.5 67.9 64.8 59.3 47.7

Table 5: The results of different hyperparameters on CIFAR-100 using ResNet-44. Under different
noise rates, the best instantiation of each approach is bolded except for CCE.

Method Value of Asymmetric label noise ~ Symmetric label noise Clean
(hyperparameter)  hyperparameter ~ 20% 30%  40% | 20% 40%  60% |

CCE Noneore =0  66.6 634 595 | 580 50.1 379 | 69.0
0.125 66.4 65.6  63.1 61.7 525 39.1 | 69.9

LS (e) 0.25 67.9 66.4 650 | 62.8 559 409 | 69.6
0.50 66.8 658 646 | 63.8 572 465 | 684

0.125 65.7 642 603 59.8 523 39.6 | 69.5

CP (¢) 0.25 66.8 65.1 61.6 | 61.0 533 409 | 693
0.50 67.7 66.0 644 | 640 56.8 44.1 | 687

0.125 65.8 64.1 60.7 | 59.7 512 40.6 | 68.9

Boot-soft () 0.25 66.2 64.1 60.3 61.1 544 433 | 69.1
0.50 66.9 653 61.0 | 63.2 59.0 448 | 69.1

8 67.8 674 679 | 647 577 477 | 70.1

10 68.5 68.5 66.8 | 639 59.0 475 | 703

ProSelfLC (B) 12 68.6 679 674 | 64.0 593 475 | 698
14 68.7 68.0 67.8 | 64.8 59.0 474 | 69.6

16 68.4 672 673 63.7 59.0 323 | 69.9

Table 6: Test accuracy (%) on the real-world noisy dataset Clothing 1 M.

S- Masking MD-  Joint- Our Trained Results
adaptation DYR-SH soft "cCE LS CP Bootsoft ProSelfLC
68.9 69.8 69.5 69.8 71.0 70.3 71.1 71.0 722 71.8 72.6 724 723 73.4

Boot-

Forward D2L GCE SL
hard

other baselines have been introduced heretofore.

Training details. We follow (Tanaka et al., 2018) to train ResNet-50 and initialise it by a trained
model on ImageNet. We follow Section 5.1 with small changes: the initial learning rate is 0.01 and
we train 10k iterations. They are searched on the separate clean validation set.

Result analysis. In Table 6, analogously to CIFAR-100, we report our trained results of CCE, LS,
CP, Boot-soft and ProSelfL.C for an entirely fair comparison. ProSelfLC has the highest accuracy,
which demonstrates its effectiveness again.

6 CONCLUSION

We present a thorough mathematical study on several target modification techniques. Through anal-
ysis of entropy and KL divergence, we reveal their relationships and limitations.

To improve and endorse self label correction, we propose ProSelfL.C. Extensive experiments prove
its superiority over existing methods under standard and noisy settings. ProSelfLC enhances the
similarity structure information over classes, and rectifies the semantic classes of noisy label distri-
butions. ProSelfL.C is the first approach to trust self knowledge progressively and adaptively.

ProSelfLC redirects and promotes entropy minimisation, which is in marked contrast to recent prac-
tices of confidence penalty (Szegedy et al., 2016; Pereyra et al., 2017; Dubey et al., 2018).
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A PROOF OF PROPOSITIONS

Proposition 3. Compared with CCE, LS and CP penalise entropy minimisation while LC reward it.
Proof. We can rewrite CCE, LS, CP, and LC from the viewpoint of KL divergence:

Lece(a, p) = H(q, p) = KL(q||p) + H(q,q) = KL(q]|p), (8)

where we have H(q, q) = 0 because q is a one-hot distribution.

Lecess(q, pse) = (1 — €)KL(q||p) + eKL(u||p) + eH(u, u)

= (1 — ¢)KL(q||p) + eKL(ul||p) + € - constant, ©)
Lecr+cer(a, pie) = (1 — ¢)KL(q||p) — e(H(p, u) — KL(p|[u)) (10)
= (1 — ¢)KL(q||p) + eKL(p||u) — € - constant,
where H(p, u) = H(u, u) = constant. Analogously, LC in Eq (5) can also be rewritten:
Leonsro(ap;€) = (1 - /KL(q||p) — KL(p|[u) + ¢ - constant. (a1
In LS and CP, both +KL(u||p) and +KL(p||u) pulls p towards u. While in LC, the term
—KL(p||u) pushes p away from u. O

Proposition 4. In CCE, LS and CP, a data point x has the same semantic class. In addition, x has
an identical probability of belonging to other classes except for its semantic class.

Proof. InLS, the target is qr.s = (1—¢)g+ecu. Forany 0 < € < 1, the semantic class is not changed,
because 1 — € + € * & > e &. Inaddition, j1 # y, j2 # y = Qus(j1|x) = Aus(fa|x) = §.

In CP, Gcp = (1 — €)q — ep. In terms of label definition, CP is against intuition because these
zero-value positions in q are filled with negative values in qcp. A probability has to be not smaller
than zero. So we rephrase qcp (y|x) = (1 —€) —exp(y|x), and Vj # y, Qcp(j|x) = 0 by replacing
negative values with zeros, as illustrated in Figure la. ]

B LEARNING DYNAMICS OF DIFFERENT NOISE RATES

In Figure 4, we store a model every 1000 iterations to monitor the learning process.

C THE CHANGES OF ENTROPY STATISTICS AND €poseifi,cc AT TRAINING

In Figure 5, we visualise how the entropies of noisy and clean subsets change at training.

12
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Figure 4: Learning dynamics on CIFAR-100 under asymmetric noisy labels. We show all iterations
only in (a) and (d). In the others, we show the second half iterations, which are of higher interest. As
the noise rate increases, the superiority of ProSelfLC becomes more significant, i.e., avoiding fitting
noise in the 2nd row and leading to better generalisation in the 1st row.
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Figure 5: The changes of entropy statistics and ep,,gcif1.c at training. We store a model every 1000
iterations to monitor the learning process. For data-dependent metrics, after training, we split the
corrupted training data into clean and noisy subsets according to the information about how the
training data is corrupted before training. Finally, we report the mean results of each subset.
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