

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MINIMALIST EXPLANATION GENERATION AND CIRCUIT DISCOVERY

Anonymous authors

Paper under double-blind review

ABSTRACT

Machine learning models, by virtue of training, learn a large repertoire of decision rules for any given input, and any one of these may suffice to justify a prediction. However, in high-dimensional input spaces, such rules are difficult to identify and interpret. In this paper, we introduce an activation-matching-based approach to generate minimal and faithful explanations for the decisions of pre-trained image classifiers. We aim to identify minimal explanations that not only preserve the model’s decision but are also concise and human-readable. To achieve this, we train a lightweight autoencoder to produce binary masks that learns to highlight the decision-wise critical regions of an image while discarding irrelevant background. The training objective integrates activation alignment across multiple layers, consistency at the output label, priors that encourage sparsity, and compactness, along with a robustness constraint that enforces faithfulness. The minimal explanations so generated also lead us to mechanistically interpreting the model internals. In this regard we also introduce a circuit readout procedure wherein using the explanation’s forward pass and gradients, we identify active channels and construct a channel-level graph, scoring inter-layer edges by ingress weight magnitude times source activation and feature-to-class links by classifier weight magnitude times feature activation. Together, these contributions provide a practical bridge between minimal input-level explanations and a mechanistic understanding of the internal computations driving model decisions.

1 INTRODUCTION

The ability to generate explanations is key to making the decisions of modern machine learning models transparent and trustworthy. While deep neural networks achieve impressive predictive accuracy, their outputs arise from complex, high-dimensional computations that are not directly interpretable. Such models learn a wide range of decision rules during training, and any one of these may suffice for a given input. Without explanations, however, it is difficult to determine which rule was used or which aspects of the input were responsible for the prediction. The opacity of such processes means that the precise basis of a decision often remains hidden, limiting transparency and accountability.

A natural way to make explanations more interpretable is to focus on minimality. By isolating the smallest subset of input features sufficient to support a prediction, one obtains an explanation that is both faithful to the model’s internal computation and human-readable. Minimal explanations highlight a compact subset of pixels in the case of images, or features in general, that directly support the output. Such explanations serve not only as cognitive aids for human understanding but also as a practical diagnostic tool: they can explain counterfactual behaviors, highlight shortcut learning, and reveal when the model relies on inappropriate evidence. This is critical in safety-sensitive applications such as medical diagnostics, autonomous driving, and security, where knowing the precise basis for a decision can determine whether the system is trustworthy.

In this work, we propose an *activation-matching* based approach that, given an input image and a frozen pretrained classifier, trains a lightweight autoencoder to generate a binary mask selecting the minimal set of pixels needed to preserve the model’s prediction and internal activations. We further leverage these explanations to uncover concise, channel-level views of the model’s computation, revealing sparse, data-dependent subcircuits sufficient for the decision. Beyond the forward activation pathways, we also couple this analysis with gradient information, tracing back the most

054 prominent gradients from the output class logit toward earlier layers and the input. This dual per-
 055 perspective—forward activations and backward gradients—enables us to connect minimal input-level
 056 explanations with both mechanistic insight into signal flow and attribution of decision-critical path-
 057 ways, yielding a more comprehensive understanding of how deep networks arrive at their predic-
 058 tions.

061 2 PRIOR WORK

063 2.1 MODEL EXPLAINABILITY VIA INVERSION

065 Inversion techniques aim to reconstruct input patterns that trigger specific outputs or internal activations
 066 in a neural network. Unlike explanations, which are inherently tied to a particular input and its
 067 corresponding decision, inversion seeks to synthesize representative stimuli that reveal what a model
 068 has learned in aggregate. Early work on multilayer perceptrons applied gradient-based inversion to
 069 visualize decision boundaries, though the resulting reconstructions were often noisy or adversarial-
 070 like Kindermann & Linden (1990); Jensen et al. (1999); Saad & Wunsch (2007). To address these
 071 limitations, researchers explored evolutionary search and constrained optimization Wong (2017).
 072 Subsequent advances incorporated prior-based regularization, such as smoothness constraints or pre-
 073 trained generative models, which enhanced both realism and interpretability of reconstructions Ma-
 074 hendran & Vedaldi (2014); Yosinski et al. (2015); Mordvintsev et al. (2015); Nguyen et al. (2016;
 075 2017). More recently, methods have emerged that stabilize inversion by learning surrogate loss
 076 landscapes Liu et al. (2022), while generative approaches conditionally reconstruct inputs likely to
 077 produce a given output Suhail & Sethi (2024). Alternative formulations as in Suhail (2024) encode
 078 classifiers into CNF constraints, framing inversion as a deterministic satisfiability problem.

079 2.2 INPUT-LEVEL EXPLAINABILITY

080 While inversion focuses on global characterizations of model behavior, input-level explanation
 081 methods aim to provide faithful rationales for specific predictions. Explainable AI has thus devel-
 082 oped into a central research field Ali et al. (2023); Hsieh et al. (2024); Gilpin et al. (2018), driven by
 083 the demand for trust, transparency, and accountability in high-stakes applications. Among post-hoc
 084 attribution methods, LIME builds local surrogate models to approximate decision boundaries Hamil-
 085 ton et al. (2022), whereas Grad-CAM highlights salient image regions through gradient-weighted
 086 activations Selvaraju et al. (2019). More recent advances emphasize concept-based explanations
 087 that map predictions to semantically interpretable parts Lee et al. (2025). Evaluating such meth-
 088 ods remains an open challenge: surveys have highlighted the importance of rigorous metrics com-
 089 bining fidelity, stability, and human-centered evaluation Zhou et al. (2021). Explanations are also
 090 being embedded into interactive systems, allowing users to guide, debug, or refine models through
 091 explanation-driven feedback Teso et al. (2022). Beyond heuristics, Ignatiev et al. (2018) also ex-
 092 plore abductive reasoning approaches that provide subset- or cardinality-minimal explanations with
 093 formal guarantees.

