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Abstract001

In-context learning (ICL) enhances the reason-002
ing abilities of Large Language Models (LLMs)003
by prepending a few demonstrations. It moti-004
vates researchers to introduce more examples005
to provide additional contextual information006
for the generation. However, existing meth-007
ods show a significant limitation due to the008
problem of excessive growth in context length009
which causes a large hardware burden. In ad-010
dition, shallow-relevant examples selected by011
out-off-shelf tools hinder LLMs from captur-012
ing useful contextual information for genera-013
tion. In this paper, we propose UniICL, a novel014
Unified ICL framework that unifies demon-015
stration compression, demonstration selection,016
and final response generation. Furthermore,017
to boost inference efficiency, we design a tai-018
lored compression strategy that allows UniICL019
caching compression results into Demonstra-020
tion Bank (DB) which avoids repeated com-021
pression of the same demonstration. Exten-022
sive out-of-domain evaluations prove the ad-023
vantages of UniICL in both effectiveness and024
efficiency.025

1 Introduction026

In-context learning (ICL) (Brown et al., 2020; Xie027

et al., 2021; Wang et al., 2023b) to enhance the rea-028

soning ability of Large Language Models (LLMs)029

with a few demonstrations prepended (Wang et al.,030

2023d; Yang et al., 2023; Wei et al., 2023; Wang031

et al., 2023a; Min et al., 2022). Inspired by its032

outstanding performance, researchers explored ap-033

plying ICL on many tasks such as text summariza-034

tion (Wang et al., 2023d; Yang et al., 2023; Gao035

et al., 2024), sentiment classification, and linguistic036

acceptability (Min et al., 2022; Wang et al., 2019).037

However, two challenges hinder the impact of ICL038

currently: (1) concatenated demonstrations directly039

surge the input length, causing a large hardware bur-040

den (2) the prepended demonstrations are randomly041
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Figure 1: (a) Prompt compression methods that
indiscriminately compress both demonstrations and
queries.(b) Retrival-based demonstration selection meth-
ods select lexical demonstrations. (c) UniICL discrimi-
nately compresses demonstrations and performs selec-
tion upon the compression results.

sampled or selected via out-off-shelf tools which 042

tend to provide shallow relevant demonstrations, 043

hindering LLMs from capturing useful contextual 044

information for generation. Existing work tackles 045

the two challenges separately. 046

To alleviate input length surge, on the one hand, 047

many efforts are made in modifying model archi- 048

tecture to accommodate longer contexts (Zheng 049

et al., 2022; Wu et al., 2022; Ding et al., 2023; Bu- 050

latov et al., 2023). These methods usually require 051

training models from scratch and models with mil- 052

lion context windows still struggle to overcome 053

performance degradation (Liu et al., 2024). On the 054

other hand, recent studies attempt to shorten inputs 055

through prompt compression(Wingate et al., 2022; 056

Mu et al., 2023; Jiang et al., 2023; Ge et al., 2023). 057

However, these compression methods are not ap- 058

plicable to ICL because indiscriminately compress 059

both demonstrations and queries into virtual tokens. 060
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For instance, as illustrated in Fig. 1(a), the task061

entails justifying whether the query is grammat-062

ically acceptable. The latter generator makes re-063

sponses only according to virtual tokens generated064

by the compressor, resulting in a wrong answer1.065

More importantly, current compression methods066

are costly to train (Wingate et al., 2022; Mu et al.,067

2023; Jiang et al., 2023), and compressors are either068

limited to compressing within the original model’s069

allowed input length (Mu et al., 2023; Jiang et al.,070

2023; Ge et al., 2023) or bringing significant infer-071

ence latency (Wingate et al., 2022).072

Retrieval-based In-context Example Selection073

(RICES) methods (Alayrac et al., 2022) integrate074

an out-off-shelf pre-training model to select demon-075

strations similar to the queries in a shallow level.076

These demonstrations usually contain redundant077

information and bring minimal benefits for final078

generation (Liu et al., 2021; Ram et al., 2023;079

Wang et al., 2024). Existing work attempts to train080

the retrieval model and the generator in an end-081

to-end manner have shown better performance in082

in-domain datasets (Wang et al., 2023c). How-083

ever, this approach still performs poorly in out-084

of-domain datasets. For instance, as shown in085

Fig. 1(b), the retriever selects an example lexically086

similar to queries but has contrast labels. Then, the087

LLM is misleaded and responds to a wrong answer.088

In light of challenges in ICL, we turn to lever-089

age the inherent understanding ability of LLMs090

developed during pre-training. We accordingly pro-091

pose a Unified ICL (UniICL) framework, which092

unifies demonstration compression, demonstration093

selection, and response generation. As shown in094

Fig. 1(c), for lightweight training, in UniICL, both095

the compressor and generator are initialized from096

the same LLM and kept frozen. An adapter is097

introduced to align the compressor with the gen-098

erator, and [M] is a learnable embedding called099

Memory Slot which is attached behind demonstra-100

tions for compression. Therefore, UniICL only101

contains 17M trainable parameters. The LLM com-102

pressor first compresses each demonstration from103

the training set and queries into Memory Tokens104

independently on top of Memory Slots. Then, Uni-105

ICL selects n most relevant demonstration based on106

the similarity of Memory Tokens between queries107

and demonstrations. Finally, Memory Tokens of108

selected demonstrations are concatenated to for-109

mulate a global in-context sequence, together with110
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Figure 2: The workflow of Demonstration Bank.

