UnilCL: An Efficient Unified Framework Unifying Compression, Selection,
and Generation

Anonymous ACL submission

Abstract

In-context learning (ICL) enhances the reason-
ing abilities of Large Language Models (LLMs)
by prepending a few demonstrations. It moti-
vates researchers to introduce more examples
to provide additional contextual information
for the generation. However, existing meth-
ods show a significant limitation due to the
problem of excessive growth in context length
which causes a large hardware burden. In ad-
dition, shallow-relevant examples selected by
out-off-shelf tools hinder LLMs from captur-
ing useful contextual information for genera-
tion. In this paper, we propose UnilCL, a novel
Unified ICL framework that unifies demon-
stration compression, demonstration selection,
and final response generation. Furthermore,
to boost inference efficiency, we design a tai-
lored compression strategy that allows UnilCL
caching compression results into Demonstra-
tion Bank (DB) which avoids repeated com-
pression of the same demonstration. Exten-
sive out-of-domain evaluations prove the ad-
vantages of UnilCL in both effectiveness and
efficiency.

1 Introduction

In-context learning (ICL) (Brown et al., 2020; Xie
etal., 2021; Wang et al., 2023b) to enhance the rea-
soning ability of Large Language Models (LLMs)
with a few demonstrations prepended (Wang et al.,
2023d; Yang et al., 2023; Wei et al., 2023; Wang
et al., 2023a; Min et al., 2022). Inspired by its
outstanding performance, researchers explored ap-
plying ICL on many tasks such as text summariza-
tion (Wang et al., 2023d; Yang et al., 2023; Gao
et al., 2024), sentiment classification, and linguistic
acceptability (Min et al., 2022; Wang et al., 2019).
However, two challenges hinder the impact of ICL
currently: (1) concatenated demonstrations directly
surge the input length, causing a large hardware bur-
den (2) the prepended demonstrations are randomly

Sentence: One |
hope to study in
France.
Label: Acceptable
P LLM

(LTI e BRRT

Virtual Tokens

—>Acceptable

1 hope to would
study in Facnce.

Trainin@

set Sentence: | hope to study

in France.
Label: Acceptable LLM

(a)

Retriever, —>Acceptable

I hope to

would study in’
Facnce.

Training
set

I hope to
would study —|
in Facnce. Unacceptab\e

[M]

Figure 1: (a) Prompt compression methods that
indiscriminately compress both demonstrations and
queries.(b) Retrival-based demonstration selection meth-
ods select lexical demonstrations. (¢) UnilCL discrimi-
nately compresses demonstrations and performs selec-
tion upon the compression results.

sampled or selected via out-off-shelf tools which
tend to provide shallow relevant demonstrations,
hindering LL.Ms from capturing useful contextual
information for generation. Existing work tackles
the two challenges separately.

To alleviate input length surge, on the one hand,
many efforts are made in modifying model archi-
tecture to accommodate longer contexts (Zheng
et al., 2022; Wu et al., 2022; Ding et al., 2023; Bu-
latov et al., 2023). These methods usually require
training models from scratch and models with mil-
lion context windows still struggle to overcome
performance degradation (Liu et al., 2024). On the
other hand, recent studies attempt to shorten inputs
through prompt compression(Wingate et al., 2022;
Mu et al., 2023; Jiang et al., 2023; Ge et al., 2023).
However, these compression methods are not ap-
plicable to ICL because indiscriminately compress
both demonstrations and queries into virtual tokens.

For instance, as illustrated in Fig. 1(a), the task
entails justifying whether the query is grammat-
ically acceptable. The latter generator makes re-
sponses only according to virtual tokens generated
by the compressor, resulting in a wrong answer! .
More importantly, current compression methods
are costly to train (Wingate et al., 2022; Mu et al.,
2023; Jiang et al., 2023), and compressors are either
limited to compressing within the original model’s
allowed input length (Mu et al., 2023; Jiang et al.,
2023; Ge et al., 2023) or bringing significant infer-
ence latency (Wingate et al., 2022).
Retrieval-based In-context Example Selection
(RICES) methods (Alayrac et al., 2022) integrate
an out-off-shelf pre-training model to select demon-
strations similar to the queries in a shallow level.
These demonstrations usually contain redundant
information and bring minimal benefits for final
generation (Liu et al., 2021; Ram et al., 2023;
Wang et al., 2024). Existing work attempts to train
the retrieval model and the generator in an end-
to-end manner have shown better performance in
in-domain datasets (Wang et al., 2023c). How-
ever, this approach still performs poorly in out-
of-domain datasets. For instance, as shown in
Fig. 1(b), the retriever selects an example lexically
similar to queries but has contrast labels. Then, the
LLM is misleaded and responds to a wrong answer.
In light of challenges in ICL, we turn to lever-
age the inherent understanding ability of LLMs
developed during pre-training. We accordingly pro-
pose a Unified ICL (UnilCL) framework, which
unifies demonstration compression, demonstration
selection, and response generation. As shown in
Fig. 1(c), for lightweight training, in UnilCL, both
the compressor and generator are initialized from
the same LLM and kept frozen. An adapter is
introduced to align the compressor with the gen-
erator, and [M] is a learnable embedding called
Memory Slot which is attached behind demonstra-
tions for compression. Therefore, UnilCL only
contains 17M trainable parameters. The LLM com-
pressor first compresses each demonstration from
the training set and queries into Memory Tokens
independently on top of Memory Slots. Then, Uni-
ICL selects n most relevant demonstration based on
the similarity of Memory Tokens between queries
and demonstrations. Finally, Memory Tokens of
selected demonstrations are concatenated to for-
mulate a global in-context sequence, together with

'T hope to weuld study in Faenee (France)

Demonstration Bank

[T [or

043

—> LLM

Query LLM Response

Compressed Tokens

Figure 2: The workflow of Demonstration Bank.

queries fed into the generator for response gener-
ation. Due to independent compression, the com-
pressor gets rid of the input window limitation
of original LLMs with the number of demonstra-
tions increasing. In addition to improvements in
window limitation, the tailored compression strat-
egy further makes improvements to ICL efficiency.
Specifically, UnilCL caches Memory Tokens of
different demonstrations to configure the Demon-
stration Bank (DB) for future reusing as shown
in Fig. 2. Therefore, repeated compression of the
same demonstration is not necessary, which sig-
nificantly boosts model efficiency in Fig. 8. Ex-
tensive out-of-domain evaluation indicates UnilCL
achieves substantial improvements compared with
other baselines. Our main contributions are as fol-
lows:

* To our knowledge, we are the first to propose
a unified ICL framework with 17M trainable
parameters.

* UnilCL proposes configuring the Demonstra-
tion Bank to avoid repeated compression for
the same demonstration, which significantly
boosts ICL efficiency.