094 2.3 MECHANISTIC INTERPRETABILITY OF CIRCUITS

095 Mechanistic interpretability investigates the *circuits* within a model—sparse subnetworks of neurons
 096 and connections that implement particular algorithms. Minimal explanations can reveal the smallest
 097 sufficient evidence for a prediction, offering insights into how internal components drive decisions.
 098 Early studies of circuits relied on manual inspection, limiting scalability. Recent approaches auto-
 099 mate this process: ACDC Conmy et al. (2023) introduced a systematic framework that rediscovered
 100 known transformer circuits through activation patching. Building on this, Rajaram et al. (2024)
 101 extended circuit discovery to vision models, extracting subnetworks responsible for concept recog-
 102 nition and demonstrating that targeted edits could alter predictions and enhance robustness. Further
 103 work Nainani et al. (2024) explored how circuits generalize across diverse inputs, revealing that
 104 networks often reuse a shared set of components while flexibly adapting their connectivity—a man-
 105 ifestation of representational superposition.

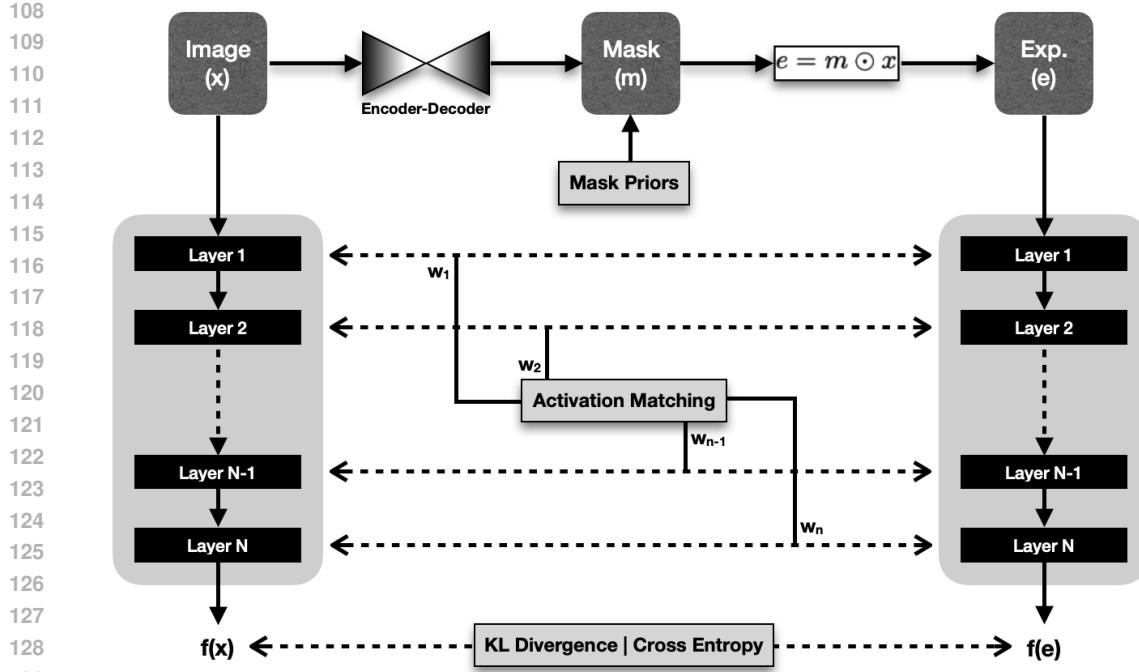


Figure 1: Schematic Approach to generating mask 'm' and explanation 'e' for an image 'x' by matching activations across different layers of a frozen classifier 'f'.

3 METHODOLOGY

We aim to generate minimal, faithful explanations for a frozen classifier f on any input image x , and to use these explanations to expose compact internal circuits that drive its decisions. Our framework has two stages: (i) explanation generation via activation alignment and sparsity-inducing priors as shown in Figure 1, and (ii) circuit discovery from explanation-induced activations and gradients.

3.1 EXPLANATION GENERATION

In order to generate explanations we train a lightweight autoencoder to produce a binary mask m , defining the explanation as $e = m \odot x$, which suppresses irrelevant regions. The autoencoder is optimized with a composite objective whose terms are weighted to balance fidelity, sparsity, smoothness, and robustness.

3.1.1 ACTIVATION MATCHING AND OUTPUT FIDELITY

Weighted activation matching

$$\mathcal{L}_{act} = \sum_{\ell} \alpha_{\ell} d(\phi_{\ell}(x), \phi_{\ell}(e))$$

This loss aligns post-ReLU features ϕ_{ℓ} of x and e across layers, with per-layer weights α_{ℓ} emphasizing deeper or shallower representations as needed. The exact form of the distance function $d(\cdot, \cdot)$ depends on the layer type: for convolutional feature maps, mean squared error (MSE) is appropriate, while for linear layers, cosine similarity provides a natural choice. Together, these ensure that the explanation follows the same internal computation trajectory as the original input.

Cross-entropy loss

$$\mathcal{L}_{CE} = -\log p_{f(e)}(y)$$

Cross Entropy is used to preserves the top-1 label y predicted from x , ensuring that the explanation remains decisional-equivalent to the original image. It prevents degenerate masks that match features but flip the class.

162 **KL divergence loss**

163
$$\mathcal{L}_{\text{KL}} = D_{\text{KL}}(\text{softmax}(f(x)) \parallel \text{softmax}(f(e)))$$

164 In order to match the full predictive distributions, not just the argmax, between the output for the
165 image and the explanation, KL Divergence is used. This stabilizes training and discourages expla-
166 nations that achieve correctness while distorting non-target probabilities.
167168 3.1.2 MASK PRIORS FOR MINIMALITY
169170 **Area loss**

171
$$\mathcal{L}_{\text{area}} = \|m\|_1$$

172 In the interest of minimality, we directly penalize active pixels, pushing the mask toward the smallest
173 region sufficient to preserve the decision. A higher weight yields more compact, human-readable
174 explanations by increasing sparsity.
175176 **Binarization loss**

177
$$\mathcal{L}_{\text{bin}} = \|m - m^2\|_1$$

178 We penalize mask values that lie between 0 and 1 so the encoder learns to either include or exclude
179 pixels entirely, driving values toward $\{0, 1\}$. This produces sharp boundaries rather than fuzzy
180 heatmaps. To enable end-to-end training through the non-differentiable threshold, we use a straight-
181 through estimator (STE), treating the binarization as identity in the backward pass.
182183 **Total variation loss**