queries fed into the generator for response gener- 111

ation. Due to independent compression, the com- 112

pressor gets rid of the input window limitation 113

of original LLMs with the number of demonstra- 114

tions increasing. In addition to improvements in 115

window limitation, the tailored compression strat- 116

egy further makes improvements to ICL efficiency. 117

Specifically, UniICL caches Memory Tokens of 118

different demonstrations to configure the Demon- 119

stration Bank (DB) for future reusing as shown 120

in Fig. 2. Therefore, repeated compression of the 121

same demonstration is not necessary, which sig- 122

nificantly boosts model efficiency in Fig. 8. Ex- 123

tensive out-of-domain evaluation indicates UniICL 124

achieves substantial improvements compared with 125

other baselines. Our main contributions are as fol- 126

lows: 127

• To our knowledge, we are the first to propose 128

a unified ICL framework with 17M trainable 129

parameters. 130

• UniICL proposes configuring the Demonstra- 131

tion Bank to avoid repeated compression for 132

the same demonstration, which significantly 133

boosts ICL efficiency. 134

• Different from the indiscriminate compression 135

of previous studies, UniICL proposes a tai- 136

lored compression strategy for ICL, achiev- 137

ing substantial improvements compared with 138

other baselines. 139

2 Related Work 140

2.1 Soft Prompt Compression 141

Recently, researchers attempted to utilize soft 142

prompts to convert actual tokens to dense- 143

information virtual tokens. Mostly from a distilla- 144

tion perspective, Wingate et al. (2022) aligned the 145

teacher model and the student model, where the 146

teacher model accepted the actual task instruction 147

while the student model fed the soft prompt. The 148
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main drawback of this approach was the lack of149

generalization that necessitated training for each150

lexically different instruction. To tackle the gen-151

eralization problem, Mu et al. (2023) proposed to152

learn a Llama-7b to compress instruction to virtual153

tokens, but only compress instruction was not pow-154

erful enough since the demonstrations were much155

longer in practice. To compress longer prompts,156

Chevalier et al. (2023) proposed AutoCompres-157

sor to recurrently generate compressed virtual to-158

kens based on a fine-tuned Llama (Zhang et al.,159

2022). However, AutoCompressor broke the in-160

dependence of demonstrations, and the recurrent161

compression increased inference latency. Ge et al.162

(2023) proposed ICAE that employed a LoRA-163

adopted Llama-7b (Touvron et al., 2023) to com-164

press the processed demonstrations to compact vir-165

tual tokens, while ICAE still struggled to overcome166

quite long inputs.167

2.2 Extractive Compression168

Apart from employing soft prompts, researchers169

also endeavored to shorten prompts by extracting170

informative tokens from the original ones (Li, 2023;171

Jiang et al., 2023), namely token pruning (Kim172

et al., 2022) or token merging (Bolya et al., 2022).173

Recent works like LLMLingua (Jiang et al., 2023)174

and Selective Context (Li, 2023) shared similari-175

ties but diverged on whether to eliminate tokens176

with high or low Perplexity (PPL). LLMLingua177

emphasized tokens with high PPL, attributing them178

as more influential, resulting in achieving outstand-179

ing performance. As mentioned in their paper, ex-180

tractive compression methods encountered Out-of-181

Distribution (OOD) issues between the extractor182

and the target LLM. To reconcile this, they fine-183

tuned Alpaca-7b (Taori et al., 2023) using the Al-184

paca dataset (Taori et al., 2023) to perform the185

alignment.186

3 Methodology187

Previous compression methods are not tailored for188

ICL, and they are either bound by serious inference189

latency or poor performance, as demonstrated in190

Appendix A. We propose UniICL, a unified ICL191

framework that unifies demonstration compression,192

demonstration selection, and response generation.193

As for the selection of the underlying LLM, previ-194

ous work has proved that the Decoder-only model195

performs better than the Encoder-Decoder model in196

prompt compression (Mu et al., 2023). We follow197

Frozen Vicuna

Linear Layer

[M] [M] [M]

Memory Slot

Figure 3: Demonstration compression. k Memory Slots
are attached behind each demonstration.

this conclusion and adopt Vicuna-7B (Zheng et al., 198

2023) as the underlying backbone in UniICL. 199

3.1 Demonstration Compression 200

UniICL introduces Memory Slots [M] ∈ Rd, a 201

learnable d-dimension embedding initialized from 202

a rarely used embedding of the target LLM. UniICL 203

activates the Memory Slots to extract information 204

from demonstrations in the forward propagation 205

fθ(·) of frozen Vicuna, as illustrated in Fig. 3. We 206

first attach k Memory Slots M = k × [M] be- 207

hind each demonstration Di, formatting modified 208

prompt fed to the Vicuna. Then, frozen Vicuna 209

infers the modified prompts and outputs the last 210

hidden states H i = (h1, h2, ..., hk) on top of the k 211

Memory Slots: 212

H i = fθ(D
Li×d
i ⊕Mk×d), (1) 213

where Li is the i−th demonstration length, d is the 214

embedding dimension and ⊕ means token-level 215

concatenation. Due to the attention mechanism, 216

H i is compelled to attend to the preceding actual 217

tokens. Then, UniICL applies a linear layer as 218

the adapter for efficiency to convert H i to Memory 219

Tokens Ci = (ci1, c
i
2, ..., c

i
k), performing alignment 220

between the compressor and the generator2: 221

cij = W d×d
p · hij , (2) 222

where Wp is the parameters of the projection layer. 223

2Linear layer is enough for UniICL as features have inter-
acted with each other during compression.
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Figure 4: Demonstrations selection.

3.2 Demonstration Selection224

Memory Tokens Ci naturally summarize the225

demonstrations in latent space, and UniICL per-226

forms demonstration selection based on the similar-227

ity between queries and demonstrations as shown228

in Fig. 4. Specifically, given a query Q and its can-229

didate demonstrations (D1, D2, ..., Dn), UniICL230

obtains their representations used for selection by231

average pooling C{Q,D}:232

C̄i{Q,D} =
1

k

k∑
j=1

cj . (3)233

We define the i-th demonstration saliency score Si234

as the cosine similarity between C̄Q and D̄i:235

Si = cosine_similarity(C̄Q, C̄
i
D). (4)236

3.3 Generation237

We employ the frozen Vicuna again to generate re-238

sponses with the guiding of concatenated Memory239

Tokens and queries, as illustrated in Fig. 5. For240

m-shot in-context learning, we obtain m spans of241

Memory Tokens after demonstration compression242

and selection, denoted as C1 to Cm. Then, we243

horizontally concatenate them, keeping their rela-244

tive position unmodified. Finally, the concatenated245

Memory Tokens together with actual queries are246

fed into Vicuna, performing auto-regressive gener-247

ation gθ as normal:248

yi = gθ(C
1, ..., Cm;Q; y<i). (5)249

Frozen Vicuna

Memory Tokens
Concatenation

Figure 5: In-context generation. The Memory Tokens
from different demonstrations are concatenated horizon-
tally at the input end of Vicuna.

