
Under review as submission to TMLR

A Survey on Large Language Model Acceleration based on
KV Cache Management

Anonymous authors
Paper under double-blind review

Abstract

Large Language Models (LLMs) have revolutionized a wide range of domains such as natural
language processing, computer vision, and multi-modal tasks due to their ability to compre-
hend context and perform logical reasoning. However, the computational and memory de-
mands of LLMs, particularly during inference, pose significant challenges when scaling them
to real-world, long-context, and real-time applications. Key-Value (KV) cache management
has emerged as a critical optimization technique for accelerating LLM inference by reducing
redundant computations and improving memory utilization. This survey provides a com-
prehensive overview of KV cache management strategies for LLM acceleration, categorizing
them into token-level, model-level, and system-level optimizations. Token-level strategies
include KV cache selection, budget allocation, merging, quantization, and low-rank decom-
position, while model-level optimizations focus on architectural innovations and attention
mechanisms to enhance KV reuse. System-level approaches address memory management,
scheduling, and hardware-aware designs to improve efficiency across diverse computing en-
vironments. Additionally, the survey provides an overview of both text and multimodal
datasets and benchmarks used to evaluate these strategies. By presenting detailed tax-
onomies and comparative analyses, this work aims to offer useful insights for researchers and
practitioners to support the development of efficient and scalable KV cache management
techniques, contributing to the practical deployment of LLMs in real-world applications.

1 Introduction

Large Language Models (LLMs) Hadi et al. (2023); Zhu et al. (2023), trained on massive corpora, have
revolutionized various domains such as natural language processing Naveed et al. (2023); Min et al. (2024);
Xu et al. (2024a), computer vision Liu et al. (2023a); Zhang et al. (2024c); Berrios et al. (2023), and
multi-modal Zhang et al. (2024a); Cui et al. (2024); Wu et al. (2023b) tasks. Their ability to understand
context and perform logical reasoning has enabled remarkable success in various fields, such as time series
analysis Jin et al. (2023); Ma et al. (2024a), recommendation Tan & Jiang (2023); Wu et al. (2024c),
autonomous driving Yang et al. (2023); Chen et al. (2024b); Fu et al. (2024b), and healthcare Qiu et al.
(2023); Zhou et al. (2023b). These breakthroughs are powered by state-of-the-art architectures and training
paradigms, enabling models to achieve unparalleled performance across diverse tasks. Prominent LLMs, such
as GPT Brown et al. (2020); Radford et al. (2018; 2019), LLaMA Touvron et al. (2023); Dubey et al. (2024),
DeepSeek Dai et al. (2024); DeepSeek-AI et al. (2024); Lu et al. (2024), Mistral Jiang et al. (2024a; 2023),
and GLM Zeng et al. (2023); Du et al. (2022), are built on the foundational transformer architecture Vaswani
et al. (2017), which excels at capturing long-range dependencies in sequential data. However, despite their
powerful capabilities, the computational and memory demands of LLMs, particularly during inference,
present significant challenges when scaling them to real-world, long-context, and real-time applications.

A critical bottleneck in LLM inference lies in the efficient management of Key-Value (KV) pairs. Recently,
caching techniques Gracioli et al. (2015); Podlipnig & Böszörmenyi (2003) have been extensively employed
to store previously computed intermediate results, allowing their reuse in subsequent inference steps to
accelerate the model, such as graph neural networks Li & Chen (2021); Li et al. (2023c); Lin et al. (2020).
Fortunately, the auto-regressive generation mechanism inherent to LLMs presents an opportunity to leverage

1

Under review as submission to TMLR

KV caching for efficient text generation. Specifically, auto-regressive generation enables LLMs to produce
text token by token, with each token conditioned on all previously generated ones. While this approach is
highly effective for generating coherent and contextually relevant outputs, it suffers from poor scalability
with long input sequences, as the computational and memory requirements grow quadratically with sequence
length. The KV cache addresses this issue by storing key and value matrices from previous decoding steps,
enabling their reuse and significantly reducing redundant computations.

Several recent surveys Zhu et al. (2023); Zhuang et al. (2023); Park et al. (2024); Wang et al. (2024b);
Ding et al. (2023); Miao et al. (2023); Wan et al. (2023); Zhou et al. (2024c); Tang et al. (2024c); Kachris
(2024); Xu et al. (2023); Albalak et al. (2024); Zefan-Cai (2024) have explored the domain of efficient LLMs.
These surveys primarily examine various aspects of LLM efficiency, presenting valuable insights while leaving
room for further refinement and innovation. In particular, many of these works primarily focus on holistic
approaches to improving LLM efficiency, examining a wide range of techniques across multiple dimensions,
such as span data-level optimizations (e.g., prompt engineering), model architecture-level optimizations
(e.g., efficient transformer designs), and system-level optimizations (e.g., task scheduling). For instance,
Ding et al.Ding et al. (2023) explore efficiency techniques that integrate data-level and model architecture
perspectives, while Miao et al.Miao et al. (2023) examine efficient LLM inference from a comprehensive
system-level perspective. Similarly, Tang et al.Tang et al. (2024c), Wan et al.Wan et al. (2023), and Xu et
al. Xu et al. (2023) provide analyses that encompass data, model, and system-level optimizations, reflecting
holistic approaches to LLM acceleration.

On the other hand, some surveys focus on more specialized aspects for LLM acceleration. For example, Zhu
et al.Zhu et al. (2023), Park et al.Park et al. (2024), Wang et al.Wang et al. (2024b), and Tang et al.Tang
et al. (2024c) focus on model compression as a key aspect of model-level optimization. Similarly, Kachris et
al.Kachris (2024) examine hardware acceleration strategies tailored for LLMs, while Xu et al.Xu et al. (2023)
investigate parameter-efficient tuning approaches. Albalak et al.Albalak et al. (2024) discuss data selection
strategies to enhance the efficiency of LLM training, and Xia et al.Xia et al. (2024) highlight collaborative
techniques, such as speculative decoding Leviathan et al. (2023); Kim et al. (2024b), to accelerate model
inference. Li et al. Li et al. (2024c) focus on prompt compression. Similar to our work, Shi et al.Shi et al.
(2024), Li et al.Li et al. (2024a), and Yuan et al. Yuan et al. (2024) also explore the use of KV caches to
accelerate LLMs. However, our survey is both complementary and more comprehensive, offering a detailed
taxonomy of KV cache management for text-based and multi-modal LLMs. We categorize techniques across
token-level, model-level, and system-level perspectives and include benchmarks for both text and multi-
modal scenarios. In particular, complementing existing KV cache surveys, we provide a detailed comparison
of the differences and advantages of existing models at the token-level, model-level, and system-level.

Specifically, this survey provides a comprehensive overview of the current state of KV cache management
and its role in accelerating LLM inference. We begin by introducing the transformer architecture and the
role of the KV cache in enabling efficient auto-regressive text generation. We then analyze the challenges
associated with KV cache management, including its impact on computational complexity, memory usage,
and real-time performance. Following this, we present a taxonomy of existing optimization techniques,
categorizing them into token-level, model-level, and system-level optimization approaches. Additionally, we
discuss datasets and evaluation metrics used to benchmark these techniques and provide insights into their
effectiveness across various tasks and applications.

2 Preliminary

Large language models (LLMs), pretrained on vast corpora, have demonstrated superior capabilities in
context understanding and logical reasoning. These models have achieved remarkable success across a wide
range of tasks in various domains, including natural language processing Naveed et al. (2023); Min et al.
(2024); Xu et al. (2024a) and computer vision Liu et al. (2023a); Zhang et al. (2024c); Berrios et al. (2023).
Mainstream LLMs, such as GPT Bubeck et al. (2023), LLaMA Touvron et al. (2023), and DeepSeek Dai
et al. (2024), are primarily built on the transformer architecture Vaswani et al. (2017). To explore the role of
Key-Value (KV) cache management in accelerating LLM computations, we first outline the core components

2

Under review as submission to TMLR

Table 1: Notation Summary
Symbol Definition

X Input sequence of tokens
X Dense representations of X

dx Dimensionality of the input embeddings.
E Embedding matrix E ∈ Rdvocab×dx .

P E(X) Positional encoding
Qi, Ki, Vi Query, Key, and Value matrices

dk, dv Query/Key and Value dimension
WQi , WKi , WVi Weight matrices for computing Qi, Ki, Vi.

Zi Self-attention Output
WO Weight matrix

W1, W2 Weight matrices
b1, b2 Bias vectors

t Sequence length index
tc Number of tokens stored in the KV cache.

Kt
i, Vt

i Key and Value at step t

K̂t−1
i , V̂t−1

i Cached Key and Value
h Number of attention heads per layer
L Number of transformer layers

P (xt+1|x1, · · · , xt) Conditional probability

of the transformer model and then introduce the mechanisms for managing the KV cache to accelerate the
LLMs. Important notations in this survey are summarized in Tab. 1.

2.1 Transformer Architecture

Transformers Vaswani et al. (2017) have become the backbone of LLMs due to their ability to efficiently
capture long-range dependencies sequential data, such as text. This capability makes them particularly
well-suited for tasks like machine translation, text generation, and image captioning. The transformer
architecture follows an encoder-decoder structure, where most LLMs utilize only the decoder component.
We first introduce the core components of the Transformer decoder and then describe the critical auto-
regressive generation mechanism. Particularly, we do not describe certain components in transformer, such
as normalization, as they do not impact the understanding of KV cache management.

2.1.1 Transformer Decoder

As shown in Figure 1, a decoder-based transformer architecture is composed of multiple stacked Transformer
blocks, each designed to process sequential data effectively. Typically, a Transformer block consists of two
core components, i.e., a Multi-Head Self-Attention (MHSA) mechanism and a Feed Forward Network (FFN).
These blocks are arranged sequentially, where the output of one block is passed as input to the next. This
iterative design allows the model to refine its understanding of the input sequence progressively, making it
highly effective for tasks such as text generation and language modeling.

Positional Encoding. Before the input sequence is processed by the Transformer blocks, it undergoes a
preprocessing phase. First, a tokenizer processes the input sentence X by splitting it into discrete units,
such as words or subwords. The resulting sequence can be represented as X = [x1, x2, · · · , x|X|]. These
tokens are then mapped to dense vector representations using an embedding layer, i.e., X = IXE⊤, where
IX ∈ {0, 1}n×dvocab represents the one-hot vector of tokenized input X, E ∈ Rdvocab×dx is the embedding
matrix, and X = [x1,x2, · · · ,x|X|] ∈ Rn×dx is the resulting matrix of embedded token representations. Since
the Transformer architecture does not inherently account for the order of tokens in a sequence, positional
encodings are added to the token embeddings X to incorporate positional information. This can be ex-
pressed as X = X + PE(X), where PE(X) ∈ Rn×dx represents a function Zhao et al. (2023); Zheng et al.

3

Under review as submission to TMLR

(2021); Su et al. (2024) (e.g., sine and cosine-based positional encoding) that generates positional embeddings
for the input X.

Transformer Block. Once the input features are prepared, they are passed through a series of stacked
Transformer blocks. Each block begins with the Multi-Head Self-Attention (MHSA) mechanism, which
captures both local and global dependencies. For each token, the self-attention mechanism computes a
weighted sum over all other tokens in the sequence, where the weights are derived from the similarity
between the tokens. Particularly, since the operations within each transformer block are identical, we use a
single transformer block as an example. Specifically, given the input to a block, denoted as X ∈ R|X|×d, the
MHSA mechanism computes the query vectors Qi ∈ R|X|×dk , key vectors Ki ∈ R|X|×dk , and value vectors
Vi ∈ R|X|×dv . These vectors are obtained through learned linear transformations as follows:

Qi = XWQi
, Ki = XWKi

, Vi = XWVi
, (1)

where WQi
∈ Rdx×dk , WKi

∈ Rdx×dk and WVi
∈ Rdx×dv are the learned weight parameters. Then, the

self-attention operation is applied to each triple (Qi,Ki,Vi), and obtain the output of the i-th attention
head Zi as follows:

Zi = Attention(Qi,Ki,Vi) = Softmax
(

QiK⊤
i√

dk

)
Vi, (2)

where
√
dk is a scaling factor to ensure the numerical stability. To capture diverse relationships, multiple at-

tention with h heads are applied to X in parallel, and their outputs are concatenated with one transformation
as follows:

Z = Concat(Z1,Z2, . . . ,Zh)WO, (3)

where Concat is concatenation operation and WO ∈ Rdv×do is the trainable parameters.

Following the self-attention mechanism, the output is passed through a Feed Forward Network (FFN).
The FFN is a fully connected neural network that applies two linear transformations separated by a nonlinear
activation function σ(·) (e.g, ReLU Agarap (2018)) :

FFN(Z) = σ(ZW1 + b1)W2 + b2 (4)

where W1 ∈ Rdo×d1 and W2 ∈ Rd1×d2 are two parameters, b1 ∈ Rd1 and b2 ∈ Rd2 are two bias vectors.

2.1.2 Auto-regressive Generation Mechanism

LLMs employ an autoregressive mechanism to generate text token by token, with each token conditioned
on the previously generated ones. This iterative process ensures that the output sequence remains coherent
and contextually appropriate. Formally, given an input sequence of tokens X = [x1, x2, · · · , xt], the model
predicts the next token xt+1 at each decoding step t by modeling the conditional probability distribution
as follows:

P (xt+1|x1, x2, · · · , xt) = Softmax(htWout + bout), (5)

where ht ∈ Rdh represents the hidden state of the LLM regarding X at step t, Wout ∈ Rdh×vocab is the
output projection matrix, and bout is the bias vector. The softmax function converts the logits into a
probability distribution over the vocabulary. Then, at each decoding step, the model generates the next
token xt+1 by sampling from the predicted probability distribution:

xt+1 ∼ P (xt+1|x1, x2, · · · , xt). (6)

The generated token xt+1 is then appended to the sequence X = [x1, · · · , xt, xt+1], and the process continues
until a special end-of-sequence (EOS) token is generated or a predefined maximum length is reached.

4

Under review as submission to TMLR

Add & Norm

Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Add & Norm

Linear & Softmax

Input
Embedding

Add & Norm

Output Probabilities

Positional
Encoding+

Scaled Dot-Product
Attention

Linear Linear Linear

Q K V

Concat

Linear

Multi-head Attention

Sequential Inputs

Figure 1: The decoder-only Transformer for LLMs.

2.2 Key-Value Cache in Transformer Models

Auto-regressive generation is a powerful mechanism that enables LLMs to produce high-quality, contextually
coherent text. However, it presents computational challenges for long sequences, as the Keys and Values need
to be recomputed for each token during the generation process. The KV cache optimization addresses this
issue by storing the previously computed Keys and Values and reusing them for subsequent token generation,
thereby reducing redundant computations and improving inference efficiency.

2.2.1 Auto-regressive Generation with KV Cache

Here, we describe how caching KV pairs of tokens accelerates LLM inference. Specifically, at each decoding
step t, the model performs self-attention over the entire sequence X = [x1, · · · , xt−1, xt] to generate the next
token xt+1. This process requires the computation of Keys and Values matrices for all previously processed
tokens in X = [x1, · · · , xt]. Notably, when generating the token xt, the LLM has already computed the
Keys and Values for the tokens in X[1 : t − 1] = [x1, · · · , xt−1]. The KV cache optimizes this process by
storing the previously computed Keys and Values matrices for X[1 : t − 1] and reusing them, thereby only
requiring the computation of Keys and Values for the new token xt. This significantly improves efficiency
by eliminating redundant computations.

Formally, at decoding step t, the new token embedding xt is used to compute the query vector qti , key vector
kti, and value vector vti as follows:

qti = xtWQi
, kti = xtWKi

, vti = xtWVi
, (7)

5

Under review as submission to TMLR

The newly computed kti and vti are then appended to the cached key and value matrices from previous steps:

Kt
i = Concat(K̂t−1

i ,kti), Vt
i = Concat(V̂t−1

i ,Vt
i), (8)

where K̂t−1
i ∈ Rt−1×dk and V̂t−1

i ∈ Rt−1×dv represent the cached key and value matrices of tokens in
X[1 : t− 1]. These cached matrices are then used in the scaled dot-product attention computation for token
xt. The attention output zti for the token xt at step t is calculated as:

zti = Softmax
(

qtiKt
i
⊤

√
dk

)
Vt
i, (9)

Then, a similar KV reuse process can be applied to different attention heads in each layer of the LLM.

2.2.2 Time and Space Complexity Analysis

Given a transformer-based L-layer LLM with h attention heads per layer and an input sequence of length
X = [x1, · · · , xt], we analyze the time saved and the space required to store cached KV pairs. For simplicity,
we assume the Keys and Values of tc tokens are stored for all heads across all LLM layers.

Saved Time. For each token, the saved computation time comes from avoiding the repeated computation
of Keys and Values in Equation equation 1, self-attention result in Equation equation 2, and linear transfor-
mation in Equation equation 3. We omit the time analyze on operations in transformer that do not affect
the understanding of KV cache acceleration, such as layer norm and position encoding.

• QKV Computation. The time of computing Queries, Keys and Values for each token in Equation equa-
tion 1 is △1 = O(2dxdk + dxdv).

• Self-attention Result. Additionally, computing each attention result zi in Equation equation 2 takes
O(t(dk + dv)).

• Linear Transformation. To merge the h attention results in Equation equation 3 the time is △2 =
O(hdv + dvdo).

Therefore, for tc cached tokens across h attention heads and L layers, the total saved computation time is:

O (L · h · tc · t · (dk + dv) + L · h · tc (△1 + △2)) (10)

Thus, the saved time is directly proportional to the number of cached tokens tc, significantly accelerating
model computation, especially for longer sequences (when t is large).

Extra Space. Compared to computation without caching, additional space is required to store the cached
KV pairs for tc tokens across h attention heads and L layers. Assuming each Key and Value is stored in
Float16 precision, the total extra space needed can be expressed as:

O(L · h · tc · 2 · sizeof(Float16)) (11)

Thus, for the same LLM model, the extra space required to store the KV pairs primarily depends on the num-
ber of cached tokens and the precision of the cached Keys and Values. To address this, existing approaches
explore various techniques to reduce the extra space consumption, such as caching only the most important
Keys and Values or applying quantization techniques to lower the bit precision of the stored Keys and Values.

2.3 Challenges in KV Cache Management

As analyzed in Sec. 2.2.2, reusing cached KV pairs enables the LLM to avoid recomputing past tokens,
resulting in significant speedups during inference. However, as sequence lengths grow, the size of the KV
cache increases proportionally, placing significant pressure on memory. Consequently, it becomes challenging
to manage this cache effectively to accelerate LLM computation without excessive space usage.

6

Under review as submission to TMLR

• Cache Eviction Policies: Determining which items to evict when the cache reaches its capacity is a
complex problem. Popular policies Podlipnig & Böszörmenyi (2003) like Least Recently Used (LRU) or
Least Frequently Used (LFU) do not align with LLMs patterns, leading to suboptimal performance.

• Memory Management: The memory required for the KV cache grows linearly with both the sequence
length and the number of layers, which can quickly exceed the hardware memory limits, especially for long
sequences. Consequently, managing the collaboration between different types of storage hardware (e.g.,
GPU, CPU, or external memory) becomes a significant challenge.

• Latency Bottlenecks: Accessing and updating the cache at each decoding step can introduce latency,
particularly for hardware with limited memory bandwidth.

• Compression Trade-offs: Compressing the KV cache can reduce memory usage but may degrade model
performance if key information is lost.

• Dynamic Workloads: Handling dynamic and unpredictable workloads, where access patterns and data
requirements frequently change, requires adaptive caching strategies that can respond in real time.

• Distributed Coordination: In distributed KV caches, maintaining coordination across multiple nodes
to ensure consistency, fault tolerance, and efficient resource usage adds significant complexity.

3 Taxonomy

In the above sections, we analyzed how the number of cached Key-Value (KV) pairs significantly impacts both
the computation time and the additional memory required during inference. Efficient KV cache management
is critical to balancing performance improvements and resource utilization, especially as sequence lengths
and model sizes continue to grow. After carefully reviewing existing approaches, we categorize KV cache
optimization strategies into three levels: token-level optimization, model-level optimization, and system-level
optimizations. Each level addresses specific aspects of the challenges associated with KV cache management
and offers distinct techniques to enhance efficiency. The detailed taxonomy is illustrated in Fig. 2.

• Token-Level Optimization refers to improving KV cache management efficiency by focusing on fine-
grained the careful selection, organization, and compression at the token level, requiring no architectural
changes to the original model. While KV cache selection (Sec. 4.1) focuses on prioritizing and storing only
the most relevant tokens. KV cache budget allocation (Sec. 4.2) dynamically distributes memory resources
across tokens to ensure efficient cache utilization under limited memory. Furthermore, KV cache merging
(Sec. 4.3) reduces redundancy by combining similar or overlapping KV pairs, while KV Cache Quantization
(Sec. 4.4) minimizes the memory footprint by reducing the precision of cached KV pairs. Finally, KV cache
low-rank decomposition (Sec. 4.5) uses low-rank decomposition technique to reduce cache size.

• Model-level Optimization refers to designing an efficient model structure to optimize KV cache man-
agement. This can further refer to several strategies: Attention grouping and sharing (Sec. 5.1) methods
examine the redundant functionality of key and values and group and share KV cache within or across
transformer layers. Architecture alterations (Sec. 5.2 emerge to design new attention mechanisms or con-
struct extrinsic modules for KV optimization. Furthermore, there are also works designing or combining
non-transformer architectures 5.3 that adopt other memory efficient designs like recurrent neural networks
to optimize the KV cache in traditional transformers.

• System-level Optimization refers to optimizing the KV Cache management through two classic low-
level aspects: memory management (Sec. 6.1) and scheduling (Sec. 6.2). While memory management
techniques focusing on architectural innovations like virtual memory adaptation, intelligent prefix sharing,
and layer-aware resource allocation, scheduling strategies have evolved to address diverse optimization
goals through prefix-aware methods for maximizing cache reuse, preemptive techniques for fair context
switching, and layer-specific mechanisms for fine-grained cache control. In addition, we provide a detailed
introduction for hardware accelerator design in Sec. 6.3, including single/multi-GPU, I/O-based solutions,
heterogeneous computing and SSD-based solutions.

7

Under review as submission to TMLR

K
V

C
ac

he
M

an
ag

em
en

t
fo

r
La

rg
e

La
ng

ua
ge

M
od

el
s

Datasets
and Bench-

marks (Sec. 7)
Multi-modal

Datasets (Sec. 7.2)

Text Datasets (Sec. 7.1)

System-level Opti-
mization (Sec. 6)

Hardware-aware Design
(Sec. 6.3)

SSD-based Design (Sec. 6.3.4)

Heterogeneous Design (Sec. 6.3.3)

I/O-based Design (Sec. 6.3.2)

Single/Multi-GPU Design (Sec. 6.3.1)

Scheduling
(Sec. 6.2)

Layer-specific and Hierarchi-
cal Scheduling (Sec. 6.2.3)

Preemptive and Fairness-
oriented Scheduling (Sec. 6.2.2)

Prefix-aware Scheduling (Sec. 6.2.1)

Memory Management
(Sec. 6.1) Prefix-aware Design (Sec. 6.1.2)

Architectural Design (Sec. 6.1.1)

Model-level Opti-
mization (Sec. 5)

Non-transformer Ar-
chitecture (Sec. 5.3) Hybrid Architecture (Sec. 5.3.2)

Adaptive Sequence Process-
ing Architecture (Sec. 5.3.1)

Architecture Al-
teration (Sec. 5.2) Augmented Architecture (Sec. 5.2.2)

Enhanced Attention (Sec. 5.2.1)

Attention Grouping
and Sharing (Sec. 5.1) Cross-Layer Sharing (Sec. 5.1.2)

Intra-Layer Grouping (Sec. 5.1.1)

Token-level Opti-
mization (Sec. 4)

KV Cache Low-rank
Decomposition (Sec. 4.5)

Learned Low-rank Approximation (Sec 4.5.3)

Tensor Decomposition (Sec 4.5.2)

Singular Value Decomposition (Sec 4.5.1)

KV Cache
Quantization (Sec. 4.4)

Outlier Redistribution (Sec 4.4.3)

Mixed-precision Quantization (Sec 4.4.2)

Fixed-precision Quantization (Sec 4.4.1)

KV Cache
Merging (Sec. 4.3) Cross-layer Merging (Sec 4.3.2)

Intra-layer Merging (Sec 4.3.1)

KV Cache Budget
Allocation (Sec. 4.2) Head-wise Budget Allocation (Sec 4.2.2)

Layer-wise Budget Allocation (Sec 4.2.1)

KV Cache
Selection (Sec. 4.1)

Dynamic Selection without Per-
manent Eviction (Sec 4.1.3)

Dynamic Selection with Per-
manent Eviction (Sec 4.1.2)

Static KV Cache Selection (Sec 4.1.1)

Figure 2: Taxonomy of KV Cache Management for Large Language Models.

4 Token-level Optimization

In the token level, optimization focuses exclusively on improving KV cache based on the characteristics and
patterns of KV pairs of tokens, without considering enhancements from model architecture improvements

8

Under review as submission to TMLR

Token-level
Optimization

KV Cache Low-rank De-
composition (Sec. 4.5)

Learned Low-rank Ap-
proximation (Sec 4.5.3)

LESS Dong et al. (2024a), MatryoshkaKV Lin
et al. (2024a)

Tensor
Decomposition (Sec 4.5.2)

DecoQuant Liu et al. (2024d)

Singular Value Decom-
position (Sec 4.5.1)

ECKVH Yu et al. (2024), EigenAttention Sax-
ena et al. (2024), ZDC Zhang & Shen (2024),
LoRC Zhang et al. (2024d), ShadowKV Sun
et al. (2024a), Palu Chang et al. (2024)

KV Cache
Quantization (Sec. 4.4)

Outlier Redistri-
bution (Sec 4.4.3)

MassiveActivation Sun et al. (2024b),
QuaRot Ashkboos et al. (2024), Qserve Lin
et al. (2024d), Q-INT4 Xi et al. (2023), Spin-
Quant Liu et al. (2024g), DuQuant Lin et al.
(2024b), SmoothQuant Xiao et al. (2023),
OS+ Wei et al. (2023), AffineQuant Ma
et al. (2024b), FlatQuant Sun et al. (2024d),
AWQ Lin et al. (2024c), OmniQuant Shao
et al. (2023)

Mixed-precision Quan-
tization (Sec 4.4.2)

KVQuant Hooper et al. (2024b), IntactKV Liu
et al. (2024e), SKVQ Duanmu et al. (2024),
KIVI Liu et al. (2024h), WKVQuant Yue et al.
(2024), GEAR Kang et al. (2024), MiKV Yang
et al. (2024c), ZIPVL He et al. (2024a), Zip-
Cache He et al. (2024b), PrefixQuant Chen
et al. (2024c), MiniKV Sharma et al. (2024)

Fixed-precision Quan-
tization (Sec 4.4.1)

ZeroQuant Yao et al. (2022), FlexGen Sheng
et al. (2023), QJL Zandieh et al. (2024), PQ-
Cache Zhang et al. (2024b)

KV Cache
Merging (Sec. 4.3)

Cross-layer Merging (Sec 4.3.2) MiniCache Liu et al. (2024a), KVSharer Yang
et al. (2024d)

Intra-layer
Merging (Sec 4.3.1)

CCM Kim et al. (2024a), LoMA Wang &
Xiao (2024), DMC Nawrot et al. (2024),
CaM Zhang et al. (2024g), D2O Wan et al.
(2024a), AIM Zhong et al. (2024b), Look-
M Wan et al. (2024b), KVMerger Wang et al.
(2024c), CHAI Agarwal et al. (2024)

KV Cache Budget Al-
location (Sec. 4.2)

Head-wise Budget Al-
location (Sec 4.2.2)

AdaKV Feng et al. (2024), CriticalKV Anony-
mous (2024c), LeanKV Zhang et al. (2024f),
RazorAttention Tang et al. (2024a),
HeadKV Fu et al. (2024c), DuoAttention Xiao
et al. (2024b)

Layer-wise Budget Al-
location (Sec 4.2.1)

PyramidKV Cai et al. (2024), PyramidIn-
fer Yang et al. (2024a), DynamicKV Anony-
mous (2024b), PrefixKV Wang et al. (2024a),
SimLayerKV Zhang et al. (2024e)

KV Cache
Selection (Sec. 4.1)

Dynamic Selection without
Permanent Eviction (Sec 4.1.3)

InfLLM Xiao et al. (2024a), Quest Tang et al.
(2024b), PQCache Zhang et al. (2024b),
SqueezedAttention Hooper et al. (2024a),
RetrievalAttention Liu et al. (2024b), EM-
LLM Fountas et al. (2024), ClsuterKV Liu
et al. (2024c)

Dynamic Selection with Per-
manent Eviction (Sec 4.1.2)

H2O Zhang et al. (2023b), BUZZ Zhao et al.
(2024a), NACL Chen et al. (2024d), Scis-
sorhands Liu et al. (2023d), Keyformer Adnan
et al. (2024), SepLLM Chen et al. (2024a)

Static KV Cache Se-
lection (Sec 4.1.1)

FastGen Ge et al. (2024), SnapKV Li et al.
(2024b), Attention-Gate Zeng et al. (2024)

Figure 3: Taxonomy of the Token-level Optimization for KV Cache Management.

or system parallelization techniques. In general, token-level optimization methods are primarily guided by
observations from LLMs and sequential inputs. Existing approaches can be categorized into five main types:
KV cache selection, KV cache budget allocation, KV cache merging, KV cache quantization, and KV cache
low-rank decomposition. The taxonomy of the token-level optimization is shown in Fig. 3.

4.1 KV Cache Selection

KV cache selection mechanisms have emerged as a critical optimization strategy, aimed at reducing memory
utilization of KV caches, minimizing inference latency, and enhancing overall throughput in large language

9

Under review as submission to TMLR

models. These optimization objectives have driven the development of various selection methodologies, which
can be classified into two distinct categories: (1) static KV cache selection, which performs token filtering
exclusively during the prefilling phase, with selected tokens remaining fixed throughout subsequent decoding
steps; and (2) dynamic KV cache selection, which continuously updates KV cache during the decoding
phase, enabling adaptive cache management. In dynamic KV cache selection approaches, KV cache tokens
that are not selected may be permanently evicted or offloaded to hierarchical caching devices such as CPU
memory, implementing a multi-tier storage strategy. Given that real-time KV cache selection during decoding
may incur substantial computational overhead, several studies have focused on developing optimized retrieval
algorithms to enhance the efficiency of this process. These optimizations include block-level retrieval instead
of token-level granularity to reduce search complexity, asynchronous query mechanisms to hide latency, and
parallel retrieval pipelines to accelerate the selection process. These optimization efforts aim to mitigate the
computational burden while maintaining the effectiveness of token selection. The summary of the KV cache
selection is listed in Tab. 2.

4.1.1 Static KV Cache Selection

Static KV cache selection methods perform a one-time compression on the KV Cache immediately after the
prefilling phase is completed. The model then uses this compressed KV cache for subsequent decoding infer-
ence. FastGen Ge et al. (2024) introduces a pattern-aware approach by identifying five fundamental attention
structures and implementing targeted selection strategies. These include proximity-based retention for local
attention patterns, selective preservation of critical tokens for punctuation-focused attention, frequency-
based filtering for sparse attention distributions, and complete token retention for broad attention patterns.
SnapKV Li et al. (2024b) simplifies FastGen’s approach by focusing solely on retrieving tokens based on
their importance scores. It demonstrates that among all prompt tokens, only a portion carries crucial infor-
mation for response generation, with these tokens maintaining their significance during the generation phase.
The approach employs an end-positioned observation window to detect these important contextual tokens.
Their corresponding key-value pairs are then concatenated with the tokens from the observation window.
Attention-Gate Zeng et al. (2024) introduces a learnable KV-Cache eviction mechanism that processes the
entire context sequence and generates token-wise eviction decisions through a parameterized policy network,
enabling dynamic in-context memory management.