184
$$\mathcal{L}_{\text{tv}} = \sum_{i,j} (|m_{i,j} - m_{i+1,j}| + |m_{i,j} - m_{i,j+1}|)$$

185 While TV is not strictly required for minimality, using the area loss alone often activates sparse,
186 non-contiguous speckles that are less interpretable. To generate contiguous and compact masks, we
187 pair the area loss with total variation, which suppresses isolated activations and encourages smooth,
188 coherent regions.
189190 3.1.3 ABDUCTIVE ROBUSTNESS CONSTRAINT
191192 Given a random background r , we perturb the explanation by replacing the pixels outside the mask
193 with r sampled from Gaussian noise:
194

195
$$\tilde{e} = m \odot x + (1 - m) \odot r.$$

196 We then enforce that the classifier predicts the same label as for the original image/explanation by
197 applying a cross-entropy penalty,
198

199
$$\mathcal{L}_{\text{rob}} = -\log p_{f(\tilde{e})}(y),$$

200 where y is the class predicted for x . This constraint operationalizes the notion of sufficiency that
201 the pixels retained by the mask must contain all the evidence needed for the decision, so arbitrary
202 perturbations to the complement should not alter the outcome. This robustness term discourages
203 solutions that inadvertently exploit background cues or dataset-specific artifacts, and complements
204 the minimality priors by ensuring that the explanation is not only small and crisp, but also reliable
205 under changes outside the highlighted region.
206207 3.2 TRAINING OBJECTIVE.
208209 We train the autoencoder using \mathcal{L}_{EXP} a weighted sum of activation matching terms, minimality priors
210 over the mask, and a robustness constraint. For clarity, we group the components as:
211

212
$$\mathcal{L}_{\text{AM}} = \lambda_{\text{act}} \mathcal{L}_{\text{act}} + \lambda_{\text{CE}} \mathcal{L}_{\text{CE}} + \lambda_{\text{KL}} \mathcal{L}_{\text{KL}} \quad [\text{activation matching \& output fidelity}]$$

213
$$\mathcal{L}_{\text{MIN}} = \lambda_{\text{area}} \mathcal{L}_{\text{area}} + \lambda_{\text{bin}} \mathcal{L}_{\text{bin}} + \lambda_{\text{tv}} \mathcal{L}_{\text{tv}} \quad [\text{mask priors for minimality}]$$

214
$$\mathcal{L}_{\text{ROB}} = \lambda_{\text{rob}} \mathcal{L}_{\text{rob}} \quad [\text{robustness constraints}]$$

215
$$\mathcal{L}_{\text{EXP}} = \mathcal{L}_{\text{AM}} + \mathcal{L}_{\text{MIN}} + \mathcal{L}_{\text{ROB}}.$$

216 By tuning the coefficients $\{\lambda\}$ to the task, the encoder learns binary masks that are minimal, sharp,
217 and contiguous while remaining decisional-equivalent and robust to perturbations outside the high-
218 lighted region.
219

216 3.3 CIRCUIT DISCOVERY
217218 Beyond input-level explanations, our approach provides a window into the network’s internal
219 computations. Given the explanation e , we pass it through the frozen classifier f and collect activations
220 at successive layers. For each convolutional block, we rank channels by their activation energy

221
$$E_c = \sqrt{\sum_{i,j} \phi_\ell(e)_{c,i,j}^2},$$

222
223

224 and retain the top- k channels as nodes. This selects only the most influential feature maps, yielding
225 a sparse representation of the computation. In addition to activations, we also collect backpropa-
226 ginated gradients with respect to these channels, which highlight features most responsible for the
227 output. Combining forward activations with backward sensitivities provides a more faithful picture
228 of salience.229 Edges between layers are scored by combining structural weights and functional activations. For a
230 destination channel d in layer $\ell + 1$ and a source channel s in layer ℓ , we define
231

232
$$w_{s \rightarrow d} = \|W_{d,s}^{(\ell)}\|_1 \cdot E_s,$$

233

234 where $W_{d,s}^{(\ell)}$ is the convolutional kernel connecting s to d , and E_s is the energy of the source channel.
235236 In parallel, gradient-based edge weights can be computed by scaling $W_{d,s}^{(\ell)}$ with the gradient mag-
237 nitude at the destination, tracing how strongly perturbations at the output flow back toward earlier
238 channels.239 Finally, connections from the penultimate feature vector $h \in \mathbb{R}^{512}$ to class logits are scored by
240

241
$$w_{h_j \rightarrow y} = |W_{y,j}^{(fc)}| \cdot |h_j|,$$

242 where $W_{y,j}^{(fc)}$ is the fully connected weight to class y from feature dimension j . Here too, we augment
243 with gradient information, weighting by the sensitivity of the logit to each feature dimension.
244245 The resulting graph highlights a compact *subcircuit* of nodes and edges that suffices for the predic-
246 tion. Interpretability arises because these subcircuits are both data-dependent and minimal: irrele-
247 vant channels are pruned away by the mask, leaving behind only the critical flow of information.
248 Incorporating gradients ensures that not only strong forward activations, but also the most decisive
249 backward attributions, are represented. Such circuit visualizations reveal not only which pixels of
250 the input matter (through the explanation mask), but also how that evidence propagates and feeds
251 back through successive layers to drive the decision. In practice, this allows us to bridge input-
252 level interpretability with mechanistic insight into the model’s internal structure, exposing sparse
253 computational pathways that underpin each classification.254 4 RESULTS
255256 Our approach is fairly general, and we evaluate it on a diverse set of pretrained classifiers spanning
257 both standard and custom architectures. Specifically, we report results on ResNet-18, MobileNet-
258 V3, ConvNeXt-Small, EfficientNet, ViT-16 pre-trained on ImageNet, as well as custom CNNs
259 trained on MNIST. For each backbone, we employ a lightweight U-Net-based encoder to generate
260 a binary explanation mask. Both the original image and its masked counterpart are passed through
261 the frozen network, and we tap post activations outputs at multiple layers together with the final
262 logits. These activations are aligned using mean squared error, while predictive outputs are matched
263 through KL divergence and cross-entropy. To enforce minimality, we place strong emphasis on the
264 area loss in conjunction with the robustness constraint, yielding crisp and faithful explanations that
265 generalize across architectures of varying depth, parameterization, and inductive biases.266 Figure 2 illustrates an example for an image from the ImageNet class *EntleBucher* passed through
267 a pre-trained resnet-18 model. The first row shows the original image, the binary mask, and the
268 resulting explanation. The second row compares the circuit graphs obtained from the original image
269 and from the explanation when passed through the ResNet. The forward pass is represented by black
while the gradients are represented by red lines.