Except for the generative manner, Memory To- 250

kens apply close-ended evaluation for understand- 251

ing tasks through measuring PPL3 as normal, e.g. 252

(ppl+, ppl−) for sentiment classification: 253

y = argmin(ppl+, ppl−), (6) 254

where choices with PPL closest to 1 is judged to be 255

the current prediction. 256

3.4 Training 257

The trainable parameters in UniICL are merely 258

17M originating from the projection layer Wp and 259

the introduced Memory Slot [M]. The linear layer 260

is optimized with the language modeling objective 261

Llm of Vicuna to learn a base compression model. 262

Then InfoNCE (He et al., 2020) joint with language 263

modeling objective are used to augment the demon- 264

stration selection ability of the base compression 265

model: 266

L = Llm + Lctr. (7) 267

Specifically, we slice the source input of each train- 268

ing instance into two parts and randomly compress 269

one. The compressed part is denoted as xc and the 270

uncompressed part is denoted as xu. Afterward, 271

we attach the Memory Slot sequence M behind xc 272

and get Memory Tokens C on top of the Memory 273

Slots, as described in Eq. 1 and Eq. 2. Therefore, 274

the language modeling loss Llm is obtained as: 275

Llm = − 1

|y|
∑
t=0

logP (yt|xu;C; y<t), (8) 276

where y is the reference label of the current training 277

instance. Additionally, to approach the large-shot 278

settings without significant truncation, we intro- 279

duce concatenation compression. When xc exceeds 280

3https://huggingface.co/docs/transformers/
perplexity
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the window limitation for compression, UniICL281

further divides xc into acceptable ranges and com-282

presses them independently to get local Memory283

Tokens. Then, these Memory Tokens from dif-284

ferent segments will be concatenated to formulate285

global virtual tokens to replace xc, applying Eq. 8286

to optimize models as well.287

We obtained a base compression model that has288

learned to compress and understand concatenated289

Memory Tokens after the first-phase training men-290

tioned. Subsequently, we utilize contrastive learn-291

ing for selection augmentation and mine positives292

and negatives as illustrated in Fig. 6. Specifically,293

given each training instance Q and n candidate294

demonstrations (D1, D2, ..., Dn) from two non-295

crossing training subsets, we employ Vicuna to296

calculate the PPL concerning the golden label of Q,297

denoted as pplQ to find useful demonstrations for298

generation. Then, we provide the i-th demonstra-299

tion and calculate PPL concerning the golden label300

of Q, denoted as (pplDi , i ∈ [1, n]). We count pplQ301

as the baseline and calculate candidate relative PPL302

gains:303

p̃pl
D

i = pplQ − pplDi , i ∈ [1, n]. (9)304

After finding demonstrations D+ (D−) that fur-305

thest reduces (increases) pplQ, we obtain their rep-306

resentation C+
D (C−

D) as processed in Eq. 3. The307

contrastive loss Lctr can be formulated as:308

Lctr =
exp(cos(CQ, C

+
D))

exp(cos(CQ, C
+
D)) + exp(cos(CQ, C

−
D))

.

(10)309

In particular, if all relative PPL gains are less than310

0, namely none of the candidate demonstrations311

help guide Vicuna to generate the golden label, we312

will apply the other set of candidates.313

Dataset
# words

(96,512] (512,1024] (1024,1536]
XSum (Narayan et al., 2018) - 10,000 4,697
CICERO (Ghosal et al., 2022) 10,000 - -
SUPER-NI (Wang et al., 2022b) - 10,000 7,000
XSum (Ctr) 5,000

Table 1: The composition training set of UniICL. (m,n]
represents the range of the number of words in each
instance. XSum (Ctr) is used for the second-phase train-
ing in Eq. 7.

4 Experiment 314

4.1 Baselines 315

Unmodified Vicuna-7b serves as the fundamental 316

baseline fed with actual demonstrations. Auto- 317

Compressor compresses prompts into 50 virtual 318

tokens in different rounds recurrently as illustrated 319

in Fig. 9(a). Previous compressed virtual tokens 320

are put at the beginning of the current segment. 321

Finally, virtual tokens of different compression 322

rounds are concatenated for generation. We employ 323

their Llama2-7b version for comparison. LLM- 324

Lingua is a coarse-to-fine demonstration pruning 325

method based on dropping uninformative words. 326

We employ their released 7b version, of which the 327

compressor is a fine-tuned Llama2. For a meaning- 328

ful comparison, we replace target LLMs of LLM- 329

Lingua (GPT-3.5-Turbo or Claude-v1.3) with the 330

Vicuna-7b. ICAE compresses demonstrations into 331

128 virtual tokens via a LoRA-adapted Llama2- 332

7b, as illustrated in Fig. 9(b). Additionally, since 333

selection augmentation is involved in the training 334

of UniICL, we utilize the popular Sentence-BERT 335

(S-BERT) (Reimers and Gurevych, 2019) as the 336

dense retriever to construct an ICL pipeline for 337

the above methods, serving as simple but effective 338

selection-based baselines. 339

4.2 Settings 340

We construct the training set by mixing up XSum, 341

CICERO, and SUPER-NI according to their length 342

as shown in Tab. 1 and evaluate UniICL on exten- 343

sive out-of-domain datasets as listed in Tab. 2, with 344

more details reported in Appendix H. Considering 345

computation efficiency, we set the max allowed in- 346

put length limit to 512 for both compression and 347

generation for both training and inference. For a 348

fair comparison, we set the allowed window of 349

baselines to 512, and the compression ratio of de- 350

fault UniICL and baselines are set to 12, which is 351

determined by the validation in Fig. 7. We fix the 352

learning rate to 8e-5 and use Adam as the optimizer, 353
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Dataset In-Domain # Test # Demonstrations
MS MARCO-dev % 6,980 -
XSum ! 1,500 204,045/20
Arxiv % 1,500 203,037/20
CoLA-dev % 1,041 67,349/20
SST-2-dev % 872 8,551/20
IMDb % 1,500 25,000/20
MMLU % 13,985 25,000/20

Table 2: The details of involved evaluation datasets. -
dev represents employing development set due to their
test sets are inaccessible. # Demonstrations represent
the number of demonstrations to be selected in high/low-
resource ICL settings.