* Different from the indiscriminate compression
of previous studies, UnilCL proposes a tai-
lored compression strategy for ICL, achiev-
ing substantial improvements compared with
other baselines.

2 Related Work

2.1 Soft Prompt Compression

Recently, researchers attempted to utilize soft
prompts to convert actual tokens to dense-
information virtual tokens. Mostly from a distilla-
tion perspective, Wingate et al. (2022) aligned the
teacher model and the student model, where the
teacher model accepted the actual task instruction
while the student model fed the soft prompt. The

main drawback of this approach was the lack of
generalization that necessitated training for each
lexically different instruction. To tackle the gen-
eralization problem, Mu et al. (2023) proposed to
learn a Llama-7b to compress instruction to virtual
tokens, but only compress instruction was not pow-
erful enough since the demonstrations were much
longer in practice. To compress longer prompts,
Chevalier et al. (2023) proposed AutoCompres-
sor to recurrently generate compressed virtual to-
kens based on a fine-tuned Llama (Zhang et al.,
2022). However, AutoCompressor broke the in-
dependence of demonstrations, and the recurrent
compression increased inference latency. Ge et al.
(2023) proposed ICAE that employed a LoRA-
adopted Llama-7b (Touvron et al., 2023) to com-
press the processed demonstrations to compact vir-
tual tokens, while ICAE still struggled to overcome
quite long inputs.

2.2 Extractive Compression

Apart from employing soft prompts, researchers
also endeavored to shorten prompts by extracting
informative tokens from the original ones (Li, 2023;
Jiang et al., 2023), namely token pruning (Kim
et al., 2022) or token merging (Bolya et al., 2022).
Recent works like LLMLingua (Jiang et al., 2023)
and Selective Context (Li, 2023) shared similari-
ties but diverged on whether to eliminate tokens
with high or low Perplexity (PPL). LLMLingua
emphasized tokens with high PPL, attributing them
as more influential, resulting in achieving outstand-
ing performance. As mentioned in their paper, ex-
tractive compression methods encountered Out-of-
Distribution (OOD) issues between the extractor
and the target LLM. To reconcile this, they fine-
tuned Alpaca-7b (Taori et al., 2023) using the Al-
paca dataset (Taori et al., 2023) to perform the
alignment.

3 Methodology

Previous compression methods are not tailored for
ICL, and they are either bound by serious inference
latency or poor performance, as demonstrated in
Appendix A. We propose UnilCL, a unified ICL
framework that unifies demonstration compression,
demonstration selection, and response generation.
As for the selection of the underlying LLM, previ-
ous work has proved that the Decoder-only model
performs better than the Encoder-Decoder model in
prompt compression (Mu et al., 2023). We follow

|-

[]
L J
Y
Memory Slot xk

Figure 3: Demonstration compression. £ Memory Slots
are attached behind each demonstration.

this conclusion and adopt Vicuna-7B (Zheng et al.,
2023) as the underlying backbone in UnilCL.

3.1 Demonstration Compression

UnilCL introduces Memory Slots [M] &€ R4, a
learnable d-dimension embedding initialized from
ararely used embedding of the target LLM. UnilCL
activates the Memory Slots to extract information
from demonstrations in the forward propagation
fo(+) of frozen Vicuna, as illustrated in Fig. 3. We
first attach & Memory Slots M = k x [M] be-
hind each demonstration D;, formatting modified
prompt fed to the Vicuna. Then, frozen Vicuna
infers the modified prompts and outputs the last
hidden states H® = (hy, ha, ..., ht) on top of the k
Memory Slots:

H' = fo(DF* @ MF>?), (1)

where L; is the i—th demonstration length, d is the
embedding dimension and ¢ means token-level
concatenation. Due to the attention mechanism,
H' is compelled to attend to the preceding actual
tokens. Then, UnilCL applies a linear layer as
the adapter for efficiency to convert H* to Memory
Tokens C* = (¢}, ch, ..., ¢), performing alignment
between the compressor and the generator’:

i __ dxd i
c; =Wy % hi, 2)
where W), is the parameters of the projection layer.

*Linear layer is enough for UniICL as features have inter-
acted with each other during compression.

Low
-

Tﬁanking

» Similarity <«

B
=
B

Average Pooling

T |||
:
T r A 0
(o) (2] (=] 28

Figure 4: Demonstrations selection.

3.2 Demonstration Selection

Memory Tokens C° naturally summarize the
demonstrations in latent space, and UnilCL per-
forms demonstration selection based on the similar-
ity between queries and demonstrations as shown
in Fig. 4. Specifically, given a query () and its can-
didate demonstrations (D1, D, ..., D;,), UnilCL
obtains their representations used for selection by
average pooling C' py:

- 1
Citq.py =7 D¢ 3)

We define the i-th demonstration saliency score \S;
as the cosine similarity between C and D;:

S; = cosine_similarity(Cg, C%h). (4)

3.3 Generation

We employ the frozen Vicuna again to generate re-
sponses with the guiding of concatenated Memory
Tokens and queries, as illustrated in Fig. 5. For
m-shot in-context learning, we obtain m spans of
Memory Tokens after demonstration compression
and selection, denoted as C* to C™. Then, we
horizontally concatenate them, keeping their rela-
tive position unmodified. Finally, the concatenated
Memory Tokens together with actual queries are
fed into Vicuna, performing auto-regressive gener-
ation gy as normal:

Yi :ge(clavcvaay<1) (5)

o]

(dl[a] - [d]a] -
L J
T
Memory Tokens
Concatenation

Figure 5: In-context generation. The Memory Tokens
from different demonstrations are concatenated horizon-
tally at the input end of Vicuna.

Except for the generative manner, Memory To-
kens apply close-ended evaluation for understand-
ing tasks through measuring PPL? as normal, e.g.
(ppl™, ppl™) for sentiment classification:

y = argmin(ppl ™, ppl ™), (6)

where choices with PPL closest to 1 is judged to be
the current prediction.

3.4 Training

The trainable parameters in UnilCL are merely
17M originating from the projection layer W), and
the introduced Memory Slot [M]. The linear layer
is optimized with the language modeling objective
L, of Vicuna to learn a base compression model.
Then InfoNCE (He et al., 2020) joint with language
modeling objective are used to augment the demon-
stration selection ability of the base compression
model:

L= ﬁlm + ﬁct'r- @)

Specifically, we slice the source input of each train-
ing instance into two parts and randomly compress
one. The compressed part is denoted as x. and the
uncompressed part is denoted as x,,. Afterward,
we attach the Memory Slot sequence M behind x.
and get Memory Tokens C' on top of the Memory
Slots, as described in Eq. 1 and Eq. 2. Therefore,
the language modeling loss L, is obtained as:

1
Lim = il ZlogP(yt\xu; Ciy<t), (8)
=0

where y is the reference label of the current training
instance. Additionally, to approach the large-shot
settings without significant truncation, we intro-
duce concatenation compression. When . exceeds

3https: //huggingface.co/docs/transformers/
perplexity

https://huggingface.co/docs/transformers/perplexity
https://huggingface.co/docs/transformers/perplexity

Relative PPL

Figure 6: Contrastive examples mining pipeline. Finds
demonstrations benefit/hinder the final generation ac-
cording to the PPL.

the window limitation for compression, UnilCL
further divides x. into acceptable ranges and com-
presses them independently to get local Memory
Tokens. Then, these Memory Tokens from dif-
ferent segments will be concatenated to formulate
global virtual tokens to replace x., applying Eq. 8
to optimize models as well.