4.1.2 Dynamic Selection with Permanent Eviction

This category of methods performs frequent KV cache selection during the decoding phase, permanently
removing unselected KV cache tokens from memory. Early works employ a sliding-window mechanism to
address long-text inference challenges, where tokens falling outside the window are permanently evicted
and become inaccessible. StreamingLLM Xiao et al. (2024c) uncovers a crucial phenomenon in transformer
attention where preserved key-value pairs from initial sequence tokens maintain crucial model performance.
This attention sink effect manifests through asymmetric attention weight accumulation at early positions,
regardless of semantic significance. The approach leverages this characteristic by incorporating attention
sink positions with recent context for efficient processing. LM-Infinite Han et al. (2024) demonstrates that
conventional techniques, including sliding-window patterns and relative positional encodings, fail to resolve
length generalization issues. The study introduces a novel methodology through the integration of Λ-shaped
attention masking and attention distance ceiling mechanisms.

Recent works have explored leveraging attention scores as a criterion for selecting significant KV cache tokens.
H2O Zhang et al. (2023b) observes that attention computations are primarily driven by a select group of high-
impact tokens, known as Heavy Hitters (H2). This method reformulates cache optimization as a dynamic
submodular problem, utilizing cumulative attention scores to guide token retention decisions. Unlike H2O,
BUZZ Zhao et al. (2024a) employs a beehive-like structure that selects Heavy Hitters in local KV cache
segments. NACL Chen et al. (2024d) identifies a fundamental limitation in H2O, namely their dependence
on potentially biased local attention statistics. To overcome this issue, they develop an alternative approach
implementing a diversified random eviction strategy for token selection. Scissorhands Liu et al. (2023d) builds
upon the temporal significance principle, which suggests that tokens demonstrating historical importance
maintain their influence in subsequent computational steps. This observation enables the preservation of

10

Under review as submission to TMLR

Table 2: Comparison of KV cache selection strategies.
Method Initial

tokens
Top-k
tokens

Recent
tokens

Permanent
eviction

Dynamic
selection

Selection
granularity Remark

FastGen
Ge et al. (2024)

✓ ✓ ✓ ✓ token five attention structures

SnapKV
Li et al. (2024b)

✓ ✓ ✓ token observation window-based

Attention-Gate
Zeng et al. (2024)

✓ ✓ token learned eviction policy

StreamingLLM
Xiao et al. (2024c)

✓ ✓ ✓ ✓ token initial and recent tokens

LM-Infinite
Han et al. (2024)

✓ ✓ ✓ ✓ token distance ceiling

H2O
Zhang et al. (2023b)

✓ ✓ ✓ ✓ token accmulative attention score

BUZZ
Zhao et al. (2024a)

✓ ✓ ✓ ✓ ✓ token beehive-like structure

Scissorhands
Liu et al. (2023d)

✓ ✓ ✓ ✓ token persistence of importance

NACL
Chen et al. (2024d)

✓ ✓ ✓ ✓ token diversified random eviction

Keyformer
Adnan et al. (2024)

✓ ✓ ✓ ✓ token gumbel logit adjustment

InfLLM
Xiao et al. (2024a)

✓ ✓ ✓ ✓ block block-level KV management

Quest
Tang et al. (2024b)

✓ ✓ block new block representation

PQCache
Zhang et al. (2024b)

✓ ✓ ✓ ✓ block product quantization

SqueezedAttention
Hooper et al. (2024a)

✓ ✓ cluster hierarchical clusters

RetrievalAttention
Liu et al. (2024b)

✓ ✓ ✓ ✓ token ANN search

EM-LLM
Fountas et al. (2024)

✓ ✓ ✓ ✓ event episodic events

SparQ
Ribar et al. (2024)

✓ ✓ ✓ token low-dimensional retrieval

InfiniGen
Lee et al. (2024)

✓ ✓ token asynchronous prefetching

RecycledAttention
Xu et al. (2024b)

✓ ✓ ✓ token periodic top-k selection

MagicPIG
Chen et al. (2024g)

✓ ✓ ✓ ✓ token Local Sensitive Hash

repetitive attention patterns through selective token retention. Additionally, Keyformer Adnan et al. (2024)
reveals that token removal distorts the underlying softmax probability distribution. Considering the pivotal
role of softmax distributions in token significance evaluation, they incorporate regularization techniques to
mitigate these distributional perturbations. SepLLM Chen et al. (2024a) observes that separator tokens (e.g.,
commas, periods, and line breaks) receive disproportionately high attention scores and naturally summarize
text segments. Building on this, SepLLM retains separator tokens together with initial tokens, important
tokens, and recent tokens in the cache.

11

Under review as submission to TMLR

4.1.3 Dynamic Selection without Permanent Eviction

The aforementioned permanent eviction-based approaches face two significant limitations. First, the irre-
versible eviction of tokens potentially impairs the model’s performance on long-sequence tasks, particularly
in needle-in-a-haystack scenarios, and these methods prove challenging to adapt to multi-turn dialogue con-
texts. Second, KV cache selection during the decoding phase introduces computational overhead, adversely
affecting decoding latency and compromising end-to-end acceleration. To address these challenges, several
studies have focused on developing decoding-phase KV cache selection strategies without permanent evic-
tion. These approaches typically employ multi-tier cache systems (e.g., CPU-GPU hierarchical caching) and
leverage advanced data structures and system-level enhancements to optimize retrieval efficiency, enabling
efficient inference with reduced GPU KV cache footprint.

To accelerate the retrieval of critical tokens, several research efforts have proposed index-based approaches
that organize and access KV cache at block or cluster granularity, enabling efficient query and extraction
operations. InfLLM Xiao et al. (2024a) maintains full KV cache in blocks while facilitating long sequence pro-
cessing through a hierarchical storage strategy. The framework employs CPU-GPU memory orchestration,
preserving essential tokens and current computational units in GPU memory while offloading less frequently
accessed units to CPU memory. To further enhance top-k block retrieval precision, the Quest Tang et al.
(2024b) framework presents a refined block representation approach based on minimal and maximal key val-
ues in KV cache blocks. PQCache Zhang et al. (2024b) also implements block-based KV cache management
and identifies salient tokens through Maximum Inner-Product Search (MIPS), leveraging Product Quantiza-
tion (PQ) codes and centroids. SqueezedAttention Hooper et al. (2024a) employs K-means clustering in an
offline stage to group semantically similar keys, with each group represented by a centroid. During inference,
it compares input queries against these centroids to identify and load only the semantically relevant keys
from the context. Similarly, RetrievalAttention Liu et al. (2024b) index KV cache tokens using approxi-
mate nearest neighbor search (ANNS) techniques. Additionally, EM-LLM Fountas et al. (2024) dynamically
segments incoming tokens into episodic events. Besides, it implements a hybrid retrieval mechanism that
combines semantic similarity matching with temporal context to efficiently access relevant KV cache seg-
ments. Similarly, ClusterKV Liu et al. (2024c) groups tokens into semantic clusters and selectively recalls
them during inference, achieving both high accuracy and efficiency for LLMs.

To accelerate top-k token identification, SparQ Ribar et al. (2024) identifies the r most significant elements
in the incoming query vector and selectively retrieves the corresponding components along the hidden di-
mension of the cached key matrix K for approximate attention computation. To overlap prefetching latency,
InfiniGen Lee et al. (2024) employs asynchronous prefetching, utilizing indices of salient KV entries selected
by queries from the previous layer to retrieve KV cache entries in the current layer. To ensure maximum
model performance, RecycledAttention Xu et al. (2024b) sustains the entire KV cache during inference
computations, yielding no improvements in memory efficiency. The approach performs periodic top-k token
selection to identify salient tokens. Moreover, MagicPIG Chen et al. (2024g) shows that attention-based
top-k selection may incur performance degradation. To address this limitation, they introduce a novel het-
erogeneous computing framework leveraging Locality Sensitive Hashing (LSH) techniques. The system stores
LSH hash tables and performs attention estimation on CPU.

4.1.4 Summary and Future Directions

Static KV cache selection algorithms demonstrate superior decoding efficiency overall; however, their
efficacy remains to be thoroughly validated in multi-turn dialogues and extended decoding length scenarios.
Dynamic KV cache selection algorithms, while adaptive, introduce additional computational overhead
during the decoding phase due to frequent cache selection operations. Multi-tier cache architectures and
prefetching schemes partially mitigate these challenges, yet their capability to achieve rapid and accurate
retrieval within acceptable decoding latency constraints requires further empirical validation, particularly
in real-world applications involving long sequences. Furthermore, existing selection methods predominantly
rely on attention score-based top-k selection mechanisms. However, based on existing positional encoding
schemes, current top-k approaches may not be able to effectively identify and extract relevant tokens in
ultra-long sequence tasks.

12

Under review as submission to TMLR

Table 3: Comparison of KV cache budget allocation strategies. Extra: Extra-calibration
Method Layer-wise Head-wise Retrieval-head Input-specific Extra Remark

PyramidKV

Cai et al. (2024)
✓ pyramid-shaped

PyramidInfer

Yang et al. (2024a)
✓ pyramid-shaped

DynamicKV

Anonymous (2024b)
✓ ✓ maximize attention retention rate

PrefixKV

Wang et al. (2024a)
✓ ✓ maximize attention retention rate

CAKE

Anonymous (2024a)
✓ ✓ layer-specific preference score

SimLayerKV

Zhang et al. (2024e)
✓ ✓ KV cache compression for lazy layers

AdaKV

Feng et al. (2024)
✓ ✓ minimize attention computation loss

CriticalKV

Anonymous (2024c)
✓ ✓ minimize attention computation loss

LeanKV

Zhang et al. (2024f)
✓ ✓ maximize attention retention rate

RazorAttention

Tang et al. (2024a)
✓ ✓ ✓ echo and induction heads

HeadKV

Fu et al. (2024c)
✓ ✓ ✓ retrieval and reasoning heads

DuoAttention

Xiao et al. (2024b)
✓ ✓ ✓ learned retrieval heads

4.2 KV Cache Budget Allocation

The hierarchical architecture of LLMs leads to diverse information extraction patterns across layers, with
each layer’s KV-cache contributing differently to model performance. This inherent heterogeneity indicates
that uniform KV-cache compression across layers may be suboptimal. KV cache budget allocation addresses
this challenge by intelligently distributing memory resources based on each component’s importance to
prediction accuracy, thereby optimizing memory utilization while minimizing accuracy degradation. Current
budget allocation strategies can be categorized into two levels of granularity: layer-wise budget allocation,
which assigns different compression ratios across model layers, and the more fine-grained head-wise budget
allocation, which enables precise memory distribution across individual attention heads within each layer,
offering more flexible and targeted optimization opportunities. The summary of KV budget allocation is
listed in Tab. 3.

4.2.1 Layer-wise Budget Allocation

In contrast to conventional approaches with uniform KV cache sizes, PyramidKV Cai et al. (2024) employs
a pyramid-shaped memory allocation strategy, assigning larger cache capacities to lower layers that pro-
gressively decrease in upper layers. This design is supported by the observation that lower layers exhibit
uniform attention distributions across input sequences, while upper layers show concentrated attention on
specific tokens. PyramidInfer Yang et al. (2024a) also adopts a pyramid-shaped budget allocation strategy
while selecting tokens with high attention values at each layer. Additionally, during the decoding phase,
PyramidInfer dynamically maintains a set of significant tokens through frequent updates driven by attention
values. Unlike previous methods, DynamicKV Anonymous (2024b) implements an input-adaptive budget
allocation strategy by analyzing attention patterns. Specifically, it computes the average attention scores
between recent and historical tokens, identifies the top-k tokens with highest attention values across layers,
and proportionally distributes the budget based on the density of significant tokens in each layer. Similarly,

13

Under review as submission to TMLR

Table 4: The summary of existing KV Cache merging approaches.
Model

Merge Layer
Merge Unit Merge Metric Merge Type Training-free

Intra-layer Cross-layer
CCM

Kim et al. (2024a)
✓ Token Sliding Window Many-to-One ×

LoMA
Wang & Xiao (2024)

✓ Token Sliding Window Many-to-Many ×

DMC
Nawrot et al. (2024)

✓ Token Learned Merge Indictor Many-to-One ×

D2O
Wan et al. (2024a)

✓ Token Cosine Similarity Two-to-One ✓

CaM
Zhang et al. (2024g)

✓ Token Attention Score Many-to-One ✓

AIM
Zhong et al. (2024b)

✓ Token Cosine Similarity Many-to-One ✓

Look-M
Wan et al. (2024b)

✓ Token Cosine Similarity Many-to-One ✓

KVMerger
Wang et al. (2024c)

✓ Token Weighted Gaussian Kernel Many-to-One ✓

CHAI
Agarwal et al. (2024)

✓ Head Attention Score Many-to-One ✓

MinCache
Liu et al. (2024a)

✓ Token Angular Distance Two-to-One ✓

KVSharer
Yang et al. (2024d)

✓ Layer Euclidean Distance Many-to-One ✓

PrefixKV Wang et al. (2024a) identifies the most important tokens for each layer by computing the average
attention score of tokens within that layer. PrefixKV Wang et al. (2024a) then uses a unified threshold to
determine the number of retained tokens, adaptively adjusting the retention for each layer based on its im-
portance distribution. CAKE Anonymous (2024a) examines attention scores through two lenses: the spatial
distribution of inter-token attention and the temporal evolution of attention focus. These measurements
are combined to compute layer-specific importance scores, which further guide the allocation of memory
resources. Additionally, SimLayerKV Zhang et al. (2024e) identifies lazy layers - those exhibiting limited
effectiveness in capturing long-range dependencies. The framework then selectively preserves cache entries,
maintaining initial and recent tokens for lazy layers while retaining complete KV cache for non-lazy layers.

4.2.2 Head-wise Budget Allocation

AdaKV Feng et al. (2024) leverages the observation that attention patterns exhibit distinct concentrations
across different heads. It implements head-specific memory allocation by optimizing an L1 loss bound be-
tween the original and pruned multi-head attention outputs. Within the constraints of a layer-wise budget,
the method distributes cache capacity among heads to maximize the preserved attention information col-
lectively. Building upon AdaKV, CriticalKV Anonymous (2024c) introduces significant enhancements by
recognizing that the importance of KV cache entries extends beyond attention weights to encompass value
states and pretrained parameter matrices. Leveraging this insight, the framework implements a novel selec-
tion algorithm that identifies essential cache entries by minimizing the maximum potential output perturba-
tion. LeanKV Zhang et al. (2024f) implements a fine-grained memory optimization strategy that operates
independently for each attention head and input request. The method identifies the smallest subset of tokens
necessary to preserve the majority of information flow, allocating cache space based on a predefined attention
score threshold - typically maintaining 95% of the total attention mass.

Retrieval head-based methods represent a specialized category of head-wise allocation strategies that focuses
on identifying and prioritizing attention heads crucial for extracting key information from long sequences.
This approach allocates larger cache budgets to these specialized heads, known as retrieval heads Wu et al.
(2024d), due to their significant role in information extraction. RazorAttention Tang et al. (2024a) charac-

14

Under review as submission to TMLR

terizes two distinct categories of retrieval heads: echo heads, which focus on previously occurring identical
tokens, and induction heads, which attend to antecedent tokens that precede current token repetitions. This
framework implements differential caching strategies, maintaining complete cache entries for retrieval heads
while condensing remote tokens into consolidated compensation tokens for non-retrieval heads. HeadKV Fu
et al. (2024c) further enhances RazorAttention by introducing a novel head assessment framework that si-
multaneously evaluates both retrieval and reasoning capabilities to optimize KV cache allocation strategies.
DuoAttention Xiao et al. (2024b) further introduces a parameterized approach to distinguish between two
categories of attention mechanisms: retrieval heads, essential for comprehensive long-context processing,
and Streaming heads, which primarily engage with recent tokens and attention sinks. This classification is
achieved through learned parameters that automatically identify retrieval heads requiring full attention spans.

4.2.3 Summary and Future Directions

Despite recent advances and growing attention in KV cache budget allocation research, several critical chal-
lenges remain unaddressed. First, the relationship between allocation strategies and model performance
requires further investigation. For instance, a notable discrepancy exists between pyramid-shaped allocation
strategies Cai et al. (2024); Yang et al. (2024a) advocating larger budgets for lower layers, and retrieval
head-based studies Tang et al. (2024a); Fu et al. (2024c) which demonstrate that lower layers rarely ex-
hibit retrieval head characteristics and thus require minimal cache resources. Additionally, the field lacks
comprehensive experimental comparisons, particularly regarding the compatibility and performance benefits
of head-wise budget allocation strategies with state-of-the-art frameworks like vLLM Kwon et al. (2023)
and FlashAttention Dao et al. (2022). Also, existing methods, such as PyramidInfer Yang et al. (2024a),
demonstrate some adaptability to input attention patterns. However, future research could target real-time,
task-specific allocation strategies that dynamically adjust memory budgets during inference based on input
characteristics, task complexity, or downstream requirements.

4.3 KV Cache Merging

KV cache merging offers a promising solution by compressing or consolidating KV caches without significantly
degrading model accuracy. Rather than a uniform compression strategy, KV cache merging techniques
leverage the inherent redundancy within and across layers to dynamically optimize memory utilization. These
methods aim to reduce the size of KV caches while preserving critical information necessary for accurate
attention computations, enabling efficient inference in resource-constrained settings. Existing KV cache
merging strategies can be categorized into two primary approaches: intra-layer merging, which focuses
on consolidating KV caches within individual layers to reduce memory usage per layer, and cross-layer
merging, which targets redundancy across layers to eliminate unnecessary duplication. Both approaches
offer complementary advantages, providing flexibility to balance memory savings and model performance
degradation. The summary of the KV cache merging is listed in Tab. 4.

4.3.1 Intra-layer Merging

As the input sequence length increases, the number of Keys and Values grows, leading to higher computa-
tional costs for the attention process. To address this, CCM Kim et al. (2024a), LoMA Wang & Xiao (2024),
DMC Nawrot et al. (2024) propose to learn a compression module to compress KV of tokens.

Specifically, CCM Kim et al. (2024a) inserts a special indicator token, [COMP], into the input sequence and
compresses the accumulating past attention key/value (KV) pairs in each layer between these indicators
into a compact memory space. This compression leverages techniques inspired by the Compressive
Transformer Rae et al. (2020) and Gisting Mu et al. (2023). Instead of computing attention across all
tokens, CCM Kim et al. (2024a) computes attention scores for each new token by referencing the merged
token. Similarly, LoMA Wang & Xiao (2024) inserts a special token into the input sequence to determine
which consecutive tokens should be compressed. LoMA Wang & Xiao (2024) performs compression
using bidirectional attention, repetition zone supervision, and carefully designed attention masks and loss
functions. DMC Nawrot et al. (2024) learns a variable to decide whether to append new KV pairs to
the cache when necessary or to merge them into existing KV representations using a weighted average.

15

Under review as submission to TMLR

Note that CCM Kim et al. (2024a), LoMA Wang & Xiao (2024), and DMC Nawrot et al. (2024) require
supervised learning to learn a compression module.

Instead, CaM Zhang et al. (2024g), KVMerger Wang et al. (2024c), and D2O Wan et al. (2024a) are
training-free, which rely on observations and directly propose rule-based or heuristic-based merging strate-
gies. Specifically, they separate the Keys and Values of tokens in each layer into important (retrained)
and unimportant (evicted) tokens. They then keep potentially useful unimportant tokens by merging their
Keys and Values with retained important tokens, ensuring that no valuable information is lost. Particularly,
D2O Wan et al. (2024a) merges merges the Key (or Value) of a evicted token with one retained token based
on cosine similarity. Similar to D2O based on cosine similarity, AIM Zhong et al. (2024b) and Look-M Wan
et al. (2024b) merges Keys (resp. Values) of multiple tokens into one. CaM Zhang et al. (2024g) merges
the Keys (or Values) of multiple evicted tokens with retained tokens based on attention scores to get the
final merged results. Also, KVMerger Wang et al. (2024c) first identifies the merge token sets by clustering
consecutive tokens with high cosine similarity, ensuring that only adjacent tokens with strong contextual
relevance are grouped together. Then, KVMerger merges the tokens in each merge set into the pivotal token
(chosen based on the highest attention score) using Gaussian kernel weights, where closer tokens contribute
more to the merged state.

Instead of merging the KV of multiple tokens into one, CHAI Agarwal et al. (2024) observes that heads
in multi-head attention often produce highly correlated attention scores for tokens, particularly in the later
layers of LLMs. To exploit this redundancy, CHAI Agarwal et al. (2024) clusters attention heads within each
layer that produce similar outputs and computes attention for only a single representative head in each clus-
ter. Specifically, within each cluster, CHAI Agarwal et al. (2024) selects one representative head to perform
the attention computation, and the computed attention scores are shared across all heads in the cluster.

4.3.2 Cross-layer Merging

MiniCache Liu et al. (2024a) observes that KV caches in middle-to-deep layers exhibit high angular simi-
larity, making them ideal for merging. To achieve this, MiniCache Liu et al. (2024a) merges the Key (and
Value) pairs of each token from adjacent similar layers into a single shared representation. Specifically,
MiniCache Liu et al. (2024a) decomposes KV vectors into magnitude and direction components, storing only
the shared directional vectors, token magnitudes, and unmergeable tokens to maximize memory efficiency.
Differently, KVSharer Yang et al. (2024d) observes a counterintuitive phenomenon: when the KV caches
of two layers differ significantly, sharing one layer’s KV cache with another during inference does not cause
significant performance degradation. Based on this observation, KVSharer Yang et al. (2024d) computes the
Euclidean distance between the KV caches of all layer pairs, ranks the pairs by dissimilarity, and prioritizes
the most dissimilar layers for sharing. Since KVSharer Yang et al. (2024d) can share the KV cache of one
layer to multiple other layers, the stored KV cache is eliminated significantly.

4.3.3 Summary and Future Directions

KV cache merging represents a transformative approach to optimizing memory utilization in LLMs by
consolidating or compressing KV caches while maintaining high model accuracy. However, there are several
key directions and challenges for future exploration in this domain. Firstly, current KV cache merging
methods are typically designed to work across a wide range of tasks, but fine-tuning merging strategies
for specific tasks or domains could further enhance efficiency. For example, certain tasks may tolerate
more aggressive merging due to inherent redundancy in their attention patterns, while others may require
more conservative approaches to preserve accuracy. Adaptive merging mechanisms that adjust compression
levels on-the-fly based on task difficulty, sequence length, or available hardware resources are an exciting
avenue for future work. Secondly, sparse attention mechanisms, which already reduce the computational
complexity of attention by operating on subsets of tokens, could be combined with KV cache merging to
achieve even greater efficiency. Exploring how merging complements sparsity-based approaches, such as
block-sparse or low-rank attention, could lead to novel hybrid solutions. Thirdly, while empirical results
show that merging does not significantly degrade performance, providing theoretical guarantees about the
preservation of critical information could enhance the reliability of these methods. Future work might focus

16

Under review as submission to TMLR

Table 5: The summary of existing mixed-precision quantization models.
Model Keys Values Important Tokens Outlier storing Channel Reorder

Intial Middle Recent
KVQuant

Hooper et al. (2024b)
Channel, Pre-RoPE Per-Token ✓ ✓

KIVI
Liu et al. (2024h)

Channel Per-Token ✓

SKVQ
Duanmu et al. (2024)

Dynamic outlier-aware ✓ ✓ ✓

WKVQuant
Yue et al. (2024)

Learnable shifting ✓

QAQ
Dong et al. (2024b)

Adaptive quantization bits ✓ ✓ ✓ ✓

MiKV
Yang et al. (2024c)

Dynamic outlier-aware ✓ ✓ ✓

GEAR
Kang et al. (2024)

Dynamic outlier-aware ✓ ✓

ZIPVL
He et al. (2024a)

Conventional ✓ ✓ ✓

CacheGen
Liu et al. (2024f)

Layer-wise, token-locality

Atom
Zhao et al. (2024b)

Group-based ✓ ✓

on quantifying the relationship between merging strategies, token importance, and attention accuracy to
provide more formal guarantees.

4.4 KV Cache Quantization

Quantization technique Lin et al. (2016); Wu et al. (2020); Kwasniewska et al. (2019); Zhou et al. (2018);
Jiang & Agrawal (2018) has been widely used to accelerate machine learning models from different aspects,
such model parameter quantization Frantar et al. (2022); Dettmers et al. (2024); Bondarenko et al. (2023);
Cheng et al. (2017) and data feature quantization Zhou et al. (2023a); Jegou et al. (2010). Similarly,
Key-Value (KV) cache quantization is emerging as a highly promising solution to address the memory
and computational bottlenecks in LLMs. During autoregressive decoding, LLMs generate key-value pairs
for every attention layer across all tokens in the sequence. If we store all KV pairs in the memory with
full precision, this cache grows exponentially with longer sequences, increasing the memory and bandwidth
requirements significantly. Quantization reduces the precision of numerical representations (e.g., from FP32
to INT8 or INT4), drastically compressing the size of the KV cache. This compression can achieve up to 4x
or more memory savings, making it feasible for LLMs to operate on resource-constrained devices like GPUs
with limited memory or edge devices.

However, the presence of outliers in Keys and Values poses a significant challenge for low-bit quantization, as
these extreme values can lead to substantial performance degradation when compressed into reduced bit rep-
resentations Dettmers et al. (2022); Bondarenko et al. (2021); Wei et al. (2022). Based on the techniques used,
existing KV cache quantization approaches can be classified into three main categories: Fixed-precision
quantization, where all Keys and Values are quantized to the same bit-width; Mixed-precision quantiza-
tion, which assigns higher precision to critical parts of the cache while using lower precision for less important
components; and Outlier redistribution, which redistributes or smooths the outliers in Keys and Values
to improve quantization quality. These methods collectively enable efficient KV cache compression while
mitigating the performance degradation typically associated with low-bit quantization.

4.4.1 Fixed-precision Quantization

Fixed-precision quantization proposes quantizing different Keys (different Values) of tokens to the same bit-
width. ZeroQuant Yao et al. (2022) propose per-token quantization for Keys and Values. As shown in Fig. 4,

17

Under review as submission to TMLR

𝐶

𝑇 𝐗
𝐶

𝑇 𝐗
𝐶

𝑇 𝐗

(a) per-tensor (b) per-token (c) per-channel

Figure 4: Three types of quantization. Then matrix X ∈ RT×C , where T is the number of tokens and C is
the feature dimension.

the per-token quantization approach quantizes tokens individually. Particularly, ZeroQuant Yao et al. (2022)
dynamically computes the min-max range for each token during inference. This ensures that each token is
quantized based on its unique range, significantly reducing quantization error. Also FlexGen Sheng et al.
(2023) and QJL Zandieh et al. (2024) directly perform per-token quantization for Keys and Values, where
the scaling factor and zero-point are shared among all elements within the same token. PQCache Zhang
et al. (2024b) uses product quantization approaches Jegou et al. (2010); Matsui et al. (2018) to compress
KV pairs. However, uniform quantization approaches, which use a fixed bit-width for keys and values across
all tokens, can often be suboptimal. It is because they ignore the varying importance of tokens Zhang et al.
(2024f) and account for the outlier patterns in Keys and Values Dong et al. (2024b); Hooper et al. (2024b).

4.4.2 Mixed-precision quantization

Unlike fixed-precision quantization, where all Keys or Values are quantized to the same bit-width (e.g.,
4-bit or 8-bit), mixed-precision quantization assigns higher or full precision to Keys and Values of critical
tokens and parts while using lower precision for less critical parts. The summary of KV mixed-precision
quantization is listed in Tab. 5. KVQuant Hooper et al. (2024b) proposes several strategies to quantize Keys
and Values smoothly based on observations. Firstly, KVQuant observes that the key values exhibit outliers
in specific channels prior to applying Rotary Positional Embedding (RoPE). However, after applying RoPE,
the magnitudes of these outlier channels become less consistent, creating a unique challenge for low-precision
quantization. Thus, KVQuant Hooper et al. (2024b) proposes to quantize the Keys per channel before
applying the RoPE operations and to quantize the Values per token. Secondly, KVQuant Hooper et al.
(2024b) observes that KV cache activations contain outliers that skew the quantization range. To address
this, they isolate outliers per vector (e.g., per-channel or per-token), store them in a sparse format, and
quantize the remaining values to a narrower range. Thirdly, LLMs disproportionately allocate high attention
scores to the first token (i.e., attention sink), and quantizing the first token will damage the performance of
LLMs. Thus, KVQuant Hooper et al. (2024b) retains the first token in full precision (FP16) while quantizing
the rest of the sequence, which is also used by IntactKV Liu et al. (2024e) and SKVQ Duanmu et al. (2024).
Similar to KVQuant Hooper et al. (2024b), KIVI Liu et al. (2024h) quantizes the Key cache per-channel,
as certain channels exhibit large outliers, and the Value cache per-token, as there are no significant outlier
patterns in the Value cache. Additionally, KIVI Liu et al. (2024h) retains the most recent Keys and Values
in full precision, while quantizing older KVs. This approach is based on the observation that the most recent
KVs are critical for generating subsequent tokens.

Similar to KIVI Liu et al. (2024h), WKVQuant Yue et al. (2024) temporarily retains the most recent Keys
and Values in full precision, while quantizing only the past KV cache. This approach helps preserve precision
during computation. Additionally, WKVQuant Yue et al. (2024) introduces a two-dimensional quantization
strategy, which optimizes parameter matrix to align the values in the KV cache into a smoother and more
uniform range, significantly improving quantization quality. GEAR Kang et al. (2024), MiKV Yang et al.

18

Under review as submission to TMLR

Table 6: The summary of outlier redistribution models in Sec. 4.4.3.
Model Operation Formula Learn Remarks

MassiveAct
Sun et al. (2024b)

Add virtual tokens softmax

(
Q
[

KT , k′
]

√
d

)[
V

v′T

]
✓ Learnable k′, v′

QuaRot
Ashkboos et al. (2024)

Hadamard rotation XW⊤ = (XH)(H⊤W⊤) × H⊤H = I

Qserve
Lin et al. (2024d)

Hadamard rotation XW⊤ = (XH)(H⊤W⊤) × H⊤H = I

Q-INT4
Xi et al. (2023)

Hadamard rotation XW⊤ = (XH)(H⊤W⊤) × H⊤H = I

SmoothQuant
Xiao et al. (2023)

Scaling (X diag(s)−1) · (diag(s)W⊤) × s ∈ Rci

QS+
Wei et al. (2023)

Scaling, Shifting ((X − z) diag(s)−1 · diag(s) + z)W⊤ × s ∈ Rci

AWQ
Lin et al. (2024c)

Scaling arg mins

∥∥XW⊤ − X diag(s)−1)Q(diag(s)W⊤)
∥∥ ✓ Quantization Q(·)

OmniQuant
Shao et al. (2023)

Scaling, Shifting Qa

(
X−δ

s

)
Qw

(
s ⊙ W⊤

)
+ B + δW⊤ ✓ Learnable Qa(·), Qw(·)

DuQuant
Lin et al. (2024b)

Rotation, Permutation [(X · Λ)R̂(1) · P · R̂(2)] · [R̂⊤
(2) · P⊤ · R̂⊤

(1)(Λ−1 · W⊤)] × Matrices P, R

AffineQuant
Ma et al. (2024b)

Affine transform arg minP

∥∥XW⊤ − XP−1Q(PW⊤)
∥∥2

F
✓ Quantization Q(·)

FlatQuant
Sun et al. (2024d)

Affine transform AffineQuant + P = P1 ⊗ P2 ✓ Decomposition

(2024c), ZipCache He et al. (2024b) and ZIPVL He et al. (2024a) quantize the KV cache based on the
importance of each to achieve efficient and effective compression. First, GEAR Kang et al. (2024) applies
quantization to compress the majority of less important entries (e.g., 98%) to ultra-low precision, significantly
reducing memory usage. Next, GEAR Kang et al. (2024) employs a low-rank matrix to approximate residual
errors, capturing structured patterns in the data. Also, GEAR Kang et al. (2024) uses a sparse matrix
stores outliers, correcting individual errors caused by these values. MiKV Yang et al. (2024c) is a mixed-
precision KV cache quantization approach. Based on the importance of each token, measured using existing
methods like H2O Zhang et al. (2023a) and SnapKV Li et al. (2024b), MiKV Yang et al. (2024c) stores less
important KV pairs in low precision while retaining the most important KV pairs in high precision. Instead
of approximating the importance weight of each token, ZipCache He et al. (2024b) accurately computes
the importance of each token. Instead of computing importance score, PrefixQuant Chen et al. (2024c)
observes that token-wise outliers frequently occur at fixed positions (e.g., initial tokens) or low-semantic-value
tokens (e.g., ".", "\n"). Based on this observation, PrefixQuant Chen et al. (2024c) identifies high-frequency
outlier tokens in LLMs offline and prefixes them in the KV cache, effectively eliminating token-wise outliers.
Similarly, MiniKV Sharma et al. (2024) observes that important tokens can be identified before generation
and remain consistent throughout the generation process, retaining these important tokens in high precision.