and the effective batch size is 32 (8 GPUs data par-354

allelism and 4 steps gradient accumulation). We355

train 10 epochs and 2 epochs respectively for the356

first- and second-phase training. The best check-357

points are selected according to their performance358

on in-domain validation sets. Additionally, we con-359

ducted all experiments on 8*NVIDIA A5000 24G360

GPUs based on BFloat 16 data type, and we set361

the evaluated shot to 8 for understanding tasks and362

5 for generative tasks for illustration because of363

marginal ICL gains and memory costs.364

We apply S-BERT to pre-rank and output the top365

10 similar candidates from training sets according366

to each inference input for all baselines. UniICL367

is employed to perform selection among them in368

practice due to computation efficiency for high-369

resource ICL. On the contrary, the low-resource370

ICL setting utilizes the randomly sampled 20 candi-371

date demonstrations for all inference inputs, while372

UniICL performs selection as normal.373

To verify the universality, we further build Uni-374

ICL on BlueLM-7B (Team, 2023) and Llama2-375

7B (Touvron et al., 2023). Results of BlueLM and376

Llama2 will be reported in Appendiex C and Ap-377

pendiex D.378

4.3 Results379

We comprehensively evaluate the ICL performance380

of UniICL on the out-of-domain dataset CoLA,381

SST-2, and IMDb by close-ended evaluation and382

Arxiv by open-ended evaluation in Tab. 3. The383

details of involved evaluation datasets and metrics384

are reported in Tab. 2 and Appendix H. Specifi-385

cally, UniICL outperforms unmodified Vicuna-7b386

fed with actual candidate demonstrations, which387

indicates that Memory Tokens are more efficient388

and informative for guiding the target LLM. Mean-389

while, UniICL outperforms all the baselines by390

compressing the same demonstrations pre-ranked 391

by S-BERT. Additionally, UniICL achieves further 392

performance gains after selecting demonstrations 393

via itself (UniICL♠). The open-ended results high- 394

light that Memory Tokens indeed capture seman- 395

tic information for ICL generation even though 396

summarization demonstrations are much longer 397

than understanding ones. Regarding Arxiv, the 398

original ICL is not helpful enough due to its ex- 399

tremely over-length document, leaving little room 400

for demonstrations. UniICL works as expected by 401

compressing demonstrations into Memory Tokens 402

and concatenating them, achieving +2.8 Rouge-1 403

gains in selection-augmented UniICL (+Lctr). Ad- 404

ditionally, according to the results of +Lctr, we 405

find that the gains brought by selection augmen- 406

tation become larger with the number of demon- 407

strations increasing. We attribute this to the fact 408

that UniICL selects more useful demonstrations 409

for generation after the second-phase training. The 410

results of BlueLM are exhibited in Appendiex C. 411

Except for understanding and generative tasks, we 412

further evaluate UniICL on MMLU in Tab. 4. Uni- 413

ICL achieves stable performance gains with more 414

demonstrations introduced. Additionally, consid- 415

ering ICAE and AutoCompressor are soft-prompt- 416

based compression methods built on Llama2, we 417

also build UniICL on Llama2 for ablation in Ap- 418

pendiex D. 419

Passage Ranking Since the virtual tokens natu- 420

rally summarize semantic information of preced- 421

ing sequences, we evaluate UniICL on the out-of- 422

domain MS MARCO dataset in Tab. 5. UniICL sig- 423

nificantly outperforms the sparse retrieval method 424

BM25 algorithm and other compression methods. 425

Subsequently, we fine-tune the first-phase com- 426

pression model of UniICL on the training set of 427

MS MARCO. UniICL achieves comparable perfor- 428

mance with SIMLM (Wang et al., 2022a), which 429

is specified in Information Retrieval (IR) and has 430

more trainable parameters. 431

5 Analysis 432

5.1 Compression Ratio 433

During training, the compression ratio is dynam- 434

ically sampled from 2 to 16. We mix up 2,000 435

instances from the in-domain validation set, 1,000 436

for XSum, and 1,000 for CICERO to select the com- 437

pression ratio for UniICL in Fig. 7, with the back- 438

bone of Llama2, Vicuna, and BlueLM respectively. 439

Specifically, UniICL compresses the latter cut-off 440
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Model #-shots
CoLA-dev SST-2-dev IMDb Arxiv XSum

Acc. R-1 R-2 R-L R-1 R-2 R-L

Vicuna

0-shot 56.2 91.7 92.6 34.3 9.1 27.4 19.9 5.0 13.5
1-shot 58.2 (57.4) 90.7 (90.8) 91.9 (91.0) 34.4 (33.2) 9.1 (8.5) 27.5 (26.7) 21.2 (20.4) 5.8 (5.2) 14.5 (13.9)
2-shot 62.1 (59.8) 92.1 (91.3) 91.7 (91.7) - - - - - -
5-shot 62.3 (61.9) 93.0 (91.9) 94.1 (92.5) - - - - - -

AutoCompressor
1-shot 42.1 (40.9) 85.7 (84.2) 95.0 (95.1) 27.0 (26.4) 8.4 (8.2) 26.1 (25.8) 21.3 (20.3) 6.5 (6.3) 13.7 (13.7)
2-shot 58.8 (56.3) 88.0 (86.4) 95.0 (94.6) 27.1 (26.2) 8.6 (7.9) 26.4 (25.4) 21.9 (21.4) 6.6 (6.4) 14.5 (14.1)
5-shot 59.1 (58.8) 91.3 (89.1) 94.7 (94.8) 34.5 (33.7) 9.4 (9.1) 28.7 (27.9) 22.4 (21.7) 6.9 (6.7) 14.8 (14.3)

LLMLingua
1-shot 55.5 (55.0) 89.7 (89.6) 91.0 (89.9) 33.3 (33.1) 8.9 (8.7) 27.4 (27.1) 20.5 (19.7) 5.4 (5.2) 14.5 (14.4)
2-shot 56.7 (55.7) 90.7 (90.2) 91.3 (91.0) 32.9 (32.0) 8.2 (8.1) 26.9 (25.9) 20.3 (20.0) 5.2 (5.1) 14.3 (14.1)
5-shot 57.2 (56.9) 90.6 (90.2) 90.9 (91.2) 30.1 (29.7) 7.9 (7.4) 25.3 (24.6) 19.7 (18.6) 4.9 (4.9) 14.1 (14.3)