270
271
272
273
274
275
276
277
278
279
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

301
302

303

304

Image	Binarised Mask	Our Explanation
		

Figure 2: Top: Original Image, 0/1 Mask, and Explanation. Bottom: channel-level circuits derived from the original image and the explanation.

We observe that the explanation is highly minimal (only about 5% of active pixels), ignoring background regions of varying colors and textures, and focusing mostly on the object pixels. Also the confidence associated with the explanation goes up to 0.53 compared to that of 0.26 for the actual image as irrelevant background pixels have been turned off. Meanwhile the explanation circuit highlights only the dominant pathways necessary for the decision.

5 ABLATIONS

In Figure 3, we systematically examine how the inclusion and relative weighting of different loss terms impacts the resulting explanations. When using only the activation matching losses, the explanation degenerates to nearly the entire input image, since there is no explicit pressure to enforce sparsity. Also the use of total variation loss is necessary for generating noise free explanations. We therefore focus on the role of the area and total variation terms, which directly regulate the size and smoothness of the explanation masks. In the first case, heavily weighting both losses produces a compact mask that isolates only a small discriminative region, demonstrating the ability of our method to extract minimal yet sufficient evidence. In the second example, the explanation reveals a case of shortcut learning: the mask highlights not only the dog but also the leash, reflecting biases encoded in the training data. In the third example, relaxing the minimality constraints leads to broader masks that cover the dog more completely. Finally, when the area loss is excluded, the explanation expands to cover the full object, resembling a segmentation mask.

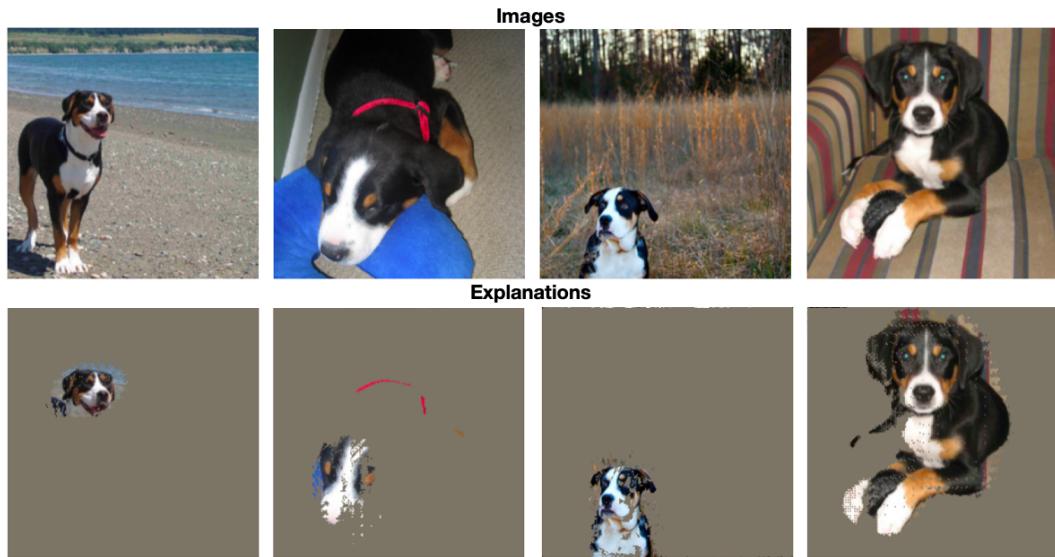


Figure 3: Effect of varying loss weights on generated explanations.

6 COMPARISONS

To contextualize the strengths and limitations of our method, we compare it against several widely used explanation techniques highlighting both qualitative difference in highlighting the relevant regions in the image and quantitative differences in terms of minimality. Specifically, we examine three families of baselines: (i) gradient-based attribution methods such as Grad-CAM, which visualize class-specific saliency through backpropagation; (ii) attention maps from transformer-based models, which expose self-attention patterns as proxies for importance; and (iii) abductive explanation approaches.

6.1 COMPARISONS WITH GRAD-CAM

We begin by comparing our explanations against Grad-CAM visualizations across a variety of models and input images in the left panel of Figure 4. The first example is an image classified as *house finch* by EfficientNet with a confidence of 0.11. Using our method with loss weights $\lambda_{act} = 1.0$, $\lambda_{CE} = 4.0$, $\lambda_{KL} = 0.4$, $\lambda_{area} = 15.0$, $\lambda_{bin} = 0.3$, $\lambda_{tv} = 15.0$, and $\lambda_{rob} = 6.0$, we obtain an explanation that sharply highlights the bird itself. In contrast, Grad-CAM focuses on the beak and background, producing a more diffused attribution.

The next example is an image of a *zucchini* classified by EfficientNet with confidence 0.59. Our explanation, generated with $\lambda_{act} = 2.0$, $\lambda_{CE} = 16.0$, $\lambda_{KL} = 5.0$, $\lambda_{area} = 45.0$, $\lambda_{bin} = 3.0$, $\lambda_{tv} = 23.0$, and $\lambda_{rob} = 20.0$, yields a confidence of 0.89 and minimally highlights one of the zucchinis in the scene. Grad-CAM, by comparison, highlights a larger overlapping region that covers two zucchinis simultaneously. The third example is classified as *granny smith* apples, by ConvNeXt with a confidence of 0.10. Using ($\lambda_{act} = 0.8$, $\lambda_{CE} = 10.0$, $\lambda_{KL} = 0.64$, $\lambda_{area} = 24.0$, $\lambda_{bin} = 1.8$, $\lambda_{tv} = 15.0$, $\lambda_{rob} = 2.0$), the explanation achieves a confidence of 0.62 while focusing on the edge and central region. Grad-CAM, however, spreads attention across multiple apple boundaries with substantial background included.