QAQ Dong et al. (2024b) proposes a quality adaptive quantization approach to dynamically determine the
suitable quantization bit for each token, based on its importance and sensitivity, while handling outliers and
exceptions to maintain model performance. SKVQ Duanmu et al. (2024) introduces the clipped dynamic
quantization with channel reorder. First, SKVQ Duanmu et al. (2024) uses a transformation-invariant per-
mutation to group similar channels based on their statistical characteristics and applies clipped dynamic
quantization to mitigate the outlier problem. Second, SKVQ Duanmu et al. (2024) maintains high precision
for the initial tokens and the most recent tokens while quantizing older tokens. Consequently, SKVQ Du-
anmu et al. (2024) effectively reduces quantization errors and improves the accuracy of the quantized model.
CacheGen Liu et al. (2024f) and AsymKV Tao et al. (2024) use layer-wise asymmetric quantization, as-
signing higher-bit precision to key matrices in sensitive early layers and lower-bit precision to less sensitive
layers, balancing memory efficiency and performance. Particularly, CacheGen Liu et al. (2024f) also exploits
token-wise locality by encoding deltas (differences) between KV tensors of nearby tokens instead of raw
values. Atom Zhao et al. (2024b) identifies and separates outlier channels, reordering the matrix to group

19

Under review as submission to TMLR

these outlier channels at the end, thereby ensuring regular memory access patterns for improved hardware
utilization. Then, Atom Zhao et al. (2024b) quantizes outliers with higher precision, while normal channels
are quantized to INT4 for maximum efficiency. In particular, Atom Zhao et al. (2024b) applies fine-grained
group quantization by dividing matrices into smaller subgroups (e.g., 128 elements per group) and performing
quantization independently within each group.

4.4.3 Outlier Redistribution

As previously mentioned, outliers in the Keys and Values present significant challenges for their quantization.
Recent research has proposed two main approaches to address this issue: redistributing the outliers into newly
appended virtual tokens or applying equivalent transformation functions to smooth the Keys and Values for
improved quantization accuracy. The summary of existing outlier redistribution models are listed in Table. 6.

Specifically, MassiveActivation Sun et al. (2024b) highlights the phenomenon of massive activations in large
language models (LLMs), where a small subset of activations is exponentially larger than the rest. To
address this, MassiveActivation Sun et al. (2024b) proposes appending a virtual token to the inputs, allowing
LLMs to encapsulate the massive outliers within these learned keys and values for each head. Then, we
introduce the equivalent transformation function-based approaches. Firstly, QuaRot Ashkboos et al. (2024),
Qserve Lin et al. (2024d), and Q-INT4 Xi et al. (2023) redistributes outlier values across all channels by
Hadamard rotation, successfully lowering the maximum value of outlier tokens. The Hadamard rotation of
activations can be incorporated into the preceding linear layer, thereby redistributing the outliers of Keys and
Values into the parameters. Despite this improvement, outlier tokens still exhibit magnitudes hundreds of
times greater than normal tokens, causing notable performance issues when using shared quantization scales
across tokens Chen et al. (2024c). Expanding on this idea, SpinQuant Liu et al. (2024g) proposes training
an orthogonal matrix instead of relying on a random Hadamard matrix to achieve better performance.
Similarly, DuQuant Lin et al. (2024b) employs channel permutation to evenly distribute outliers across
blocks and utilizes block rotation to further smooth outliers.

SmoothQuant Xiao et al. (2023) leverages a key observation that different tokens show similar patterns of
variation across their channels. Based on this insight, it strategically shifts the quantization complexity from
activations to weights through an offline process. Specifically, SmoothQuant Xiao et al. (2023) introduces a
mathematically equivalent per-channel scaling transformation: Y = (Xdiag(s)−1)·(diag(s)W) = X̂Ŵ where
X represents Keys or Values, and the smoothing factor s ∈ RCi is used to scale X. This transformation
achieves two key benefits: it smooths the distribution of Keys and Values to facilitate easier quantization,
and it allows the smoothing factors to be efficiently incorporated into the parameters of previous layers
during offline processing. In particular, the smooth factor s is dynamically decided on based on inputs.
Similarly, The OS+ Wei et al. (2023) introduces channel-wise shifting to eliminate outlier asymmetry and
channel-wise scaling to reduce outlier concentration. These operations are seamlessly migrated to subsequent
layers, maintaining equivalence with the floating-point model while improving quantization performance.

Instead of using handcrafted transformations Lin et al. (2024b); Wei et al. (2023); Xiao et al. (2023) to shift
the quantization difficulty from activations to weights, AffineQuant Ma et al. (2024b) uses an affine transfor-
mation matrix that combines both scaling and rotation transformations. This allows it to optimize weight
distributions more effectively, aligning them better with the quantization function and reducing quantization
errors. The affine transformation matrix provides richer flexibility compared to SmoothQuant’s scalar-based
scaling, enabling finer adjustments to the weight and activation distributions. Based on AffineQuant Ma
et al. (2024b), FlatQuant Sun et al. (2024d) introduces a fast and learnable affine transformations to enhance
the flatness of weights and activations, which decomposes transformations into smaller matrices to reduce
memory and computational costs. Similarly, AWQ Lin et al. (2024c) and OmniQuant Shao et al. (2023)
proposes differentiable and learnable equivalent transformations, which optimize the equivalent parameters
(e.g., channel-wise scaling and shifting) in an end-to-end manner using gradient descent.

4.4.4 Summary and Future Directions

KV cache quantization is a crucial technique for reducing memory and computational overhead in large
language models (LLMs) during autoregressive decoding. While significant progress has been made, this

20

Under review as submission to TMLR

field remains dynamic and rapidly evolving, with several promising directions for future research. Firstly,
one promising avenue is the development of real-time adaptive quantization methods. These techniques
could dynamically adjust quantization levels during inference based on real-time metrics such as token
importance, outlier presence, or sequence length. Such an approach could significantly enhance efficiency
while maintaining performance, especially for processing long sequences with varying levels of complexity.
Secondly, another important direction is extending KV cache quantization to multi-modal and multi-task
models. Multi-modal models, which process inputs from diverse domains such as text, vision, and audio, and
multi-task scenarios often exhibit highly diverse attention patterns and memory demands. This necessitates
the design of more advanced and tailored quantization strategies to balance efficiency and accuracy in these
increasingly complex settings.

Thirdly, hybrid quantization techniques also hold significant potential. By combining fixed-precision, mixed-
precision, and outlier redistribution methods, researchers could develop more versatile and efficient quan-
tization frameworks. For instance, integrating mixed-precision allocation schemes with outlier smoothing
transformations could optimize both memory usage and performance, offering a flexible approach adaptable
to a variety of tasks and models. finally, addressing the challenge of outliers remains a critical area of focus.
Outliers can have a disproportionate impact on quantization efficiency and model performance. Future re-
search could explore advanced outlier detection mechanisms or innovative encoding techniques to mitigate
their effects. Improved handling of outliers could further enhance the effectiveness of quantization methods,
enabling more robust and memory-efficient implementations.

4.5 KV Cache Low-rank Decomposition

Existing studies have demonstrated that the majority of information within KV caches can be captured
by a small subset of their singular values or low-rank components, making low-rank decomposition a pow-
erful tool for compression. By leveraging this property, KV cache low-rank decomposition techniques aim
to reduce memory requirements while preserving the essential information required for accurate attention
computations. Low-rank decomposition strategies can be classified into three main approaches: Singular
Value Decomposition (SVD), which exploits the low-rank structure of KV matrices to retain the most
critical singular values; Tensor Decomposition, which factorizes KV matrices into smaller components
for minimal redundancy; and Learned Low-rank Approximation, which incorporates adaptive mecha-
nisms to optimize compression based on learned representations. Each method provides a unique balance of
computational efficiency and accuracy retention, enabling scalable and memory-efficient LLM inference.

4.5.1 Singular Value Decomposition

Firstly, ECKVH Yu et al. (2024), EigenAttention Saxena et al. (2024), and ZDC Zhang & Shen (2024) shows
that KV caches have a low-rank property, where a small number of top singular values retain most of the
information. Using Singular Value Decomposition (SVD), the method compresses KV caches by grouping
heads, applying SVD, and retaining top singular values, effectively reducing the number of KV heads with
minimal error. Also, ZDC Zhang & Shen (2024) uses an adaptive hybrid compression ratio mechanism to
assign higher compression to unimportant tokens in shallower layers while preserving more important tokens
in deeper layers, leveraging the similarity of token characteristics in adjacent layers. Secondly, rather than
decomposing KV pairs, LoRC Zhang et al. (2024d) employs a low-rank approximation of KV weight matrices
and adopts a progressive compression strategy to efficiently compress KV caches without requiring model
retraining. Specifically, LoRC Zhang et al. (2024d) uses SVD to compress the Keys and Values parameter
matrices (i.e., Wk

i and Wv
i) as Wk

i = Uk
i Σk

i Pk
i

⊤ and Wv
i = Uv

iΣv
iPv

i
⊤. Also, compression is applied

conservatively in shallower layers to minimize error amplification and more aggressively in deeper layers.
Then, instead of storing Ki = XiWk

i and Vi = XiWv
i , it only stores K̂i = XiUk

i and V̂i = XiUv
i , along

with Σk
i Pk

i
⊤ and Σv

iPv
i

⊤. Also, ShadowKV Sun et al. (2024a) performs SVD decomposition directly on
pre-RoPE keys to reduce the dimensionality of the key representations. Palu Chang et al. (2024) applies
SVD to compress both Keys and Values.

21

Under review as submission to TMLR

4.5.2 Tensor Decomposition

Tensor decomposition Kuleshov et al. (2015); Zhou et al. (2017); Haeffele & Vidal (2015) is a widely
used algorithm for factorizing a matrix into a sequential product of local tensors, such as Matrix Product
Operator (MPO) Liu et al. (2021) and turker decomposition Malik & Becker (2018) . Taking Matrix
Product Operator (MPO) Liu et al. (2021) as an example, the decomposition of a matrix W ∈ RI×J using
MPO can be defined as:

TD(W) =
n∏
k=1

T(k)[dk−1, ik, jk, dk], (12)

where T(k) represents the local tensor of size dk−1 × ik × jk × dk, with
∏n
k=1 ik = I and

∏n
k=1 jk = J .

Here, n denotes the number of local tensors, collectively referred to as the decomposed tensors. As shown
in Eaquation equation 12, MPO-based tensor decomposition is well-suited for KV cache compression as
it reduces the memory footprint by factorizing large key and value matrices into smaller local tensors,
enabling efficient storage while preserving essential information. This approach minimizes redundancy
and maintains the structural integrity required for accurate attention computations. DecoQuant Liu et al.
(2024d) combines quantization with low-rank decomposition to effectively reduce quantization errors.
Specifically, DecoQuant Liu et al. (2024d) leverages the Matrix Product Operator (MPO) to decompose
matrices into smaller local tensors. The larger tensors, which contain most of the parameters, are quantized
to low-bit precision, while the smaller tensors retain high precision to minimize overall quantization error.

4.5.3 Learned Low-rank Approximation

LESS Dong et al. (2024a) introduces a novel learned-kernel-based low-rank approximation approach to
efficiently approximate the results of the softmax function. Specifically, LESS Dong et al. (2024a) replaces
the softmax with a separable similarity metric, ϕ(qt)ψ(Kt)⊤, where ϕ and ψ are row-wise functions. Here,
qt ∈ R1×D represents the query, and Kt ∈ Rt×D represents the keys at step t. To elaborate, if ϕ and ψ

are such that: at = softmax
(

qtK⊤
t√
D

)
Vt ≈ ϕ(qt)ψ(Kt)⊤Vt

ϕ(qt)ψ(Kt)⊤1S×1
, then we only need to cache the hidden states

Ht = ψ(Kt)⊤Vt ∈ RR×D and the normalization factor zt =
∑t
s=1 ψ([Kt]s) ∈ R1×R for inference. Similarly,

MatryoshkaKV Lin et al. (2024a) compresses KV caches along the feature dimension by leveraging trainable
orthogonal projection matrices.

4.5.4 Summary and Future Directions

KV cache low-rank decomposition is a powerful technique for compressing KV caches in LLMs while maintain-
ing the quality of attention computations. Current methods primarily rely on fixed low-rank approximations
applied uniformly across all layers or tokens. However, future advancements could focus on dynamic rank
adjustment, where the rank is tailored based on token importance, sequence length, or layer-specific proper-
ties, enabling a more optimal balance between memory efficiency and performance. Additionally, real-time
or streaming applications present a promising avenue for exploration. Since KV caches grow dynamically
during inference, lightweight and incremental decomposition methods that can adapt efficiently to expanding
sequences will be critical for supporting such scenarios without compromising latency or accuracy.

5 Model-level Optimization

In model-level optimization, new architectures or mechanisms are designed for transformers to allow more
efficient reuse of KV cache. Typically, these methods require retraining or fine-tuning of the model to come
into operation. Nevertheless, efficient transformation pipelines have also been proposed to allow for a fast
deployment to new architectures. According to where and how the refinement was made to the models, we
separate related works to the grouping and sharing mechanisms within or cross layers (Sec. 5.1), implementing
architecture modification or augmentation (Sec. 5.2), and incorporating non-transformer architectures for
optimization (Sec. 5.3). The taxonomy of the model-level optimization is shown in Fig. 5.

22

Under review as submission to TMLR

Model-level
Optimization (Sec. 5)

Non-transformer Ar-
chitecture (Sec. 5.3)

Hybrid Architec-
ture (Sec. 5.3.2)

MixCon Xu & Lin (2024), GoldFinch
Goldstein et al. (2024), RecurFormer
Yan et al. (2024)

Adaptive Sequence
Processing Archi-

tecture (Sec. 5.3.1)

RWKV Peng et al. (2023), Mamba
Gu & Dao (2024), RetNet Sun et al.
(2023), MCSD Yang et al. (2024b)

Architecture Al-
teration (Sec. 5.2)

Augmented
Architecture (Sec. 5.2.2)

YOCO Sun et al. (2024c), CEPE Yen
et al. (2024), XC-Cache Monteiro
et al. (2024), Block Transformer Ho
et al. (2024)

Enhanced Atten-
tion (Sec. 5.2.1)

MLA DeepSeek-AI et al. (2024),
FLASH Hua et al. (2022), Infini-
Attention Munkhdalai et al. (2024)

Attention Grouping
and Sharing (Sec. 5.1)

Cross-Layer Shar-
ing (Sec. 5.1.2)

CLA Brandon et al. (2024), LCKV
Wu & Tu (2024), SA Liao & Vargas
(2024), MLKV Zuhri et al. (2024),
LISA Mu et al. (2024), Wu et al.
Wu et al. (2024e), CLLA Yang et al.
(2024e), DHA Chen et al. (2024e),
SVFormer Zhou et al. (2024b)

Intra-Layer Group-
ing (Sec. 5.1.1)

MQAShazeer (2019), GQA Ainslie
et al. (2023), AsymGQA Chen et al.
(2024f), Weighted GQA Chinnakon-
duru & Mohapatra (2024), QCQA
Joshi et al. (2024), KDGQA Khan
et al. (2024), GQKVAJavadi et al.
(2023)

Figure 5: Taxonomy of the model based KV optimization for Large Language Models.

5.1 Attention Grouping and Sharing

This section explores attention grouping and sharing methods as effective strategies for optimizing key-value
(KV) management. We categorize the approaches into two distinct subtypes: intra-layer grouping (Sec.
5.1.1) that focuses on grouping query, key, and value heads within individual layers to reduce redundancy
and improve efficiency, and cross-layer sharing 5.1.2 that shares key, value, or attention components across
layers to improve information reuse and reduce KV cache requirements. The summary of attention grouping
and sharing is listed in Tab. 7.

5.1.1 Intra-layer Grouping

Shazeer first introduced Multi-Query Attention (MQA) Shazeer (2019) that modified the traditional multi-
head attention mechanism. In MQA, all attention heads in a transformer block share a single key and value.
This simple strategy can greatly accelerate the decoding procedure. The experiments of the author show
that MQA would gain much efficiency with only minor quality degradation incurring.

MQA is a radical strategy that would cause not just quality degradation, but also training instability. GQA
(Grouped Query Attention) Ainslie et al. (2023) introduced a trade-off solution by dividing the query heads
into multiple groups, while each group shares its own keys and values. In addition, an uptraining process
is proposed to efficiently convert existing MHA models to GQA configurations by mean-pooling the key
and value heads associated with each group. Empirical evaluations demonstrated that GQA models achieve
performance close to the original MHA models while offering inference time comparable to MQA.

There were several extensions based on GQA. AsymGQA Chen et al. (2024f) extends GQA by proposing
an activation-informed merging strategy. Instead of grouping the heads by uniform clustering, AsymGQA
dynamically determines the grouping of quries based on their activations similarities during training and
constructs an asymmetric group results, which leads to better optimization and generalization. Weighted

23

Under review as submission to TMLR

Table 7: The summary of Model-based Attention Grouping and Sharing approaches.
Method

Applied Location Intra-layer Grouped
Component

Cross-layer Shared
Component Retraining Required

Intra-layer Cross-layer
MQA

Shazeer (2019)
✓ K, V - ✓

GQA
Ainslie et al. (2023)

✓ K, V - Uptrain

AsymGQA
Chen et al. (2024f)

✓ K, V - Finetune

Weighted GQA
Chinnakonduru & Mohapatra (2024)

✓ K, V - Uptrain & Finetune

QCQA
Joshi et al. (2024)

✓ K, V - ✓

KDGQA
Khan et al. (2024)

✓ K, V - ✓

GQKVA
Javadi et al. (2023)

✓ Q, K, V - ✓

CLA
Brandon et al. (2024)

✓ ✓ K, V K, V ✓

LCKV
Wu & Tu (2024)

✓ - K, V ✓

SA
Liao & Vargas (2024)

✓ - Attention Weight ✓

MLKV
Zuhri et al. (2024)

✓ ✓ K, V K, V Uptrain

LISA
Mu et al. (2024)

✓ Q, K, V Lightweight adaption

Wu et al.
Wu et al. (2024e)

✓ - Q, K, V ✓

CLLA
Yang et al. (2024e)

✓ - Q, K, V ✓

DHA
Chen et al. (2024e)

✓ ✓ K, V Q, K, V Lightweight adaption

SVFormer
Zhou et al. (2024b)

✓ - V ✓

GQA Chinnakonduru & Mohapatra (2024) introduces additional trainable weights to each key and value
head, which can be seamlessly integrated into existing GQA models. By tuning weights during training, it
improves the performance of the model without additional inference overhead. QCQA Joshi et al. (2024)
utilizes an evolutionary algorithm to identify the optimal query head groupings for GQA, which is guided
by a computationally efficient fitness function that leverages the weight-sharing error and the KV cache
to evaluate text generation quality and memory capacity. KDGQA Khan et al. (2024) argues that many
variances of GQA adopt a fixed grouping strategy, thus lacking dynamic adaptability to the evolving of key-
value interactions during training. Their Dynamic Key-Driven GQA address these issues by allocating groups
using key head norms adaptively during training, resulting in a flexible strategy to query head grouping and
enhance the performance.

GQKVA Javadi et al. (2023) advances the grouping strategy and comes up with a generalized query, key and
value grouping mechanism. It first introduces MKVA and GKVA, in which the key and value are grouped
to share the same query. Based on this, GQKVA is proposed to separately group the query and key-value
pairs. Typically, queries are partitioned into gq groups, and keys and values are partitioned into gkv groups,
and each combination of query and key-value pairs would interact using dot product attention. This results
in gq × gkv distinct outputs. It generalized different group strategy on query, key and value and preserves
good computational efficiency and comparable performance as MHA.

24

Under review as submission to TMLR

5.1.2 Cross-layer Sharing

Brandon et al. introduce Cross Layer Attention (CLA) Brandon et al. (2024) that extends the ideas of GQA
and MQA by sharing the key and value heads between adjacent layers, further reduce the redundancy in
the KV cache. This achieves an additional 2× KV cache size reduction compared to MQA, significantly
improving memory efficiency without altering computational complexity.

LCKV Wu & Tu (2024) proposes only to compute and cache the key and value for a small subset of layers, even
only the top layer, then let queries in bottom layers pair the saved keys and values for inference. This method
not only drastically improves the inference speed and reduces memory consumption but is also orthogonal
to existing memory-saving techniques, enabling straightforward integration for further optimization. While
such a mechanism makes next token computation depend on top layer keys and values of previous tokens,
which contradict to the parallel training of transformers, LCKV introduces an approximate training methods
to support parallel training.

SA (Shared Attention) Liao & Vargas (2024) proposes reuse of computed attention weights across multiple
layers, rather than recalculating them for each layer. Unlike other methods focusing on sharing key-value
caches, SA leverages the isotropic tendencies of attention distributions observed in pre-trained LLMs to
directly share attention weights, greatly reducing both computational overhead and memory usage.

MLKV (Multi-Layer Key-Value) Zuhri et al. (2024) introduces a simple KV head sharing mechanism across
multiple transformer layers. MLKV uses the same single KV head as MQA within a layer, but it also shares
this KV head with multiple layers. This extreme strategy reduces the cache size to almost 1% of normal
GQA strategies, and experiments show that MLKV still has comparable performance.

LISA (Lightweight Substitute for Attention) Mu et al. (2024) makes a comprehensive analysis for the similar-
ity of attention patterns across layers. Directly sharing attention weights across layers is ineffective because
of the misalignment of the attention head and the sensitivity of shallow layers. LISA Mu et al. (2024)
addresses challenges by incorporating tiny feed-forward networks to align attention heads between layers
and using low-rank matrices to approximate variations in layer-wise attention weights. This achieves a 6×
compression of query and key parameters while maintaining high accuracy and perplexity.

Wu et al. Wu et al. (2024e) introduce a unified framework that systematically analyzes and optimizes the
cross-layer Key-Value cache sharing mechanism. They consolidate several existing methods, explore novel
variants within a cohesive structure, and make thorough evaluations of these methods. The study finds that
2 times reduction to KV cache size can outperform standard transformers in throughput without substantial
accuracy loss, while further reduction requires alternative design with additional training costs. With the
analysis results, they offer insight into the choice of appropriate KV sharing methods based on the specific
requirement or constraints.

CLLA (Cross-Layer Latent Attention) Yang et al. (2024e) introduces an integrated framework combining
multiple strategies: attention head size and dimension reduction, cross-layer cache sharing, and KV cache
quantization. By unifying these strategies, CLLA achieves extreme KV cache compression to less than 2%
of the original model size while maintaining performance levels comparable with uncompressed models.

DHA (Decoupled Head Attention) Chen et al. (2024e) addresses redundancy in MHA and adaptively con-
figures shared groups for key and value heads across layers, reducing KV cache requirements. Observing
that clustering and fusing similar heads can reduce KV cache size without significant performance reduction,
DHA designs a search, fusion, and continued pre-training framework that can progressively transform MHA
checkpoints into DHA models through linear fusion of head parameters, preserving the pre-trained knowledge
with small pre-training budget.

Observing that later layers in traditional transformers overly rely on narrow regions of attention, Zhou et
al. Zhou et al. (2024b) introduce ResFormer that utilizes residual connections from the value embeddings
of the first layer to all subsequent layers, effectively approximating cross-layer attention without incurring
significant computational costs. They then propose a simplified variant SVFormer that shares a single
value embedding across all layers, dramatically reducing the KV cache size by nearly half while maintaining

25

Under review as submission to TMLR

Table 8: The summary of Model-based Intra-layer approaches.
Method Alteration Type KV Cache

Management
Retraining

RequirementEnhanced
Attention

Augmented
Architecture

MLA
DeepSeek-AI et al. (2024)

✓ Latent compression ✓

FLASH
Hua et al. (2022)

✓ Linear approximation ✓

Infini-Attention
Munkhdalai et al. (2024)

✓ Compressive cache ✓

YOCO
Sun et al. (2024c)

✓ Single global KV cache ✓

CEPE
Yen et al. (2024)

✓ Parallel encoding with cross-attn Lightweight

XC-Cache
Monteiro et al. (2024)

✓ Encoder cross-attention ✓

Block Transformer
Ho et al. (2024)

✓ Hierarchical local KV Lightweight

competitive performance. The proposed architectures are flexible to incorporate with other KV-efficient
strategies for additional memory savings.

5.1.3 Summary and Future Directions

This section highlights innovative strategies for optimizing memory and computational efficiency through
intra-layer grouping and cross-layer sharing mechanisms. However, several avenues for improvement remain.
First, maintaining performance while optimizing efficiency, especially for precision-sensitive tasks, requires
further investigation. Methods that implement radical grouping and sharing mechanisms may compromise
the model fidelity for tasks requiring high precision. Second, scalability across diverse model architectures and
sizes is essential. Works such as DHA Chen et al. (2024e) and LISA Mu et al. (2024), which rely on specific
architectural assumptions, may struggle to generalize to emerging LLMs or non-standard configurations.
Third, the dynamics of attention across both time and layers are largely under-explored. Most existing
methods rely on static or pre-determined grouping and sharing strategies, neglecting the temporal and
contextual variations in attention patterns.

To address these challenges and unlock the full potential of attention optimization, future research should
focus on the following aspects. First, developing universal frameworks for attention grouping and sharing that
require minimal retraining to enhance adaptability and usability. Second, synergistic integration with other
optimization techniques, such as quantization and pruning, has significant potential to achieve even greater
efficiency gains. While some works like CLLA Yang et al. (2024e) have begun to address these opportunities,
more exploration could be carried out to unlock new levels of efficiency. Third, more dynamic and temporal
modeling could be leveraged to adaptively adjust grouping and sharing during runtime to better capture the
contextual requirements of different tasks and sequences. Finally, a deeper understanding of the downstream
impacts of these techniques on fine-tuning and transfer learning is crucial for their effective application in
real-world scenarios.

5.2 Architecture Alteration

This section explores architectural modifications to optimize KV cache usage. We categorize these methods
into two subsections: methods that refine the attention mechanism for KV cache efficiency (Sec. 5.2.1), and
methods that introduce structural changes for better KV management (5.2.2). Many of these works build
upon the broader landscape of efficient attention mechanisms (e.g., Linear Transformer Katharopoulos et al.
(2020), Performer Choromanski et al. (2020), LinFormer Wang et al. (2020), etc.). Since our focus lies on

26

Under review as submission to TMLR

Table 9: The summary of Non-Transformer Architectures.
Method Key Mechanism No Traditional KV Cache KV Cache Compression
RWKV

Peng et al. (2023)
RNN-like with Transformer parallelism ✓

Mamba
Gu & Dao (2024)

Selective state-space model ✓

RetNet
Sun et al. (2023)

Retention mechanism ✓

MCSD
Yang et al. (2024b)

Slope-decay fusion ✓

MixCon
Xu & Lin (2024)

Transformer + Conba + MoE ✓

GoldFinch
Goldstein et al. (2024)

RWKV + Modified Transformer ✓

RecurFormer
Yan et al. (2024)

Mamba replacing some attention heads ✓

methods directly impacting KV cache handling, for a comprehensive overview of efficient attention mecha-
nisms, we refer readers to dedicated surveys Zhou et al. (2024c). The summary of architecture alteration for
KV reuse is listed in Tab. 8.

5.2.1 Enhanced Attention

DeepSeek-V2 DeepSeek-AI et al. (2024) introduced Multi-Head Latent Attention (MLA) that adopts a
low-rank KV joint compression mechanism, replacing the full KV cache with compressed latent vectors.
The model adopts trainable projection and expansion matrices to do the compression. This compression
mechanism significantly reduces the memory requirement of the KV cache and allows the model to handle
sequences up to 128K tokens.

FLASH Hua et al. (2022) incorporates the Gated Attention Unit (GAU) to replace the MHA mechanism
in traditional transformers. GAU utilizes a single-head attention mechanism with gating functions that
selectively modulates importance in information flow. FLASH employs a linear approximation method for
attention computation through GAU module, which makes the model efficiently handle long contexts without
the quadratic scaling of traditional self-attention, thus mitigating heavy KV cache issues.

Infini-Attention Munkhdalai et al. (2024) adopts representation compression to store long-term content. Fur-
thermore, they introduce a hybrid attention mechanism of masked local attention and long-term linear atten-
tion. The masked local attention replaces the standard MHA to let the model only concentrate on local con-
texts, while the long-term linear attention utilizes compressed memory for far-reaching dependencies and uses
linear attention for efficient aggregation. Thus, infini-attention combines both local fine-grained and long-
range compressed states, allowing a seamless balance between long-term and short-term context modeling.

5.2.2 Augmented Architecture

YOCO Sun et al. (2024c) builds a decoder-decoder architecture composed of two modules: a self-decoder and
a cross-decoder. The self-decoder efficiently encodes global key-value caches, while the cross-decoder reuses
these caches via cross-attention. This design ensures that key-value pairs are only cached once, substantially
reducing GPU memory usage while maintaining global attention capabilities. YOCO’s computation flow
also enables the prefilling to early exit, allowing faster prefill stages without altering the final output.

CEPE Yen et al. (2024) interleaves additional cross-attention layers between the self-attention and feed-
forward layers in the decoder model. It employs a small encoder to process long inputs chunk-by-chunk to
encoded representations as cross-attention layers’ inputs. In this way, CEPE can prevent the needs for KV

27

Under review as submission to TMLR

cache for every token and reduce computational cost by processing contexts in parallel. This also facilitates
an existing LLMs to expand its contexts while preserving the scalability and generalizability.

XC-Cache Monteiro et al. (2024) also utilizes an encoder to interleave cross-attention layers within existing
self-attention layers in pre-trained decoder-only models to prevent explicit prompt caching. The encoder
processes the context and converts it into a compact set of key-value pairs that summarize the essential in-
formation. It also finds that pre-trained causal decoders can be used to replace an encoder for representations
extraction, further reducing the training costs on additional encoder.

Block Transformer Ho et al. (2024) introduces a hierarchical global-to-local architecture by combining coarse-
grained global attention and fine-grained local attention. In lower layers, tokens are grouped into fixed-size
blocks, allowing global context modeling with reduced KV cache overhead. In upper layers, attention operates
within individual blocks, enabling lightweight, detailed token decoding with a smaller local KV cache.