ICAE
1-shot 30.9 (30.9) 61.0 (60.1) 85.7 (83.3) 26.8 (24.6) 8.2 (7.1) 24.7 (22.9) 23.5 (21.9) 8.5 (7.8) 20.9 (20.3)
2-shot 30.9 (30.9) 49.0 (52.8) 85.9 (85.9) 27.2 (25.5) 8.4 (7.6) 25.9 (24.3) 24.4 (23.2) 8.9 (8.4) 21.3 (20.8)
5-shot 30.9 (30.9) 54.2 (51.0) 85.7 (85.9) 28.3 (26.9) 8.7 (7.7) 26.6 (25.8) 25.3 (24.9) 9.2 (8.8) 22.5 (21.6)

UniICL
1-shot 58.7 (58.0) 92.9 (91.7) 94.3 (92.3) 35.5 (34.7) 10.5 (10.2) 28.7 (27.9) 27.7 (25.5) 10.2 (9.1) 21.2 (20.0)
2-shot 62.4 (61.0) 92.4 (91.6) 94.9 (93.3) 36.1 (35.2) 10.8 (10.4) 29.4 (28.2) 29.4 (26.8) 11.0 (9.8) 22.3 (20.9)
5-shot 62.6 (61.8) 93.1 (92.3) 94.5 (94.0) 35.8 (35.4) 10.6 (10.2) 29.5 (28.1) 30.7 (27.6) 11.3 (10.1) 22.8 (21.4)

UniICL♠

1-shot 59.1 (58.7) 93.0 (91.9) 94.5 (91.6) 34.8 (34.7) 10.4 (10.3) 28.1 (27.8) 29.1 (26.2) 10.8 (9.4) 22.2 (20.7)
2-shot 62.6 (61.2) 94.0 (93.0) 94.9 (92.3) 34.6 (34.3) 10.6 (10.4) 28.5 (28.3) 30.3 (28.9) 11.3 (10.5) 22.9 (21.7)
5-shot 63.3 (61.5) 94.7 (92.8) 95.0 (93.8) 35.6 (35.3) 11.0 (10.8) 29.1 (27.7) 31.1 (30.0) 11.7 (11.2) 23.5 (22.3)
8-shot 63.8 (62.6) 94.7 (93.1) 95.0 (94.2) - - - - - -

UniICL♠ + Lctr

1-shot 59.3 (58.9) 93.2 (92.4) 95.1 (92.8) 35.6 (35.1) 10.7 (10.5) 28.9 (28.3) 30.0 (27.9) 11.3 (10.1) 22.8 (21.5)
2-shot 62.4 (62.0) 94.5 (92.8) 94.8 (93.4) 36.8 (35.3) 10.8 (10.6) 29.6 (28.9) 30.8 (29.2) 11.4 (10.7) 23.0 (21.9)
5-shot 64.3 (61.8) 94.7 (93.4) 96.1 (94.2) 37.1 (34.9) 11.3 (11.2) 30.0 (29.3) 32.5 (30.6) 12.3 (11.8) 24.7 (23.8)
8-shot 64.7 (63.3) 94.7 (94.1) 95.6 (95.0) - - - - - -

Table 3: The high- and low-ICL results on CoLA-dev, SST-2-dev, and IMDb. Results in (bracket) represent
low-resource ICL. ♠ represents the demonstrations selected by UniICL, and the others are selected by S-BERT.
+Lctr indicates the selection augmented UniICL (optimized with Eq. 7). Bold (underline) represents the best
performance on high- and low-resource ICL. R- indicates Rouge scores. All compression methods are evaluated
with a compression ratio set to 12.

#-Shots S H SS O Avg.
0-shot 36.9 53.2 53.7 50.7 48.6
1-shot 38.6 55.3 54.6 52.4 50.2
2-shot 39.2 55.8 55.3 53.1 50.9
5-shot 40.1 55.6 55.3 53.8 51.2

Table 4: Performance of UniICL on MMLU benchmark.
We reported the Accuracy at the category level. S rep-
resents STEM, H represents Humanities, SS represents
Social Science, O represents Other, and Avg indicates
their average performance.

Method # TP MRR@10
BM25† - 18.5
Vicuna - 28.9
AutoCompressor - 29.3
ICAE - 30.2
UniICL - 31.6
SIMLM†‡ 110M 41.1
UniICL‡ 17M 38.9

Table 5: MRR@10 results on MS MARCO. Vicuna
applies the last hidden states of [EOS] to represent sen-
tences in latent space. Results citing from Liang (Wang
et al., 2022a) are denoted as †, and methods supervised
trained on MS MARCO are represented as ‡. Bold indi-
cates the best zero-shot performance and Underline is
the best fine-tuned results. # TP indicates the number of
trainable parameters.

4× 6× 8× 10× 12× 16× 32× 512×
Compression Ratio

16

18

20

22

24

26

28

30

R-
1

Llama2
BlueLM
Vicuna

Figure 7: The compression ratio sensitivity analysis of
Llama2 , BlueLM, and Vicuna.

part while keeping the former ones uncompressed. 441

Therefore, we can measure the dense information 442

quality of the same content with different compres- 443

sion ratios by ROUGE-1 since it is more sensitive 444

to token-level differences. The performance is rela- 445

tive smoothing when the compression ratio changes 446

from 4× to 12×. However, when it comes to 16×, 447

an obvious drop occurs. In order to analyze this 448

phenomenon more deeply, we provide a thorough 449

analysis in Appendix G. Therefore, we set the com- 450

pression ratio to 12 by default and apply this ratio 451
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#-shots
CoLA SST-2 IMDb Arxiv

Acc. R-1
1-shot 58.5 (-0.8) 91.4 (-1.8) 92.6 (-2.5) 34.8 (-0.8)
2-shot 59.7 (-2.7) 92.1 (-2.4) 94.1 (-0.7) 35.7 (-1.1)
5-shot 62.4 (-1.9) 93.1 (-1.6) 94.8 (-1.3) 36.6 (-0.5)