We obtained a base compression model that has
learned to compress and understand concatenated
Memory Tokens after the first-phase training men-
tioned. Subsequently, we utilize contrastive learn-
ing for selection augmentation and mine positives
and negatives as illustrated in Fig. 6. Specifically,
given each training instance () and n candidate
demonstrations (D1, Da, ..., D,) from two non-
crossing training subsets, we employ Vicuna to
calculate the PPL concerning the golden label of @),
denoted as ppl® to find useful demonstrations for
generation. Then, we provide the i-th demonstra-
tion and calculate PPL concerning the golden label
of Q, denoted as (pplP, i € [1,n]). We count ppl®
as the baseline and calculate candidate relative PPL
gains:

—~ D
ppl; =ppl® —ppiPieLn]. ()

After finding demonstrations DT (D) that fur-
thest reduces (increases) ppl<?, we obtain their rep-
resentation C7, (Cp,) as processed in Eq. 3. The
contrastive loss L., can be formulated as:

exp(cos(Cg, C}))
exp(cos(Ca, CF)) + explcos(Ca, Cp))
(10)
In particular, if all relative PPL gains are less than
0, namely none of the candidate demonstrations
help guide Vicuna to generate the golden label, we
will apply the other set of candidates.

Lctr =

words

Dataset (96,512] (512,1024] (1024,1536]

XSum (Narayan et al., 2018) 10,000 4,697
CICERO (Ghosal et al., 2022) 10,000 -
SUPER-NI (Wang et al., 2022b) 10,000 7,000
XSum (Ctr) 5,000

Table 1: The composition training set of UnilCL. (m,n]
represents the range of the number of words in each
instance. XSum (Ctr) is used for the second-phase train-
ing in Eq. 7.

4 Experiment

4.1 Baselines

Unmodified Vicuna-7b serves as the fundamental
baseline fed with actual demonstrations. Auto-
Compressor compresses prompts into 50 virtual
tokens in different rounds recurrently as illustrated
in Fig. 9(a). Previous compressed virtual tokens
are put at the beginning of the current segment.
Finally, virtual tokens of different compression
rounds are concatenated for generation. We employ
their Llama2-7b version for comparison. LLM-
Lingua is a coarse-to-fine demonstration pruning
method based on dropping uninformative words.
We employ their released 7b version, of which the
compressor is a fine-tuned Llama2. For a meaning-
ful comparison, we replace target LLMs of LLM-
Lingua (GPT-3.5-Turbo or Claude-v1.3) with the
Vicuna-7b. ICAE compresses demonstrations into
128 virtual tokens via a LoRA-adapted Llama2-
7b, as illustrated in Fig. 9(b). Additionally, since
selection augmentation is involved in the training
of UnilCL, we utilize the popular Sentence-BERT
(S-BERT) (Reimers and Gurevych, 2019) as the
dense retriever to construct an ICL pipeline for
the above methods, serving as simple but effective
selection-based baselines.

4.2 Settings

We construct the training set by mixing up XSum,
CICERO, and SUPER-NI according to their length
as shown in Tab. 1 and evaluate UniICL on exten-
sive out-of-domain datasets as listed in Tab. 2, with
more details reported in Appendix H. Considering
computation efficiency, we set the max allowed in-
put length limit to 512 for both compression and
generation for both training and inference. For a
fair comparison, we set the allowed window of
baselines to 512, and the compression ratio of de-
fault UniICL and baselines are set to 12, which is
determined by the validation in Fig. 7. We fix the
learning rate to 8e-5 and use Adam as the optimizer,

Dataset In-Domain # Test # Demonstrations
MS MARCO-dev X 6,980 -

XSum v 1,500 204,045/20
Arxiv X 1,500 203,037/20
CoLA-dev X 1,041 67,349/20
SST-2-dev X 872 8,551/20
IMDb X 1,500 25,000/20
MMLU X 13,985 25,000/20

Table 2: The details of involved evaluation datasets. -
dev represents employing development set due to their
test sets are inaccessible. # Demonstrations represent
the number of demonstrations to be selected in high/low-
resource ICL settings.

and the effective batch size is 32 (8 GPUs data par-
allelism and 4 steps gradient accumulation). We
train 10 epochs and 2 epochs respectively for the
first- and second-phase training. The best check-
points are selected according to their performance
on in-domain validation sets. Additionally, we con-
ducted all experiments on 8*NVIDIA A5000 24G
GPUs based on BFloat 16 data type, and we set
the evaluated shot to 8 for understanding tasks and
5 for generative tasks for illustration because of
marginal ICL gains and memory costs.

We apply S-BERT to pre-rank and output the top
10 similar candidates from training sets according
to each inference input for all baselines. UnilCL
is employed to perform selection among them in
practice due to computation efficiency for high-
resource ICL. On the contrary, the low-resource
ICL setting utilizes the randomly sampled 20 candi-
date demonstrations for all inference inputs, while
UnilCL performs selection as normal.

To verify the universality, we further build Uni-
ICL on BlueLM-7B (Team, 2023) and Llama2-
7B (Touvron et al., 2023). Results of BlueLM and
Llama?2 will be reported in Appendiex C and Ap-
pendiex D.