5.2.3 Summary and Future Directions

This section explores research that introduces novel attention mechanisms or architectural modifications to
improve KV cache management. Although these approaches demonstrate significant progress in enabling
longer context windows and faster inference, several challenges remain. First, many methods, such as
CEPE Yen et al. (2024) and XC-Cache Monteiro et al. (2024) demonstrate strong performance on retrieval-
augmented tasks but may not generalize well across diverse workloads. This necessitates further research into
task-adaptive KV cache optimization strategies that dynamically adjust caching behavior to optimize for
different task demands. Secondly, integrating these novel mechanisms into existing pretrained models often
requires extensive retraining, hindering their adoption in resource-constrained environments. Developing
lightweight, modular approaches for retrofitting efficient KV caching into existing architectures is crucial for
a wider practical impact. Finally, the robustness and stability of these new mechanisms under real-world
conditions, such as noisy or dynamically changing inputs, require further investigation. Addressing these
limitations could improve reliability and efficiency in practical deployments.

5.3 Non-Transformer Architecture

While transformers are struggling with KV cache issues, researchers have revisited principles from traditional
sequential architectures, such as recurrent neural networks (RNNs) Salehinejad et al. (2017), which inherently
process sequences without the need for explicit KV caches. Inspired by the lightweight and memory-efficient
design of RNNs and efficient attention mechanisms, non-transformer architectures Xu et al. (2024e); Hasani
et al. (2022); Smith et al. (2022); Wang et al. (2022b); Gu & Dao (2024); Peng et al. (2023) have emerged,
such as Mamba Gu & Dao (2024) and RWKV Peng et al. (2023), offering promising alternatives. While there
are a large type of new architectures, we only list methods associated with KV optimization. For further
understanding to efficient non-transformer works, please refer to these surveys Zhou et al. (2024c); Xu et al.
(2024d); Qu et al. (2024); Patro & Agneeswaran (2024). The summary of non-transformer is listed in Tab. 9.

5.3.1 Adaptive Sequence Processing Architectures

RWKV Peng et al. (2023), which means Receptance Weighted Key Value, is an architecture that combines
the strengths of RNNs and transformers to achieve efficient sequence processing. RWKV integrates a linear
attention mechanism, enabling parallelizable training like transformers while retaining the efficient inference
characteristics of RNNs. By formulating the architecture to operate as either a transformer or an RNN,
RWKV achieves constant computational and memory complexity during inference, overcoming the quadratic
scaling issues of transformers.

Mamba Gu & Dao (2024) is built based on state space sequence models (SSMs) Gu et al. (2022; 2021).
Inspired by the state space systems, SSMs build scalable and memory-efficient long-range sequence modeling
frameworks. Mamba improves SSMs by making parameters input-dependent, allowing information to be
selectively propagated or forgotten along the sequence based on the current token. This addresses the inability
of traditional SSMs to effectively handle the complexity of nonlinear dependencies in natural languages.
Mamba omits attention and even MLP blocks, relying entirely on these selective state spaces for sequence

28

Under review as submission to TMLR

modeling. It also develops a hardware-aware parallel algorithm for efficient recurrent computations in training
and inference. Mamba achieves linear scaling in sequence length, demonstrating exceptional performance on
sequences of up to a million tokens.

RetNet Sun et al. (2023) introduces Retentive Network that combines elements of recurrence and attention,
presenting a novel retention mechanism for sequence modeling that offers training parallelism, low-cost
inference, and scalable performance together. The proposed Multi-scale Retention Module (MSR) enables
support to multiple computation paradigms: the parallel representation is similar to self-attention that adds
support to casual masks and parallel training. The recurrent representation is similar to RNN that allows
low-cost inference by maintaining state across sequence decoding. The chunkwise recurrent representation
constructs a hybrid form to the former representations to further enables handling long sequences. These
combined characteristics position RetNet as a strong alternative to transformers without a heavy KV cache
mechanism.

MCSD Yang et al. (2024b) features the new block called Multi-Channel Slope and Decay, which is made
up of two sections: The slope section can capture local features across short temporal spans, and the decay
section can capture global features across long temporal spans. The sections are fused through element-wise
operations. During inference, the process would be reformat into a recurrent representation, allowing both
spatial and temporal efficiency, minimizing the need for maintaining a large KV cache.

5.3.2 Hybrid Architecture

With these non-transformer architecture, some methods construct mixed models to alleviate KV cache
necessities while keeping some peculiarities and merits of the self-attention mechanism.

MixCon Xu & Lin (2024) introduces a new architecture called Conba. Inspired by control theory, the Conba
layer incorperates a feedback and adaptive control mechanism that can adapt to different sequence-modeling
tasks and requirements dynamically with good computational efficiency. Furthermore, MixCon integrates
the Mixture of Experts (MoE) module, which dynamically selects the most relevant experts to process
parts of the sequence. Combining the transformer layer, the Conba layer, and the MoE module, MixCon
constructs a hybrid model with good balance between attention effectiveness and computational efficiency
and significantly reduces the total size of the KV cache.

GoldFinch Goldstein et al. (2024) first introduces several new architectures, including the GOLD layer,
which combines the Llama and RWKV channel mixer with several improvements, and the enhanced Finch
model (RWKV-6) that has significantly reduced parameters without sacrificing efficiency and performance.
GoldFinch also proposes a novel mechanism called TokenCat to produce a highly compressed global key
cache using the output of Finch layers. GoldFinch builds a hybrid architecture that constructs the key cache
in the early layers and consumes the key cache to produce output without the traditional value cache in the
top layers, providing a compact and reusable cache pipeline with linear scaling.

RecurFormer Yan et al. (2024) argues that not all transformer heads need to participate in the self-attention
mechanism. The work recognizes that certain attention heads show recency-aware behavior which focus on
local and short-range dependencies, dissipate the computation resource but gives little contribution. After
identifying these heads, RecurFormer replaces them with the Mamba components, achieving straightforward
KV cache reduction.

5.3.3 Summary and Future Directions

By exploring non-transformer modules such as recurrent and hybrid designs, these methods have introduced
novel paradigms that balance performance with computational efficiency, and also alleviate the KV cache
issues in traditional transformer architectures. Future research should focus on several key areas. First,
improving the scalability of recurrent architectures, such as RWKV Peng et al. (2023) and Mamba Gu
& Dao (2024), remains critical. Although these methods reduce memory and computational costs, their
performance in capturing ultra-long-range dependencies lags behind transformers. Second, hybrid designs
such as MixCon Xu & Lin (2024) and GoldFinch Goldstein et al. (2024) highlight the potential of integrating
diverse modules, yet their complexity introduces challenges in training stability and interpretability. Third,

29

Under review as submission to TMLR

the overall generalization capabilities and robustness of non-transformer architectures, while efficient, need
require further exploration for diverse input modalities.

6 System-level Optimization

System-level Opti-
mization (Sec. 6)

Hardware-aware
Design (Sec. 6.3)

SSD-based
Design (Sec. 6.3.4)

FlexGen Sheng et al. (2023), In-
stInfer Pan et al. (2024)

Heterogeneous
Design (Sec. 6.3.3)

NEO Jiang et al. (2024c), Fast-
Decode He & Zhai (2024),
FlexInfer Xu et al. (2024c),
InfiniGen Lee et al. (2024),
Pensieve Yu & Li (2023),
FastServe Wu et al. (2024a),
PartKVRec Jiang et al. (2024b)

I/O-based
Design (Sec. 6.3.2)

FlashAttention Dao et al.
(2022), Bifurcated Atten-
tion Athiwaratkun et al.
(2024), PartKVRec Jiang et al.
(2024b), HCache Gao et al.
(2024b), Cake Jin et al. (2024),
FastSwitch Shen et al. (2024)

Single/Multi-GPU
Design (Sec. 6.3.1)

HydraGen Juravsky et al.
(2024), DeFT Yao et al. (2024b),
vLLM Kwon et al. (2023),
ORCA Yu et al. (2022), Dist-
Serve Zhong et al. (2024a), Multi-
Bin Batching Guldogan et al.
(2024), Tree Attention Shyam
et al. (2024)

Scheduling (Sec. 6.2)

Layer-specific and
Hierarchical Schedul-

ing (Sec. 6.2.3)

LayerKV Xiong et al. (2024),
CachedAttention Gao et al.
(2024a), ALISA Zhao et al.
(2024c), LAMPS Shahout et al.
(2024)

Preemptive and
Fairness-oriented

Scheduling (Sec. 6.2.2)

FastServe Wu et al. (2024a),
FastSwitch Shen et al. (2024)

Prefix-aware Schedul-
ing (Sec. 6.2.1)

BatchLLM Zheng et al. (2024b),
RadixAttention Zheng et al.
(2024a)

Memory
Management (Sec. 6.1)

Prefix-aware De-
sign (Sec. 6.1.2)

ChunkAttention Ye et al. (2024),
MemServe Hu et al. (2024)

Architectural De-
sign (Sec. 6.1.1)

vLLM Kwon et al. (2023),
vTensor Xu et al. (2024c),
LeanKV Zhang et al. (2024f)

Figure 6: Taxonomy of the System-level Optimization for KV Cache Management.

Recent system-level optimizations for KV cache in LLM inference can be broadly categorized into three main
directions: memory management (Sec. 6.1), scheduling strategies (Sec. 6.2), and hardware-aware designs
(Sec. 6.3). These complementary approaches collectively demonstrate the rich design space for system-level
optimizations in LLM inference, each addressing different aspects of the performance, efficiency, and resource
utilization challenges. The Taxonomy of the system-level optimization is in Fig. 6.

30

Under review as submission to TMLR

6.1 Memory Management

Recent advances in KV cache memory management for large language model (LLM) inference reveal three
distinct approaches aimed at enhancing memory efficiency. Architectural designs, exemplified by vLLM with
PagedAttention Kwon et al. (2023) and vTensor Xu et al. (2024c), adapt classical operating system principles
to create flexible, dynamic memory allocation systems that optimize the use of physical memory through
sophisticated mapping and virtual memory abstractions. Prefix-aware designs like ChunkAttention Ye et al.
(2024) and MemServe Hu et al. (2024) further refine this approach by organizing data structures to enable
efficient cache deduplication and sharing of common prefixes, thereby improving both memory utilization and
computational efficiency. Together, these innovations illustrate the potential for significant enhancements in
LLM serving via memory management.

6.1.1 Architectural Design

The first category focuses on architectural innovations in memory management, led by vLLM with Page-
dAttention Kwon et al. (2023), which adapts OS-inspired paging concepts by partitioning KV caches into
fixed-size blocks with non-contiguous storage. PagedAttention partitions KV caches into fixed-size blocks
that can be stored non-contiguously in physical memory, while vLLM Kwon et al. (2023) implements a
virtual memory-like system that manages these blocks through a sophisticated mapping mechanism. This
architecture separates logical and physical KV blocks, enabling dynamic memory allocation and flexible
block management through block tables that track mapping relationships and fill states. This memory man-
agement approach enables efficient memory utilization both within and across requests, demonstrating how
classical OS memory management principles can be effectively adapted for LLM inference optimization.

This approach is further enhanced by vTensor Xu et al. (2024c), which introduces a virtual memory ab-
straction that decouples computation from defragmentation through three key components: the vTensor
Scheduler which generates memory management policies based on meta information, the vTensor Operation
which translates these policies into CUDA VMM operations, and the vTensor Pool which maintains virtual
tensor mappings. VTS processes instructions and creates policies based on memory state tracking, while
VTO executes these policies through asynchronous GPU operations. VTP completes the cycle by managing
virtual tensor storage and updating meta information for subsequent memory operations.

LeanKV Zhang et al. (2024f) combines unified paging with heterogeneous quantization and dynamic sparsity
mechanisms. It implements Hetero-KV quantization to store keys and values at different precisions, comple-
mented by a per-head dynamic sparsity mechanism that adapts memory allocation based on token impor-
tance across different attention heads and requests. To efficiently execute these strategies, LeanKV Zhang
et al. (2024f) introduces an advanced on-GPU memory management system featuring three key components:
unified paging for flexible memory organization, a circular free page list for efficient coordination, and a
bidirectional page table for minimal metadata overhead.

6.1.2 Prefix-aware Design

Some latest works emphasize optimizing data organization structures through prefix-aware designs.
ChunkAttention Ye et al. (2024) restructures KV cache management by organizing chunks within a pre-
fix tree structure, enabling runtime detection and sharing of common prefixes. It breaks down traditional
monolithic KV cache tensors into smaller, manageable chunks organized within a prefix tree structure, en-
abling efficient runtime detection and sharing of common prefixes across multiple requests. This architectural
design brings two significant memory management benefits: efficient KV cache deduplication through prefix
tree-based organization, and improved data locality through a two-phase partition algorithm for self-attention
computation. By enabling dynamic identification and sharing of common prompt prefixes across multiple
requests, ChunkAttention Ye et al. (2024) optimizes both memory utilization and computational efficiency,
demonstrating how intelligent chunking and prefix-aware cache management can significantly enhance LLM
serving efficiency.

MemServe Hu et al. (2024) extends this concept to distributed settings with its MemPool system, which
orchestrates both CPU DRAM and GPU HBM resources across serving instances, managing active and

31

Under review as submission to TMLR

Table 10: Comparison of Memory Management Techniques for KV Cache Optimization.
Method Paged

Memory
Virtual

Memory
Dynamic
Sparsity

Prefix
Sharing

Distributed
Memory

vLLM
Kwon et al. (2023)

✓ ✓

vTensor
Xu et al. (2024c)

✓

LeanKV
Zhang et al. (2024f)

✓ ✓

ChunkAttention
Ye et al. (2024)

✓

MemServe
Hu et al. (2024)

✓ ✓

historical KV caches through a comprehensive set of distributed memory pool APIs. It presents a prompt
token-based indexing layer for historical KV cache retrieval, cross-instance data exchange mechanisms that
abstract away hardware heterogeneity, and a global scheduler implementing a prompt tree-based locality-
aware policy for enhanced cache reuse, collectively resulting in significant improvements in job completion
time and time-to-first-token performance.

These approaches often complement each other, suggesting potential benefits in combining multiple strate-
gies. For instance, LeanKV Zhang et al. (2024f)’s integration of compression with page-based management
and MemServe Hu et al. (2024)’s combination of distributed memory management with prefix-aware caching
demonstrate the effectiveness of hybrid approaches. The diversity of these solutions reflects both the com-
plexity of KV cache management and the rich opportunity space for continued innovation in optimizing
LLM inference systems. Tab.10 provides a comparison of various memory management techniques for KV
Cache, highlighting key features such as paged memory, virtual memory, dynamic sparsity, prefix sharing,
and distributed memory.

6.1.3 Summary and Future Directions

The exploration of memory management strategies for KV caches in large language model inference reveals
a promising landscape of innovations that enhance memory efficiency and overall system performance. Ar-
chitectural advancements, such as those seen in vLLM Kwon et al. (2023) and LeanKV Zhang et al. (2024f),
adapt traditional memory management principles for modern AI applications by incorporating paging and
virtual memory concepts for dynamic allocation. Prefix-aware designs like ChunkAttention Ye et al. (2024)
and MemServe Hu et al. (2024) optimize data organization, enabling the detection and sharing of common
prefixes, which reduces redundancy and speeds up inference.

Future work should advance memory management innovations through multiple synergistic directions: inves-
tigating adaptive memory hierarchies that dynamically adjust to workload patterns and resource constraints,
exploring novel compression techniques that preserve quick access while reducing memory footprint, develop-
ing intelligent prefetching mechanisms that anticipate and preload frequently accessed cache entries, research-
ing hardware-aware optimization strategies that leverage emerging memory technologies like computational
storage and processing-in-memory units, and designing distributed cache coherence protocols that efficiently
maintain consistency across multiple inference nodes. Additionally, the exploration of machine learning-based
approaches could enable predictive memory allocation that learns from historical access patterns, while the
investigation of specialized data structures could yield more efficient prefix detection and sharing mechanisms.
These advancements, combined with research into heterogeneous memory systems that intelligently coor-
dinate different memory types based on access patterns and performance requirements, would significantly
enhance the scalability and efficiency of LLM inference systems across diverse deployment scenarios.

32

Under review as submission to TMLR

6.2 Scheduling

Based on these scheduling-oriented works, we can categorize KV cache scheduling optimizations into three
main approaches: 1) prefix-aware scheduling strategies, represented by BatchLLM Zheng et al. (2024b)
and RadixAttention Zheng et al. (2024a); 2) preemptive and fairness-oriented scheduling, exemplified by
FastServe Wu et al. (2024a) and FastSwitch Shen et al. (2024); 3) layer-specific and hierarchical scheduling
approaches, demonstrated by LayerKV Xiong et al. (2024), CachedAttention Gao et al. (2024a), and AL-
ISA Zhao et al. (2024c). These approaches collectively address different aspects of scheduling optimization,
from memory efficiency to fairness and latency reduction, while specialized solutions like LAMPS Shahout
et al. (2024) extend these concepts to specific use cases such as API-augmented LLM requests, demonstrating
the rich design space in KV cache scheduling optimization.

Table 11: Comparison of Scheduling Approaches for KV Cache Optimization.
Method Prefix-aware Preemptive Fairness-oriented Layer-specific Hierarchical Dynamic

BatchLLM
Zheng et al. (2024b)

✓

RadixAttention
Zheng et al. (2024a)

✓ ✓

FastServe
Wu et al. (2024a)

✓ ✓

FastSwitch
Shen et al. (2024)

✓ ✓

LayerKV
Xiong et al. (2024)

✓

CachedAttention
Gao et al. (2024a)

✓ ✓

ALISA
Zhao et al. (2024c)

✓ ✓

LAMPS
Shahout et al. (2024)

✓ ✓

6.2.1 Prefix-aware Scheduling

Unlike traditional LRU-based cache management systems where shared KV contexts might be prematurely
evicted or unnecessarily extended in memory, BatchLLM Zheng et al. (2024b) implements explicit global
prefix identification and coordinated scheduling of requests sharing common KV cache content. It schedules
requests at the granularity of prefix-sharing groups, ensuring optimal KV cache reuse while minimizing cache
lifetime - requests with identical prefixes are deliberately scheduled together to maximize KV cache sharing
efficiency. This scheduling approach is complemented by a dynamic programming algorithm that optimizes
first-level prefix patterns, enabling more efficient KV cache management and reducing scheduling overhead.

RadixAttention Zheng et al. (2024a) builds around a radix tree structure, replacing traditional FCFS schedul-
ing with an intelligent cache-aware approach that prioritizes requests based on matched prefix lengths. It
implements dynamic memory management where cached tokens and running requests share the same mem-
ory pool, controlled by an LRU eviction policy that strategically removes leaf nodes while preserving valuable
ancestor prefixes. This is complemented by a reference counting mechanism that prevents eviction of ac-
tively used cache entries during continuous batching while enabling efficient memory reclamation when nodes
become unused.

6.2.2 Preemptive and Fairness-oriented scheduling

FastServe Wu et al. (2024a) implements a proactive KV cache management strategy that coordinates cache
movement between GPU and host memory, overlapping data transmission with computation to minimize
latency impact. This is integrated with a skip-join Multi-Level Feedback Queue scheduler that makes KV

33

Under review as submission to TMLR

cache scheduling decisions based on input length information, allowing jobs to enter appropriate priority
queues directly while avoiding unnecessary demotions through higher-priority queues. By combining token-
level preemption with sophisticated KV cache management and intelligent queue placement, FastServe Wu
et al. (2024a) achieves significant performance improvements over traditional run-to-completion systems like
vLLM Kwon et al. (2023).

FastSwitch Shen et al. (2024) introduces a fairness-oriented KV cache scheduling system that addresses the
overhead challenges of preemptive scheduling in LLM serving. There are three key mechanisms: enhancing
I/O utilization through intelligent cache movement scheduling, minimizing GPU idle time during context
switches, and eliminating redundant I/O operations in multi-turn conversations. Unlike traditional block-
based KV cache memory policies that prioritize memory efficiency at the cost of fragmentation and gran-
ularity limitations, FastSwitch Shen et al. (2024) implements a balanced approach that maintains efficient
memory usage while facilitating smoother context switching. This integrated scheduling approach enables
dynamic priority adjustments for fairness while minimizing the performance impact of context switches.

6.2.3 Layer-specific and Hierarchical Scheduling

LayerKV Xiong et al. (2024) introduces a novel layer-wise KV cache scheduling approach to address the
growing TTFT (Time to First Token) latency challenges in large-context LLM serving. The contribution
lies in its fine-grained, layer-specific KV cache block allocation and management strategy, which departs from
traditional monolithic cache management approaches. By implementing layer-wise KV block scheduling and
offloading mechanisms, LayerKV Xiong et al. (2024) enables more efficient memory utilization and reduces
queuing delays that typically occur when large context windows compete for limited GPU KV cache blocks.
It is complemented by an SLO-aware scheduler that optimizes cache allocation decisions based on service
level objectives, allowing for dynamic management of memory resources across model layers.

CachedAttention Gao et al. (2024a) introduces a hierarchical scheduling approach consisting of three-tier
strategies: layer-wise pre-loading coordinates KV cache movement across storage hierarchies using scheduler-
aware fetching and eviction policies, asynchronous saving overlaps I/O operations with GPU computation,
and intelligent cache placement decisions are made based on scheduler hints to ensure frequently accessed
KV caches reside in faster memory tiers. It also presents a novel positional encoding decoupling mechanism
that prevents KV cache invalidation during context window overflow through effective truncation strategies.

ALISA Zhao et al. (2024c) introduces a dual-level KV cache scheduling framework that combines algorithmic
sparsity with system-level optimization. At the algorithm level, the Sparse Window Attention mechanism
identifies and prioritizes the most important tokens for attention computation, creating a mixture of global
dynamic and local static sparse patterns that significantly reduces KV cache memory requirements. At the
system-level, its three-phase token-level dynamic scheduler that manages KV tensor allocation and optimizes
the trade-off between caching and recomputation. The scheduler makes dynamic decisions about which tokens
to cache in GPU memory versus recompute, based on their importance and system resource constraints.

LAMPS Shahout et al. (2024) implements a predictive scheduling mechanism that estimates both pre-API
outputs and optimal memory handling strategies during API calls, choosing between preserving, discarding,
or swapping KV cache content based on predicted memory waste.

6.2.4 Summary and Future Directions

Tab.11 compares scheduling approaches for KV cache optimization based on their support for prefix-
awareness, preemptive scheduling, fairness, layer-specific optimizations, hierarchical structures, and dynamic
adaptability. The advancements in scheduling strategies for KV cache management in large language model
inference highlight a multifaceted approach to optimizing performance, memory efficiency, and fairness. By
categorizing these strategies into prefix-aware, preemptive and fairness-oriented, and layer-specific scheduling,
we see diverse methodologies addressing different challenges. For instance, prefix-aware strategies like Batch-
LLM Zheng et al. (2024b) and RadixAttention Zheng et al. (2024a) enhance cache reuse by intelligently group-
ing requests based on shared prefixes, minimizing cache lifetime and reducing overhead. Meanwhile, preemp-
tive approaches such as FastServe Wu et al. (2024a) and FastSwitch Shen et al. (2024) implement proactive
management techniques that optimize cache movement and scheduling, significantly improving latency and

34

Under review as submission to TMLR

ensuring fairness during context switching. Layer-specific scheduling methods like LayerKV Xiong et al.
(2024), CachedAttention Gao et al. (2024a), and ALISA Zhao et al. (2024c) further refine cache allocation
by implementing fine-grained management strategies tailored to the unique demands of different model layers.

Future work should advance these KV cache scheduling innovations through several interlinked dimensions:
developing adaptive hybrid systems that dynamically select optimal scheduling strategies based on real-time
workload characteristics, exploring predictive models that anticipate user request patterns to proactively
optimize cache allocation, investigating automated parameter tuning mechanisms that adjust scheduling
policies across different deployment scenarios, designing context-aware architectures that intelligently balance
prefix sharing with fairness requirements, and researching novel cache coherence protocols that efficiently
handle distributed inference scenarios. Additionally, the integration of reinforcement learning approaches
could enable self-optimizing schedulers that learn from historical usage patterns, while the exploration of
hardware-software co-design could yield specialized accelerators that directly support efficient KV cache
management operations. These advancements would collectively enhance the robustness, efficiency, and
adaptability of LLM inference systems across diverse operational conditions and deployment scales. Finally,
considering LLM serving Yao et al. (2024a), different scheduling and sharing for multiple users and queries
may lead to potential privacy leaks. Therefore, privacy protection techniques for LLM serving in multi-user
scenarios, such as differential privacy Zhao & Chen (2022); Dong & Yi (2021); Dong et al. (2023a), are worth
further investigation.

Table 12: Comparison of Hardware-aware Design Approaches for KV Cache Optimization.
Method Single/Multi-GPU I/O-aware Heterogeneous SSD-based

Bifurcated Attention Athiwaratkun et al. (2024) ✓

Cake Jin et al. (2024) ✓

DeFT Yao et al. (2024b) ✓

DistServe Zhong et al. (2024a) ✓

FastDecode He & Zhai (2024) ✓

FastSwitch Shen et al. (2024) ✓

FlexGen Sheng et al. (2023) ✓

FlexInfer Xu et al. (2024c) ✓

FlashAttention Dao et al. (2022) ✓ ✓

HCache Gao et al. (2024b) ✓

HydraGen Juravsky et al. (2024) ✓

InfiniGen Lee et al. (2024) ✓

InstInfer Pan et al. (2024)
Multi-Bin Batching Guldogan et al. (2024) ✓

NEO Jiang et al. (2024c) ✓

ORCA Yu et al. (2022) ✓

PartKVRec Jiang et al. (2024b) ✓

Pensieve Yu & Li (2023) ✓

Tree Attention Shyam et al. (2024) ✓

vLLM Kwon et al. (2023) ✓

6.3 Hardware-aware Design

Recent hardware-aware optimizations for KV cache management span several key directions based on differ-
ent hardware architectures and constraints. Single/Multi-GPU designs focus on optimizing memory access
patterns, GPU kernel designs for efficient attention computation, and parallel processing with load bal-
ancing. IO-based designs optimize data movement across memory hierarchies through asynchronous I/O
and intelligent prefetching mechanisms. Heterogeneous designs orchestrate computation and memory allo-
cation across CPU-GPU tiers. SSD-based solutions have evolved from basic offloading approaches to more
sophisticated designs, with InstInfer leveraging computational storage drives (CSDs) to perform in-storage

35

Under review as submission to TMLR

attention computation, effectively bypassing PCIe bandwidth limitations. These approaches demonstrate
how hardware-aware designs can significantly improve LLM inference efficiency by carefully considering and
exploiting the characteristics of different hardware components and their interconnections.

6.3.1 Single/Multi-GPU Design

Based on these works focusing on GPU-oriented designs, we can categorize the approaches into several key
strategies for KV cache optimization. First, shared prefix optimization approaches like HydraGen Juravsky
et al. (2024) and DeFT Yao et al. (2024b) focus on efficient GPU memory utilization through batched prefix
computations and tree-structured attention patterns. Rather than maintaining separate KV caches for each
sequence with identical prefixes, HydraGen Juravsky et al. (2024) decomposes attention computation to lever-
age a single shared KV cache for common prefixes across multiple requests. It enables efficient GPU memory
utilization through two mechanisms: batched prefix KV cache access across sequences and separate handling
of unique suffix KV caches. For DeFT Yao et al. (2024b), its core contributions are twofold: KV-Guided
Grouping, which optimizes GPU memory access patterns by intelligently managing shared prefix KV caches
to minimize redundant global-to-shared memory transfers, and Flattened Tree KV Splitting, which ensures
balanced workload distribution across GPU compute units while minimizing computational redundancy.

Second, distributed processing frameworks exemplified by vLLM Kwon et al. (2023) and ORCA Yu et al.
(2022) optimize multi-GPU scenarios through sophisticated memory management and synchronization mech-
anisms. vLLM Kwon et al. (2023) also implements a KV cache manager that coordinates memory alloca-
tion across distributed GPU workers in model-parallel deployments, where each GPU handles a subset of
attention heads while sharing the same logical-to-physical block mapping. This GPU-aware design enables
efficient memory utilization through near-zero fragmentation and flexible KV cache sharing, while supporting
Megatron-LM style tensor parallelism where GPUs execute in SPMD fashion with synchronized block-wise
matrix operations. The scheduler broadcasts control messages containing input tokens and block tables
to GPU workers, allowing them to independently process their assigned attention heads while maintaining
memory coherence through all-reduce operations, effectively eliminating redundant memory management
synchronization overhead and maximizing GPU utilization across distributed resources.

ORCA Yu et al. (2022) distributes model layers across GPUs using both intra-layer and inter-layer par-
allelism, where each worker process manages multiple GPU-controlling threads and coordinates KV cache
access through an Attention KV manager. ORCA’s GPU-aware design minimizes CPU-GPU synchroniza-
tion overhead by separating control message communication from tensor data transfer (via NCCL), allowing
each GPU thread to efficiently access KV cache memory using request IDs and token indices.

Third, phase-aware designs like DistServe Zhong et al. (2024a) separate prefill and decoding phases across
GPU resources to optimize their distinct memory access patterns. Novel batching strategies are represented
by Multi-Bin Batching Guldogan et al. (2024), which focuses on length-aware request grouping for improved
GPU utilization, while advanced parallel computation frameworks like Tree Attention Shyam et al. (2024)
introduce sophisticated reduction algorithms for efficient attention computation across multiple GPUs. Dist-
Serve Zhong et al. (2024a) recognizes that prefill and decoding phases have distinct KV cache utilization
characteristics and memory access patterns: prefill requires intensive computation with growing KV cache
sizes for processing input tokens, while decoding maintains a fixed KV cache size for generating output to-
kens. By physically separating these phases onto different GPUs, DistServe enables optimized GPU memory
management and KV cache access patterns specific to each phase, eliminating interference between prefill’s
bursty memory access patterns and decoding’s steady-state KV cache utilization. Multi-Bin Batching Gul-
dogan et al. (2024) introduces a length-aware batching strategy helps minimize GPU idle time and memory
fragmentation that typically occurs when processing requests of varying lengths in the same batch, as it
ensures that the KV cache memory allocated for each batch is utilized more uniformly across all requests.
Tree Attention Shyam et al. (2024) implements a tree-based reduction algorithm that fundamentally changes
how attention values are computed and aggregated across GPUs, enabling more efficient handling of KV
cache data through partial reductions that significantly reduce memory bandwidth requirements and peak
memory usage.

36

Under review as submission to TMLR

These approaches can collectively demonstrate how hardware-aware designs can significantly improve the
LLM efficiency by carefully considering GPU architecture characteristics and memory hierarchy constraints.

6.3.2 I/O-based Design

Recent I/O-focused optimizations for KV cache management span several key dimensions, targeting differ-
ent levels of the memory hierarchy. At the GPU level, approaches like FlashAttention Dao et al. (2022)
and Bifurcated Attention Athiwaratkun et al. (2024) optimize data movement between HBM and SRAM
through sophisticated tiling strategies and split attention computations, while CPU-GPU data movement
optimizations are addressed by systems like PartKVRec Jiang et al. (2024b), which tackles PCIe bandwidth
bottlenecks through hybrid recomputation and transfer strategies, and HCache Gao et al. (2024b), which
optimizes intermediate activation storage and restoration.