Table 6: Performance of UniICL on out-of-domain
datasets, with a fixed compression ratio set to 12 during
training.
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Figure 8: The efficiency comparison between UniICL
and other compression methods in CoLA with the num-
ber of shots increasing from 0 to 64. Memory explodes
are represented as *, corresponding to the break of the
line chart. +Caching represents using DB.

to all experiments. The 512× compression ratio is452

equal to compressing anything to a single virtual453

token, due to the maximum allowed input length454

for compression being 512.455

To explore whether it could yield additional per-456

formance gains compared with dynamic ratios, in457

Tab. 6, we re-train UniICL with the compression458

ratio fixed to 12 (Results of more fixed ratios are459

reported in Appendix F.). Results indicate that460

UniICL trained with fixed compression ratios un-461

derperforms in out-of-domain datasets as it exhibits462

over-fitting in in-domain sets as shown in Tab. 12.463

Furthermore, we analyze whether 12× is suit-464

able for all out-of-domain datasets in Fig. 10 in465

Appendix E. Results indicate that 12× outperforms466

other compression ratios in general across 4 out-of-467

domain datasets. It also points out that lower ratios468

still work comparable for short demonstrations and469

higher ratios are suitable for long demonstrations470

to some extent.471

5.2 Efficiency Analysis472

In UniICL, we incorporate an additional 17M train-473

able parameters into the 7b backbone, accounting474

Method GPUHours TFLOPs TMACs
Vicuna 1.5 86,20 4,309
Vicuna-1k 1.9 31,664 15,832
UniICL 1.6 22,437 11,218

Table 7: The computation efficiency of UniICL.

for an approximate increase of 0.24%. We evalu- 475

ate the memory costs inference latency of UniICL 476

and other compression methods in Fig. 8. With 477

the help of the Demonstration Bank (DB), Uni- 478

ICL will eliminate the extra latency if the selected 479

demonstrations have been compressed and cached 480

(UniICL+Caching). Despite this, parallel compu- 481

tation facilitates the compressing process, result- 482

ing in minimal throughput degradation (UniICL 483

and Baseline). The unmodified 7B LLM occurs 484

memory explosion for 8-shot settings and other 485

compression methods perform up to 32-shot, while 486

UniICL successfully scales up to 64-shots within 487

24GB CUDA allocation. 488

Additionally, We demonstrate the inference com- 489

putation and GPU hours in Tab. 7, by using 1,024 490

random legal tokens as inputs and forcing models 491

to generate 128 tokens. Notably, UniICL (with- 492

out DB) compresses the former half, and the latter 493

half is fed into the generator directly, while Vicuna 494

and Vicuna-1k are distinguished in window limi- 495

tations. Results indicate that minimal GPU hours 496

increased due to the parallel computation of for- 497

ward, although the extra compression of UniICL 498

surges the computation. Additionally, Vicuna with 499

a 1k window limitation surges both GPU hours 500

and TFLOPs because long input brings significant 501

computation and latency in generation. 502

6 Conclusion 503

This paper proposes UniICL, a parameter-efficient 504

ICL framework that unifies demonstration selec- 505

tion, demonstration compression, and final re- 506

sponse generation via a frozen LLM, an adapter, 507

and a learnable embedding. Experimental results 508

prove the advantages of UniICL in both efficiency 509

and effectiveness. Due to 12× demonstration com- 510

pression, UniICL scales up the number of demon- 511

strations from 4 to 64 within 24 GB VRAM al- 512

location. Finally, to avoid repeated compression 513

of the same demonstration, UniICL configures 514

a Demonstration Bank (DB, which significantly 515

boosts model efficiency. 516
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7 Limitations517

Our study, while proposing an efficient unified ICL518

framework for demonstration compression and se-519

lection, still has limitations. Firstly, UniICL is lim-520

ited to the realm of unmodified ICL leaving other521

advanced LLM prompting methods, e.g. Retrieval522

Augment Generation (RAG) and Chain-of-Thought523

(CoT) unexplored. Limited to the hardware, we de-524

ploy the underlying LLM at a scale of 7 billion525

parameters. Larger-scale LLMs are welcome to526

enrich our findings in future studies.527
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Figure 9: Differences of compression methods in formu-
lating compressed virtual tokens in ICL. White blocks
indicate the original embeddings. Yellow blocks are the
compressing embedding for each method. Other colors
represent virtual tokens used for generation.

Methods
Additional Compression # Trainable Train

Compressor Tool Parameters Size
LLMLingua (Jiang et al., 2023) YES Pruning 7B 57k
AutoCompressor (Wingate et al., 2022) NO Soft Prompt 7B UNKNOWN
ICAE (Ge et al., 2023) YES Soft Prompt 70M 240k
UniICL NO Soft Prompt 17M 47k

Table 8: Comparsion among recent compression meth-
ods and UniICL. Compression Tool represents the in-
volved compression technique of different methods.
Train Size represents the size of training datasets.