4.3 Results

We comprehensively evaluate the ICL performance
of UnilCL on the out-of-domain dataset CoLA,
SST-2, and IMDDb by close-ended evaluation and
Arxiv by open-ended evaluation in Tab. 3. The
details of involved evaluation datasets and metrics
are reported in Tab. 2 and Appendix H. Specifi-
cally, UnilCL outperforms unmodified Vicuna-7b
fed with actual candidate demonstrations, which
indicates that Memory Tokens are more efficient
and informative for guiding the target LLM. Mean-
while, UnilCL outperforms all the baselines by

compressing the same demonstrations pre-ranked
by S-BERT. Additionally, UniICL achieves further
performance gains after selecting demonstrations
via itself (Unil[CL®). The open-ended results high-
light that Memory Tokens indeed capture seman-
tic information for ICL generation even though
summarization demonstrations are much longer
than understanding ones. Regarding Arxiv, the
original ICL is not helpful enough due to its ex-
tremely over-length document, leaving little room
for demonstrations. UnilCL works as expected by
compressing demonstrations into Memory Tokens
and concatenating them, achieving +2.8 Rouge-1
gains in selection-augmented UnilCL (+L.). Ad-
ditionally, according to the results of +L.;., we
find that the gains brought by selection augmen-
tation become larger with the number of demon-
strations increasing. We attribute this to the fact
that UnilCL selects more useful demonstrations
for generation after the second-phase training. The
results of BlueLM are exhibited in Appendiex C.
Except for understanding and generative tasks, we
further evaluate UnilCL on MMLU in Tab. 4. Uni-
ICL achieves stable performance gains with more
demonstrations introduced. Additionally, consid-
ering ICAE and AutoCompressor are soft-prompt-
based compression methods built on Llama2, we
also build UnilCL on Llama2 for ablation in Ap-
pendiex D.

Passage Ranking Since the virtual tokens natu-
rally summarize semantic information of preced-
ing sequences, we evaluate UniICL on the out-of-
domain MS MARCO dataset in Tab. 5. UnilCL sig-
nificantly outperforms the sparse retrieval method
BM25 algorithm and other compression methods.
Subsequently, we fine-tune the first-phase com-
pression model of UnilCL on the training set of
MS MARCO. UnilCL achieves comparable perfor-
mance with SIMLM (Wang et al., 2022a), which
is specified in Information Retrieval (IR) and has
more trainable parameters.

5 Analysis

5.1 Compression Ratio

During training, the compression ratio is dynam-
ically sampled from 2 to 16. We mix up 2,000
instances from the in-domain validation set, 1,000
for XSum, and 1,000 for CICERO to select the com-
pression ratio for UnilCL in Fig. 7, with the back-
bone of Llama2, Vicuna, and BlueLM respectively.
Specifically, UniICL compresses the latter cut-off

Model #-shots CoLA-dev SST-2-dev IMDb Arxiv XSum
Acc. R-1 R-2 R-L R-1 R-2 R-L
0-shot 56.2 91.7 92.6 343 9.1 27.4 19.9 5.0 13.5
Vicuna I-shot | 58.2(57.4) 90.7(90.8) 91.9(91.0) | 344 (332) 9.1 (8.5 27.5(26.7) | 21.2(204) 5.8(5.2) 14.5(13.9)
2-shot | 62.1(59.8) 92.1 (91.3) 91.7(91.7) - - - - - -
S-shot | 62.3(61.9) 93.0(91.9) 94.1(92.5) - - - - - -
I-shot | 42.1(40.9) 85.7(84.2) 95.0(95.1) | 27.0(26.4) 8.4(8.2) 26.1(25.8) | 21.3(20.3) 6.5(6.3) 13.7(13.7)
AutoCompressor | 2-shot | 58.8 (56.3) 88.0(86.4) 95.0(94.6) | 27.1(26.2) 8.6(7.9) 264 (254) | 219(214) 6.6(6.4) 145(14.1)
S-shot | 59.1(58.8) 91.3(89.1) 94.7(94.8) | 34.5(33.7) 9.4(9.1) 287(279)|22421.7) 69(6.7) 14.8(14.3)
1-shot | 55.5(55.0) 89.7(89.6) 91.0(89.9) | 33.3(33.1) 89(8.7) 274(27.1)|205(19.7) 54(5.2) 145(144)
LLMLingua 2-shot | 56.7 (55.7) 90.7(90.2) 91.3(91.0) | 32.9(32.0) 82(8.1) 269(25.9) | 20.3(20.0)0 5.2(5.1) 14.3(14.1)
5-shot | 57.2(56.9) 90.6(90.2) 90.9(91.2) | 30.1(29.7) 7.9(7.4) 253(24.6) | 19.7(18.6) 4.9(4.9) 14.1(14.3)
1-shot | 30.9 (30.9) 61.0(60.1) 85.7(83.3) | 26.8(24.6) 8.2(7.1) 24.7(229) | 23.5(21.9) 85(7.8) 20.9(20.3)
ICAE 2-shot | 30.9 (30.9) 49.0(52.8) 85.9(85.9) | 27.2(25.5) 84(7.6) 259(24.3) | 24.4(23.2) 89(84) 21.3(20.8)
5-shot | 30.9 (30.9) 54.2(51.0) 85.7(85.9) | 28.3(26.9) 8.7(7.7) 26.6(25.8) | 25.3(249) 9.2(8.8) 22.5(21.6)
1-shot | 58.7 (58.0) 92.9(91.7) 94.3(92.3) | 35.5(34.7) 10.5(10.2) 28.7(27.9) | 27.7(25.5) 10.2(9.1) 21.2(20.0)
UniICL 2-shot | 62.4 (61.0) 92.4(91.6) 94.9(93.3) | 36.1(35.2) 10.8(10.4) 29.4(28.2) | 29.4(26.8) 11.0(9.8) 22.3(20.9)
5-shot | 62.6 (61.8) 93.1(92.3) 94.5(94.0) | 35.8(35.4) 10.6(10.2) 29.5(28.1) | 30.7 (27.6) 11.3(10.1) 22.8(21.4)
1-shot | 59.1(58.7) 93.0(91.9) 94.5(91.6) | 34.8(34.7) 10.4(10.3) 28.1(27.8) | 29.1(26.2) 10.8(9.4) 22.2(20.7)
UniICL® 2-shot | 62.6 (61.2) 94.0(93.0) 94.9(92.3) | 34.6(34.3) 10.6(10.4) 28.5(28.3) | 30.3(28.9) 11.3(10.5) 22.9(21.7)
5-shot | 63.3(61.5) 94.7(92.8) 95.0(93.8) | 35.6(35.3) 11.0(10.8) 29.1(27.7) | 31.1(30.0) 11.7(11.2) 23.5(22.3)
8-shot | 63.8 (62.6) 94.7(93.1) 95.0(94.2) - - - - - -
1-shot | 59.3(58.9) 93.2(92.4) 95.1(92.8) | 35.6(35.1) 10.7(10.5) 28.9(28.3) | 30.0(27.9) 11.3(10.1) 22.8(21.5)
UniICL® + L., 2-shot | 62.4 (62.0) 94.5(92.8) 94.8(93.4) | 36.8(35.3) 10.8(10.6) 29.6(28.9) | 30.8(29.2) 11.4(10.7) 23.0(21.9)
ctr 5-shot | 64.3 (61.8) 94.7(93.4) 96.1(94.2) | 37.1(349) 11.3(11.2) 30.0(29.3) | 32.5(30.6) 12.3(11.8) 24.7 (23.3)
8-shot | 64.7 (63.3) 94.7 (94.1) 95.6(95.0) - - - - - -

Table 3: The high- and low-ICL results on CoLA-dev, SST-2-dev, and IMDb. Results in (bracket) represent
low-resource ICL. ® represents the demonstrations selected by UnilCL, and the others are selected by S-BERT.
+ L, indicates the selection augmented UnilCL (optimized with Eq. 7). Bold (underline) represents the best
performance on high- and low-resource ICL. R- indicates Rouge scores. All compression methods are evaluated

with a compression ratio set to 12.