FlashAttention Dao et al. (2022) employs a tiling strategy that carefully manages KV cache access pat-
terns, reducing redundant memory operations by keeping frequently accessed portions of the KV cache in
fast SRAM while systematically fetching and evicting data blocks to minimize HBM accesses. Bifurcated
Attention Athiwaratkun et al. (2024) presents an I/O-aware approach to optimize KV cache access patterns
during shared-context batch decoding by strategically splitting attention computations into two distinct
GEMM operations. It specifically targets the memory bandwidth bottleneck in high-batch scenarios with
long contexts by minimizing repeated KV cache accesses, maintaining the same computational FLOPs while
drastically reducing memory I/O operations. For PartKVRec Jiang et al. (2024b), its key innovation lies
in its hybrid strategy of partial KV cache recomputation on the GPU while simultaneously transferring
the remaining cache data from CPU memory, effectively hiding PCIe transfer latency. The implementation
employs a sophisticated I/O-aware scheduling system that analyzes input characteristics and hardware capa-
bilities to determine the optimal balance between recomputation and data transfer, dynamically managing
KV cache movement to maximize PCIe bandwidth utilization while minimizing GPU idle time. HCache Gao
et al. (2024b) strategically stores and restores intermediate activations instead of complete KV cache states,
implementing a bubble-free restoration scheduler that carefully balances computation and I/O operations
to maximize bandwidth utilization. A key innovation is its chunk-based storage manager that addresses the
I/O pattern mismatch between saving (layer-before-token) and restoration (token-before-layer) operations,
optimizing data layout and access patterns to reduce I/O overhead. Cake Jin et al. (2024) addresses the
fundamental I/O bottleneck in loading cached KV states from disk to GPU memory. It introduces a bidi-
rectional parallelized strategy that simultaneously leverages both computational and I/O resources. This
hybrid approach dynamically balances between loading cached KV states from storage and computing them
on GPUs, adapting automatically to varying system conditions without manual parameter tuning.

Context management optimizations are exemplified by FastSwitch Shen et al. (2024), which implements effi-
cient context switching mechanisms for multi-user scenarios through granular memory management policies.
FastSwitch Shen et al. (2024) addresses I/O inefficiencies in traditional block-based KV cache approaches
by implementing a more granular and continuous memory management policy that minimizes I/O overhead
during preemption and context switching.

These approaches demonstrate how careful consideration of I/O patterns and memory hierarchy charac-
teristics can significantly improve LLM inference efficiency by minimizing data movement and maximizing
bandwidth utilization across different storage tiers.

6.3.3 Heterogeneous Design

Recent heterogeneous computing approaches for KV Cache demonstrate diverse strategies for optimizing
CPU-GPU collaboration. Systems like NEO Jiang et al. (2024c) and FastDecode He & Zhai (2024) implement
strategic workload distribution through CPU offloading of attention computations, while FlexInfer Xu et al.
(2024c) introduces virtual memory abstractions for optimal resource coordination.

NEO Jiang et al. (2024c) advances heterogeneous computing for LLM inference by implementing strategic
CPU offloading of attention computations and KV cache states. Through asymmetric GPU-CPU pipelining
and load-aware scheduling, it optimally balances workloads across both computing platforms, enabling larger
GPU batch sizes without latency penalties. For FastDecode He & Zhai (2024), its key contribution lies in

37

Under review as submission to TMLR

its strategic offloading of memory-bound KV cache operations to distributed CPU resources, leveraging the
aggregate memory capacity and computing power of multiple CPU nodes rather than treating CPUs as
mere storage devices. By utilizing CPUs for KV cache computations and storage while keeping compute-
intensive operations on GPUs, it creates an efficient pipeline that maximizes resource utilization across the
heterogeneous infrastructure, enabling larger batch sizes and higher throughput. FlexInfer Xu et al. (2024c)
orchestrates CPU-GPU resource utilization for LLM inference by introducing the virtual memory-based
abstraction vTensor.

Advanced caching and prefetching mechanisms are exemplified by InfiniGen Lee et al. (2024), which employs
speculative prefetching for KV cache entries, and Pensieve Yu & Li (2023), which implements multi-tier
caching for conversation states. For InfiniGen Lee et al. (2024), its key innovation lies in its prediction
mechanism that operates across the heterogeneous architecture, using partial computation of attention in-
puts and modified query-key weights to identify and prefetch only the most relevant KV cache entries from
CPU memory to GPU. Pensieve Yu & Li (2023) introduces a heterogeneous computing architecture specifi-
cally designed for multi-turn conversation LLM serving by implementing a sophisticated multi-tier caching
strategy across GPU and CPU resources. This stateful approach manages KV cache data across the het-
erogeneous memory hierarchy, maintaining conversation history states across multiple hardware tiers rather
than recomputing them for each interaction.

Sophisticated scheduling and preemption strategies are demonstrated by FastServe Wu et al. (2024a), which
focuses on token-level preemption and proactive memory management, and PartKVRec Jiang et al. (2024b),
which balances data transfer and recomputation through dynamic scheduling. For FastServe Wu et al.
(2024a), its token-level preemption capability is supported by a sophisticated heterogeneous memory man-
agement system that proactively coordinates KV cache data movement between GPU and host memory. It
implements a skip-join Multi-Level Feedback Queue scheduler that manages computational resources across
the CPU-GPU boundary, optimizing both computation scheduling and data movement. PartKVRec Jiang
et al. (2024b) employs a scheduler that dynamically optimizes the distribution of tasks across the heteroge-
neous hardware platform, using a profiler to analyze both hardware capabilities and workload characteristics.

These approaches collectively showcase how heterogeneous architectures can be effectively leveraged to over-
come single-device limitations while maintaining efficient resource utilization and minimizing communication
overhead between CPU and GPU resources.

6.3.4 Solid-state Disk (SSD)-based Design

Recent SSD-based approaches for KV cache management demonstrate an evolution in storage utilization
strategies, from traditional extension of the memory hierarchy to computational storage innovations. Flex-
Gen Sheng et al. (2023) introduces an SSD-based approach to KV cache management that extends the
memory hierarchy across GPU, CPU memory, and disk storage, optimizing high-throughput LLM inference
on resource-constrained hardware through intelligent tensor storage and access pattern optimization deter-
mined by linear programming. The system’s key innovations include coordinated data placement across all
three storage tiers, optimized access patterns to minimize SSD latency impact, aggressive 4-bit compression
for both model weights and attention cache, and efficient utilization of SSD storage as a memory hierarchy
extension for KV cache management. InstInfer Pan et al. (2024) introduces a more revolutionary approach
by leveraging computational storage drives (CSDs) to perform attention computations directly within the
storage layer, transforming SSDs from passive storage devices into active computational units and utilizing
the high internal bandwidth of flash memory channels to bypass traditional PCIe bandwidth limitations.

These approaches demonstrate how storage devices can be effectively integrated into LLM inference systems,
either as memory hierarchy extensions or as computational resources, to enable efficient processing of large
models and long sequences in resource-constrained environments. Tab.12 compares hardware-aware design
approaches for KV cache optimization across four key features: Single/Multi-GPU support, I/O-awareness,
heterogeneous computing, and SSD-based design.

38

Under review as submission to TMLR

6.3.5 Summary and Future Directions

Recent advancements in hardware-aware designs for KV cache management emphasize optimizing perfor-
mance based on specific hardware architectures and constraints, demonstrating significant enhancements in
large language model inference efficiency. Approaches like HydraGen Juravsky et al. (2024) and vLLM Kwon
et al. (2023) in single and multi-GPU designs focus on efficient memory access patterns and load balancing,
while I/O-based strategies such as FlashAttention Dao et al. (2022) and PartKVRec Jiang et al. (2024b)
tackle data movement bottlenecks through intelligent prefetching and scheduling mechanisms. Additionally,
heterogeneous designs exemplified by NEO Jiang et al. (2024c) and FastDecode He & Zhai (2024) effectively
leverage CPU-GPU collaboration to maximize resource utilization.

Future work should advance this research through multiple interconnected directions: exploring novel archi-
tectural designs that combine specialized hardware accelerators with optimized memory hierarchies, investi-
gating hybrid systems that leverage computational storage drives and processing-in-memory capabilities, de-
veloping self-adaptive algorithms that dynamically optimize resource allocation based on workload patterns,
researching advanced compression techniques that maintain model fidelity while reducing memory require-
ments, and designing intelligent scheduling mechanisms that efficiently coordinate heterogeneous computing
resources including CPUs, GPUs, and custom accelerators. These improvements, working in concert, would
enhance both the performance and scalability of LLM inference systems across diverse deployment scenar-
ios, from edge devices to data centers, while maintaining adaptability to emerging hardware innovations and
varying computational demands.

7 Text and Multi-modal Datasets

In this section, we introduce the text and multi-modal datasets used to evaluate LLM efficiency.

7.1 Text Dataset

We collect a lot of long-context datasets from state-of-the-art benchmark frameworks and various papers,
including L-EvalAn et al. (2023), M4LEKwan et al. (2023), BAMBOODong et al. (2023b), LongBenchBai
et al. (2023), LRATay et al. (2020), SCROLLSShaham et al. (2022), ZEROSCROLLSShaham et al. (2023),
LooGLELi et al. (2023a), LongEvalLi* et al. (2023), and StreamingEvalXiao et al. (2024c). Specifically,
we categorize these datasets into different tasks, including question answering, text summarization, text
reasoning, text retrieval, and text generation.

7.1.1 Question Answering (QA) Task

Dataset for this task usually consist of question-answer pairs, and documents that contains the answer to the
question. For a model to run such task, documents and questions are usually used as the model input, while
the output can differ greatly. Some datasets’ answers are closed-ended, meaning that the model should only
output its answer in designated form, typically multiple choice answers, while the open-ended answers take a
more free form. According to the number of documents involved in a question-answer pair, we can categorize
QA task datasets into single-doc QA(QA-SG) and multiple-doc QA(QA-MT). The detailed statistics of the
datasets for question answering are provided in Table 13.

• Qasper Dasigi et al. (2021) consists of 5049 questions based on 1585 papers on NLP. Question is from
NLP practitioners that only have read the abstract and title of a paper, then another set of practitioners
answer these questions by reading through the whole paper. The supporting evidences is provided cor-
respondingly. Each instance of the dataset consists of a question, an answer, corresponding paper and
supporting evidence. Instances built by LongBench Bai et al. (2023) doesn’t require evidence.

• HotpotQA Yang et al. (2018) is a typical for a multi-doc QA dataset. It’s built based on Wikipedia,
and each instance consists of multiple documents, a question, an answer and supporting facts. Supporting
facts is a set of paragraph indexes, annotated manually.

39

Under review as submission to TMLR

Table 13: Text question answering (QA) dataset. In the Avg. Len: average length, Tok: tokens; W:
words. In the Instances column, Doc: documents, Q: questions, Inst: instructions. Particularly, AltQA,
PaperQA and MeetingQA have two datasets with different length levels, and is separated with /.
Particularly, for datasets from L-Eval, the GPT-4 metric means the win-rate against Turbo-16K, judged by
GPT-4. ∆L is the length difference between answer length and ground truth. For NarrativeQA, MRR:
Mean Reciprocal Rank .

Task Name Source Instances Avg Len Metric Lang.

QA AltQA
Pal et al. (2023)

Wikipedia 200/200 3243/13,084 Tok Acc EN

QA PaperQA(BAMBOO)
Dong et al. (2023b)

Paper 100/100 3101/6838 Tok Acc EN

QA MeetingQA(BAMBOO)
Dong et al. (2023b)

Meeting 100/100 2738/9838 Tok Acc EN

QA TriviaQA
Joshi et al. (2017)

Web Question, Wiki 95,956 Q, 662,659 Doc 17,370 W EM, F1 EN

QA TOEFL(L-Eval)
An et al. (2023)

TOFEL-QA
Tseng et al. (2016)

15 Doc, 269 Inst 3907 Tok Rouge-L, GPT-4, ∆L EN

QA Coursera(L-Eval)
An et al. (2023)

Video Subtitles 15 Doc, 172 Inst 9075 Tok Rouge-L, GPT-4, ∆L EN

QA SFiction(L-Eval)
An et al. (2023)

SFGram
Schaetti (2018), fiction

7 Doc, 64 Inst 16,381 Tok Rouge-L, GPT-4, ∆L EN

QA LongFQA(L-Eval)
An et al. (2023)

Financial Transcripts 6 Doc, 52 Inst 6032 Tok Rouge-L, GPT-4, ∆L EN

QA CUAD(L-Eval)
An et al. (2023)

CUAD
Hendrycks et al. (2021)

20 Doc, 130 Inst 30,966 Tok Rouge-L, GPT-4, ∆L EN

QA DuoRC
Kwan et al. (2023)

Movie - 3572 W Acc EN

QA NQ
Kwiatkowski et al. (2019)

Wiki 307,373 9005 W Rouge EN

QA-SG NarrativeQA
s Koˇ ciský et al. (2018)

Story 1572 Doc 62,528 Tok BLEU, METEOR,
Rouge-L, MRR

EN

QA-SG NarrativeQA(LongBench)
Bai et al. (2023)

Story 200 18,409 W F1 EN

QA-SG Qasper
Dasigi et al. (2021)

Paper 1585 5001 W F1 EN

QA-SG Qasper(LongBench)
Bai et al. (2023)

Paper 200 3619 W F1 EN

QA-SG MultifieldQA-en
Bai et al. (2023)

Paper, Legal,
Gov, Google

200 4459 W F1 EN

QA-SG MultifieldQA-zh
Yang et al. (2018)

Paper, Legal,
Gov, Google

200 6701 W F1 ZH

QA-SG QuALITY
Pang et al. (2021)

Story, magazine 381 Doc, 6737 Q 4203 W EM EN

QA-MT HotpotQA
Yang et al. (2018)

Wiki 112,779 1138 W EM, F1 EN

QA-MT HotpotQA(LongBench)
Bai et al. (2023)

Wiki 200 9151 W F1 EN

QA-MT 2WikiMultihopQA
Ho et al. (2020)

Wiki 192,606 Q 639 W EM, F1 EN

QA-MT MuSiQue
Trivedi et al. (2021)

Wiki 24,814 1827 W F1 EN

QA-MT DuReader
He et al. (2017)

Baidu 200,000 Q, 1,000,000 Doc 396 W BLEU, Rouge-L ZH, EN

QA+RET NewsQA(M4LE)
Kwan et al. (2023)

News - 3679 W Acc EN

QA+RET C3(M4LE)
Kwan et al. (2023)

Textbook - 3797 W Acc ZH

• AltQA Pal et al. (2023) is based on google’s NQ Kwiatkowski et al. (2019) dataset. The answer are all
numerical. The original document is "altered" so that each occurrences of the numerical answer is different
from the original document, so as to avoid data contamination from pretraining. This dataset is also used
in BAMBOO Dong et al. (2023b) benchmark.

40

https://github.com/abacusai/long-context
https://github.com/RUCAIBox/BAMBOO/tree/main/datasets
https://github.com/RUCAIBox/BAMBOO/tree/main/datasets
https://huggingface.co/datasets/mandarjoshi/trivia_qa
https://github.com/OpenLMLab/LEval
https://github.com/OpenLMLab/LEval
https://github.com/OpenLMLab/LEval
https://github.com/OpenLMLab/LEval
https://github.com/OpenLMLab/LEval
https://github.com/KwanWaiChung/M4LE
https://ai.google.com/research/NaturalQuestions/download
https://github.com/google-deepmind/narrativeqa
https://huggingface.co/datasets/THUDM/LongBench
https://huggingface.co/datasets/allenai/qasper
https://huggingface.co/datasets/THUDM/LongBench
https://huggingface.co/datasets/THUDM/LongBench
https://huggingface.co/datasets/THUDM/LongBench
https://github.com/nyu-mll/quality
https://huggingface.co/datasets/hotpotqa/hotpot_qa
https://huggingface.co/datasets/THUDM/LongBench
https://github.com/Alab-NII/2wikimultihop
https://github.com/stonybrooknlp/musique
https://github.com/baidu/DuReader
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE

Under review as submission to TMLR

Table 14: Text Dataset-Summarization. In the Avg. Len: average length, Tok: tokens; W: words. In the
Instances column, Doc: documents, Q: questions, Inst: instructions. Particularly, SPACE has the concept
of ’Entity’, and R/Ent stands for reviews per entity. Sum stands for summary. In the Metric column, EM:
Exact Match. PM: Partial Match. Acc: Accuracy. For MultiNews, Rouge-SU skip bigrams when having
a distance larger than 4 words. Particularly, LooGLE utilizes GPT-4 for its QA and summarization task,
using it for answer’s semantic judgement.

Task Name Source Instances Avg Len Metric Lang.

SUM CNN/Dailymail
Nallapati et al. (2016) News 300,000 766 W Rouge-1/2/L EN

SUM XSum
Narayan et al. (2018) News 400,000 431 W Rouge-1/2/L EN

SUM QMSum
Zhong et al. (2021) Meeting 232 Meets, 1808 Q 9070 W Rouge-1/2/L EN

SUM MultiNews
Fabbri et al. (2019) News 51,216 5866 W Rouge-1/2/SU EN

SUM-QB+
Reasoning+

QA

LooGLE
Li et al. (2023a)

Papers, Wiki,
Movie, TV 776 Doc, 6448 Q 19,367 W

24,005 Tok

BLEU, Rouge, METEOR,
BERT, GPT4,

EM, PM
EN, ZH

SUM GovReport
Huang et al. (2021) Gov 19,466 9409.4 W Rouge-1/2/L EN

SUM VCSUM
Wu et al. (2023a) Meeting 239 14,107 Tok F1, Gold Rouge-1 ZH

SUM SummScreenFD
Chen et al. (2021b) TV 269,000 6613 Tok Rouge EN

SUM BigPatent
Sharma et al. (2019) Patent 1,341,362 3573 W Rouge-1/2/L EN

SUM SPACE
Angelidis et al. (2021) Review

50 Entities,
1,140,000 Reviews,

100R/Ent,
1050 Sum

15,532 W Rouge-1/2/L EN

SUM SQuALITY
Wang et al. (2022a) Story 625 5200 W

Rouge-1/2/L,
METEOR,

BERT
EN

SUM+RET CNNNews(M4LE)
Kwan et al. (2023) News - 3754 W Rouge-L EN

SUM+RET CEPSUM(M4LE)
Kwan et al. (2023) E-Commerce - 4003 W Rouge-L ZH

SUM+RET LCSTS(M4LE)
Kwan et al. (2023) News - 4102 W Rouge-L ZH

SUM+RET NCLS(M4LE)
Kwan et al. (2023) NCLS Zhu et al. (2019) - 3470 W Rouge-L EN, ZH

SUM+RET WikiHow
Kwan et al. (2023) Wiki - 3514 W Rouge-L EN

SUM+RET News2016
Kwan et al. (2023) News - 3785 W Rouge-L ZH

SUM Pubmed(M4LE)
Kwan et al. (2023) Medical 1267 3678 W Rouge-L EN

SUM BookSum(M4LE)
Kwan et al. (2023) Book - 2643 W Rouge-L EN

SUM CNewsum(M4LE)
Kwan et al. (2023) News 690 1883 W Rouge-L ZH

SUM CLTS+(M4LE)
Kwan et al. (2023) News - 3158 W Rouge-L ZH

SUM Arxiv(M4LE)
Kwan et al. (2023) Paper 1550 3748 W Rouge-L EN

41

https://huggingface.co/datasets/ccdv/cnn_dailymail
https://huggingface.co/datasets/EdinburghNLP/xsum
https://github.com/Yale-LILY/QMSum
https://github.com/Alex-Fabbri/Multi-News
https://github.com/bigai-nlco/LooGLE
https://huggingface.co/datasets/ccdv/govreport-summarization
https://github.com/hahahawu/VCSum
https://github.com/mingdachen/SummScreen
https://evasharma.github.io/bigpatent/
https://github.com/stangelid/qt
https://github.com/nyu-mll/SQuALITY
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE

Under review as submission to TMLR

• PaperQA and MeetingQA from BAMBOO Dong et al. (2023b) benchmark are question answering tasks
in the form of multiple-choice. Each instance of the two datasets consists of question , evidence, answer
and corresponding content.

• NarrativeQA s Koˇ ciský et al. (2018) uses complex narratives that are self-contained as input documents.
Both books and movie scripts are used. For question construction, annotators are only given a story sum-
mary, and are asked to write questions based on it. For each story(1572 stories in total), about 30 question-
answer pairs are constructed from each summary-story pair. Notably, because of the consistency in story
context, the task can be simplified to selecting a correct answer from all answers that relates to the story.

• MultifieldQA Bai et al. (2023) is an original dataset from Longbench. Its contents covers scientific
papers, legal documents, government reports and google results. The dataset has both Chinese and
English version, and each instance consists of context built on documents, and a question-answer pair.

• 2WikiMultihopQA Ho et al. (2020) is a multi-document QA dataset built on Wikipedia and Wikidata.
WikiData is a Knowledge Graph database, from which the author was able to extract the (subject entity,
property, object entity) triple that corresponds to a Wikipidia document. These triples are used as
evidences in each QA pair, as a way for model to show its inference process. The dataset consists of
192,606 questions in total.

• Musique Trivedi et al. (2021) is also a multi-document dataset(or multi-hop dataset, as the paper
refers to). Its data is extracted from existing single-hop QA datasets. These single-hop QAs are then
composed into multi-hop QA pairs. In addition, Musique add some unanswerable QA pairs in order to
further test model’s ability. There are 24,814 answerable questions in Musique, and each answerable
question corresponds to an unanswerable question.

• DuReader He et al. (2017) is a multi-document QA dataset, whose data is based on Baidu search results.
It consists of 200,000 questions, 1,000,000 documents and 420,000 answers. Each instance contains a
question, multiple possible answers(also possible to be empty), and multiple documents.

• TriviaQA Joshi et al. (2017) is a multi-document reading comprehension QA dataset. All QA pairs are
from 14 trivia websites, written by trivia enthusiasts. For each QA pair, 6 supporting documents(evidence)
are provided, collected from Bing search API as well as Wikipedia. The total number of QA pairs is
95,956, with a total of 662,659 supporting documents, the average length of each document is 2895 words.

• TOEFL(L-Eval) An et al. (2023) collect lectures from the TOEFL Practice Online as context . Each
instance consists of a long input of lectures, multiple instructions(questions) and corresponding answers.

• Coursera(L-Eval) An et al. (2023) is a dataset built on Coursera website. Similar to TOFEL, Each
instance consists of a long input of lectures, multiple instructions and corresponding answers.

• SFiction(L-Eval) An et al. (2023) is based on scientific fictions, in which context real-world principles
don’t apply. The questions contained in the documents ask the model to answer it based on either
contextual information or real-world knowledge, as a way to test model hallucination.

• LongFQA(L-Eval) An et al. (2023) is an open-ended QA dataset on finance based on earnings call
transcripts.

• CUAD(L-Eval)An et al. (2023) is drawn from the CUAD Hendrycks et al. (2021) dataset, which use
legal contract as its context.

• QuALITY Pang et al. (2021) is a multiple-choice single-document QA dataset. It uses science fictions,
magazine articles and nonfiction articles as input documents. The question is written by those that
have read the full document. Each instance contains a document, a multiple-choice questions and
corresponding answers. Notably, part of the questions are unanswerable.

• NewsQA Kwan et al. (2023) and DuoRC Kwan et al. (2023) are English QA datasets, constructed
from news and movie plots, respectively.

42

Under review as submission to TMLR

Table 15: Text Reasoning/Classification Datasets. CLS: Classification. In the Avg. Len: average length,
Tok: tokens; W: words. In the Instances column, Doc: documents, Inst: instructions. In the Metric
column, EM: Exact Match. Acc: Accuracy.

Task Name Source Instances Avg Len Metric Lang.

CLS/Reasoning
Long ListOps

Tay et al. (2020)
Generated 100,003 3106 W Acc EN

Reasoning
ContractNLI

Koreeda & Manning (2021)
Legal 10,319 2254 Tok EM EN

CLS
LSHT(LongBench)

Bai et al. (2023)
News 200 22,337 W Acc ZH

Reasoning
GSM(16 shot)

An et al. (2023)
GSM8K

Cobbe et al. (2021)
100 Doc, 100 Inst 5557 Tok Rouge-L, GPT-4, ∆L EN

Reasoning
SenHallu(BAMBOO)
Dong et al. (2023b)

Paper 200/200 3170/6357 Tok Precision, Recall, F1 EN

Reasoning
AbsHallu(BAMBOO)
Dong et al. (2023b)

Paper 200/200 3314/6445 Tok Precision, Recall, F1 EN

CLS
MNDS News

Petukhova & Fachada (2023)
News 10,917 637 W Acc EN

• C3 Kwan et al. (2023) is a multiple-choice QA dataset, based on second-language Chinese exams.

• NQ Kwiatkowski et al. (2019) is a QA dataset based on Wikipedia pages. Each instance(or example, as
referred to in original paper) consists of a question, corresponding wikipedia page, a long answer and a
short answer.

7.1.2 Text Summarization Task

A summarization dataset is a curated collection of texts and their corresponding summaries. They typically
include diverse content, such as news articles, scientific papers, or conversational data, paired with concise
and accurate summaries. The detailed statistics of the datasets for text summarization are listed in Table 14.

• CNN/Dailymail Nallapati et al. (2016), GovReport Huang et al. (2021), and XSum Narayan et al.
(2018) include a document and its corresponding summary in each instance. CNN/Dailymail is based on
over 300,000 news articles, GovReport is based on 14,466 long government reports, and XSum is based
on BBC news.

• MultiNews Fabbri et al. (2019) is a multi-doc summary dataset, each instance consists of multiple news
and a summary.

• Loogle Li et al. (2023a) is based on papers, WikiPedia, movie and TV scripts. Each long input text
corresponds to mutiple question-answer-summary triad. In total there are 776 documents and 6,448
questions. Average document length is 19.367 words.

• VCSUM Wu et al. (2023a) is based on real-world Chinese meeting transcripts. Each meeting tarnscript
corresponds to a headline, segmentation summaries and an overall summary. There’re 239 meetings in
total.

• SummScreenFD Chen et al. (2021b) is based on TV transcripts. Each instance consists of a TV
transcript containing conversations, scenes and actor actions, and a summary(recapitulation, as referred
to in original paper).

• BigPatent Sharma et al. (2019) is based on 1,341,362 patent documents. The highlight of this dataset
is that important information is distributed evenly in patent documents, compared to other types of
documents. Each instance contains a document and its corresponding summary(human written abstract).

43

https://github.com/google-research/long-range-arena
https://stanfordnlp.github.io/contract-nli/
https://huggingface.co/datasets/THUDM/LongBench
https://github.com/OpenLMLab/LEval
https://github.com/RUCAIBox/BAMBOO/tree/main/datasets
https://github.com/RUCAIBox/BAMBOO/tree/main/datasets
https://github.com/alinapetukhova/mn-ds-news-classification

Under review as submission to TMLR

• SPACE Angelidis et al. (2021) is based on reviews of 50 hotels. The highlight of the dataset is that the
summaries are written in 6 different aspects, based on the hotel’s review. Each hotel constructs an instance,
containing the hotel’s name, multiple reviews, summaries of different aspects and an overall summary.

• SQuality Wang et al. (2022a) is based on the same stories domain as QuALITY Pang et al. (2021) dataset.
It’s a query-based summarization dataset. Each instance contains a story, multiple summarization ques-
tions, and multiple summarizations that corresponds to each questions. There are 625 QA pairs in total.

• CNNNews(M4LE) Kwan et al. (2023) is based on CNN English news. Each instance of the dataset is
paired with a multi-sentence summary.

• CEPSUM(M4LE) Kwan et al. (2023) is based on product information from Chinese e-commerce
platform. Each instance contains a product description and corresponding summary.

• LCSTS(M4LE) Kwan et al. (2023) is a summarization dataset in Chinese. It consists of over 2 million
posts from a Chinese micro-blogging website, each post is paired with a summary. M4LE selects instances
whose article has over 30 words.

• NCLS(M4LE) Kwan et al. (2023) is a summarization dataset with articles and corresponding summaries
in different language, which highlights model’s cross-lingual ability. Original NCLS is constructed from
CNNNews and LCSTS.

• WikiHow(M4LE) Kwan et al. (2023) is based on procedural descriptions on Wikipedia. Each article is
entitled with a beginning of "How to...". Each paragraph of the article describes one step in the procedure,
and corresponds to short summary. These summaries are then put together as the suymmary of the article.

• News2016(M4LE) Kwan et al. (2023) is based on ove 2 million news articles in Chinese. For each
article, its title is used as golden summary. M4LE remove instances whose length is less than 200 words
or over 800 words.

• PubMed(M4LE) Kwan et al. (2023) is based on medical papers. In M4LE, each paper’s abstract is
used as the summary of the paper.

• BookSum(M4LE) Kwan et al. (2023) is a dataset containing 405 English books, whose contents covers
plays, novels and short stories. Each chapter of the content corresponds to a human-written summary.

• CNewsum(M4LE) Kwan et al. (2023) is based on 304,307 news articles in Chinese. Each article
corresponds to a human-written summary.

• CLTS+(M4LE) Kwan et al. (2023) is based on CLTS Zhu (2020). CLTS contains over 180,000 Chinese
articles, and CLTS+ uses back translation to make summaries more abstractive. M4LE selects part of
these instances for benchmark.

• Arxiv(M4LE) Kwan et al. (2023) is based on papers collected from arXiv.org. For each paper, its
abstract is used as golden summary.

7.1.3 Text Reasoning Task

A reasoning task involves the ability of a model to draw logical conclusions, make inferences, or solve problems
based on given information. It requires understanding relationships, patterns, or rules within the data to
arrive at accurate and coherent outcomes.Natural Language Inference(NLI) can be considered a subset of
reasoning. It highlights model’s ability to perform logical inference instructed by natural language.In an NLI
task, the typical goal is to determine the relationship between two pieces of text: a premise and a hypothesis.
The detailed statistics of the datasets for text reasoning are listed in Tab. 15.

• Long Listops Tay et al. (2020) is a mathematical reasoning dataset. It inputs an listop expression,
instructing the model to perform calculation and output the exact numeric answer. A listop expression
has a hierarchical structure that involves a set of simple mathematical operators. The final answer is a
number in 0-9, described in original paper as "a ten-way classification task".

44

Under review as submission to TMLR

Table 16: Text Dataset-Retrieval. In the Avg. Len: average length, W: words. Particularly, LongEval,
StreamingEval and TopicRet is more of a data generation method, which makes their length and instance
number flexible, denoted by ’-’. In the Metric column, Acc: Accuracy. F1 Rajpurkar et al. (2016b)
calculates unigram overlap between model output and answers after processing elments like white-spaces
and stop-words.

Task Name Source Instances Avg Len Metric Lang.

CLS/RET
TREC(LongBench)

Bai et al. (2023)
Web Question 200 5177 W Acc EN

RET
LongEval

Li* et al. (2023)
Conversations - - Acc EN

RET
StreamingEval

Xiao et al. (2024c)
LongChat Li* et al. (2023) - - Acc EN

RET
TopicRet(L-Eval)
An et al. (2023)

LongChat Li* et al. (2023) - - Acc EN

RET
DRCD(M4LE)

Kwan et al. (2023)
Wiki - 3617 W Acc ZH

CLS+RET
MARC

Kwan et al. (2023)
E-Commerce 2200 3543 W F1 EN, ZH

CLS+RET
Online Shopping(M4LE)

Kwan et al. (2023)
E-Commerce 2200 3714 W F1 ZH

CLS+RET
MNDS News(M4LE)
Kwan et al. (2023)

MNDS News Petukhova & Fachada (2023) - 3805 W Acc EN

CLS+RET
THUCNews(M4LE)
Kwan et al. (2023)

News - 3721 W Acc ZH

• GSM Cobbe et al. (2021) is a mathematcal reasoning dataset, which describes mathematical problems in
natural language and ask the model to solve it.

• ContractNLI Koreeda & Manning (2021) uses contracts as context, and provides hypothesis, answer,
and added evidence to each instance as well. The task requires model to judge the relationship between the
hypothesis and context. Each instance contains 607 contracts, each contract has 17 annotated hypothesis
and corresponding answers.

• LSHT(LongBench) Bai et al. (2023) is a Chinese classification dataset. It’s based on Xinhua News.
The model is asked to classify the input news articles into different categories.