A Comparsion with Existing729

Compression Methods730

We present a comparison of training costs between731

UniICL and other recent compression methods in732

Tab. 8. Additionally, we illustrate differences in for-733

mulating virtual tokens for compression methods734

based on the soft prompt in Fig. 9.735

To explain plainly, we ideally assume the com-736

pressor within three compression methods based on737

soft prompts has the window limitation of L, and738

has the same compression ratio, ignoring the length739

of soft prompts. In the 2-shot scenario, queries,740

demonstrations D1 and D2, each have a length of741

L. As shown in Fig. 9(a), AutoCompressor divides742

the concatenated demonstrations back into three743

segments, and then compresses each segment step-744

by-step, bringing three times non-parallel compres-745

sion. When it comes to ICAE, merely part of D1746

is accessible for the compressor and others will be747

read by no means as illustrated in Fig. 9(b). Au-748

toCompressor shows advantages in the readable749

prompt length but is short in efficiency due to step-750

by-step compression. ICAE has a constant com-751

pression complexity but struggles to approach rel-752

atively long inputs. Combining the advantages of753

AutoCompressor and ICAE, UniICL compresses754

D1 and D2 into Memory Tokens independently, 755

utilizing an adapter to perform alignment between 756

the compressor and the generator. 757

Generally, in the N -shot settings, the number of 758

practical compression steps can be calculated as 759

⌈Nm⌉, where m indicates that a single GPU is capa- 760

ble of compressing m demonstrations in a batch. 761

When the GPU capacity is sufficient, m equals N , 762

which is the scenario of ICAE that compresses all 763

segments in a time but UniICL drops nothing, while 764

it degenerates to the AutoCompressor scenario that 765

compresses segments step-by-step, when the GPU 766

capacity is only sufficient to set m = 1. 767

B In-Domain Evaluation 768

Backbone Method
XSum CICERO

R-1 R-2 R-L R-1 R-2 R-L

Vicuna-7b

Vicuna 19.9 5.0 13.5 17.3 3.3 14.3
+LoRA 25.4 7.5 17.3 28.1 10.5 25.6

Vicuna-1k 27.3 8.7 19.7 30.5 11.3 27.4
+LoRA 31.2 11.0 23.1 34.1 13.5 30.2

UniICL 30.0 10.2 22.3 32.6 12.2 28.8

BlueLM-7b

BlueLM 15.0 3.6 10.4 17.6 3.1 15.0
+LoRA 23.1 7.6 17.4 21.9 7.8 19.8

BlueLM-1k 28.1 9.9 22.8 25.1 9.2 23.1
+LoRA 30.8 10.5 24.6 31.2 10.8 27.4

UniICL 30.4 10.2 23.7 29.2 10.0 26.6

Table 9: The in-domain results and ablation studies on
XSum and CICERO. 1k represents the extending 1k
window limitation, while others have a limitation of
512.

We conduct the zero-shot in-domain generation 769

evaluation on the entire test set of XSum and CI- 770

CERO in Tab. 9 by compressing the latter half to 771

virtual tokens and keeping the former unmodified. 772

UniICL significantly outperforms the baselines, in- 773

dicating the compressed virtual tokens can provide 774

the original truncated information by recovering 775

the cut-off parts after supervised fine-tuning. Al- 776

though extending the window to 1k, Vicuna and 777

BlueLM still underperform UniICL, indicating that 778

compressed virtual tokens filter noise information 779

to some extent. 780

Additionally, to quantify the performance gains 781

brought by the learnable projection layer. We tune 782

Vicuna and BlueLM with comparable parameters 783

(17M) with LoRA, setting the rank to 32 in Tab. 9. 784

UniICL still outperforms LoRA-adapted LLMs 785

with a 512 window limitation, indicating that the 786

truncation indeed brings performance degradation. 787
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C Results on BlueLM788

We extra conduct experiments on BlueLM (Team,789

2023) to verify the generality of UniICL. We790

demonstrate the result of understanding tasks in791

Tab. 10, of the generative tasks in Tab. 11.792

Model #-shots
CoLA-dev SST-2-dev IMDb

Acc.

BlueLM

0-shot 71.6 81.2 48.8
1-shot 69.6 82.6 64.8
2-shot 70.0 87.0 65.6
5-shot 70.5 88.6 68.7

UniICL
1-shot 69.6 81.2 65.4
2-shot 68.7 82.6 67.0
5-shot 71.7 87.0 70.4

UniICL♠

1-shot 69.8 80.0 62.0
2-shot 70.1 80.8 67.0
5-shot 71.8 85.6 69.6
8-shot 72.3 87.4 69.4

UniICL♠ + Lctr

1-shot 70.1 80 69.6
2-shot 70.3 87.2 70.6
5-shot 71.1 89.2 71.0
8-shot 72.5 90.4 76.8

Table 10: The ICL results of understanding tasks with
the backbone of BlueLM.

Method #-shots
XSum Arxiv

R-1 R-2 R-L R-1 R-2 R-L

BlueLM
0-shot 15.0 3.6 10.4 30.9 7.7 24.7
1-shot 19.1 4.8 12.1 23.0 3.6 19.0

UniICL
1-shot 24.0 6.9 18.0 31.4 7.7 25.2
2-shot 25.0 7.3 18.8 30.8 7.3 24.8
5-shot 25.3 7.4 19.1 31.9 7.8 26.0

UniICL♠
1-shot 25.2 7.4 18.9 31.6 7.9 25.4
2-shot 25.4 7.6 19.1 31.9 8.0 25.6
5-shot 26.5 7.9 20.3 32.1 8.0 25.5

UniICL♠ + Lctr

1-shot 24.7 7.2 18.5 31.0 7.5 24.9
2-shot 25.1 7.4 19.0 31.2 7.7 25.1
5-shot 26.3 7.6 20.0 31.5 7.9 25.3

Table 11: The ICL results of generative tasks with the
backbone of BlueLM.

D Supplementary Ablation on Llama2793

AutoCompressor (Wingate et al., 2022) and794

ICAE (Ge et al., 2023) are built on Llama2-795

7B (Touvron et al., 2023), which are soft-prompt-796

based methods similar to UniICL. Therefore, we797

evaluate UniICL with Llama2 as the backbone. As798

shown in Tab 12 and Tab. 13, UniICL achieves sub-799

stantial improvements compared with unmodified800

Llama2 and outperforms ICAE and AutoCompres-801

sor demonstrated in Tab. 3.802

Model #-shots
CoLA-dev SST-2-dev IMDb

Acc.

Llama2

0-shot 73.4 93.0 85.3
1-shot 74.8 94.0 85.5
2-shot 75.6 94.9 87.8
5-shot 84.3 97.2 92.7

UniICL
1-shot 74.9 94.1 94.6
2-shot 75.9 95.1 96.1
5-shot 85.4 95.7 96.5

Table 12: The ICL results of understanding tasks with
the backbone of Llama2.

Method #-shots
XSum Arxiv

R-1 R-2 R-L R-1 R-2 R-L

Llama2
0-shot 27.4 7.6 20.1 32.9 8.9 29.2
1-shot 27.7 7.9 20.3 30.1 8.0 28.4

UniICL
1-shot 27.8 8.0 20.5 33.3 9.2 29.7
2-shot 28.4 8.6 21.3 34.0 9.4 30.3
5-shot 29.3 9.1 22.0 34.5 9.7 30.8

Table 13: The ICL results of generative tasks with the
backbone of LLama2.