#-Shots | S H SS O | Avg.
0-shot | 369 532 53.7 50.7 | 48.6
l-shot | 38.6 553 546 524|502
2-shot | 39.2 55.8 553 53.1 | 509
5-shot | 40.1 55.6 553 53.8 | 51.2

Table 4: Performance of UnilCL on MMLU benchmark.
We reported the Accuracy at the category level. S rep-
resents STEM, H represents Humanities, SS represents
Social Science, O represents Other, and Avg indicates
their average performance.

Method #TP MRR@10
BM25F - 18.5
Vicuna - 28.9
AutoCompressor - 29.3
ICAE - 30.2
UnilCL - 31.6
SIMLM* 110M 41.1
UnilCL? 17M 38.9

Table 5: MRR@10 results on MS MARCO. Vicuna
applies the last hidden states of [EOS] to represent sen-
tences in latent space. Results citing from Liang (Wang
et al., 2022a) are denoted as . and methods supervised
trained on MS MARCO are represented as . Bold indi-
cates the best zero-shot performance and Underline is
the best fine-tuned results. # TP indicates the number of
trainable parameters.

— Llama2
—— BluelM
—— Vicuna

22 A

20 A

181

16 T T

T T T T T T
4x 6% 8x 10x 12x 16x 32x 512x

Compression Ratio

Figure 7: The compression ratio sensitivity analysis of
Llama2 , BlueLM, and Vicuna.

part while keeping the former ones uncompressed.
Therefore, we can measure the dense information
quality of the same content with different compres-
sion ratios by ROUGE-1 since it is more sensitive
to token-level differences. The performance is rela-
tive smoothing when the compression ratio changes
from 4 x to 12x. However, when it comes to 16 x,
an obvious drop occurs. In order to analyze this
phenomenon more deeply, we provide a thorough
analysis in Appendix G. Therefore, we set the com-
pression ratio to 12 by default and apply this ratio

#-chots CoLA SST-2 IMDb Arxiv
Acc. R-1
I-shot | 58.5(-0.8) 91.4(-1.8) 92.6(-2.5) | 34.8 (-0.8)
2-shot | 59.7 (-2.7) 92.1(-2.4) 94.1 (-0.7) | 35.7 (-1.1)
5-shot | 62.4(-1.9) 93.1(-1.6) 94.8 (-1.3) | 36.6 (-0.5)
Table 6: Performance of UnilCL on out-of-domain

datasets, with a fixed compression ratio set to 12 during
training.

=== UnilCL+Caching ~e— UnilCL+Caching
unilcL —e— UnilCL

Baseli
275 AutoCompressor
ICAE AutoCompressor

25.0
Monetary Limitation

15.0
N 1
B
1255 I
100 I | | B 0
0 1 2

4 8
#-Shots

Throughput (iter/s)

Memory (GB)

M

Figure 8: The efficiency comparison between UnilCL
and other compression methods in CoLA with the num-
ber of shots increasing from 0 to 64. Memory explodes
are represented as *, corresponding to the break of the
line chart. +Caching represents using DB.

to all experiments. The 512 x compression ratio is
equal to compressing anything to a single virtual
token, due to the maximum allowed input length
for compression being 512.

To explore whether it could yield additional per-
formance gains compared with dynamic ratios, in
Tab. 6, we re-train UnilCL with the compression
ratio fixed to 12 (Results of more fixed ratios are
reported in Appendix F.). Results indicate that
UnilCL trained with fixed compression ratios un-
derperforms in out-of-domain datasets as it exhibits
over-fitting in in-domain sets as shown in Tab. 12.

Furthermore, we analyze whether 12x is suit-
able for all out-of-domain datasets in Fig. 10 in
Appendix E. Results indicate that 12x outperforms
other compression ratios in general across 4 out-of-
domain datasets. It also points out that lower ratios
still work comparable for short demonstrations and
higher ratios are suitable for long demonstrations
to some extent.

5.2 Efficiency Analysis

In UnilCL, we incorporate an additional 17M train-
able parameters into the 7b backbone, accounting

Method GPUHours TFLOPs TMACs
Vicuna 1.5 86,20 4,309

Vicuna-1k 1.9 31,664 15,832
UnilCL 1.6 22,437 11,218

Table 7: The computation efficiency of UnilCL.

for an approximate increase of 0.24%. We evalu-
ate the memory costs inference latency of UnilCL
and other compression methods in Fig. 8. With
the help of the Demonstration Bank (DB), Uni-
ICL will eliminate the extra latency if the selected
demonstrations have been compressed and cached
(UniICL+Caching). Despite this, parallel compu-
tation facilitates the compressing process, result-
ing in minimal throughput degradation (UnilCL
and Baseline). The unmodified 7B LLM occurs
memory explosion for 8-shot settings and other
compression methods perform up to 32-shot, while
UnilCL successfully scales up to 64-shots within
24GB CUDA allocation.

Additionally, We demonstrate the inference com-
putation and GPU hours in Tab. 7, by using 1,024
random legal tokens as inputs and forcing models
to generate 128 tokens. Notably, UnilCL (with-
out DB) compresses the former half, and the latter
half is fed into the generator directly, while Vicuna
and Vicuna-1k are distinguished in window limi-
tations. Results indicate that minimal GPU hours
increased due to the parallel computation of for-
ward, although the extra compression of UnilCL
surges the computation. Additionally, Vicuna with
a 1k window limitation surges both GPU hours
and TFLOPs because long input brings significant
computation and latency in generation.

6 Conclusion

This paper proposes UnilCL, a parameter-efficient
ICL framework that unifies demonstration selec-
tion, demonstration compression, and final re-
sponse generation via a frozen LLM, an adapter,
and a learnable embedding. Experimental results
prove the advantages of UnilCL in both efficiency
and effectiveness. Due to 12x demonstration com-
pression, UnilCL scales up the number of demon-
strations from 4 to 64 within 24 GB VRAM al-
location. Finally, to avoid repeated compression
of the same demonstration, UnilCL configures
a Demonstration Bank (DB, which significantly
boosts model efficiency.

7 Limitations

Our study, while proposing an efficient unified ICL
framework for demonstration compression and se-
lection, still has limitations. Firstly, UniICL is lim-
ited to the realm of unmodified ICL leaving other
advanced LLM prompting methods, e.g. Retrieval
Augment Generation (RAG) and Chain-of-Thought
(CoT) unexplored. Limited to the hardware, we de-
ploy the underlying LLM at a scale of 7 billion
parameters. Larger-scale LLMs are welcome to
enrich our findings in future studies.

