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Abstract

We introduce a novel framework for Al-generated image detection through epis-
temic uncertainty, aiming to address critical security concerns in the era of gen-
erative models. Our key insight stems from the observation that distributional
discrepancies between training and testing data manifest distinctively in the epis-
temic uncertainty space of machine learning models. In this context, the distribution
shift between natural and generated images leads to elevated epistemic uncertainty
in models trained on natural images when evaluating generated ones. Hence, we
exploit this phenomenon by using epistemic uncertainty as a proxy for detecting
generated images. This converts the challenge of generated image detection into the
problem of uncertainty estimation, underscoring the generalization performance of
the model used for uncertainty estimation. Fortunately, advanced large-scale vision
models pre-trained on extensive natural images have shown excellent generalization
performance for various scenarios. Thus, we utilize these pre-trained models to
estimate the epistemic uncertainty of images and flag those with high uncertainty
as generated. Extensive experiments demonstrate the efficacy of our method. Code
is available at https://github.com/tmlr-group/WePe.

1 Introduction

Recent advancements in generative models have revolutionized image generation, enabling the
production of highly realistic images (Midjourney, |2022; [Wukong), 2022; [Rombach et al., [2022).
Despite the remarkable capabilities of these models, they pose significant challenges, particularly
the rise of deepfakes and manipulated content. The high degree of realism achievable by such
technologies prompts urgent discussions about their potential misuse, especially in sensitive domains
such as politics and economics. In response to these critical concerns, a variety of methodologies
for detecting generated images have emerged. A prevalent strategy treats this task as a binary
classification problem, necessitating the collection of extensive datasets comprising both natural and
Al-generated images to train classifiers (Wang et al., [2020).

While existing methods have demonstrated notable successes, unseen generative models Wang et al.
(2023)) pose challenges for them in generalizing to images with distribution shifts. One promising
avenue to enhance the robustness of detection capabilities involves constructing more extensive
training sets by accumulating a diverse array of natural and generated images. However, these
attempts are computationally intensive, requiring substantial datasets for effective classification.
Besides, maintaining robust detection necessitates continually acquiring images generated by the
latest generative models. And when the latest generative models are not open-sourced, acquiring a
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Figure 1: Models trained on a large number of natural images are capable of distinguishing between
natural and generated images.

large number of generated images to train classifiers is challenging. This highlights the urgent need
for a novel framework to detect generated images without reliance on generated images.

A recent work 2024)) shows that features extracted by ViT of CLIP (Radford et al., 2021

can be employed to separate natural and Al-generated images, motivating an effective approach to
detecting images by training a binary classifier in the feature space of CLIP. This provides a promising
direction to explore the possibility that large-scale foundational models already have the ability to
capture the subtle differences between natural images and Al-generated images. As shown in Figure[T]
even for images sampled from the same class, there are large distributional discrepancies in the
feature space of DINOv2. This observation is consistent with an important metric for evaluating
generative models-the FID score. FID score measures feature distribution discrepancy between
natural and generated images on the Inception network (Szegedy et al, 2015). A FID score of 0
indicates that there is no difference between the two distributions. However, even on these simple
networks such as Inception v3, advanced generative models like ADM still achieve an FID score
of 11.84, not to mention that on powerful models such as DINOv2, we observe significant feature
distribution discrepancy. However, despite these distributional differences, the inherent diversity of
natural images precludes direct modeling of their distribution. This challenge motivates us to consider
an alternative approach to reflect the distributional differences between natural and generated images.

In this study, we exploit the distributional dis- S— Projcted G
parity between natural and generated images s T AUROCEDCuES oo B B
by leveraging epistemic uncertainty to differen- -
tiate them. Epistemic uncertainty quantifies a
model’s confidence in its predictions, reflecting
its knowledge of the data distribution. As the
volume of training data increases, a model’s epis- e
. - . A - G
temic uncertainty for in-distribution (ID) data di-
minishes. For a foundational model pre-trained
on an extensive dataset of natural images, we
posit that its epistemic uncertainty is lower for
natural images compared to generated ones, due to the model’s alignment with the natural distribu-
tion. This perception is consistent with recent studies (Snoek et al.| 2019} [Schwaiger et al.,[2020),
which indicate that models tend to show increased uncertainty for out-of-distribution (OOD) samples.
The challenge comes from efficiently obtaining the uncertainty of the model on the test samples.
Classical approaches include Monte-Carlo Dropout (MC-Dropout) (Gal and Ghahramanil [2016) and
Deep Ensembles (Lakshminarayanan et al.,|2017). However, in our attempts, MC-Dropout obtains
sub-optimal results (in Table[2), and it is challenging to train multiple large models independently for
model ensemble. Instead, our theoretical results show that this uncertainty can be well captured by
perturbing the weights of the models. As shown in Figure[3] when a moderate level of perturbation is
applied, the natural image has consistent features on the model before and after the perturbation, but
the generated image has large differences in features on the model before and after the perturbation.
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Figure 2: WePe reflects the distribution discrep-
ancy between Al-generated and natural images.
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Figure 3: Natural and generated images exhibit distinct sensitivities to perturbations in model weights.