The next image of *jackfruit*, is classified by MobileNet with confidence 0.62. Our explanation, generated using $\lambda_{act} = 0.5$, $\lambda_{CE} = 5.0$, $\lambda_{KL} = 0.54$, $\lambda_{area} = 5.3$, $\lambda_{bin} = 1.4$, $\lambda_{tv} = 2.7$, $\lambda_{rob} = 3.2$, highlights minimal texture characteristic of jackfruit, raising the confidence to 0.92. Grad-CAM, in contrast, erroneously attributes saliency to wide regions overlapping across. Finally, we examine an image classified as *window shade* by EfficientNet with confidence 0.22. Using $\lambda_{act} = 1.5$, $\lambda_{CE} = 25.0$, $\lambda_{KL} = 7.5$, $\lambda_{area} = 80.0$, $\lambda_{bin} = 2.5$, $\lambda_{tv} = 35.0$, $\lambda_{rob} = 25.0$, we highlight the window

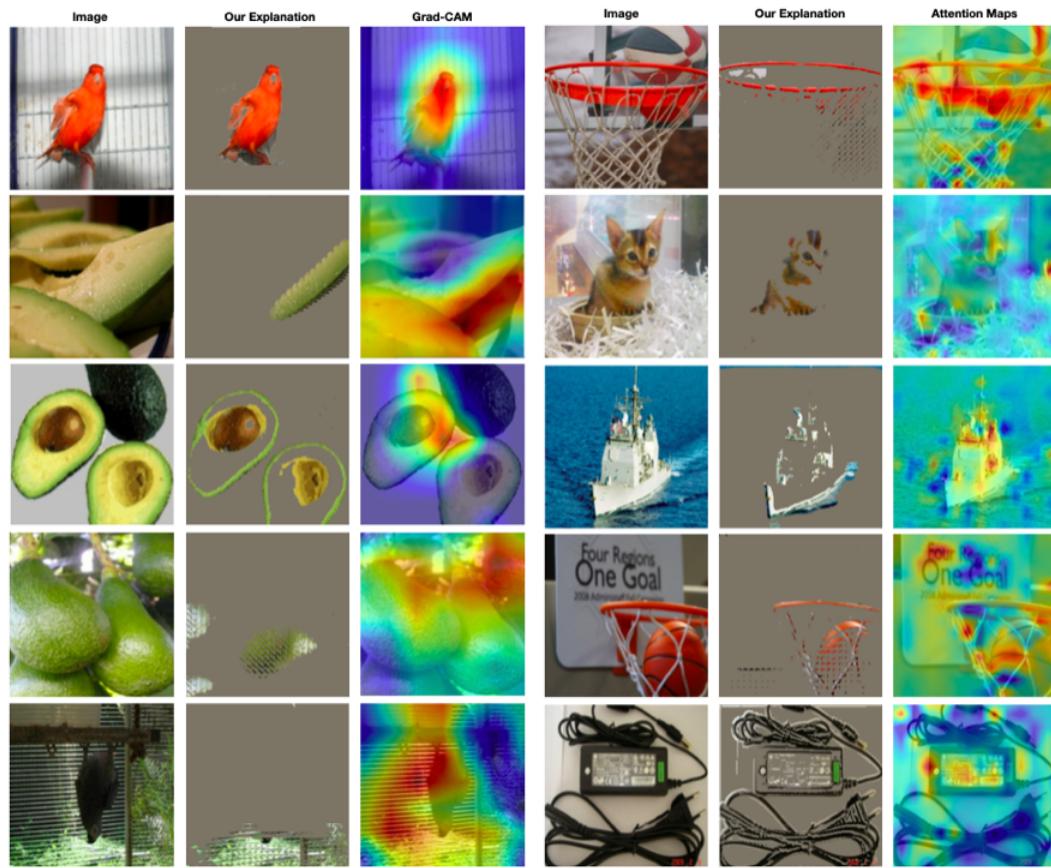


Figure 4: Left: Comparison with Grad-CAM. Right: Comparison with Attention Maps.

shade at the bottom of the image with 0.78 confidence, while discarding the bird in the foreground. Grad-CAM, however, allocates saliency to both the bird and the shade, diluting the explanation.

Together, these comparisons demonstrate that while Grad-CAM often highlights broad, overlapping regions with background leakage, our approach consistently produces sharper, minimal, and decisional-equivalent explanations that more faithfully capture the evidence underlying each classification.

6.2 COMPARISONS WITH ATTENTION MAPS

We next compare our explanations with attention maps extracted from ViT-16 shown on the right of Figure 4. The first example is an image classified as *basketball* with confidence 0.89. Using our loss weights $\lambda_{act} = 4.5$, $\lambda_{CE} = 15.0$, $\lambda_{KL} = 5.0$, $\lambda_{area} = 55.0$, $\lambda_{bin} = 1.5$, $\lambda_{tv} = 57.0$, and $\lambda_{rob} = 45.0$, the explanation minimally highlights only the ring that determines the classification, yielding a confidence of 0.90. Attention maps, however, emphasize broader regions dominated by red color patches, diluting the evidence.

The second example is an image of an *Egyptian cat*, classified with 0.41 confidence. Our explanation, generated with $\lambda_{act} = 4.5$, $\lambda_{CE} = 15.0$, $\lambda_{KL} = 5.0$, $\lambda_{area} = 56.0$, $\lambda_{bin} = 1.5$, $\lambda_{tv} = 28.0$, $\lambda_{rob} = 28.0$, is highly minimal, focusing on small, distinct regions of the cat. In contrast, attention maps spread widely across the entire image, with much weaker localization.