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, lain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in neural
information processing systems, 35:23716-23736.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman.
2022. Token merging: Your vit but faster. arXiv
preprint arXiv:2210.09461.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Aydar Bulatov, Yuri Kuratov, and Mikhail S Burtsev.
2023. Scaling transformer to Im tokens and beyond
with rmt. arXiv preprint arXiv:2304.11062.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith,
and Dangi Chen. 2023. Adapting language
models to compress contexts. arXiv preprint
arXiv:2305.14788.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang,
Shaohan Huang, Wenhui Wang, and Furu Wei. 2023.
Longnet: Scaling transformers to 1,000,000,000 to-
kens. arXiv preprint arXiv:2307.02486.

Jun Gao, Zigiang Cao, Shaoyao Huang, Luozheng
Qin, and Chunhui Ai. 2024. Guiding chatgpt to
generate salient domain summaries. arXiv preprint
arXiv:2406.01070.

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu
Wei. 2023. In-context autoencoder for context com-
pression in a large language model. arXiv preprint
arXiv:2307.06945.

Deepanway Ghosal, Siqi Shen, Navonil Majumder,
Rada Mihalcea, and Soujanya Poria. 2022. Cicero:
A dataset for contextualized commonsense inference
in dialogues. arXiv preprint arXiv:2203.13926.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9729-9738.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023. Llmlingua: Compressing
prompts for accelerated inference of large language
models. arXiv preprint arXiv:2310.05736.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gho-
lami, Woosuk Kwon, Joseph Hassoun, and Kurt
Keutzer. 2022. Learned token pruning for transform-
ers. In Proceedings of the 28th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
pages 784-794.

Yucheng Li. 2023. Unlocking context constraints of
IIms: Enhancing context efficiency of llms with self-
information-based content filtering. arXiv preprint
arXiv:2304.12102.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157-173.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies, pages 142—150.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5316-5330.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023.
Learning to compress prompts with gist tokens.
arXiv preprint arXiv:2304.08467.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. ArXiv, abs/1808.08745.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. choice, 2640:660.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. arXiv preprint arXiv:2302.00083.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

BlueLM Team. 2023. Bluelm: An open multilin-
gual 7b language model. https://github.com/
vivo-ai-lab/BluelLM.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

Jiaan Wang, Yunlong Liang, Fandong Meng, Haoxiang
Shi, Zhixu Li, Jinan Xu, Jianfeng Qu, and Jie Zhou.
2023a. Is chatgpt a good nlg evaluator? a preliminary
study. arXiv preprint arXiv:2303.04048.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023b. Label
words are anchors: An information flow perspective

for understanding in-context learning. arXiv preprint
arXiv:2305.14160.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao,
Linjun Yang, Daxin Jiang, Rangan Majumder, and
Furu Wei. 2022a. Simlm: Pre-training with represen-
tation bottleneck for dense passage retrieval. arXiv
preprint arXiv:2207.02578.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Large
search model: Redefining search stack in the era
of llms. In ACM SIGIR Forum, volume 57, pages
1-16. ACM New York, NY, USA.

10

Liang Wang, Nan Yang, and Furu Wei. 2023c. Learning
to retrieve in-context examples for large language
models. arXiv preprint arXiv:2307.07164.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al.
2022b. Super-naturalinstructions: Generalization via
declarative instructions on 1600+ nlp tasks. arXiv
preprint arXiv:2204.07705.

Zengzhi Wang, Qiming Xie, Zixiang Ding, Yi Feng,
and Rui Xia. 2023d. Is chatgpt a good sentiment
analyzer? a preliminary study. arXiv preprint
arXiv:2304.04339.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint 1805.12471.

Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin Wang,
Xin Zhang, Shen Huang, Pengjun Xie, Jinan Xu,
Yufeng Chen, Meishan Zhang, et al. 2023. Zero-
shot information extraction via chatting with chatgpt.
arXiv preprint arXiv:2302.10205.

David Wingate, Mohammad Shoeybi, and Taylor
Sorensen. 2022. Prompt compression and con-
trastive conditioning for controllability and toxic-
ity reduction in language models. arXiv preprint
arXiv:2210.03162.

Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and
Christian Szegedy. 2022. Memorizing transformers.
arXiv preprint arXiv:2203.08913.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and
Tengyu Ma. 2021. An explanation of in-context learn-
ing as implicit bayesian inference. arXiv preprint
arXiv:2111.02080.

Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and
Wei Cheng. 2023. Exploring the limits of chatgpt
for query or aspect-based text summarization. arXiv
preprint arXiv:2302.08081.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Lin Zheng, Chong Wang, and Lingpeng Kong. 2022.
Linear complexity randomized self-attention mecha-
nism. In International conference on machine learn-
ing, pages 27011-27041. PMLR.

https://github.com/vivo-ai-lab/BlueLM
https://github.com/vivo-ai-lab/BlueLM
https://github.com/vivo-ai-lab/BlueLM

O
BEE0000
‘ﬁ’—) ‘ﬁ’—)
Truncated D; Query
(b) ICAE

Step-by-step
Compression

(a) Autocompressor

(c) SelfcP

Figure 9: Differences of compression methods in formu-
lating compressed virtual tokens in ICL. White blocks
indicate the original embeddings. Yellow blocks are the
compressing embedding for each method. Other colors
represent virtual tokens used for generation.

Trainable
Parameters
7B
7B
70M
17M

Train
Size
57k

UNKNOWN
240k
47k

Additional ~ Compression

Compressor Tool
YES Pruning
NO Soft Prompt
YES Soft Prompt
NO Soft Prompt

Methods

LLMLingua (Jiang et al., 2023)
AutoCompressor (Wingate et al., 2022)
ICAE (Ge et al., 2023)

UnilCL

Table 8: Comparsion among recent compression meth-
ods and UnilCL. Compression Tool represents the in-
volved compression technique of different methods.
Train Size represents the size of training datasets.

A Comparsion with Existing
Compression Methods

We present a comparison of training costs between
UnilCL and other recent compression methods in
Tab. 8. Additionally, we illustrate differences in for-
mulating virtual tokens for compression methods
based on the soft prompt in Fig. 9.