• SenHallu Dong et al. (2023b) and AbsHallu Dong et al. (2023b)use content and a related hypothesis as
model’s input, and instruct the model to determine whether the hypothesis is true based on the content.
The false hypothesis(hallucination, as referred to by original paper) is generated by GPT.

• MNDS News Petukhova & Fachada (2023) is a classification dataset consisting of 10.917 news articles.
The news articles have 17 first level categories and 109 second-level categories.

7.1.4 Text Retrieval Task

A retrieval task in LLM benchmarks evaluates a model’s ability to retrieve relevant information from a large
collection of data based on a given query. It tests the model’s understanding of the query, semantic matching,
and efficiency in identifying the most relevant documents or pieces of information. The detailed statistics of
the datasets for text retrieval are listed in Table 16.

• LongChat Li* et al. (2023) has two subtask dataset for retrieval. Coarse-grained Topic Retrieval dataset
use a long document that talk about a number of different topics, and instrutct the model to retrieve the
first topic of the document. Fine-grained Line retrieval, on the other hand, is more challenging, which

45

https://huggingface.co/datasets/THUDM/LongBench
https://github.com/DachengLi1/LongChat
http://arxiv.org/abs/2309.17453
https://github.com/OpenLMLab/LEval
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE
https://github.com/KwanWaiChung/M4LE

Under review as submission to TMLR

Table 17: Text Dataset-Generation.In the Avg. Len: average length, Tok: tokens; W: words. In the
Instances column, Doc: documents, Inst: instructions. In the Metric column, EM: Exact Match. Acc:
Accuracy.

Task Name Source Instances Avg Len Metric Lang.

GEN
LCC

Guo et al. (2023)
Code 360000 1337 W EM, Edit Sim Python/CSharp/Java

GEN
RepoBench-P(LongBench)

Bai et al. (2023)
Code 500 4206 W Edit Sim Python/Java

GEN/RET
MultiDoc2Dial

Feng et al. (2021)
Doc2Dial

Feng et al. (2020)
488 Doc,

4796 Dialogues
4283 T

F1, EM,
SacreBLEU, Recall

EN

GEN
OpenReview(L-Eval)

An et al. (2023)
ASAP-Review

Yuan et al. (2021)
20 Doc 60 Inst 11,170 Tok Rouge-L, GPT-4, ∆L EN

GEN
ASAP-Review

Yuan et al. (2021)
Paper

8877 Papers,
25,986 Reviews

6782 W/Paper Rouge-1/2/L, BERT EN

GEN
ShowsPred

Dong et al. (2023b)
TV Shows 100/100 2389/4860 Tok Acc EN

GEN
MeetingPred

Dong et al. (2023b)
Meeting 100/100 3689/11578 Tok Acc EN

GEN-Code
PrivateEval

Dong et al. (2023b)
Code 152/152 3149/6230 Tok Pass@1 EN, Python

GEN-Code
CodeU(L-Eval)
An et al. (2023)

Code 90 Doc 10 Inst 31,575 Tok Rouge-L, GPT-4, ∆L Python

present the model with multiple lines that contain a diffrernt number and label, with similar line patterns.
The model is asked to retrieve the number of a specific labeled line.Notably, such dataset can be easily
constructed or generated, so it’s easy to create an ultra long dataset of this type. Because the dataset is
easily constructed by definition, the length of the dataset and the number of instances is indefinite.

• StreamingEvalXiao et al. (2024c) construct a line retrieval task based on LongChat, which makes a query
in every 10 lines, with its answer about 20 lines above, so as to evaluate the streaming conversation scenario.

• TopicRet An et al. (2023) on the other hand, is based on the coarse-grained topic retrieval task, but ask
about the second or third topic instead of the first one, so as to make the task more challenging.

• DRCD(M4LE) Kwan et al. (2023) is a reading comprehension dataset. In M4LE, DRCD is constructed
into two subset, one(DRCD explicit) require model to return the articles’ IDs related to a given topic, and
another subset(DRCD semantic) requires the model to answer specific questions given multiple paragraphs.

• MARC Kwan et al. (2023) consists of bilingual(namely English and Chinese) reviews. The model is
asked to identify all positive reviews and retrieve them.

• Online Shopping(M4LE) Kwan et al. (2023) is based on 60K product reviews on Chinese e-commerce
platforms. Reviews are categorized into positive and negative.

7.1.5 Text Generation Task

Generation tasks require model to generate contents based on the given instructions and context. The
detailed statistics of the datasets for text generation are listed in Table 17.

• MultiDoc2Dial Feng et al. (2021) gives model a dialogue history and all involved documents, and instruct
model to generate the next turn of the dialogue.

• OpenReview(L-Eval) An et al. (2023), which is based on ASAP-Review Yuan et al. (2021), provides
LLM with a paper and instruct it to generate a review.

• ShowsPred and MeetingPred Dong et al. (2023b) use dialogue history as input, and ask model to infer
which role said the last turn of the conversation. Apart from natural language context, code generation is
also an important implementation for LLMs.

46

https://github.com/microsoft/CodeBERT/tree/master/LongCoder
https://github.com/Leolty/repobench
https://github.com/IBM/multidoc2dial
https://github.com/OpenLMLab/LEval
https://github.com/neulab/ReviewAdvisor
https://github.com/RUCAIBox/BAMBOO/tree/main/datasets
https://github.com/RUCAIBox/BAMBOO/tree/main/datasets
https://github.com/RUCAIBox/BAMBOO/tree/main/datasets
https://github.com/OpenLMLab/LEval

Under review as submission to TMLR

Table 18: Text Dataset-Aggregation. In the Avg. Len: average length, Tok: tokens; W: words. In
the Instances column, Doc: documents, Inst: instructions. In the Metric column, Acc: Accuracy. ES:
Exponential Similarity, CI: Concordance Index

Task Name Source Instances Avg Len Metric Lang.
AGG SpaceDigest Shaham et al. (2023) Reviews 500 5481 W ES EN
AGG BookSumSort Shaham et al. (2023) Literature 500 6840 W CI EN
AGG PassageRetrieval-en Bai et al. (2023) Wiki 200 9289 W Acc EN
AGG PassageRetrieval-zh Bai et al. (2023) C4 Dataset 200 6745 W Acc ZH
AGG PassageCount Bai et al. (2023) Wiki 200 11,141 W Acc EN
AGG ShowsReport(BAMBOO) Dong et al. (2023b) TV Shows 200/200 2992/6411 Tok CI EN
AGG ReportSumSort(BAMBOO) Dong et al. (2023b) Reports 150/150 3753/8309 Tok CI EN

• LCC Guo et al. (2023) gives model long code snippets as context, and instruct model to generate the
following line of code.

• RepoBench-P Liu et al. (2023c) requires model to retrieve toe most relevant code snippets from a long
input, and then generate code according to the instruction.

• PrivateEval Dong et al. (2023b) use API documents and a code snippet as input, and instruct the model
to generate code acccordingly. Notably, to avoid data contamination caused by pre-training, the keywords
in API documents are modified, making the document "private".

• CodeU Dong et al. (2023b) use the same practice of modifying keyword, only that it uses modified source
code of public library, rather than API document, as an input.

7.1.6 Aggregation Task

Aggregation task involves understanding and aggregating information from the whole input to answer com-
plex instructions, such as calculating the percentage of positive comments given a set of comments of different
attitudes. The detailed statistics of the datasets for text aggregation are listed in Table 18.

• SpaceDigest Shaham et al. (2023) give the model a set of hotel reviews, and ask the model to output
the percentage of positive reviews in the context.

• BookSumSort Shaham et al. (2023), ReportSumSort Dong et al. (2023b), and ShowsSort Dong et al.
(2023b) use shuffled paragraphs from book summaries, TV transcripts or government reports as context,
and ask the model to sort them in the correct order.

• PassageCount Bai et al. (2023) selects multiple passage, duplicates some of the paragraphs, and put
all those paragraphs into an instance after shuffling. The model is then asked to determine how many
documents are used to construct this instance.

• PassageRetrieval Bai et al. (2023), on the other hand, selects 30 wikipedia passages, and use GPT-3.5-
Turbo to write a summary for one of them. Then these passages and the generated summary are used as
the model input. The model is then instructed to tell which passage was the summary generated from.

7.1.7 Evaluation Metric for Text Datasets

General evaluation metrics used by text datasets mentioned above include Exact Match Rajpurkar et al.
(2016a), Partial Match, Accuracy, Recall, Precision, F1, BLEU Papineni et al. (2002), Sacre-
BLEU Post (2018), Rouge Lin (2004), METEOR Denkowski & Lavie (2011), BERT Zhang et al. (2020),
Edit Similarity, Pass@k Chen et al. (2021a) , Exponential Similarity, Concordance Index, Mean
Reciprocal Rank. In addition to general evaluation metrics, some more specific metrics are used in par-
ticular benchmarks. For datasets from L-Eval An et al. (2023), the GPT-4 metric means the win-rate

47

https://github.com/tau-nlp/zero_scrolls
https://github.com/tau-nlp/zero_scrolls
https://huggingface.co/datasets/THUDM/LongBench
https://huggingface.co/datasets/THUDM/LongBench
https://huggingface.co/datasets/THUDM/LongBench
https://github.com/RUCAIBox/BAMBOO/tree/main/datasets
https://github.com/RUCAIBox/BAMBOO/tree/main/datasets

Under review as submission to TMLR

against Turbo-16K, judged by GPT-4. ∆L is the length difference between answer length and ground truth.
For LooGLE Li et al. (2023a), it utilizes GPT-4 for its QA and summarization task, using it for answer’s
semantic judgment.

• Exact Match (EM) Rajpurkar et al. (2016a) is a metric used to evaluate the accuracy of models in
tasks like question answering or text generation. It measures the percentage of predictions that exactly
match the ground truth answer, considering both the content and format.

• Partial Match (PM) metric evaluates the similarity between a model’s output and the reference by
allowing partial credit for partially correct answers. Unlike strict metrics like Exact Match (EM), PM
accounts for overlaps or shared elements, such as keywords or phrases, making it more flexible in assessing
performance.

• Accuracy is a metric used to evaluate the overall performance of a model by measuring the proportion
of correctly predicted instances (both positive and negative) out of the total instances.

• Recall is a metric used to evaluate a model’s ability to retrieve all relevant instances in a dataset. It
is calculated as the ratio of correctly retrieved relevant items to the total number of relevant items,
emphasizing completeness.

• Precision is a metric used to evaluate the accuracy of a model by measuring the proportion of correctly
predicted positive instances out of all predicted positive instances.

• F1 is a performance measure that combines Precision and Recall into a single score using their harmonic
mean. It provides a balanced evaluation, especially useful in datasets with imbalanced classes, by
considering both false positives and false negatives.

• BLEU Papineni et al. (2002), is a widely used metric for evaluating the quality of machine-generated
text, especially in machine translation. It works by comparing n-grams in the generated output with
reference texts to measure overlap, while applying penalties for overly short outputs to ensure fluency.

• SacreBLEU Post (2018) is a standardized version of the BLEU metric used to evaluate machine
translation quality. It simplifies BLEU’s implementation by fixing preprocessing steps like reference
handling to ensure consistent and reproducible results across different systems.

• Rouge Lin (2004) and its variants measure model’s performance by calculating overlap between model
output and reference answer with unigram(Rouge-1), bigram(Rouge-2), LCS(Rouge-L), etc. Gold
Rouge-1 in VCSUM dataset refers to using high-quality reference summaries (gold standards) for
evaluation, ensuring reliable and meaningful comparisons.

• METEOR Denkowski & Lavie (2011) (Metric for Evaluation of Translation with Explicit ORdering) is
a text evaluation metric designed to assess the quality of machine translation.

• BERT Zhang et al. (2020) metric, often referred to as BERTScore, is a text evaluation metric that uses
contextual embeddings from the BERT model to compare similarity between generated and reference texts.

• Edit Similarity is a metric that measures the similarity between two text sequences based on the
minimum number of edit operations required to transform one sequence into another. It is derived from
the concept of edit distance such as Levenshtein distance.

• Pass@k Chen et al. (2021a) evaluates the performance of a model by measuring the percentage that
at least one of the top k generated outputs contains a correct solution. In datasets we surveyed, only
Pass@1 is used.

• Exponential Similarity is a metric that measures the similarity between two items by exponentially
weighting their differences, giving more importance to smaller discrepancies.

• Concordance Index is a metric used to evaluate the predictive accuracy of models, particularly in
survival analysis or ranking tasks.

48

Under review as submission to TMLR

Table 19: Multimodal Dataset. Specfically, for data type, Img: Image; T: text; V: Video. For task
abbreviation, Conv: conversation task; Desc: description task; Reas: reasoning task; Perc: perception
task; Pred: prediction; NTH: needle in the haystack; SUMM: summary. For instance and average
column, Q: questions; W: words; s: seconds. For example, 54 Img, 150 Q denote that there are 54 images
with 150 questions.

Tasks Name Data Source Instance Average Metric Language

Conv, Desc, Reas
LLaVA-Bench

Liu et al. (2023b)
Img, T COCO, In-The-Wild 54 Img, 150 Q 1 Img, 59.9 W Relative Score EN

Perc, Reas
MMBench

Yuan Liu et al. (2023)
Img, T Internet 2948 Q 1 Img, 114.5 W Acc EN/CN

Pred, Count,
NIH, Retrieval

MileBench
Song et al. (2024)

Img, T
Public,

self-building
6440 Q 15.2 Img, 422.3 W Acc, ROUGE-L EN

Reas, NIH, SUMM,
Desc, Order, Count

MLVU
Zhou et al. (2024a)

V, T
Public,

self-collection
1334 V, 2593 Q 704.6s V, 39.7 W M-Avg, G-Avg EN

Reas, Retrieval
LongVideoBench
Wu et al. (2024b)

V, T web-collected 3763 V, 6678 Q 730.5s V, 49.5 W Acc EN

Perc, Recognition, Reas
Video-MME

Fu et al. (2024a)
V, T YouTube 900 V, 2700 Q 1017.9s V Acc EN

Desc, Reas
NExT-QA

Xiao et al. (2021)
V, T

YouTube,
TV Show, Public

1000 V, 47962 Q 44s V, 25.5 W Acc, WUPS EN

Perc, Count, Reas
MVBench

Li et al. (2023b)
V, T Public 4000 Q 16.7s V, 31.3 W Acc EN

Desc
MSVD-QA

Xu et al. (2017)
V, T MSVD 1970 V, 50505 Q 10s V Acc EN

Desc
MSRVYY-QA

Xu et al. (2017)
V, T MSRVTT 10000 V, 243690 Q 15s V Acc EN

• Mean Reciprocal Rank (MRR) is an evaluation metric commonly used in information retrieval and
recommendation systems to measure the quality of ranked results. It calculates the reciprocal of the rank
of the first relevant item in a result list and averages it across all queries.

7.2 Multimodal Datasets and Evaluation Metric

7.2.1 Multimodal Datasets

Multimodal datasets have emerged to address the need for a comprehensive understanding of the complex
real world by integrating diverse data types such as text, images, audio, and video. These datasets drive
advancements in AI, particularly in machine learning and deep learning, by offering rich and diverse data to
train more robust and versatile models. We analyze the multimodal benchmarks listed in Table 19, highlight-
ing their distinct focuses. Each benchmark is built upon one or more multimodal datasets, involving their
collection, processing, and the use of specific validation metrics. Below, we provide a detailed introduction
and description of each multimodal benchmark.

• LLaVA-Bench Liu et al. (2023b) The benchmark is structured around image-ground-truth textual
description-question-answer triplets, segmented across COCO and In-The-Wild datasets. It assesses a
model’s proficiency in multimodal instruction adherence and visual reasoning. By employing a suite of
tasks and metrics, it quantifies the model’s ability to comprehend and act on visual-language directives,
articulate comprehensive descriptions, and engage in intricate reasoning processes.

• MMBench Yuan Liu et al. (2023) This benchmark serves as a bilingual multimodal benchmark, fa-
cilitating a comparative analysis of VLM performance across English and Chinese linguistic contexts. It
distinctively assesses multimodal models using a hierarchical taxonomy of abilities, stringent quality assur-
ance measures, and a dual-language evaluation framework. Unlike other benchmarks, MMBench Yuan Liu
et al. (2023) incorporates the CircularEval strategy for comprehensive evaluation and utilizes LLMs for
precise extraction of choices, setting it apart from its counterparts.

49

https://github.com/LLaVA-Annonymous/LLaVA
https://github.com/open-compass/MMBench
https://milebench.github.io/
https://github.com/JUNJIE99/MLVU
https://longvideobench.github.io/
https://video-mme.github.io/home_page.html
https://github.com/doc-doc/NExT-QA
https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/MVBENCH.md
https://github.com/xudejing/video-question-answering
https://github.com/xudejing/video-question-answering

Under review as submission to TMLR

• MileBench Song et al. (2024) evaluates the multi-modal long-context capabilities of LLMs, including
both diagnostic and realistic evaluation sets. It emphasizes long-context and multi-image tasks. This
unique focus allows it to capture the complexity and diversity of real-world multimodal challenges, setting
it apart from existing benchmarks. The dataset in MileBench Song et al. (2024) is characterized by its
inclusion of long texts integrated with multiple images, reflecting real-world scenarios where context is
key. It contains a diverse range of tasks that require both comprehension and generation.

• MLVU Zhou et al. (2024a) is a holistic benchmark, designed to gauge the capabilities of multi-modal
LLMs in comprehending video content, transcends the constraints of its predecessors by significantly
increasing video durations, encompassing diverse video genres, and crafting a spectrum of assessment
tasks. This benchmark offers an extensive array of tasks and video genres to evaluate the comprehensive
competencies of MLLMs. It highlights the substantial potential for enhancement in current methodologies
and emphasizes the critical factors of context length, image comprehension quality, and the selection of
LLM architecture for future progress.

• LongVideoBench Wu et al. (2024b) This benchmark offers an extensive benchmarking framework aimed
at assessing the capacity of large multimodal models (LMMs) to comprehend lengthy videos with subtitles,
extending up to an hour. It places a strong focus on the retrieval and reasoning capabilities over extended,
interwoven video and language data streams, tackling the challenge of single-frame bias and underscoring
its proficiency in evaluating multimodal comprehension in long contexts.

• Video-MME Fu et al. (2024a) A benchmark for comprehensive evaluation, it assesses the proficiency
of Multi-modal Large Language Models (MLLMs) in analyzing videos. This dataset comprises a wide
array of 900 videos spanning diverse domains and subfields, ensuring extensive scenario coverage. It
encompasses videos with lengths ranging from 11 seconds to 1 hour to gauge model flexibility across
various time frames. Furthermore, it incorporates various data modalities, including subtitles and audio
tracks, to evaluate the comprehensive competencies of MLLMs. The benchmark aims to test the models’
capacity for sequential visual data comprehension, with an emphasis on temporal reasoning and the
processing of multi-modal inputs.

• NExT-QA Xiao et al. (2021) Advancing video comprehension from mere description to explanation of
causal, temporal, and descriptive actions, a video question answering (VideoQA) benchmark has been es-
tablished. This benchmark boasts a dataset with 5,440 videos and approximately 52K manually annotated
question-answer pairs, sorted into causal, temporal, and descriptive categories. It poses a challenge to QA
models to engage in reasoning about causal and temporal actions and to decipher complex object inter-
actions within daily activities. Distinguished from other video benchmarks, this benchmark specifically
focuses on causal and temporal action reasoning within realistic videos that are rich in object interac-
tions. It stands as one of the largest manually annotated VideoQA datasets, offering support for both
multiple-choice and open-ended questions, and includes a variety of videos that mirror real-life scenarios.

• MVBench Li et al. (2023b) Featuring a substantial dataset, the benchmark comprises 200 multiple-choice
question-answer (QA) pairs for each of the 20 temporal understanding tasks, amassing a total of 4,000 QA
pairs. It draws from a variety of videos across 11 public datasets, spanning diverse domains and scenes,
thereby testing models’ abilities to comprehend temporal sequences. The benchmark automates the
generation of multiple-choice QA pairs from existing video annotations, minimizing human involvement
and ensuring a fair evaluation process.

• MSVD-QA Xu et al. (2017) The MSVD dataset is a collection of 1,970 video clips with descriptive
captions, initially for video captioning. It features diverse real-world scenarios and assesses multimodal
learning models’ capabilities in understanding video content and generating natural language descriptions.

• MSRVTT-QA Xu et al. (2017) The MSR-VTT dataset comprises 10,000 video clips with 20 human-
transcribed sentences each, focusing on connecting video content with language descriptions. It evaluates
multimodal learning models’ ability to comprehend video information and translate it into coherent
captions, testing their video understanding and language generation skills in a more complex and diverse
environment.

50

Under review as submission to TMLR

7.2.2 Evaluation Metric for Multimodal Datasets

The evaluation metrics for multimodal datasets include Relative Score, Accuracy, ROUGE-L, M-Avg,
G-Avg, WUPS. Several common metrics, including Accuracy, ROUHE-L, have been introduced in
Sec. 7.1.7. Here, we only introduce the special metrics of multimodal datasets, which include Relativa
Score, M-Avg, G-Avg, WUPS as follows:

• Relative Score This metric is used in LLaVA-Bench to evaluate the performance of multimodal models
by comparing their outputs to a reference model, typically text-based GPT-4. It is calculated as the
percentage ratio of the candidate model’s score to the reference model’s score, based on dimensions such
as helpfulness, relevance, accuracy, and level of detail.

• M-Avg Multiple-Choice Average is calculated as the mean accuracy across all multiple-choice tasks in
the MLVU benchmark. The accuracy for each task is determined by the proportion of correctly predicted
answers compared to the total number of questions within that task.

• G-Axg Generation Average s calculated as the mean score across all generation tasks in the MLVU
benchmark. Each task is evaluated on multiple dimensions (e.g., Accuracy, Relevance, Completeness, and
Reliability) using GPT-4, with scores ranging from 1 to 5. The overall score for each task is the average
of these dimensions, and G-Avg is the mean of these task-level scores.

• WUPS K et al. (2012) Wu-Palmer Similarity measures the semantic similarity between two words based
on their positions in a taxonomy (e.g., WordNet). It calculates how closely related two words are by
considering their least common ancestor (LCS).

8 Conclusion

Advancements in LLMs have driven significant progress on various fields, but their high computational and
memory demands during inference pose challenges, especially for long-context and real-time applications.
KV cache management offers an effective solution by optimizing memory, reducing redundant computation,
and improving performance. This survey reviews KV cache management strategies across token-level,
model-level, and system-level optimizations. Token-level optimizations focus on fine-grained control of KV
cache through selection, budget allocation, merging, quantization, and low-rank decomposition, enabling
efficient resource allocation without altering model architectures. Model-level optimizations leverage
architectural innovations, such as attention grouping and non-transformer designs, to enhance the efficiency
of KV reuse. System-level optimizations further complement these efforts by employing advanced memory
management, scheduling techniques, and hardware-aware designs to optimize resource utilization across
diverse computing environments.

Despite the progress made, substantial opportunities remain for future exploration. Key areas include the
development of real-time, task-specific budget allocation strategies, dynamic workload handling, advanced
distributed coordination for KV cache in multi-node systems, and hardware-aware innovations to lever-
age emerging architectures like computational storage and processing-in-memory. Additionally, integrating
reinforcement learning and adaptive algorithms could enable more intelligent and responsive KV cache man-
agement, further enhancing LLM efficiency across diverse deployment scenarios.

References
Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant J. Nair, Ilya Soloveychik, and Purushotham

Kamath. Keyformer: KV cache reduction through key tokens selection for efficient generative inference.
In Proceedings of the Seventh Annual Conference on Machine Learning and Systems, MLSys 2024, Santa
Clara, CA, USA, May 13-16, 2024. mlsys.org, 2024.

Abien Fred Agarap. Deep learning using rectified linear units. arXiv preprint arXiv:1803.08375, 2018.

51

Under review as submission to TMLR

Saurabh Agarwal, Bilge Acun, Basil Hosmer, Mostafa Elhoushi, Yejin Lee, Shivaram Venkataraman, Dimitris
Papailiopoulos, and Carole-Jean Wu. CHAI: Clustered Head Attention for Efficient LLM Inference, April
2024. URL http://arxiv.org/abs/2403.08058.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.
GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints, December
2023. URL http://arxiv.org/abs/2305.13245.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang, Niklas
Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection for language
models. arXiv preprint arXiv:2402.16827, 2024.

Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng Kong, and
Xipeng Qiu. L-Eval: Instituting Standardized Evaluation for Long Context Language Models, 2023. URL
https://arxiv.org/abs/2307.11088.

Stefanos Angelidis, Reinald Kim Amplayo, Yoshihiko Suhara, Xiaolan Wang, and Mirella Lapata.
Extractive Opinion Summarization in Quantized Transformer Spaces. Transactions of the Asso-
ciation for Computational Linguistics, 9:277–293, March 2021. ISSN 2307-387X. doi: 10.1162/
tacl_a_00366. URL https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00366/98621/
Extractive-Opinion-Summarization-in-Quantized.

Anonymous. CAKE: Cascading and adaptive KV cache eviction with layer preferences. In Submitted to The
Thirteenth International Conference on Learning Representations, 2024a. URL https://openreview.
net/forum?id=EQgEMAD4kv. under review.

Anonymous. DynamicKV: Task-aware adaptive KV cache compression for long context LLMs. In Sub-
mitted to The Thirteenth International Conference on Learning Representations, 2024b. URL https:
//openreview.net/forum?id=uHkfU4TaPh. under review.

Anonymous. Identify critical KV cache in LLM inference from an output perturbation perspective. In
Submitted to The Thirteenth International Conference on Learning Representations, 2024c. URL https:
//openreview.net/forum?id=lRTDMGYCpy. under review.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin Jaggi,
Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms.
arXiv preprint arXiv:2404.00456, 2024.

Ben Athiwaratkun, Sujan Kumar Gonugondla, Sanjay Krishna Gouda, Haifeng Qian, Hantian Ding, Qing
Sun, Jun Wang, Jiacheng Guo, Liangfu Chen, Parminder Bhatia, Ramesh Nallapati, Sudipta Sengupta,
and Bing Xiang. Bifurcated attention: Accelerating massively parallel decoding with shared prefixes in
llms, 2024. URL https://arxiv.org/abs/2403.08845.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu, Ao-
han Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A Bilingual, Multitask Benchmark
for Long Context Understanding, 2023. URL https://arxiv.org/abs/2308.14508.

William Berrios, Gautam Mittal, Tristan Thrush, Douwe Kiela, and Amanpreet Singh. Towards language
models that can see: Computer vision through the LENS of natural language. CoRR, abs/2306.16410,
2023. doi: 10.48550/ARXIV.2306.16410. URL https://doi.org/10.48550/arXiv.2306.16410.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming the challenges
of efficient transformer quantization. arXiv preprint arXiv:2109.12948, 2021.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers: Removing outliers
by helping attention heads do nothing. Advances in Neural Information Processing Systems, 36:75067–
75096, 2023.

52

http://arxiv.org/abs/2403.08058
http://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2307.11088
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00366/98621/Extractive-Opinion-Summarization-in-Quantized
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00366/98621/Extractive-Opinion-Summarization-in-Quantized
https://openreview.net/forum?id=EQgEMAD4kv
https://openreview.net/forum?id=EQgEMAD4kv
https://openreview.net/forum?id=uHkfU4TaPh
https://openreview.net/forum?id=uHkfU4TaPh
https://openreview.net/forum?id=lRTDMGYCpy
https://openreview.net/forum?id=lRTDMGYCpy
https://arxiv.org/abs/2403.08845
https://arxiv.org/abs/2308.14508
https://doi.org/10.48550/arXiv.2306.16410

Under review as submission to TMLR

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan Kelly.
Reducing Transformer Key-Value Cache Size with Cross-Layer Attention, May 2024. URL http://arxiv.
org/abs/2405.12981.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter
Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao
Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic KV cache compression based on pyramidal
information funneling. CoRR, abs/2406.02069, 2024.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang, Ning-Chi
Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing kv-cache with
low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xiaozhe Ren, Yimeng Chen, Xin Jiang, Zhenguo Li,
Weiyang Liu, and Chao Huang. Sepllm: Accelerate large language models by compressing one segment
into one separator. arXiv preprint arXiv:2412.12094, 2024a.

Long Chen, Oleg Sinavski, Jan Hünermann, Alice Karnsund, Andrew James Willmott, Danny Birch, Daniel
Maund, and Jamie Shotton. Driving with llms: Fusing object-level vector modality for explainable au-
tonomous driving. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp.
14093–14100. IEEE, 2024b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code, 2021a. URL
https://arxiv.org/abs/2107.03374.

Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. Prefixquant: Static quantization
beats dynamic through prefixed outliers in llms. arXiv preprint arXiv:2410.05265, 2024c.

Mingda Chen, Zewei Chu, Sam Wiseman, and Kevin Gimpel. SummScreen: A Dataset for Abstractive
Screenplay Summarization, 2021b. URL https://arxiv.org/abs/2104.07091.

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuohuan Wang,
Yu Sun, Dianhai Yu, and Hua Wu. NACL: A general and effective KV cache eviction framework for llms
at inference time. CoRR, abs/2408.03675, 2024d.

Yilong Chen, Linhao Zhang, Junyuan Shang, Zhenyu Zhang, Tingwen Liu, Shuohuan Wang, and Yu Sun.
DHA: Learning Decoupled-Head Attention from Transformer Checkpoints via Adaptive Heads Fusion,
June 2024e. URL http://arxiv.org/abs/2406.06567.

Yuang Chen, Cheng Zhang, Xitong Gao, Robert D. Mullins, George Anthony Constantinides, and Yiren
Zhao. Optimised Grouped-Query Attention Mechanism for Transformers. In Workshop on Efficient Sys-
tems for Foundation Models II @ ICML2024, July 2024f. URL https://openreview.net/forum?id=
13MMghY6Kh.

53

http://arxiv.org/abs/2405.12981
http://arxiv.org/abs/2405.12981
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2104.07091
http://arxiv.org/abs/2406.06567
https://openreview.net/forum?id=13MMghY6Kh
https://openreview.net/forum?id=13MMghY6Kh

Under review as submission to TMLR

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong Tian,
Matthijs Douze, Léon Bottou, Zhihao Jia, and Beidi Chen. Magicpig: LSH sampling for efficient LLM
generation. CoRR, abs/2410.16179, 2024g.

Jian Cheng, Jiaxiang Wu, Cong Leng, Yuhang Wang, and Qinghao Hu. Quantized cnn: A unified approach
to accelerate and compress convolutional networks. IEEE transactions on neural networks and learning
systems, 29(10):4730–4743, 2017.

Sai Sena Chinnakonduru and Astarag Mohapatra. Weighted Grouped Query Attention in Transformers,
July 2024. URL http://arxiv.org/abs/2407.10855.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. In International Conference on Learning Representations, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training
Verifiers to Solve Math Word Problems, 2021. URL https://arxiv.org/abs/2110.14168.

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang Zhou, Kaizhao Liang, Jintai Chen, Juanwu Lu, Zichong
Yang, Kuei-Da Liao, Tianren Gao, Erlong Li, Kun Tang, Zhipeng Cao, Tong Zhou, Ao Liu, Xinrui Yan,
Shuqi Mei, Jianguo Cao, Ziran Wang, and Chao Zheng. A survey on multimodal large language models for
autonomous driving. In IEEE/CVF Winter Conference on Applications of Computer Vision Workshops,
WACVW 2024 - Workshops, Waikoloa, HI, USA, January 1-6, 2024, pp. 958–979. IEEE, 2024. doi:
10.1109/WACVW60836.2024.00106. URL https://doi.org/10.1109/WACVW60836.2024.00106.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,
Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and
Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language
models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pp. 1280–1297. Association for Computational Linguistics, 2024. doi:
10.18653/V1/2024.ACL-LONG.70. URL https://doi.org/10.18653/v1/2024.acl-long.70.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Bel-
grave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A Dataset of
Information-Seeking Questions and Answers Anchored in Research Papers, 2021. URL https://arxiv.
org/abs/2105.03011.