The next is an *aircraft carrier* classified with 0.76 confidence. Our explanation discards background waves entirely and concentrates only on the ship, raising the classification confidence to 0.81. Attention maps, in comparison, significantly highlight some regions of the carrier and also the swaths of the sea, making the attribution less precise. Another example with a *basketball* image further

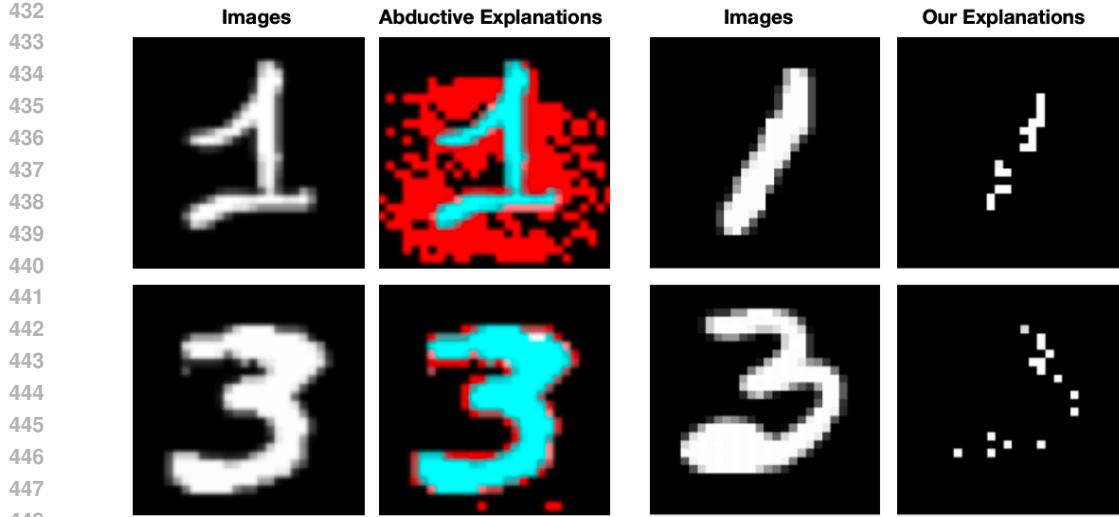


Figure 5: Left: Abductive Explanations. Right: Our Explanations

illustrates this contrast. Attention maps simultaneously focus on background text and the net, while our method, using $\lambda_{act} = 4.5$, $\lambda_{CE} = 15.0$, $\lambda_{KL} = 5.0$, $\lambda_{area} = 55.0$, $\lambda_{bin} = 1.5$, $\lambda_{tv} = 27.0$, $\lambda_{rob} = 28.0$, exclusively highlights the basket and the ball itself.

Finally, in an image where a *charger* is misclassified as a radio with confidence 0.28, our explanation isolates the true object by excluding the background, raising the confidence to 0.91. Attention maps, however, primarily emphasize the adapter box, again highlighting irrelevant cues. Overall, these examples show that attention maps often diffuse across color regions or background context, while our approach produces compact, minimal, and class-faithful explanations that better align with human intuition.

6.3 COMPARISONS WITH ABDUCTIVE EXPLANATIONS

We also compare against abductive explanations using a custom three-layer CNN trained on MNIST digits as shown in Figure 5). In this setup, the abductive explanations highlight in red and blue the minimal evidence required for the prediction, shown on the left of each example. Our method, shown on the right, instead identifies the minimal set of pixels that not only preserves the predicted class label but also maintains the classifier’s confidence relative to the original input.

It can be observed that abductive explanations typically include large contiguous regions of the digit as sufficient evidence for prediction. By contrast, our explanations generated with loss weights $\lambda_{act} = 0.6$, $\lambda_{CE} = 4.0$, $\lambda_{KL} = 0.54$, $\lambda_{area} = 100.0$, $\lambda_{bin} = 1.2$, $\lambda_{tv} = 50.0$, and $\lambda_{rob} = 10.0$ are far more compact: across all MNIST classes, only about 1–2% of the pixels remain active, while still preserving both the label and the confidence. This demonstrates that our approach yields sharper, more faithful explanations that capture the truly decisive strokes of each digit, rather than broad swaths of input space.

7 CONCLUSION

We presented an activation-matching–based framework for generating minimal and faithful explanations of pre-trained image classifiers using an autoencoder that learns to produce binary masks discarding irrelevant pixels in the explanations. Beyond input-level interpretability, we further showed how these explanations can be coupled with forward activations and backward gradients to uncover sparse computational sub-circuits that realize individual decisions within deep networks. As future work, a natural direction is to explore formal guarantees of minimality in the generated explanations, strengthening the theoretical foundation of our approach while extending its applicability to broader domains and architectures.

486 REFERENCES
487

488 Sajid Ali, Tamer Abuhmed, Shaker El-Sappagh, Khan Muhammad, Jose M. Alonso-Moral, Roberto
489 Confalonieri, Riccardo Guidotti, Javier Del Ser, Natalia Díaz-Rodríguez, and Francisco Her-
490 rera. Explainable artificial intelligence (xai): What we know and what is left to attain trust-
491 worthy artificial intelligence. *Information Fusion*, 99:101805, 2023. ISSN 1566-2535. doi:
492 <https://doi.org/10.1016/j.inffus.2023.101805>. URL <https://www.sciencedirect.com/science/article/pii/S1566253523001148>.

493

494 Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià
495 Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability, 2023. URL
496 <https://arxiv.org/abs/2304.14997>.

497

498 Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael A. Specter, and Lalana Kagal.
499 Explaining explanations: An overview of interpretability of machine learning. *2018 IEEE 5th
500 International Conference on Data Science and Advanced Analytics (DSAA)*, pp. 80–89, 2018.
501 URL <https://api.semanticscholar.org/CorpusID:59600034>.

502

503 Nicholas Hamilton, Adam Webb, Matt Wilder, Ben Hendrickson, Matt Blanck, Erin Nelson, Wiley
504 Roemer, and Timothy C. Havens. Enhancing visualization and explainability of computer vision
505 models with local interpretable model-agnostic explanations (lime). In *2022 IEEE Symposium
506 Series on Computational Intelligence (SSCI)*, pp. 604–611, 2022. doi: 10.1109/SSCI51031.2022.
507 10022096.