To explain plainly, we ideally assume the com-
pressor within three compression methods based on
soft prompts has the window limitation of L, and
has the same compression ratio, ignoring the length
of soft prompts. In the 2-shot scenario, queries,
demonstrations D; and Ds, each have a length of
L. As shown in Fig. 9(a), AutoCompressor divides
the concatenated demonstrations back into three
segments, and then compresses each segment step-
by-step, bringing three times non-parallel compres-
sion. When it comes to ICAE, merely part of D;
is accessible for the compressor and others will be
read by no means as illustrated in Fig. 9(b). Au-
toCompressor shows advantages in the readable
prompt length but is short in efficiency due to step-
by-step compression. ICAE has a constant com-
pression complexity but struggles to approach rel-
atively long inputs. Combining the advantages of
AutoCompressor and ICAE, UnilCL compresses

11

D1 and D5 into Memory Tokens independently,
utilizing an adapter to perform alignment between
the compressor and the generator.

Generally, in the N-shot settings, the number of
practical compression steps can be calculated as
[, where m indicates that a single GPU is capa-
ble of compressing m demonstrations in a batch.
When the GPU capacity is sufficient, m equals N,
which is the scenario of ICAE that compresses all
segments in a time but UnilCL drops nothing, while
it degenerates to the AutoCompressor scenario that
compresses segments step-by-step, when the GPU
capacity is only sufficient to set m = 1.

B In-Domain Evaluation

XSum CICERO

Backbone Method R4 R2 RL|RI R2 RL
Vicuna 199 50 135|173 33 143

+LoRA 254 75 173 |28.1 105 256

Vicuna-7b Vicuna-1k ~ 27.3 87 19.7 | 30.5 11.3 274
+LoRA 31.2 11.0 23.1|34.1 135 302

UnilCL 30.0 102 223|326 122 2838

BlueLM 150 3.6 104|176 3.1 150

+LoRA 231 7.6 174|219 7.8 198

BlueLM-7b BlueLM-1k 28.1 9.9 228 [25.1 9.2 23.1
+LoRA 30.8 105 24.6 | 312 108 274

UnilCL 304 102 237|292 100 26.6

Table 9: The in-domain results and ablation studies on
XSum and CICERO. 1k represents the extending 1k
window limitation, while others have a limitation of
512.

We conduct the zero-shot in-domain generation
evaluation on the entire test set of XSum and CI-
CERO in Tab. 9 by compressing the latter half to
virtual tokens and keeping the former unmodified.
UnilCL significantly outperforms the baselines, in-
dicating the compressed virtual tokens can provide
the original truncated information by recovering
the cut-off parts after supervised fine-tuning. Al-
though extending the window to 1k, Vicuna and
BlueLLM still underperform UnilCL, indicating that
compressed virtual tokens filter noise information
to some extent.

Additionally, to quantify the performance gains
brought by the learnable projection layer. We tune
Vicuna and BlueLM with comparable parameters
(17M) with LoRA, setting the rank to 32 in Tab. 9.
UnilCL still outperforms LoRA-adapted LLMs
with a 512 window limitation, indicating that the
truncation indeed brings performance degradation.

C Results on BlueLM

We extra conduct experiments on BlueLM (Team,
2023) to verify the generality of UnilCL. We
demonstrate the result of understanding tasks in
Tab. 10, of the generative tasks in Tab. 11.

Model 4hors | COLA-dev SST-2-dev. IMDb
Acc.

0-shot 716 812 488

1-shot 69.6 82.6 64.8

BluelLM 2-shot 70.0 87.0 65.6
5-shot 70.5 88.6 68.7

T-shot 69.6 812 65.4

UnilCL 2-shot 68.7 82.6 67.0
5-shot 71.7 87.0 70.4

I-shot 69.8 80.0 62.0

. 2-shot 70.1 80.8 67.0
UnilCL# 5-shot 71.8 85.6 69.6
8-shot 723 87.4 69.4

1-shot 70.1 80 69.6

. 2-shot 703 87.2 70.6
UnilCLA + Loy 57 o0 711 89.2 71.0
8-shot 725 90.4 76.8

Table 10: The ICL results of understanding tasks with
the backbone of BlueLM.

Arxiv
R-2
7.7
3.6
7.7
7.3
7.8
7.9
8.0
8.0
7.5
7.7
7.9

XSum
R-2
3.6
4.8
6.9
7.3
74
74
7.6
7.9
7.2
74
7.6

Method #-shots

R-1

15.0
19.1
24.0
25.0
25.3
25.2
25.4
26.5
24.7
25.1
26.3

R-L
104
12.1
18.0
18.8
19.1
18.9
19.1
20.3
18.5
19.0
20.0

R-1

30.9
23.0
314
30.8
31.9
31.6
31.9
32.1
31.0
31.2
31.5

R-L
24.7
19.0
25.2
24.8
26.0
254
25.6
25.5
24.9
25.1
25.3

0-shot
1-shot
1-shot
2-shot
5-shot
1-shot
2-shot
5-shot
1-shot
2-shot
5-shot

BlueLM

UnilCL

UnilCL*

UnilCL® + L,

Table 11: The ICL results of generative tasks with the
backbone of BlueLM.

D Supplementary Ablation on Llama2

AutoCompressor (Wingate et al., 2022) and
ICAE (Ge et al.,, 2023) are built on Llama2-
7B (Touvron et al., 2023), which are soft-prompt-
based methods similar to UnilCL. Therefore, we
evaluate UnilCL with Llama2 as the backbone. As
shown in Tab 12 and Tab. 13, UnilCL achieves sub-
stantial improvements compared with unmodified
Llama?2 and outperforms ICAE and AutoCompres-
sor demonstrated in Tab. 3.

12

Model #-shots CoLA-dev SST-2-dev IMDb
Acc.
0-shot 734 93.0 85.3
Llama? 1-shot 74.8 94.0 85.5
2-shot 75.6 94.9 87.8
5-shot 84.3 97.2 92.7
1-shot 74.9 94.1 94.6
UnilCL 2-shot 75.9 95.1 96.1
5-shot 854 95.7 96.5

Table 12: The ICL results of understanding tasks with
the backbone of Llama?2.

XSum Arxiv
Method #-shots R1 R2 RL | R1 R2 RL
Llama?2 O-shot | 274 7.6 20.1 | 329 89 292
l-shot | 27.7 7.9 203 | 30.1 80 284
1-shot | 27.8 8.0 205|333 92 29.7
UnilCL 2-shot | 284 8.6 213|340 94 303
S5-shot | 29.3 9.1 220|345 9.7 30.8

Table 13: The ICL results of generative tasks with the
backbone of LLama?2.

E Compression Ratio Selection on
Different Tasks

We illustrate suitable ratio selection across four
out-of-domain datasets in Fig. 10. For tasks with
relatively short inputs, such as CoLA and SST2,
UnilCL tends to perform better with a compression
ratio set to 4. While in IMDb and Arxiv, which are
longer, UnilCL performs better with higher com-
pression ratios. UnilCL with a 12 x compression
ratio substantially outperforms other settings on
four datasets. Additionally, we are curious about
if it is necessary to introduce more demonstrations
with a higher compression ratio. In Fig. 11, we find

Ratio=32
Ratio=16

0.81

0.6

% Ratio=12

Win Rate

0.4

0.2+ Ratio=4

0.01

ColLA SST2 IMDb Arxiv

Figure 10: Winrate of different compression ratios on
out-of-domain evaluation in 1-shot settings.