A moderate perturbation (0.1) results in minimal changes to the features of the natural image, while
the generated image shows significant differences.

In this paper, we propose a novel method for Al-generated image detection by weight perturbation
(WePe). Our hypothesis is that the model has greater uncertainty in predicting the OOD sample
compared to the ID sample, and that this uncertainty can be expressed through sensitivity to weight
perturbations. For a large model trained on a large number of natural images, the natural images
can be considered ID samples, while the generated images are considered OOD samples. Thus, the
sensitivity of the samples to the weight perturbation of the large model can be an important indicator
to determine whether the sample is generated by the generative models or not. As shown in Figure 2]
we calculate FID scores between different types of generated images and natural images on DINOv2.
It shows the performance of WePe strongly correlates with FID score, indicating the effectiveness of
WePe in detecting distribution discrepancy.

We summarize our main contributions as follows:

* We provide a new perspective to detect Al-generated images by calculating predictive uncer-
tainty. This is built on the fact that natural and generated images differ in data distribution,
making it possible to employ uncertainty to represent the distribution discrepancy.

* Since the data distribution discrepancy between generated and natural images is reflected
in feature distribution discrepancy on the vision model, we propose using a large vision
model to compute prediction uncertainty to highlight this difference. The intuition is that
large vision models are merely trained on natural images, making it possible to exhibit
different uncertainties about natural and generated images. We capture this uncertainty
through weight perturbation, enabling effective detection. (Eq.[I3).

» Extensive experiments across multiple benchmarks show the proposed method surpasses
existing methods, highlighting the efficacy of uncertainty in detecting Al-generated images.

2 Preliminaries

2.1 Al-generated image detection

The task of Al-generated image detection involves classifying a test image x as either a natural image
or one produced by a generative model. Traditional supervised learning approaches rely on a curated
dataset comprising both natural and Al-generated images to train a feature extractor and a binary
classifier. This process is formalized as follows.

Let D = {x¢,x9,... ,X(]JVO} denote a set of N° Al-generated images, each labeled as y = 0

(generated), and D' = {x{,x3,...,x} } denote a set of N'! natural images, each labeled as y = 1
(natural). The objective is to learn a feature extractor F'(-; 0 ), parameterized by 6, and a binary
classifier D(-;0p), parameterized by 6, by minimizing a loss function £(-) over the training data:

F,D = arg 6)rni‘gm ¢(D(F(x;0r);0D),y), M

where y € {0, 1} represents the ground-truth label of the input image x.



Upon completion of training, the feature extractor and classifier are used to compute a decision score
for a test image x, defined as S(x) = D(F(x;0F);0p). The source of the image is determined by
comparing this score to a predefined threshold 7:

generated, if S(x) < 7,
natural, otherwise.

pred(x) = { )

The robustness and generalization of such methods depend critically on the size and diversity of the
training dataset. To address this, techniques such as CNNspot employ sophisticated data augmentation
strategies, including Gaussian blur and JPEG compression, to enhance the variability of the training
data. In contrast, UnivFD adopts a different approach by utilizing the CLIP model as a fixed feature
extractor and training only a single linear classification layer. Despite these innovations, both methods
exhibit limited generalization when applied to images produced by unseen generative models.

2.2 Bayesian neural networks and uncertainty estimation

Traditional neural networks map inputs x to outputs y through a parameterized function f(x;#6),
where weights 6 are optimized deterministically, offering no uncertainty quantification. Bayesian
Neural Networks (Neall 2012} address this by modeling 6 as random variables with a prior distribution
p(0). Given a dataset D, the posterior is computed via Bayes’ theorem:

p(D[0)p(0)
p(0|D) = ——=—=. 3)
(0/D) (D)
For a new input x*, the posterior predictive distribution:
P51 D) = [ ply ", )plO[D) dt @
———— ——

Aleatoric Epistemic

captures prediction uncertainty.