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao Yang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai Dong, Kaige Gao, Kang Guan, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang,
Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao
Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S. S.
Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu
Sun, W. L. Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q.
Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen,

54

http://arxiv.org/abs/2407.10855
https://arxiv.org/abs/2110.14168
https://doi.org/10.1109/WACVW60836.2024.00106
https://doi.org/10.18653/v1/2024.acl-long.70
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://arxiv.org/abs/2105.03011
https://arxiv.org/abs/2105.03011

Under review as submission to TMLR

Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai Yu, Xinnan Song,
Xinyi Zhou, Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K. Li, Y. X. Wei, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Zheng, Yichao Zhang,
Yiliang Xiong, Yilong Zhao, Ying He, Ying Tang, Yishi Piao, Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji
Wang, Yongqiang Guo, Yuchen Zhu, Yuduan Wang, Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan,
Yuxiang You, Yuxuan Liu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhewen Hao, Zhihong Shao, Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang,
Zihui Gu, Zilin Li, and Ziwei Xie. DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts
Language Model, June 2024. URL http://arxiv.org/abs/2405.04434.

Michael Denkowski and Alon Lavie. Meteor 1.3: Automatic metric for reliable optimization and evaluation of
machine translation systems. In Chris Callison-Burch, Philipp Koehn, Christof Monz, and Omar F. Zaidan
(eds.), Proceedings of the Sixth Workshop on Statistical Machine Translation, pp. 85–91, Edinburgh, Scot-
land, July 2011. Association for Computational Linguistics. URL https://aclanthology.org/W11-2107.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix multiplication
for transformers at scale. Advances in Neural Information Processing Systems, 35:30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Tianyu Ding, Tianyi Chen, Haidong Zhu, Jiachen Jiang, Yiqi Zhong, Jinxin Zhou, Guangzhi Wang, Zhihui
Zhu, Ilya Zharkov, and Luming Liang. The efficiency spectrum of large language models: An algorithmic
survey. arXiv preprint arXiv:2312.00678, 2023.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get more
with less: Synthesizing recurrence with kv cache compression for efficient llm inference. arXiv preprint
arXiv:2402.09398, 2024a.

Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. Qaq: Quality adaptive quantization for llm kv cache.
arXiv preprint arXiv:2403.04643, 2024b.

Wei Dong and Ke Yi. Residual sensitivity for differentially private multi-way joins. In Proceedings of the
2021 International Conference on Management of Data, pp. 432–444, 2021.

Wei Dong, Qiyao Luo, and Ke Yi. Continual observation under user-level differential privacy. In 2023 IEEE
Symposium on Security and Privacy (SP), pp. 2190–2207. IEEE, 2023a.

Zican Dong, Tianyi Tang, Junyi Li, Wayne Xin Zhao, and Ji-Rong Wen. Bamboo: A comprehen-
sive benchmark for evaluating long text modeling capacities of large language models. arXiv preprint
arXiv:2309.13345, 2023b.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. GLM: general
language model pretraining with autoregressive blank infilling. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pp. 320–
335. Association for Computational Linguistics, 2022. doi: 10.18653/V1/2022.ACL-LONG.26. URL
https://doi.org/10.18653/v1/2022.acl-long.26.

Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei Duan, Xingcheng Zhang, and Dahua Lin. Skvq: Sliding-
window key and value cache quantization for large language models. arXiv preprint arXiv:2405.06219,
2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

55

http://arxiv.org/abs/2405.04434
https://aclanthology.org/W11-2107
https://doi.org/10.18653/v1/2022.acl-long.26

Under review as submission to TMLR

Alexander R. Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R. Radev. Multi-News: a Large-
Scale Multi-Document Summarization Dataset and Abstractive Hierarchical Model, 2019. URL https:
//arxiv.org/abs/1906.01749.

Song Feng, Hui Wan, Chulaka Gunasekara, Siva Sankalp Patel, Sachindra Joshi, and Luis A. Lastras.
doc2dial: A Goal-Oriented Document-Grounded Dialogue Dataset, 2020. URL https://arxiv.org/abs/
2011.06623.

Song Feng, Siva Sankalp Patel, Hui Wan, and Sachindra Joshi. MultiDoc2Dial: Modeling Dialogues
Grounded in Multiple Documents. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 6162–6176, Online and Punta Cana, Dominican Republic, 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.498. URL https://aclanthology.org/
2021.emnlp-main.498.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Ada-kv: Optimizing KV cache eviction by
adaptive budget allocation for efficient LLM inference. CoRR, abs/2407.11550, 2024.

Zafeirios Fountas, Martin Benfeghoul, Adnan Oomerjee, Fenia Christopoulou, Gerasimos Lampouras,
Haitham Bou-Ammar, and Jun Wang. Human-like episodic memory for infinite context llms. CoRR,
abs/2407.09450, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou,
Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation benchmark
of multi-modal llms in video analysis. arXiv preprint arXiv:2405.21075, 2024a.

Daocheng Fu, Xin Li, Licheng Wen, Min Dou, Pinlong Cai, Botian Shi, and Yu Qiao. Drive like a human:
Rethinking autonomous driving with large language models. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 910–919, 2024b.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter: A
head-level KV cache compression method with integrated retrieval and reasoning. CoRR, abs/2410.19258,
2024c.

Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo Deng, Xingkun Yang, Zhou
Yu, and Pengfei Zuo. Cost-efficient large language model serving for multi-turn conversations with cache-
dattention, 2024a. URL https://arxiv.org/abs/2403.19708.

Shiwei Gao, Youmin Chen, and Jiwu Shu. Fast state restoration in LLM serving with hcache. CoRR,
abs/2410.05004, 2024b. doi: 10.48550/ARXIV.2410.05004. URL https://doi.org/10.48550/arXiv.
2410.05004.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you what to
discard: Adaptive KV cache compression for llms. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Daniel Goldstein, Fares Obeid, Eric Alcaide, Guangyu Song, and Eugene Cheah. GoldFinch: High Perfor-
mance RWKV/Transformer Hybrid with Linear Pre-Fill and Extreme KV-Cache Compression, July 2024.
URL http://arxiv.org/abs/2407.12077.

Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and Rodolfo Pellizzoni.
A survey on cache management mechanisms for real-time embedded systems. ACM Computing Surveys
(CSUR), 48(2):1–36, 2015.

Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces, May 2024.
URL http://arxiv.org/abs/2312.00752.

56

https://arxiv.org/abs/1906.01749
https://arxiv.org/abs/1906.01749
https://arxiv.org/abs/2011.06623
https://arxiv.org/abs/2011.06623
https://aclanthology.org/2021.emnlp-main.498
https://aclanthology.org/2021.emnlp-main.498
https://arxiv.org/abs/2403.19708
https://doi.org/10.48550/arXiv.2410.05004
https://doi.org/10.48550/arXiv.2410.05004
http://arxiv.org/abs/2407.12077
http://arxiv.org/abs/2312.00752

Under review as submission to TMLR

Albert Gu, Isys Johnson, Karan Goel, Khaled Kamal Saab, Tri Dao, Atri Rudra, and Christopher Re.
Combining Recurrent, Convolutional, and Continuous-time Models with Linear State Space Layers. In
Advances in Neural Information Processing Systems, November 2021. URL https://openreview.net/
forum?id=yWd42CWN3c.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the Parameterization and Initialization of
Diagonal State Space Models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho,
and A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022. arXiv, 2022.

Ozgur Guldogan, Jackson Kunde, Kangwook Lee, and Ramtin Pedarsani. Multi-bin batching for increasing
LLM inference throughput, 2024. URL https://openreview.net/forum?id=WVmarX0RNd.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. LongCoder: A Long-Range Pre-trained
Language Model for Code Completion, 2023. URL https://arxiv.org/abs/2306.14893.

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muhammad Bilal
Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. A survey on large language models: Applications,
challenges, limitations, and practical usage. Authorea Preprints, 2023.

Benjamin D Haeffele and René Vidal. Global optimality in tensor factorization, deep learning, and beyond.
arXiv preprint arXiv:1506.07540, 2015.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Zero-
shot extreme length generalization for large language models. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 3991–4008.
Association for Computational Linguistics, 2024.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and Daniela Rus.
Liquid structural state-space models. arXiv preprint arXiv:2209.12951, 2022.

Jiaao He and Jidong Zhai. Fastdecode: High-throughput gpu-efficient llm serving using heterogeneous
pipelines, 2024. URL https://arxiv.org/abs/2403.11421.

Wei He, Kai Liu, Jing Liu, Yajuan Lyu, Shiqi Zhao, Xinyan Xiao, Yuan Liu, Yizhong Wang, Hua Wu, Qiao-
qiao She, Xuan Liu, Tian Wu, and Haifeng Wang. DuReader: a Chinese Machine Reading Comprehension
Dataset from Real-world Applications, 2017. URL https://arxiv.org/abs/1711.05073.

Yefei He, Feng Chen, Jing Liu, Wenqi Shao, Hong Zhou, Kaipeng Zhang, and Bohan Zhuang. Zipvl: Efficient
large vision-language models with dynamic token sparsification and kv cache compression. arXiv preprint
arXiv:2410.08584, 2024a.

Yefei He, Luoming Zhang, Weijia Wu, Jing Liu, Hong Zhou, and Bohan Zhuang. Zipcache: Accurate and
efficient kv cache quantization with salient token identification. arXiv preprint arXiv:2405.14256, 2024b.

Dan Hendrycks, Collin Burns, Anya Chen, and Spencer Ball. CUAD: An Expert-Annotated NLP Dataset
for Legal Contract Review, 2021. URL https://arxiv.org/abs/2103.06268.

Namgyu Ho, Sangmin Bae, Taehyeon Kim, Hyunjik Jo, Yireun Kim, Tal Schuster, Adam Fisch, James
Thorne, and Se-Young Yun. Block Transformer: Global-to-Local Language Modeling for Fast Inference,
November 2024. URL http://arxiv.org/abs/2406.02657.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing A Multi-hop
QA Dataset for Comprehensive Evaluation of Reasoning Steps. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics, pp. 6609–6625, Barcelona, Spain (Online), 2020. In-
ternational Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580. URL
https://www.aclweb.org/anthology/2020.coling-main.580.

57

https://openreview.net/forum?id=yWd42CWN3c
https://openreview.net/forum?id=yWd42CWN3c
https://openreview.net/forum?id=WVmarX0RNd
https://arxiv.org/abs/2306.14893
https://arxiv.org/abs/2403.11421
https://arxiv.org/abs/1711.05073
https://arxiv.org/abs/2103.06268
http://arxiv.org/abs/2406.02657
https://www.aclweb.org/anthology/2020.coling-main.580

Under review as submission to TMLR

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Monishwaran Maheswaran, June Paik, Michael W.
Mahoney, Kurt Keutzer, and Amir Gholami. Squeezed attention: Accelerating long context length llm
inference, 2024a. URL https://arxiv.org/abs/2411.09688.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv cache
quantization. arXiv preprint arXiv:2401.18079, 2024b.

Cunchen Hu, Heyang Huang, Junhao Hu, Jiang Xu, Xusheng Chen, Tao Xie, Chenxi Wang, Sa Wang,
Yungang Bao, Ninghui Sun, and Yizhou Shan. Memserve: Context caching for disaggregated llm serving
with elastic memory pool, 2024. URL https://arxiv.org/abs/2406.17565.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V. Le. Transformer Quality in Linear Time. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162
of Proceedings of Machine Learning Research, pp. 9099–9117. PMLR, 2022. URL https://proceedings.
mlr.press/v162/hua22a.html.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient Attentions for Long
Document Summarization, April 2021. URL http://arxiv.org/abs/2104.02112. arXiv:2104.02112.

Farnoosh Javadi, Walid Ahmed, Habib Hajimolahoseini, Foozhan Ataiefard, Mohammad Hassanpour, Saina
Asani, Austin Wen, Omar Mohamed Awad, Kangling Liu, and Yang Liu. GQKVA: Efficient Pre-training
of Transformers by Grouping Queries, Keys, and Values, December 2023. URL http://arxiv.org/abs/
2311.03426.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search. IEEE
transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023. doi: 10.48550/ARXIV.2310.06825. URL
https://doi.org/10.48550/arXiv.2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de Las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guil-
laume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock,
Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts. CoRR, abs/2401.04088,
2024a. doi: 10.48550/ARXIV.2401.04088. URL https://doi.org/10.48550/arXiv.2401.04088.

Chaoyi Jiang, Lei Gao, Hossein Entezari Zarch, and Murali Annavaram. Efficient llm inference with i/o-aware
partial kv cache recomputation, 2024b. URL https://arxiv.org/abs/2411.17089.

Peng Jiang and Gagan Agrawal. A linear speedup analysis of distributed deep learning with sparse and
quantized communication. Advances in Neural Information Processing Systems, 31, 2018.

Xuanlin Jiang, Yang Zhou, Shiyi Cao, Ion Stoica, and Minlan Yu. Neo: Saving gpu memory crisis with cpu
offloading for online llm inference, 2024c. URL https://arxiv.org/abs/2411.01142.

Ming Jin, Qingsong Wen, Yuxuan Liang, Chaoli Zhang, Siqiao Xue, Xue Wang, James Zhang, Yi Wang,
Haifeng Chen, Xiaoli Li, et al. Large models for time series and spatio-temporal data: A survey and
outlook. arXiv preprint arXiv:2310.10196, 2023.

Shuowei Jin, Xueshen Liu, Qingzhao Zhang, and Z. Morley Mao. Compute or load kv cache? why not both?,
2024. URL https://arxiv.org/abs/2410.03065.

58

https://arxiv.org/abs/2411.09688
https://arxiv.org/abs/2406.17565
https://proceedings.mlr.press/v162/hua22a.html
https://proceedings.mlr.press/v162/hua22a.html
http://arxiv.org/abs/2104.02112
http://arxiv.org/abs/2311.03426
http://arxiv.org/abs/2311.03426
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2401.04088
https://arxiv.org/abs/2411.17089
https://arxiv.org/abs/2411.01142
https://arxiv.org/abs/2410.03065

Under review as submission to TMLR

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. TriviaQA: A Large Scale Distantly
Supervised Challenge Dataset for Reading Comprehension, 2017. URL https://arxiv.org/abs/1705.
03551.

Vinay Joshi, Prashant Laddha, Shambhavi Sinha, Om Ji Omer, and Sreenivas Subramoney. QCQA: Quality
and Capacity-aware grouped Query Attention, June 2024. URL http://arxiv.org/abs/2406.10247.

Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y. Fu, Christopher Ré, and Azalia Mirhoseini.
Hydragen: High-throughput llm inference with shared prefixes, 2024. URL https://arxiv.org/abs/
2402.05099.

Manjula Shenoy. K, K. C. Shet, and U. Dinesh Acharya. A new similarity measure for taxonomy based on
edge counting, 2012. URL https://arxiv.org/abs/1211.4709.

Christoforos Kachris. A survey on hardware accelerators for large language models. arXiv preprint
arXiv:2401.09890, 2024.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao.
Gear: An efficient kv cache compression recipefor near-lossless generative inference of llm. arXiv preprint
arXiv:2403.05527, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast
autoregressive transformers with linear attention. In International conference on machine learning, pp.
5156–5165. PMLR, 2020.

Zohaib Khan, Muhammad Khaquan, Omer Tafveez, Burhanuddin Samiwala, and Agha Ali Raza. Beyond
Uniform Query Distribution: Key-Driven Grouped Query Attention, August 2024. URL http://arxiv.
org/abs/2408.08454.

Jang-Hyun Kim, Junyoung Yeom, Sangdoo Yun, and Hyun Oh Song. Compressed context memory for online
language model interaction. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024a. URL https://openreview.net/forum?
id=64kSvC4iPg.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir Gholami, and
Kurt Keutzer. Speculative decoding with big little decoder. Advances in Neural Information Processing
Systems, 36, 2024b.

Yuta Koreeda and Christopher Manning. ContractNLI: A dataset for document-level natural language
inference for contracts. In Findings of the Association for Computational Linguistics: EMNLP 2021, pp.
1907–1919, Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
URL https://aclanthology.org/2021.findings-emnlp.164.

Volodymyr Kuleshov, Arun Chaganty, and Percy Liang. Tensor factorization via matrix factorization. In
Artificial Intelligence and Statistics, pp. 507–516. PMLR, 2015.

Kwan, Wai-Chung, Zeng, Xingshan, Wang, Yufei, Sun, Yusen, Liand Liangyou, Shang, Lifeng, Liu, Qun,
Wong, and Kam-Fai. M4le: A multi-ability multi-range multi-task multi-domain long-context evaluation
benchmark for large language models. arXiv preprint arXiv:2310.19240, 2023.

Alicja Kwasniewska, Maciej Szankin, Mateusz Ozga, Jason Wolfe, Arun Das, Adam Zajac, Jacek Ruminski,
and Paul Rad. Deep learning optimization for edge devices: Analysis of training quantization parameters.
In IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, volume 1, pp. 96–101.
IEEE, 2019.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew

59

https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
http://arxiv.org/abs/2406.10247
https://arxiv.org/abs/2402.05099
https://arxiv.org/abs/2402.05099
https://arxiv.org/abs/1211.4709
http://arxiv.org/abs/2408.08454
http://arxiv.org/abs/2408.08454
https://openreview.net/forum?id=64kSvC4iPg
https://openreview.net/forum?id=64kSvC4iPg
https://aclanthology.org/2021.findings-emnlp.164

Under review as submission to TMLR

Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural Ques-
tions: A Benchmark for Question Answering Research. Transactions of the Association for Compu-
tational Linguistics, 7:453–466, November 2019. ISSN 2307-387X. doi: 10.1162/tacl_a_00276. URL
https://direct.mit.edu/tacl/article/43518.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez,
Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with page-
dattention. In Proceedings of the 29th Symposium on Operating Systems Principles, SOSP 2023, Koblenz,
Germany, October 23-26, 2023, pp. 611–626. ACM, 2023.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. Infinigen: Efficient generative inference of large
language models with dynamic kv cache management, 2024. URL https://arxiv.org/abs/2406.19707.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decod-
ing. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Dacheng Li*, Rulin Shao*, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph E. Gonzalez, Ion Stoicaand Xuezhe
Ma, , and Hao Zhang. How long can open-source llms truly promise on context length?, June 2023. URL
https://lmsys.org/blog/2023-06-29-longchat.

Haoyang Li and Lei Chen. Cache-based GNN system for dynamic graphs. In CIKM ’21: The 30th
ACM International Conference on Information and Knowledge Management, Virtual Event, Queens-
land, Australia, November 1 - 5, 2021, pp. 937–946. ACM, 2021. doi: 10.1145/3459637.3482237. URL
https://doi.org/10.1145/3459637.3482237.

Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. LooGLE: Can Long-Context Language Models
Understand Long Contexts?, 2023a. URL https://arxiv.org/abs/2311.04939.

Kunchang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, and
Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint arXiv:2305.06355, 2023b.

Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. Orca: Scalable temporal graph neural network
training with theoretical guarantees. Proc. ACM Manag. Data, 1(1):52:1–52:27, 2023c. doi: 10.1145/
3588737. URL https://doi.org/10.1145/3588737.

Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo, Surin Ahn, Chengruidong Zhang, Amir H Abdi,
Dongsheng Li, Jianfeng Gao, Yuqing Yang, et al. Scbench: A kv cache-centric analysis of long-context
methods. arXiv preprint arXiv:2412.10319, 2024a.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, Patrick
Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation. arXiv preprint
arXiv:2404.14469, 2024b.

Zongqian Li, Yinhong Liu, Yixuan Su, and Nigel Collier. Prompt compression for large language models: A
survey. arXiv preprint arXiv:2410.12388, 2024c.

Bingli Liao and Danilo Vasconcellos Vargas. Beyond KV Caching: Shared Attention for Efficient LLMs,
July 2024. URL http://arxiv.org/abs/2407.12866.

Bokai Lin, Zihao Zeng, Zipeng Xiao, Siqi Kou, Tianqi Hou, Xiaofeng Gao, Hao Zhang, and Zhijie Deng.
MatryoshkaKV: Adaptive KV Compression via Trainable Orthogonal Projection, October 2024a. URL
http://arxiv.org/abs/2410.14731.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches
Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL https:
//aclanthology.org/W04-1013.

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point quantization of deep convolutional
networks. In International conference on machine learning, pp. 2849–2858. PMLR, 2016.

60

https://direct.mit.edu/tacl/article/43518
https://arxiv.org/abs/2406.19707
https://lmsys.org/blog/2023-06-29-longchat
https://doi.org/10.1145/3459637.3482237
https://arxiv.org/abs/2311.04939
https://doi.org/10.1145/3588737
http://arxiv.org/abs/2407.12866
http://arxiv.org/abs/2410.14731
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013

Under review as submission to TMLR

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan Sun,
and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quantized llms. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. AWQ: activation-aware weight quantization for on-device
LLM compression and acceleration. In Phillip B. Gibbons, Gennady Pekhimenko, and Christopher De Sa
(eds.), Proceedings of the Seventh Annual Conference on Machine Learning and Systems, MLSys 2024,
Santa Clara, CA, USA, May 13-16, 2024. mlsys.org, 2024c. URL https://proceedings.mlsys.org/
paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han. Qserve:
W4A8KV4 quantization and system co-design for efficient LLM serving. CoRR, abs/2405.04532, 2024d.
doi: 10.48550/ARXIV.2405.04532. URL https://doi.org/10.48550/arXiv.2405.04532.

Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. Pagraph: Scaling gnn training on large
graphs via computation-aware caching. In Proceedings of the 11th ACM Symposium on Cloud Computing,
pp. 401–415, 2020.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache: KV
cache compression in depth dimension for large language models. CoRR, abs/2405.14366, 2024a. doi:
10.48550/ARXIV.2405.14366. URL https://doi.org/10.48550/arXiv.2405.14366.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chengruidong
Zhang, Bailu Ding, Kai Zhang, Chen Chen, Fan Yang, Yuqing Yang, and Lili Qiu. Retrievalattention:
Accelerating long-context LLM inference via vector retrieval. CoRR, abs/2409.10516, 2024b.

Guangda Liu, Chengwei Li, Jieru Zhao, Chenqi Zhang, and Minyi Guo. Clusterkv: Manipulating llm kv
cache in semantic space for recallable compression. arXiv preprint arXiv:2412.03213, 2024c.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Alice Oh, Tristan
Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023a. URL http://papers.nips.cc/
paper_files/paper/2023/hash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS, 2023b.

Peiyu Liu, Ze-Feng Gao, Wayne Xin Zhao, Zhi-Yuan Xie, Zhong-Yi Lu, and Ji-Rong Wen. Enabling
lightweight fine-tuning for pre-trained language model compression based on matrix product operators.
arXiv preprint arXiv:2106.02205, 2021.

Peiyu Liu, Ze-Feng Gao, Wayne Xin Zhao, Yipeng Ma, Tao Wang, and Ji-Rong Wen. Unlocking data-free low-
bit quantization with matrix decomposition for kv cache compression. arXiv preprint arXiv:2405.12591,
2024d.

Ruikang Liu, Haoli Bai, Haokun Lin, Yuening Li, Han Gao, Zhengzhuo Xu, Lu Hou, Jun Yao, and Chun
Yuan. Intactkv: Improving large language model quantization by keeping pivot tokens intact. arXiv
preprint arXiv:2403.01241, 2024e.

Tianyang Liu, Canwen Xu, and Julian McAuley. RepoBench: Benchmarking Repository-Level Code Auto-
Completion Systems, 2023c. URL https://arxiv.org/abs/2306.03091.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai Du, Jiayi Yao,
Shan Lu, Ganesh Ananthanarayanan, et al. Cachegen: Kv cache compression and streaming for fast large
language model serving. In Proceedings of the ACM SIGCOMM 2024 Conference, pp. 38–56, 2024f.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krishnamoor-
thi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant–llm quantization with learned
rotations. arXiv preprint arXiv:2405.16406, 2024g.

61

https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2405.04532
https://doi.org/10.48550/arXiv.2405.14366
http://papers.nips.cc/paper_files/paper/2023/hash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html
https://arxiv.org/abs/2306.03091

Under review as submission to TMLR

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis,
and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance hypothesis for LLM
KV cache compression at test time. In Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023d.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint arXiv:2402.02750,
2024h.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhuoshu
Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan. Deepseek-vl:
Towards real-world vision-language understanding. CoRR, abs/2403.05525, 2024. doi: 10.48550/ARXIV.
2403.05525. URL https://doi.org/10.48550/arXiv.2403.05525.

Qianli Ma, Zhen Liu, Zhenjing Zheng, Ziyang Huang, Siying Zhu, Zhongzhong Yu, and James T Kwok. A
survey on time-series pre-trained models. IEEE Transactions on Knowledge and Data Engineering, 2024a.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao, and
Rongrong Ji. Affinequant: Affine transformation quantization for large language models. arXiv preprint
arXiv:2403.12544, 2024b.

Osman Asif Malik and Stephen Becker. Low-rank tucker decomposition of large tensors using tensorsketch.
Advances in neural information processing systems, 31, 2018.

Yusuke Matsui, Yusuke Uchida, Hervé Jégou, and Shin’ichi Satoh. A survey of product quantization. ITE
Transactions on Media Technology and Applications, 6(1):2–10, 2018.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi Jin, Tianqi Chen, and Zhihao Jia.
Towards efficient generative large language model serving: A survey from algorithms to systems. arXiv
preprint arXiv:2312.15234, 2023.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz, Eneko
Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural language processing via large pre-trained
language models: A survey. ACM Comput. Surv., 56(2):30:1–30:40, 2024. doi: 10.1145/3605943. URL
https://doi.org/10.1145/3605943.

João Monteiro, Étienne Marcotte, Pierre-André Noël, Valentina Zantedeschi, David Vázquez, Nicolas Chapa-
dos, Christopher Pal, and Perouz Taslakian. XC-Cache: Cross-Attending to Cached Context for Efficient
LLM Inference. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024, pp.
15284–15302. Association for Computational Linguistics, 2024. URL https://aclanthology.org/2024.
findings-emnlp.896.

Jesse Mu, Xiang Li, and Noah D. Goodman. Learning to compress prompts with gist to-
kens. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
3d77c6dcc7f143aa2154e7f4d5e22d68-Abstract-Conference.html.

Yongyu Mu, Yuzhang Wu, Yuchun Fan, Chenglong Wang, Hengyu Li, Qiaozhi He, Murun Yang, Tong
Xiao, and Jingbo Zhu. Cross-layer Attention Sharing for Large Language Models, 2024. URL https:
//arxiv.org/abs/2408.01890.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave No Context Behind: Efficient Infinite
Context Transformers with Infini-attention, August 2024. URL http://arxiv.org/abs/2404.07143.

62

https://doi.org/10.48550/arXiv.2403.05525
https://doi.org/10.1145/3605943
https://aclanthology.org/2024.findings-emnlp.896
https://aclanthology.org/2024.findings-emnlp.896
http://papers.nips.cc/paper_files/paper/2023/hash/3d77c6dcc7f143aa2154e7f4d5e22d68-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/3d77c6dcc7f143aa2154e7f4d5e22d68-Abstract-Conference.html
https://arxiv.org/abs/2408.01890
https://arxiv.org/abs/2408.01890
http://arxiv.org/abs/2404.07143

Under review as submission to TMLR

Ramesh Nallapati, Bowen Zhou, Cicero Dos Santos, Caglar Gulcehre, and Bing Xiang. Abstractive Text Sum-
marization using Sequence-to-sequence RNNs and Beyond. In Proceedings of The 20th SIGNLL Conference
on Computational Natural Language Learning, pp. 280–290, Berlin, Germany, 2016. Association for Com-
putational Linguistics. doi: 10.18653/v1/K16-1028. URL http://aclweb.org/anthology/K16-1028.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t Give Me the Details, Just the Summary! Topic-
Aware Convolutional Neural Networks for Extreme Summarization, 2018. URL https://arxiv.org/abs/
1808.08745.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman, Nick
Barnes, and Ajmal Mian. A comprehensive overview of large language models. CoRR, abs/2307.06435,
2023. doi: 10.48550/ARXIV.2307.06435. URL https://doi.org/10.48550/arXiv.2307.06435.

Piotr Nawrot, Adrian Lancucki, Marcin Chochowski, David Tarjan, and Edoardo M. Ponti. Dynamic Memory
Compression: Retrofitting LLMs for Accelerated Inference. In Forty-First International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=tDRYrAkOB7.

Arka Pal, Deep Karkhanis, Manley Roberts, Samuel Dooley, Arvind Sundararajan, and Siddartha Naidu.
Giraffe: Adventures in expanding context lengths in llms, 2023. URL https://arxiv.org/abs/2308.
10882.

Xiurui Pan, Endian Li, Qiao Li, Shengwen Liang, Yizhou Shan, Ke Zhou, Yingwei Luo, Xiaolin Wang, and
Jie Zhang. Instinfer: In-storage attention offloading for cost-effective long-context llm inference, 2024.
URL https://arxiv.org/abs/2409.04992.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi, Nikita Nangia, Jason Phang, Angelica Chen, Vishakh
Padmakumar, Johnny Ma, Jana Thompson, He He, and Samuel R. Bowman. QuALITY: Question An-
swering with Long Input Texts, Yes!, 2021. URL https://arxiv.org/abs/2112.08608.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of
machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.), Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania,
USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:
//aclanthology.org/P02-1040.

Seungcheol Park, Jaehyeon Choi, Sojin Lee, and U Kang. A comprehensive survey of compression algorithms
for language models. arXiv preprint arXiv:2401.15347, 2024.

Badri Narayana Patro and Vijay Srinivas Agneeswaran. Mamba-360: Survey of state space models as
transformer alternative for long sequence modelling: Methods, applications, and challenges. arXiv preprint
arXiv:2404.16112, 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi Cao,
Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou, Jiaju Lin,
Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau, Krishna Sri Ipsit
Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang, Bolun Wang, Johan S. Wind,
Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng Zhou, Qinghua Zhou, Jian
Zhu, and Rui-Jie Zhu. RWKV: Reinventing RNNs for the Transformer Era, December 2023. URL http:
//arxiv.org/abs/2305.13048.

Alina Petukhova and Nuno Fachada. MN-DS: A Multilabeled News Dataset for News Articles Hierarchical
Classification. Data, 8(5):74, April 2023. ISSN 2306-5729. doi: 10.3390/data8050074. URL https:
//www.mdpi.com/2306-5729/8/5/74.

Stefan Podlipnig and Laszlo Böszörmenyi. A survey of web cache replacement strategies. ACM Computing
Surveys (CSUR), 35(4):374–398, 2003.

63

http://aclweb.org/anthology/K16-1028
https://arxiv.org/abs/1808.08745
https://arxiv.org/abs/1808.08745
https://doi.org/10.48550/arXiv.2307.06435
https://openreview.net/forum?id=tDRYrAkOB7
https://openreview.net/forum?id=tDRYrAkOB7
https://arxiv.org/abs/2308.10882
https://arxiv.org/abs/2308.10882
https://arxiv.org/abs/2409.04992
https://arxiv.org/abs/2112.08608
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
http://arxiv.org/abs/2305.13048
http://arxiv.org/abs/2305.13048
https://www.mdpi.com/2306-5729/8/5/74
https://www.mdpi.com/2306-5729/8/5/74

Under review as submission to TMLR

Matt Post. A call for clarity in reporting BLEU scores. In Ondřej Bojar, Rajen Chatterjee, Christian
Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia Specia, Marco
Turchi, and Karin Verspoor (eds.), Proceedings of the Third Conference on Machine Translation: Research
Papers, pp. 186–191, Brussels, Belgium, October 2018. Association for Computational Linguistics. doi:
10.18653/v1/W18-6319. URL https://aclanthology.org/W18-6319.