Ratio=24; Demonstration=4

Ratio=12; Demonstration=2

Ratio=6; Demonstration=1

sST2 IMDb Anxiv

Figure 11: Winrate of UnilCL with a fixed number of
Memory Tokens.

Fixed Ratio

Figure 12: The relative performance on in-domain and
out-of-domain datasets, with UnilCL trained with a
fixed ratio. Out-of-domain evaluation applies 1-shot
settings.

that the performance of compressing 2 demonstra-
tions with 12X ratio is stable and outperforms other
settings across 3/4 datasets. 6x compression ratio
with 1 demonstration compressed performs worst
in general. When compressing 4 demonstrations
with a 24 x ratio, its performance is comparable
and it slightly outperforms the 12 ratio in SST?2.

F Fixed Compression Ratio Training

To verify the effectiveness of the dynamic sam-
pled compression ratio of UnilCL, we train models
with more extensive fixed compression ratios and
perform out-of-domain evaluation with the same
ratio in Fig. 12. Results indicate that fixed com-
pression ratios work better than dynamic sampled
ratios in in-domain evaluation, but underperform in
out-of-domain evaluation. We attribute this to the
fixed compression ratio makes models exhibit over-
fitting during training, and demonstration compres-
sion degrades to Prefix Tuning.

13

G Visualization of Memory Tokens

To explore how Memory Tokens work within Uni-
ICL across different compression ratios, we visual-
ize the cosine similarity between Memory Tokens
and original embeddings in Fig. 13 and attention
scores of the first generation step in Fig. 14.

Intuitively, the 4 x compression ratio should re-
tain more information due to more Memory To-
kens. However, as shown in Fig. 13(a), the cosine
similarity is relatively sparser than the 4x com-
pression ratio illustrated in Fig. 13(b). This ten-
dency is aligned with the first step attention scores
in Fig. 14(a). According to merely 0.3% average
attention occupied in a generation, we can con-
clude that more Memory Tokens fail to provide
models with more information. We attribute this
phenomenon to the given semantic information be-
ing distributed over all Memory Tokens as models
attend to each Memory Token equally in Fig. 14(a).
Fewer Memory Tokens are enough to concentrate
this information, represented as relatively con-
centrated similarity distribution in Fig. 13(b) and
higher attention scores in Fig. 14(b), both of each
indicates denser information retained. When the
compression ratio becomes higher, such as 16 or
32, Memory Tokens become fewer and therefore
sparse information retrained as shown in Fig. 13(c),
Fig. 13(c), Fig. 14(c), and Fig. 14(c). This also
provides an explanation for the slow performance
degradation with ratios varying from 4 to 12 and
drops sharply at 16 in Fig. 7.

H Datasets & Metrics

Datasets We mix up three public datasets for
compression and selection augmentation training,
described in Tab. 1. The training set includes
an instruction dataset SUPER-NI, which we used
to make UnilCL respond to various instructions.
Notably, we don’t perform an in-domain evalu-
ation on SUPER-NI as it only contains a train-
ing set. After training, we extensively evaluate
UnilCL on out-of-domain evaluation, involving
text summarization (Narayan et al., 2018), passage
ranking (Nguyen et al., 2016), sentiment classifica-
tion (Maas et al., 2011; Socher et al., 2013), linguis-
tic acceptability (Warstadt et al., 2018), and a pop-
ular reasoning benchmark (Hendrycks et al., 2020),
more details referring to Tab. 2. MS MARCO is
popularly used in Information Retrieval (IR), we
use this dataset to evaluate the ability of UnilCL
to capture document-level information. Specifi-

< i i i
|
2 1
{ 1
o g H
" 1 1
PR i H
NI
ER
|
R4
| |
R |
| |
BE |
o
]
< i
i
] e L BaY A 3 L] |
°] g H 5 g g g 8
S B 3 g
(a) Ratio=4
® |
|
| | | |
<
| |
| | |
| | |
o 1 I I ‘ 1
°]] 8 8 g] g 8
(b) Ratio=12
@
] Ii H |
A I IR AR | | 1 | |
°] 2 8 8 8 51 < 8
(c) Ratio=16
° 8 g 8 8 g g g
(c) Ratio=32

Figure 13: Cosine similarity between Memory Tokens (vertical axis) and original embeddings (horizon axis).

cally, MMLU (Massive Multitask Language Under-
standing) is a comprehensive evaluation benchmark
including 57 subjects from STEM, Humanities, So-
cial Sciences, and Other fields. We use this bench-
mark to evaluate the reasoning ability of UnilCL.
UniICL selects demonstrations from its training set
in high-resource ICL, and we fixed the number of
candidate demonstrations to 20 for low-resource
ICL evaluation.

Evaluation Metrics ROUGE (Lin, 2004) is a
widely adopted metric in many generative tasks
that evaluate how similar the generated hypothesis
is to the golden label. Therefore, ROUGE is used in
our experiments to evaluate the quality responses

generated conditioned on compressed virtual to-
kens, and we report the F-1 scores of ROUGE-1,
ROUGE-2, and ROUGE-L (abbreviated R-1, R-
2, R-L in the following), and we employed the
files2rouge “ library in practice. Following the pre-
vious works, we report the accuracy of close-ended
evaluation and MRR @ 10 for passage ranking.

“https://github.com/pltrdy/files2rouge.

14

https://github.com/pltrdy/files2rouge.

0.3%/MT

(a) Ratio=4
1.5%/MT

— —
e
- EESS——

8

4
(c) Ratio=16

Figure 14: Attention scores on Memory Tokens in the
first step generation. The vertical axis describes the 32
LLM layer, and the horizon axis indicates the number
of Memory Tokens across different compression ratios.
Above each figure, %/MT represents the average pro-
portion of the attention score occupied by memory to-

kens in each LLM layer.

2.1%/MT

8 12 16 20 20 28

(b) Ratio=12
1.9%/MT

(d) Ratio=32

15

	Introduction
	Related Work
	Soft Prompt Compression
	Extractive Compression

	Methodology
	Demonstration Compression
	Demonstration Selection
	Generation
	Training

	Experiment
	Baselines
	Settings
	Results

	Analysis
	Compression Ratio
	Efficiency Analysis

	Conclusion
	Limitations
	Comparsion with Existing Compression Methods
	In-Domain Evaluation
	Results on BlueLM
	Supplementary Ablation on Llama2
	Compression Ratio Selection on Different Tasks
	Fixed Compression Ratio Training
	Visualization of Memory Tokens
	Datasets & Metrics