508

509 Weiche Hsieh, Ziqian Bi, Chuanqi Jiang, Junyu Liu, Benji Peng, Sen Zhang, Xuanhe Pan, Jiawei Xu,
510 Jinlang Wang, Keyu Chen, Pohsun Feng, Yizhu Wen, Xinyuan Song, Tianyang Wang, Ming Liu,
511 Junjie Yang, Ming Li, Bowen Jing, Jintao Ren, Junhao Song, Hong-Ming Tseng, Yichao Zhang,
512 Lawrence K. Q. Yan, Qian Niu, Silin Chen, Yunze Wang, and Chia Xin Liang. A comprehensive
513 guide to explainable ai: From classical models to llms, 2024. URL <https://arxiv.org/abs/2412.00800>.

514

515 Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based explanations for ma-
516 chine learning models, 2018. URL <https://arxiv.org/abs/1811.10656>.

517

518 C.A. Jensen, R.D. Reed, R.J. Marks, M.A. El-Sharkawi, Jae-Byung Jung, R.T. Miyamoto, G.M. An-
519 derson, and C.J. Eggen. Inversion of feedforward neural networks: algorithms and applications.
520 *Proceedings of the IEEE*, 87(9):1536–1549, 1999. doi: 10.1109/5.784232.

521

522 J Kindermann and A Linden. Inversion of neural networks by gradient descent. *Par-
523 allel Computing*, 14(3):277–286, 1990. ISSN 0167-8191. doi: [https://doi.org/10.1016/0167-8191\(90\)90081-J](https://doi.org/10.1016/0167-8191(90)90081-J). URL <https://www.sciencedirect.com/science/article/pii/016781919090081J>.

524

525 Jae Hee Lee, Georgii Mikriukov, Gesina Schwalbe, Stefan Wermter, and Diedrich Wolter. Concept-
526 based explanations in computer vision: Where are we and where could we go? In Alessio
527 Del Bue, Cristian Canton, Jordi Pont-Tuset, and Tatiana Tommasi (eds.), *Computer Vision –
528 ECCV 2024 Workshops*, pp. 266–287, Cham, 2025. Springer Nature Switzerland. ISBN 978-
529 3-031-92648-8.

530

531 Ruoshi Liu, Chengzhi Mao, Purva Tendulkar, Hao Wang, and Carl Vondrick. Landscape learning
532 for neural network inversion, 2022. URL <https://arxiv.org/abs/2206.09027>.

533

534 Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
535 them, 2014. URL <https://arxiv.org/abs/1412.0035>.

536

537 Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper
538 into neural networks, 2015. URL <https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html>.

539

Jatin Nainani, Sankaran Vaidyanathan, AJ Yeung, Kartik Gupta, and David Jensen. Adaptive cir-
540 cuit behavior and generalization in mechanistic interpretability, 2024. URL <https://arxiv.org/abs/2411.16105>.

540 Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune. Synthesizing
 541 the preferred inputs for neurons in neural networks via deep generator networks, 2016. URL
 542 <https://arxiv.org/abs/1605.09304>.

543 Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug & play
 544 generative networks: Conditional iterative generation of images in latent space, 2017. URL
 545 <https://arxiv.org/abs/1612.00005>.

546 Achyuta Rajaram, Neil Chowdhury, Antonio Torralba, Jacob Andreas, and Sarah Schwettmann. Au-
 547 tomatic discovery of visual circuits, 2024. URL <https://arxiv.org/abs/2404.14349>.

548 Emad W. Saad and Donald C. Wunsch. Neural network explanation using inversion. *Neu-
 549 ral Networks*, 20(1):78–93, 2007. ISSN 0893-6080. doi: <https://doi.org/10.1016/j.neunet.2006.07.005>. URL <https://www.sciencedirect.com/science/article/pii/S0893608006001730>.

550 Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 551 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based lo-
 552 calization. *International Journal of Computer Vision*, 128(2):336–359, October 2019. ISSN
 553 1573-1405. doi: 10.1007/s11263-019-01228-7. URL <http://dx.doi.org/10.1007/s11263-019-01228-7>.

554 Pirzada Suhail. Network inversion of binarised neural nets. In *The Second Tiny Papers Track at
 555 ICLR 2024*, 2024. URL <https://openreview.net/forum?id=zKcB0vb7qd>.

556 Pirzada Suhail and Amit Sethi. Network inversion of convolutional neural nets. In *Muslims in ML
 557 Workshop co-located with NeurIPS 2024*, 2024. URL <https://openreview.net/forum?id=f9sUu7U1Cp>.

558 Stefano Teso, Öznur Alkan, Wolfgang Stammer, and Elizabeth Daly. Leveraging explanations in
 559 interactive machine learning: An overview, 2022. URL <https://arxiv.org/abs/2207.14526>.

560 Eric Wong. Neural network inversion beyond gradient descent. In *WOML NIPS*, 2017. URL
 561 <https://api.semanticscholar.org/CorpusID:208231247>.

562 Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding neural net-
 563 works through deep visualization, 2015. URL <https://arxiv.org/abs/1506.06579>.

564 Jianlong Zhou, Amir H. Gandomi, Fang Chen, and Andreas Holzinger. Evaluating the qual-
 565 ity of machine learning explanations: A survey on methods and metrics. *Electronics*, 10(5),
 566 2021. ISSN 2079-9292. doi: 10.3390/electronics10050593. URL <https://www.mdpi.com/2079-9292/10/5/593>.

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594
595

A MORE RESULTS

596
597
598
599
600
601
As shown in Figure 6, when strong minimality constraints are applied, the explanation for a single
otter reduces to a remarkably small region—roughly 2% of pixels—focusing primarily on the facial
features and fur texture. Despite this extreme sparsity, the classifier’s label is preserved with high
confidence. In contrast, when applied to an image with multiple otters, the method produces separate
explanations that selectively attend to each animal, demonstrating how the approach can adapt to
multi-instance settings and highlight distinct decision-supporting evidence for each occurrence.Figure 6: Explanations for sample Images of *Otter*

648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

Figure 7 illustrates how our method sheds light on model errors. In the first example, an image of a wooden toilet seat is misclassified as a paint brush. The generated explanation reveals that the model focused almost entirely on the decorative print on the seat rather than the seat's structure, explaining the spurious prediction. In another case, an image of a stinkhorn mushroom is misclassified as a goldfish. Here, the explanation highlights background regions alongwith the actual fungus, showing that the model mostly ignored the object of interest and instead relied on irrelevant context.