Jianing Qiu, Lin Li, Jiankai Sun, Jiachuan Peng, Peilun Shi, Ruiyang Zhang, Yinzhao Dong, Kyle Lam,
Frank P-W Lo, Bo Xiao, et al. Large ai models in health informatics: Applications, challenges, and the
future. IEEE Journal of Biomedical and Health Informatics, 2023.

Haohao Qu, Liangbo Ning, Rui An, Wenqi Fan, Tyler Derr, Hui Liu, Xin Xu, and Qing Li. A survey of
mamba. arXiv preprint arXiv:2408.01129, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, and Timothy P. Lillicrap. Com-
pressive transformers for long-range sequence modelling. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=SylKikSYDH.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for
machine comprehension of text. CoRR, abs/1606.05250, 2016a. URL http://arxiv.org/abs/1606.
05250.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392, Austin, Texas,
November 2016b. Association for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https:
//aclanthology.org/D16-1264.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr. Sparq at-
tention: Bandwidth-efficient LLM inference. In Forty-first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Tomáš Koˇ ciský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis, and
Edward Grefenstette. The NarrativeQA reading comprehension challenge. Transactions of the Association
for Computational Linguistics, TBD:TBD, 2018. URL https://TBD.

Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh Valaee. Recent advances in
recurrent neural networks. arXiv preprint arXiv:1801.01078, 2017.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in low-rank
space for kv cache compression. arXiv preprint arXiv:2408.05646, 2024.

Nils Schaetti. Sfgram: a dataset containing thousands of scienc-fiction books and novels. https://github.
com/nschaetti/EchoTorch, 2018.

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong, Mor
Geva, Jonathan Berant, and Omer Levy. SCROLLS: Standardized CompaRison Over Long Language
Sequences, 2022. URL https://arxiv.org/abs/2201.03533.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. ZeroSCROLLS: A Zero-Shot Bench-
mark for Long Text Understanding, 2023. URL https://arxiv.org/abs/2305.14196.

64

https://aclanthology.org/W18-6319
https://openreview.net/forum?id=SylKikSYDH
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://TBD
https://github.com/nschaetti/EchoTorch
https://github.com/nschaetti/EchoTorch
https://arxiv.org/abs/2201.03533
https://arxiv.org/abs/2305.14196

Under review as submission to TMLR

Rana Shahout, Cong Liang, Shiji Xin, Qianru Lao, Yong Cui, Minlan Yu, and Michael Mitzenmacher. Fast
inference for augmented large language models, 2024. URL https://arxiv.org/abs/2410.18248.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large language
models. arXiv preprint arXiv:2308.13137, 2023.

Akshat Sharma, Hangliang Ding, Jianping Li, Neel Dani, and Minjia Zhang. Minikv: Pushing the limits of
llm inference via 2-bit layer-discriminative kv cache, 2024. URL https://arxiv.org/abs/2411.18077.

Eva Sharma, Chen Li, and Lu Wang. BIGPATENT: A Large-Scale Dataset for Abstractive and Co-
herent Summarization. In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 2204–2213, Florence, Italy, 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1212. URL https://www.aclweb.org/anthology/P19-1212.

Noam Shazeer. Fast Transformer Decoding: One Write-Head is All You Need, November 2019. URL
http://arxiv.org/abs/1911.02150.

Ao Shen, Zhiyao Li, and Mingyu Gao. Fastswitch: Optimizing context switching efficiency in fairness-aware
large language model serving, 2024. URL https://arxiv.org/abs/2411.18424.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of large language
models with a single GPU. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp.
31094–31116. PMLR, 2023. URL https://proceedings.mlr.press/v202/sheng23a.html.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review on methods
to optimize llm’s kv-cache consumption. arXiv preprint arXiv:2407.18003, 2024.

Vasudev Shyam, Jonathan Pilault, Emily Shepperd, Quentin Anthony, and Beren Millidge. Tree attention:
Topology-aware decoding for long-context attention on gpu clusters, 2024. URL https://arxiv.org/
abs/2408.04093.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for sequence
modeling. arXiv preprint arXiv:2208.04933, 2022.

Dingjie Song, Shunian Chen, Guiming Hardy Chen, Fei Yu, Xiang Wan, and Benyou Wang. Milebench:
Benchmarking mllms in long context. arXiv preprint arXiv:2404.18532, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie Chi,
and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm inference. arXiv
preprint arXiv:2410.21465, 2024a.

Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large language models.
CoRR, abs/2402.17762, 2024b. doi: 10.48550/ARXIV.2402.17762. URL https://doi.org/10.48550/
arXiv.2402.17762.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. Retentive Network: A Successor to Transformer for Large Language Models, August 2023. URL
http://arxiv.org/abs/2307.08621.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang,
and Furu Wei. You Only Cache Once: Decoder-Decoder Architectures for Language Models, May 2024c.
URL http://arxiv.org/abs/2405.05254.

65

https://arxiv.org/abs/2410.18248
https://arxiv.org/abs/2411.18077
https://www.aclweb.org/anthology/P19-1212
http://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2411.18424
https://proceedings.mlr.press/v202/sheng23a.html
https://arxiv.org/abs/2408.04093
https://arxiv.org/abs/2408.04093
https://doi.org/10.48550/arXiv.2402.17762
https://doi.org/10.48550/arXiv.2402.17762
http://arxiv.org/abs/2307.08621
http://arxiv.org/abs/2405.05254

Under review as submission to TMLR

Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi Yu, Lu Hou,
Chun Yuan, et al. Flatquant: Flatness matters for llm quantization. arXiv preprint arXiv:2410.09426,
2024d.

Zhaoxuan Tan and Meng Jiang. User modeling in the era of large language models: Current research and
future directions. arXiv preprint arXiv:2312.11518, 2023.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang. Razorattention:
Efficient KV cache compression through retrieval heads. CoRR, abs/2407.15891, 2024a.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. QUEST: query-aware
sparsity for efficient long-context LLM inference. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024b.

Yehui Tang, Yunhe Wang, Jianyuan Guo, Zhijun Tu, Kai Han, Hailin Hu, and Dacheng Tao. A survey on
transformer compression. arXiv preprint arXiv:2402.05964, 2024c.

Qian Tao, Wenyuan Yu, and Jingren Zhou. Asymkv: Enabling 1-bit quantization of kv cache with layer-wise
asymmetric quantization configurations. arXiv preprint arXiv:2410.13212, 2024.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. Long Range Arena: A Benchmark for Efficient Transformers, 2020.
URL https://arxiv.org/abs/2011.04006.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models. CoRR,
abs/2302.13971, 2023. doi: 10.48550/ARXIV.2302.13971. URL https://doi.org/10.48550/arXiv.
2302.13971.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multihop Ques-
tions via Single-hop Question Composition, 2021. URL https://arxiv.org/abs/2108.00573.

Bo-Hsiang Tseng, Sheng-Syun Shen, Hung-Yi Lee, and Lin-Shan Lee. Towards Machine Comprehension of
Spoken Content: Initial TOEFL Listening Comprehension Test by Machine, August 2016. URL http:
//arxiv.org/abs/1608.06378. arXiv:1608.06378.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Zhongnan Qu, Shen Yan, Yi Zhu, Quanlu
Zhang, Mosharaf Chowdhury, et al. Efficient large language models: A survey. arXiv preprint
arXiv:2312.03863, 1, 2023.

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan Tao, Zhihong Zhu, Xin Wang, Siqi Luo, Jing Xiong,
and Mi Zhang. D2O: dynamic discriminative operations for efficient generative inference of large language
models. CoRR, abs/2406.13035, 2024a. doi: 10.48550/ARXIV.2406.13035. URL https://doi.org/10.
48550/arXiv.2406.13035.

Zhongwei Wan, Ziang Wu, Che Liu, Jinfa Huang, Zhihong Zhu, Peng Jin, Longyue Wang, and Li Yuan.
LOOK-M: look-once optimization in KV cache for efficient multimodal long-context inference. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024, pp. 4065–4078. Association for
Computational Linguistics, 2024b. URL https://aclanthology.org/2024.findings-emnlp.235.

Alex Wang, Richard Yuanzhe Pang, Angelica Chen, Jason Phang, and Samuel R. Bowman. SQuALITY:
Building a long-document summarization dataset the hard way. arXiv preprint 2205.11465, 2022a.

66

https://arxiv.org/abs/2011.04006
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://arxiv.org/abs/2108.00573
http://arxiv.org/abs/1608.06378
http://arxiv.org/abs/1608.06378
https://doi.org/10.48550/arXiv.2406.13035
https://doi.org/10.48550/arXiv.2406.13035
https://aclanthology.org/2024.findings-emnlp.235

Under review as submission to TMLR

Ao Wang, Hui Chen, Jianchao Tan, Kefeng Zhang, Xunliang Cai, Zijia Lin, Jungong Han, and Guiguang
Ding. Prefixkv: Adaptive prefix kv cache is what vision instruction-following models need for efficient
generation, 2024a. URL https://arxiv.org/abs/2412.03409.

Junxiong Wang, Jing Nathan Yan, Albert Gu, and Alexander M Rush. Pretraining without attention. arXiv
preprint arXiv:2212.10544, 2022b.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear
complexity. arXiv preprint arXiv:2006.04768, 2020.

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai, and
Xiaofei He. Model compression and efficient inference for large language models: A survey. arXiv preprint
arXiv:2402.09748, 2024b.

Yumeng Wang and Zhenyang Xiao. LoMA: Lossless Compressed Memory Attention, February 2024. URL
http://arxiv.org/abs/2401.09486.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adaptive KV
cache merging for llms on long-context tasks. CoRR, abs/2407.08454, 2024c. doi: 10.48550/ARXIV.2407.
08454. URL https://doi.org/10.48550/arXiv.2407.08454.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei Yu, and
Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language models. Advances
in Neural Information Processing Systems, 35:17402–17414, 2022.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and Xianglong Liu.
Outlier suppression+: Accurate quantization of large language models by equivalent and optimal shifting
and scaling. arXiv preprint arXiv:2304.09145, 2023.

Bingyang Wu, Yinmin Zhong, Zili Zhang, Shengyu Liu, Fangyue Liu, Yuanhang Sun, Gang Huang, Xuanzhe
Liu, and Xin Jin. Fast distributed inference serving for large language models, 2024a. URL https:
//arxiv.org/abs/2305.05920.

Han Wu, Mingjie Zhan, Haochen Tan, Zhaohui Hou, Ding Liang, and Linqi Song. VCSUM: A Versatile
Chinese Meeting Summarization Dataset, 2023a. URL https://arxiv.org/abs/2305.05280.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quantization for
deep learning inference: Principles and empirical evaluation. arXiv preprint arXiv:2004.09602, 2020.

Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context inter-
leaved video-language understanding, 2024b. URL https://arxiv.org/abs/2407.15754.

Haoyi Wu and Kewei Tu. Layer-Condensed KV Cache for Efficient Inference of Large Language Models.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pp. 11175–11188. Association for Computational Linguistics, 2024. doi: 10.18653/
V1/2024.ACL-LONG.602. URL https://doi.org/10.18653/v1/2024.acl-long.602.

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and Philip S. Yu. Multimodal large language
models: A survey. In Jingrui He, Themis Palpanas, Xiaohua Hu, Alfredo Cuzzocrea, Dejing Dou, Dominik
Slezak, Wei Wang, Aleksandra Gruca, Jerry Chun-Wei Lin, and Rakesh Agrawal (eds.), IEEE International
Conference on Big Data, BigData 2023, Sorrento, Italy, December 15-18, 2023, pp. 2247–2256. IEEE,
2023b. doi: 10.1109/BIGDATA59044.2023.10386743. URL https://doi.org/10.1109/BigData59044.
2023.10386743.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu,
Hengshu Zhu, Qi Liu, et al. A survey on large language models for recommendation. World Wide Web,
27(5):60, 2024c.

67

https://arxiv.org/abs/2412.03409
http://arxiv.org/abs/2401.09486
https://doi.org/10.48550/arXiv.2407.08454
https://arxiv.org/abs/2305.05920
https://arxiv.org/abs/2305.05920
https://arxiv.org/abs/2305.05280
https://arxiv.org/abs/2407.15754
https://doi.org/10.18653/v1/2024.acl-long.602
https://doi.org/10.1109/BigData59044.2023.10386743
https://doi.org/10.1109/BigData59044.2023.10386743

Under review as submission to TMLR

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanistically
explains long-context factuality. CoRR, abs/2404.15574, 2024d.

You Wu, Haoyi Wu, and Kewei Tu. A Systematic Study of Cross-Layer KV Sharing for Efficient LLM
Inference, October 2024e. URL http://arxiv.org/abs/2410.14442.

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit in-
tegers. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
99fc8bc48b917c301a80cb74d91c0c06-Abstract-Conference.html.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-
fang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of speculative
decoding. arXiv preprint arXiv:2401.07851, 2024.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, and
Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an efficient context memory,
2024a. URL https://arxiv.org/abs/2402.04617.

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Ac-
curate and efficient post-training quantization for large language models. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Interna-
tional Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol-
ume 202 of Proceedings of Machine Learning Research, pp. 38087–38099. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/xiao23c.html.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and Song
Han. Duoattention: Efficient long-context LLM inference with retrieval and streaming heads. CoRR,
abs/2410.10819, 2024b.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language
models with attention sinks. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024c. URL https://openreview.net/forum?
id=NG7sS51zVF.

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-answering
to explaining temporal actions. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 9777–9786, June 2021.

Yi Xiong, Hao Wu, Changxu Shao, Ziqing Wang, Rui Zhang, Yuhong Guo, Junping Zhao, Ke Zhang, and
Zhenxuan Pan. Layerkv: Optimizing large language model serving with layer-wise kv cache management,
2024. URL https://arxiv.org/abs/2410.00428.

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and Yueting Zhuang. Video
question answering via gradually refined attention over appearance and motion. In ACM Multimedia,
2017.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng,
Yang Wang, and Enhong Chen. Large language models for generative information extraction: A survey.
Frontiers of Computer Science, 18(6):186357, 2024a.

Fangyuan Xu, Tanya Goyal, and Eunsol Choi. Recycled attention: Efficient inference for long-context
language models, 2024b. URL https://arxiv.org/abs/2411.05787.

Jiale Xu, Rui Zhang, Cong Guo, Weiming Hu, Zihan Liu, Feiyang Wu, Yu Feng, Shixuan Sun, Changxu
Shao, Yuhong Guo, Junping Zhao, Ke Zhang, Minyi Guo, and Jingwen Leng. vtensor: Flexible virtual
tensor management for efficient llm serving, 2024c. URL https://arxiv.org/abs/2407.15309.

68

http://arxiv.org/abs/2410.14442
http://papers.nips.cc/paper_files/paper/2023/hash/99fc8bc48b917c301a80cb74d91c0c06-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/99fc8bc48b917c301a80cb74d91c0c06-Abstract-Conference.html
https://arxiv.org/abs/2402.04617
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://arxiv.org/abs/2410.00428
https://arxiv.org/abs/2411.05787
https://arxiv.org/abs/2407.15309

Under review as submission to TMLR

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient fine-
tuning methods for pretrained language models: A critical review and assessment. arXiv preprint
arXiv:2312.12148, 2023.

Rui Xu, Shu Yang, Yihui Wang, Bo Du, and Hao Chen. A survey on vision mamba: Models, applications
and challenges. arXiv preprint arXiv:2404.18861, 2024d.

Xin Xu and Zhouchen Lin. MixCon: A Hybrid Architecture for Efficient and Adaptive Sequence Modeling.
In Ulle Endriss, Francisco S. Melo, Kerstin Bach, Alberto Bugarín-Diz, José M. Alonso-Moral, Senén
Barro, and Fredrik Heintz (eds.), Frontiers in Artificial Intelligence and Applications. IOS Press, October
2024. ISBN 978-1-64368-548-9. doi: 10.3233/FAIA240593. URL https://ebooks.iospress.nl/doi/10.
3233/FAIA240593.

Xiongxiao Xu, Yueqing Liang, Baixiang Huang, Zhiling Lan, and Kai Shu. Integrating mamba and trans-
former for long-short range time series forecasting. arXiv preprint arXiv:2404.14757, 2024e.

Ruiqing Yan, Linghan Zheng, Xingbo Du, Han Zou, Yufeng Guo, and Jianfei Yang. RecurFormer: Not All
Transformer Heads Need Self-Attention, October 2024. URL http://arxiv.org/abs/2410.12850.

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyramid KV
cache compression for high-throughput LLM inference. In ACL, pp. 3258–3270. Association for Compu-
tational Linguistics, 2024a.

Hua Yang, Duohai Li, and Shiman Li. MCSD: An Efficient Language Model with Diverse Fusion, July
2024b. URL http://arxiv.org/abs/2406.12230.

June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang, Se Jung
Kwon, and Dongsoo Lee. No token left behind: Reliable kv cache compression via importance-aware
mixed precision quantization. arXiv preprint arXiv:2402.18096, 2024c.

Yifei Yang, Zouying Cao, Qiguang Chen, Libo Qin, Dongjie Yang, Hai Zhao, and Zhi Chen. Kvsharer:
Efficient inference via layer-wise dissimilar KV cache sharing. CoRR, abs/2410.18517, 2024d. doi: 10.
48550/ARXIV.2410.18517. URL https://doi.org/10.48550/arXiv.2410.18517.

Zhen Yang, J. N. Han, Kan Wu, Ruobing Xie, An Wang, Xingwu Sun, and Zhanhui Kang. Lossless KV
Cache Compression to 2%, October 2024e. URL http://arxiv.org/abs/2410.15252.

Zhenjie Yang, Xiaosong Jia, Hongyang Li, and Junchi Yan. Llm4drive: A survey of large language models
for autonomous driving. In NeurIPS 2024 Workshop on Open-World Agents, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering,
September 2018. URL http://arxiv.org/abs/1809.09600. arXiv:1809.09600.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan Lu, and
Junchen Jiang. Cacheblend: Fast large language model serving with cached knowledge fusion. arXiv
preprint arXiv:2405.16444, 2024a.

Jinwei Yao, Kaiqi Chen, Kexun Zhang, Jiaxuan You, Binhang Yuan, Zeke Wang, and Tao Lin. Deft:
Decoding with flash tree-attention for efficient tree-structured llm inference, 2024b. URL https://arxiv.
org/abs/2404.00242.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He. Zero-
quant: Efficient and affordable post-training quantization for large-scale transformers. Advances in Neural
Information Processing Systems, 35:27168–27183, 2022.

Lu Ye, Ze Tao, Yong Huang, and Yang Li. Chunkattention: Efficient self-attention with prefix-aware kv
cache and two-phase partition, 2024. URL https://arxiv.org/abs/2402.15220.

69

https://ebooks.iospress.nl/doi/10.3233/FAIA240593
https://ebooks.iospress.nl/doi/10.3233/FAIA240593
http://arxiv.org/abs/2410.12850
http://arxiv.org/abs/2406.12230
https://doi.org/10.48550/arXiv.2410.18517
http://arxiv.org/abs/2410.15252
http://arxiv.org/abs/1809.09600
https://arxiv.org/abs/2404.00242
https://arxiv.org/abs/2404.00242
https://arxiv.org/abs/2402.15220

Under review as submission to TMLR

Howard Yen, Tianyu Gao, and Danqi Chen. Long-Context Language Modeling with Parallel Context En-
coding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pp. 2588–2610. Association for Computational Linguistics, 2024. doi:
10.18653/V1/2024.ACL-LONG.142. URL https://doi.org/10.18653/v1/2024.acl-long.142.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for transformer-based generative models. In Marcos K. Aguilera and Hakim Weatherspoon
(eds.), 16th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2022, Carlsbad,
CA, USA, July 11-13, 2022, pp. 521–538. USENIX Association, 2022. URL https://www.usenix.org/
conference/osdi22/presentation/yu.

Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu. Effectively compress kv heads for llm. arXiv
preprint arXiv:2406.07056, 2024.

Lingfan Yu and Jinyang Li. Stateful large language model serving with pensieve. CoRR, abs/2312.05516,
2023. doi: 10.48550/ARXIV.2312.05516. URL https://doi.org/10.48550/arXiv.2312.05516.

Jiayi Yuan, Hongyi Liu, Shaochen Zhong, Yu-Neng Chuang, Songchen Li, Guanchu Wang, Duy Le, Hongye
Jin, Vipin Chaudhary, Zhaozhuo Xu, et al. Kv cache compression, but what must we give in return? a
comprehensive benchmark of long context capable approaches. arXiv preprint arXiv:2407.01527, 2024.

Weizhe Yuan, Pengfei Liu, and Graham Neubig. Can We Automate Scientific Reviewing?, 2021. URL
https://arxiv.org/abs/2102.00176.

Yuanhan Zhang Yuan Liu, Haodong Duan et al. Mmbench: Is your multi-modal model an all-around player?
arXiv:2307.06281, 2023.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant: Quan-
tizing weight and key/value cache for large language models gains more. arXiv preprint arXiv:2402.12065,
2024.

Amir Zandieh, Majid Daliri, and Insu Han. Qjl: 1-bit quantized jl transform for kv cache quantization with
zero overhead. arXiv preprint arXiv:2406.03482, 2024.

etc Zefan-Cai. Awesome-llm-kv-cache: A curated list of awesome llm inference papers with codes,
2024. URL https://github.com/Zefan-Cai/Awesome-LLM-KV-Cache. Open-source software available
at https://github.com/Zefan-Cai/Awesome-LLM-KV-Cache.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi
Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan Liu,
Peng Zhang, Yuxiao Dong, and Jie Tang. GLM-130B: an open bilingual pre-trained model. In The
Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023. URL https://openreview.net/forum?id=-Aw0rrrPUF.

Zihao Zeng, Bokai Lin, Tianqi Hou, Hao Zhang, and Zhijie Deng. In-context kv-cache eviction for llms via
attention-gate. CoRR, abs/2410.12876, 2024.

Duzhen Zhang, Yahan Yu, Jiahua Dong, Chenxing Li, Dan Su, Chenhui Chu, and Dong Yu. Mm-llms: Recent
advances in multimodal large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual
meeting, August 11-16, 2024, pp. 12401–12430. Association for Computational Linguistics, 2024a. doi: 10.
18653/V1/2024.FINDINGS-ACL.738. URL https://doi.org/10.18653/v1/2024.findings-acl.738.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen, and
Bin Cui. Pqcache: Product quantization-based kvcache for long context llm inference. arXiv preprint
arXiv:2407.12820, 2024b.

70

https://doi.org/10.18653/v1/2024.acl-long.142
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://doi.org/10.48550/arXiv.2312.05516
https://arxiv.org/abs/2102.00176
https://github.com/Zefan-Cai/Awesome-LLM-KV-Cache
https://openreview.net/forum?id=-Aw0rrrPUF
https://doi.org/10.18653/v1/2024.findings-acl.738

Under review as submission to TMLR

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks: A survey.
IEEE Trans. Pattern Anal. Mach. Intell., 46(8):5625–5644, 2024c. doi: 10.1109/TPAMI.2024.3369699.
URL https://doi.org/10.1109/TPAMI.2024.3369699.

Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuohang Wang, Hao Cheng, Chao Zhang, and Yelong Shen.
Lorc: Low-rank compression for llms kv cache with a progressive compression strategy. arXiv preprint
arXiv:2410.03111, 2024d.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating text
generation with bert, 2020. URL https://arxiv.org/abs/1904.09675.

Xuan Zhang, Cunxiao Du, Chao Du, Tianyu Pang, Wei Gao, and Min Lin. Simlayerkv: A simple framework
for layer-level KV cache reduction. CoRR, abs/2410.13846, 2024e.

Yanqi Zhang, Yuwei Hu, Runyuan Zhao, John C. S. Lui, and Haibo Chen. Unifying kv cache compression
for large language models with leankv, 2024f. URL https://arxiv.org/abs/2412.03131.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong Ji.
Cam: Cache merging for memory-efficient llms inference. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024g. URL
https://openreview.net/forum?id=LCTmppB165.

Zeyu Zhang and Haiying Shen. Zero-delay qkv compression for mitigating kv cache and network bottlenecks
in llm inference. arXiv preprint arXiv:2408.04107, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information Processing Systems, 36:34661–34710, 2023a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen. H2O: heavy-hitter oracle for
efficient generative inference of large language models. In Alice Oh, Tristan Naumann, Amir Globerson,
Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html.

Junqi Zhao, Zhijin Fang, Shu Li, Shaohui Yang, and Shichao He. Buzz: Beehive-structured sparse kv cache
with segmented heavy hitters for efficient llm inference, 2024a. URL https://arxiv.org/abs/2410.
23079.

Liang Zhao, Xiaocheng Feng, Xiachong Feng, Bin Qin, and Ting Liu. Length extrapolation of transformers:
A survey from the perspective of position encoding. arXiv preprint arXiv:2312.17044, 2023.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and accurate llm serving.
Proceedings of Machine Learning and Systems, 6:196–209, 2024b.

Ying Zhao and Jinjun Chen. A survey on differential privacy for unstructured data content. ACM Computing
Surveys (CSUR), 54(10s):1–28, 2022.

Youpeng Zhao, Di Wu, and Jun Wang. Alisa: Accelerating large language model inference via sparsity-aware
kv caching, 2024c. URL https://arxiv.org/abs/2403.17312.

Jianqiao Zheng, Sameera Ramasinghe, and Simon Lucey. Rethinking positional encoding. arXiv preprint
arXiv:2107.02561, 2021.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang: Efficient execution of
structured language model programs, 2024a. URL https://arxiv.org/abs/2312.07104.

71

https://doi.org/10.1109/TPAMI.2024.3369699
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2412.03131
https://openreview.net/forum?id=LCTmppB165
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
https://arxiv.org/abs/2410.23079
https://arxiv.org/abs/2410.23079
https://arxiv.org/abs/2403.17312
https://arxiv.org/abs/2312.07104

Under review as submission to TMLR

Zhen Zheng, Xin Ji, Taosong Fang, Fanghao Zhou, Chuanjie Liu, and Gang Peng. Batchllm: Optimizing
large batched llm inference with global prefix sharing and throughput-oriented token batching, 2024b.
URL https://arxiv.org/abs/2412.03594.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir Radev. QMSum: A New Benchmark for Query-based
Multi-domain Meeting Summarization, 2021. URL https://arxiv.org/abs/2104.05938.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.
Distserve: Disaggregating prefill and decoding for goodput-optimized large language model serving. In
Ada Gavrilovska and Douglas B. Terry (eds.), 18th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2024, Santa Clara, CA, USA, July 10-12, 2024, pp. 193–210. USENIX Association,
2024a. URL https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin.

Yiwu Zhong, Zhuoming Liu, Yin Li, and Liwei Wang. Aim: Adaptive inference of multi-modal llms via
token merging and pruning. arXiv preprint arXiv:2412.03248, 2024b.

Daquan Zhou, Kai Wang, Jianyang Gu, Xiangyu Peng, Dongze Lian, Yifan Zhang, Yang You, and Jiashi
Feng. Dataset quantization. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 17205–17216, 2023a.

Hongjian Zhou, Fenglin Liu, Boyang Gu, Xinyu Zou, Jinfa Huang, Jinge Wu, Yiru Li, Sam S Chen, Peilin
Zhou, Junling Liu, et al. A survey of large language models in medicine: Progress, application, and
challenge. arXiv preprint arXiv:2311.05112, 2023b.

Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang, Tiejun
Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video understanding.
arXiv preprint arXiv:2406.04264, 2024a.

Pan Zhou, Canyi Lu, Zhouchen Lin, and Chao Zhang. Tensor factorization for low-rank tensor completion.
IEEE Transactions on Image Processing, 27(3):1152–1163, 2017.

Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Cheung, and Pascal Frossard. Adaptive quantization
for deep neural network. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Zhanchao Zhou, Tianyi Wu, Zhiyun Jiang, and Zhenzhong Lan. Value Residual Learning For Alleviating
Attention Concentration In Transformers, December 2024b. URL http://arxiv.org/abs/2410.17897.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv preprint
arXiv:2404.14294, 2024c.

Junnan Zhu, Qian Wang, Yining Wang, Yu Zhou, Jiajun Zhang, Shaonan Wang, and Chengqing Zong. NCLS:
Neural Cross-Lingual Summarization. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 3052–3062, Hong Kong, China, 2019. Association for Computational Linguistics.
doi: 10.18653/v1/D19-1302. URL https://www.aclweb.org/anthology/D19-1302.

Xiaodan Zhu. Natural Language Processing and Chinese Computing: 9th CCF International Conference,
NLPCC 2020, Zhengzhou, China, October 14-18, 2020, Proceedings, Part I. Number v.12430 in Lecture
Notes in Computer Science Ser. Springer International Publishing AG, Cham, 2020. ISBN 9783030604509.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large
language models. arXiv preprint arXiv:2308.07633, 2023.

Bohan Zhuang, Jing Liu, Zizheng Pan, Haoyu He, Yuetian Weng, and Chunhua Shen. A survey on efficient
training of transformers. arXiv preprint arXiv:2302.01107, 2023.

Zayd Muhammad Kawakibi Zuhri, Muhammad Farid Adilazuarda, Ayu Purwarianti, and Alham Fikri Aji.
MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding, October 2024. URL
http://arxiv.org/abs/2406.09297.

72

https://arxiv.org/abs/2412.03594
https://arxiv.org/abs/2104.05938
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
http://arxiv.org/abs/2410.17897
https://www.aclweb.org/anthology/D19-1302
http://arxiv.org/abs/2406.09297

	Introduction
	Preliminary
	Transformer Architecture
	Transformer Decoder
	Auto-regressive Generation Mechanism

	Key-Value Cache in Transformer Models
	Auto-regressive Generation with KV Cache
	Time and Space Complexity Analysis

	Challenges in KV Cache Management

	Taxonomy
	Token-level Optimization
	KV Cache Selection
	Static KV Cache Selection
	Dynamic Selection with Permanent Eviction
	Dynamic Selection without Permanent Eviction
	Summary and Future Directions

	KV Cache Budget Allocation
	Layer-wise Budget Allocation
	Head-wise Budget Allocation
	Summary and Future Directions

	KV Cache Merging
	Intra-layer Merging
	Cross-layer Merging
	Summary and Future Directions

	KV Cache Quantization
	Fixed-precision Quantization
	Mixed-precision quantization
	Outlier Redistribution
	Summary and Future Directions

	KV Cache Low-rank Decomposition
	Singular Value Decomposition
	Tensor Decomposition
	Learned Low-rank Approximation
	Summary and Future Directions

	Model-level Optimization
	Attention Grouping and Sharing
	Intra-layer Grouping
	Cross-layer Sharing
	Summary and Future Directions

	Architecture Alteration
	Enhanced Attention
	Augmented Architecture
	Summary and Future Directions

	Non-Transformer Architecture
	Adaptive Sequence Processing Architectures
	Hybrid Architecture
	Summary and Future Directions

	System-level Optimization
	Memory Management
	Architectural Design
	Prefix-aware Design
	Summary and Future Directions

	Scheduling
	Prefix-aware Scheduling
	Preemptive and Fairness-oriented scheduling
	Layer-specific and Hierarchical Scheduling
	Summary and Future Directions

	Hardware-aware Design
	Single/Multi-GPU Design
	I/O-based Design
	Heterogeneous Design
	Solid-state Disk (SSD)-based Design
	Summary and Future Directions

	Text and Multi-modal Datasets
	Text Dataset
	Question Answering (QA) Task
	Text Summarization Task
	Text Reasoning Task
	Text Retrieval Task
	Text Generation Task
	Aggregation Task
	Evaluation Metric for Text Datasets

	Multimodal Datasets and Evaluation Metric
	Multimodal Datasets
	Evaluation Metric for Multimodal Datasets

	Conclusion