E Compression Ratio Selection on 803

Different Tasks 804

We illustrate suitable ratio selection across four 805

out-of-domain datasets in Fig. 10. For tasks with 806

relatively short inputs, such as CoLA and SST2, 807

UniICL tends to perform better with a compression 808

ratio set to 4. While in IMDb and Arxiv, which are 809

longer, UniICL performs better with higher com- 810

pression ratios. UniICL with a 12× compression 811

ratio substantially outperforms other settings on 812

four datasets. Additionally, we are curious about 813

if it is necessary to introduce more demonstrations 814

with a higher compression ratio. In Fig. 11, we find 815

Ratio=12

Ratio=4

Ratio=16

Ratio=32

Figure 10: Winrate of different compression ratios on
out-of-domain evaluation in 1-shot settings.
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Ratio=12; Demonstration=2

Ratio=6; Demonstration=1

Ratio=24; Demonstration=4

Figure 11: Winrate of UniICL with a fixed number of
Memory Tokens.
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Figure 12: The relative performance on in-domain and
out-of-domain datasets, with UniICL trained with a
fixed ratio. Out-of-domain evaluation applies 1-shot
settings.

that the performance of compressing 2 demonstra-816

tions with 12× ratio is stable and outperforms other817

settings across 3/4 datasets. 6× compression ratio818

with 1 demonstration compressed performs worst819

in general. When compressing 4 demonstrations820

with a 24× ratio, its performance is comparable821

and it slightly outperforms the 12× ratio in SST2.822

F Fixed Compression Ratio Training823

To verify the effectiveness of the dynamic sam-824

pled compression ratio of UniICL, we train models825

with more extensive fixed compression ratios and826

perform out-of-domain evaluation with the same827

ratio in Fig. 12. Results indicate that fixed com-828

pression ratios work better than dynamic sampled829

ratios in in-domain evaluation, but underperform in830

out-of-domain evaluation. We attribute this to the831

fixed compression ratio makes models exhibit over-832

fitting during training, and demonstration compres-833

sion degrades to Prefix Tuning.834

G Visualization of Memory Tokens 835

To explore how Memory Tokens work within Uni- 836

ICL across different compression ratios, we visual- 837

ize the cosine similarity between Memory Tokens 838

and original embeddings in Fig. 13 and attention 839

scores of the first generation step in Fig. 14. 840

Intuitively, the 4× compression ratio should re- 841

tain more information due to more Memory To- 842

kens. However, as shown in Fig. 13(a), the cosine 843

similarity is relatively sparser than the 4× com- 844

pression ratio illustrated in Fig. 13(b). This ten- 845

dency is aligned with the first step attention scores 846

in Fig. 14(a). According to merely 0.3% average 847

attention occupied in a generation, we can con- 848

clude that more Memory Tokens fail to provide 849

models with more information. We attribute this 850

phenomenon to the given semantic information be- 851

ing distributed over all Memory Tokens as models 852

attend to each Memory Token equally in Fig. 14(a). 853

Fewer Memory Tokens are enough to concentrate 854

this information, represented as relatively con- 855

centrated similarity distribution in Fig. 13(b) and 856

higher attention scores in Fig. 14(b), both of each 857

indicates denser information retained. When the 858

compression ratio becomes higher, such as 16 or 859

32, Memory Tokens become fewer and therefore 860

sparse information retrained as shown in Fig. 13(c), 861

Fig. 13(c), Fig. 14(c), and Fig. 14(c). This also 862

provides an explanation for the slow performance 863

degradation with ratios varying from 4 to 12 and 864

drops sharply at 16 in Fig. 7. 865

H Datasets & Metrics 866

Datasets We mix up three public datasets for 867

compression and selection augmentation training, 868

described in Tab. 1. The training set includes 869

an instruction dataset SUPER-NI, which we used 870

to make UniICL respond to various instructions. 871

Notably, we don’t perform an in-domain evalu- 872

ation on SUPER-NI as it only contains a train- 873

ing set. After training, we extensively evaluate 874

UniICL on out-of-domain evaluation, involving 875

text summarization (Narayan et al., 2018), passage 876

ranking (Nguyen et al., 2016), sentiment classifica- 877

tion (Maas et al., 2011; Socher et al., 2013), linguis- 878

tic acceptability (Warstadt et al., 2018), and a pop- 879

ular reasoning benchmark (Hendrycks et al., 2020), 880

more details referring to Tab. 2. MS MARCO is 881

popularly used in Information Retrieval (IR), we 882

use this dataset to evaluate the ability of UniICL 883

to capture document-level information. Specifi- 884
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(a) Ratio=4

(b) Ratio=12

(c) Ratio=32

(c) Ratio=16

Figure 13: Cosine similarity between Memory Tokens (vertical axis) and original embeddings (horizon axis).

cally, MMLU (Massive Multitask Language Under-885

standing) is a comprehensive evaluation benchmark886

including 57 subjects from STEM, Humanities, So-887

cial Sciences, and Other fields. We use this bench-888

mark to evaluate the reasoning ability of UniICL.889

UniICL selects demonstrations from its training set890

in high-resource ICL, and we fixed the number of891

candidate demonstrations to 20 for low-resource892

ICL evaluation.893

Evaluation Metrics ROUGE (Lin, 2004) is a894

widely adopted metric in many generative tasks895

that evaluate how similar the generated hypothesis896

is to the golden label. Therefore, ROUGE is used in897

our experiments to evaluate the quality responses898

generated conditioned on compressed virtual to- 899

kens, and we report the F-1 scores of ROUGE-1, 900

ROUGE-2, and ROUGE-L (abbreviated R-1, R- 901

2, R-L in the following), and we employed the 902

files2rouge 4 library in practice. Following the pre- 903

vious works, we report the accuracy of close-ended 904

evaluation and MRR@10 for passage ranking. 905

4https://github.com/pltrdy/files2rouge.
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(a) Ratio=4 (b) Ratio=12

(c) Ratio=16 (d) Ratio=32

0.3%/MT 2.1%/MT

1.5%/MT 1.9%/MT

Figure 14: Attention scores on Memory Tokens in the
first step generation. The vertical axis describes the 32
LLM layer, and the horizon axis indicates the number
of Memory Tokens across different compression ratios.
Above each figure, %/MT represents the average pro-
portion of the attention score occupied by memory to-
kens in each LLM layer.
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