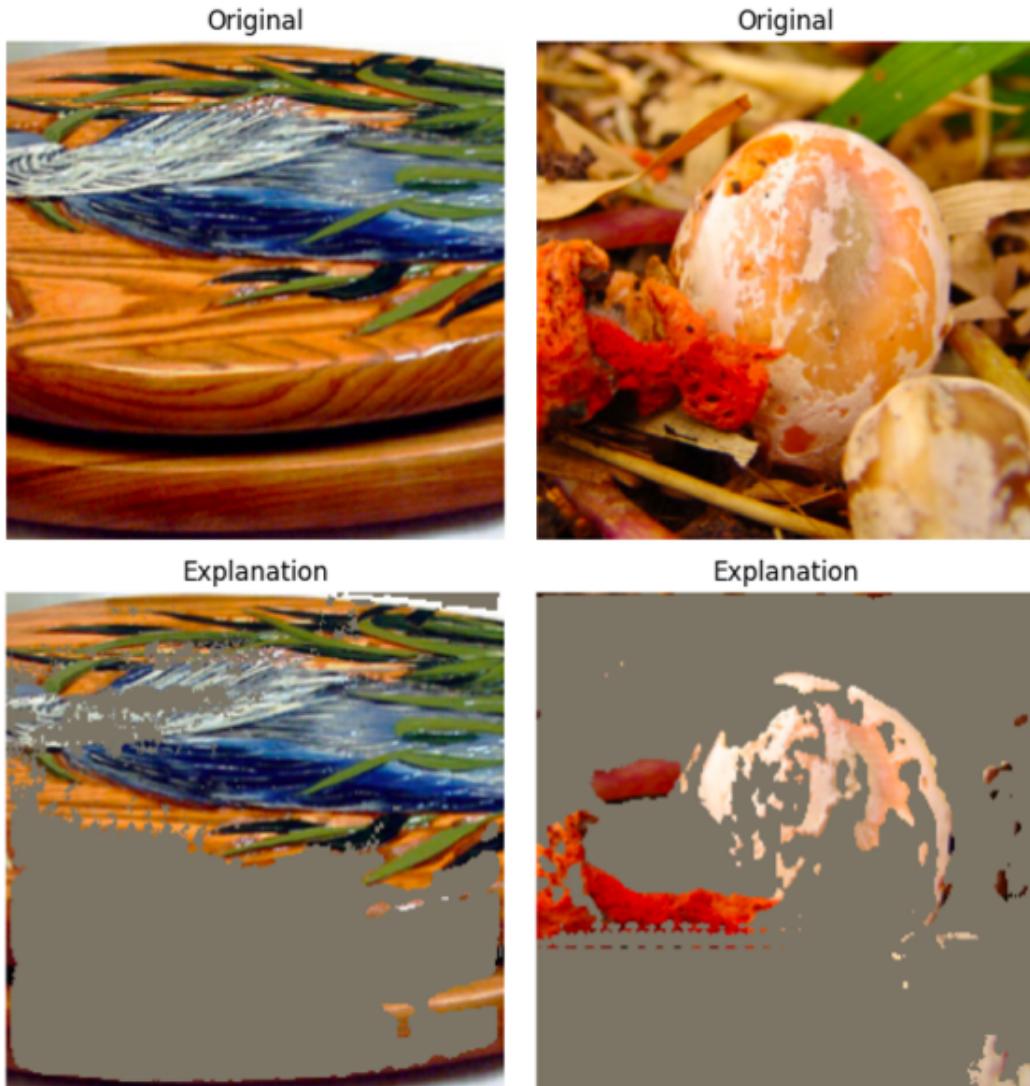


Figure 7: Explanations for misclassified Images.

We further evaluate our framework on MNIST digits using the same custom three-layer CNN and the same set of loss weights as in the abductive comparison ($\lambda_{\text{act}} = 0.6$, $\lambda_{\text{CE}} = 4.0$, $\lambda_{\text{KL}} = 0.54$, $\lambda_{\text{area}} = 100.0$, $\lambda_{\text{bin}} = 1.2$, $\lambda_{\text{tv}} = 50.0$, $\lambda_{\text{rob}} = 10.0$). Figure 8 shows a row of original digit images followed by the corresponding explanations generated by our method. In each case, the autoencoder produces masks that preserve both the predicted class label and its confidence, while activating only about 1–2% of the pixels. This demonstrates that even for simple architectures, our approach isolates extremely sparse yet sufficient evidence, capturing only the decisive strokes of each digit without relying on broader context. The resulting explanations are not only faithful to the classifier’s decision but also concise and visually intuitive.

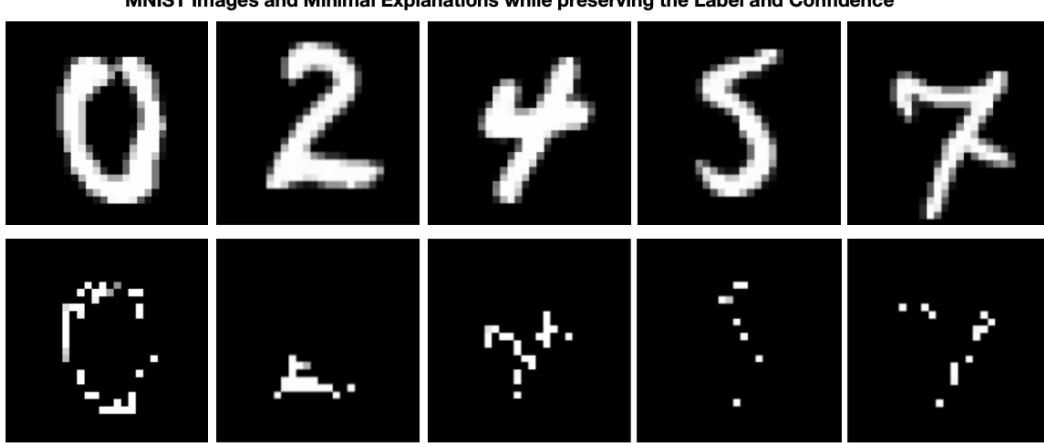


Figure 8: Explanations for MNIST digits.