Exact posterior inference is intractable due to the high dimensionality of . Monte Carlo methods,
such as MC Dropout (Gal and Ghahramani, 2016)), approximate the posterior by using dropout during
both training and testing and generating multiple stochastic predictions. Uncertainty is quantified
through the variance or entropy of these predictions, reflecting two types:

* Epistemic Uncertainty: Uncertainty in model parameters, encoded in p(w|D), which
decreases with more data.

* Aleatoric Uncertainty: Inherent noise in the data, modeled by the likelihood p(y|x, w).

3 Uncertainty based Al-generated image detection

3.1 Motivation

Uncertainty estimation is a well-established field critical to deep learning practitioners, as it facilitates
explicit handling of uncertain inputs and edge cases (Durasov et al., 2021} |[Everett et al.,[2022). By
quantifying model confidence, practitioners can make informed decisions, such as deferring high-
uncertainty inputs to human evaluation in classification tasks, thereby improving model reliability
and robustness. In this study, we do not propose a novel method for uncertainty estimation. Instead,
we focus on distinguishing natural from generated images by leveraging epistemic uncertainty as a
discriminative metric. Our approach is grounded in the well-established principle that (Lahlou et al.|
2023} |Gal and Ghahramani, 2016):

Epistemic uncertainty, which reflects a model’s lack of knowledge, can be reduced by acquiring
additional information.

Formally, we adopt a Bayesian framework to quantify epistemic uncertainty through the posterior
distribution over model parameters:

p(D|6)p(9)

p(01D) = P,

&)



where D = {(x;,y;)}Y; denotes the training dataset, with samples drawn i.i.d. from p(y|x, ).
Epistemic uncertainty is captured by the posterior variance:

Var(6|D) = Eg.0p)[(0 — E[6|D])?]. (6)

Under regularity conditions, the Bernstein-von Mises theorem (Van der Vaart, [2000) establishes that,
as the sample size N — oo,

A~ 1
p01D) = 7 (. 5516000 )

. 2
where 6y is the maximum likelihood estimate, and (6y) = E |:(i)logpa(9y|x,9)) | 9—p, | TEPresents
the Fisher information matrix. Here, 6, approximates the true parameters of the natural image
distribution, as learned by a pre-trained vision model. Consequently, Var(6|D) % indicating that
epistemic uncertainty decreases as the training data volume increases.

For a test input x* drawn from a distribution pies;(X) 7 Prain(X), the predictive distribution is given
by:

p(y*|x*, D) = / p(y*|x*, O)p(6]D) do. ®)

This distribution exhibits elevated variance due to the misalignment between p(6|D) and the parame-
ters required to model pies (x). The predictive variance can be decomposed as:

Var(y*|x*, D) = Egpop) [Var(y™|x*, 0)] + Vargp o0 [E(y™[x", 0)], 9)

where the second term, Varg..,gp)[E(y*[x*, )], corresponds to epistemic uncertainty and domi-
nates for out-of-distribution (OOD) samples. Under distribution shift, the Fisher information 7(6y),
defined with respect tO pyain(X), is misaligned with peg(x), limiting the reduction of posterior
variance and resulting in persistently high epistemic uncertainty (Snoek et al., 2019).

Based on the above analysis, as well as the phenomenon of distributional shifts between natural and
generated images on the foundational model (see Figures[I]and [8), we believe that the difference in
the epistemic uncertainty of the foundational model on natural and generated images can be a valid
indicator to distinguish between them.

3.2 Uncertainty estimation via weight perturbation

Classical methods of epistemic uncertainty estimation, such as Deep Ensembles and MC Dropout,
can simply be viewed as using variance of multiple prediction results as an estimation of uncertainty
u(x): n
1 . . 2
p(x) = = > (), u(x) =0 = — > (Gi(x) — p(x))", (10)
t=1 t=1

where, ¢; denotes the ¢-th prediction. The multiple predictions of Deep Ensembles come from
multiple independently trained neural networks, while the multiple predictions of MC Dropout come
from the use of dropout during inference, which can be regarded as multiple prediction using neural
networks with different structures.

In this study, we leverage DINOv2 for uncertainty estimation, capitalizing on two key advantages.
First, DINOV2 is pre-trained on an extensive datasets, endowing it with robust generalization capabil-
ities. This broad pre-training enables the model to effectively capture the distributional characteristics
of natural images, thereby enhancing the generalizability of our proposed method across diverse
scenarios. Second, as DINOV2 is exclusively pre-trained on natural images, it exhibits distinct un-
certainty profiles when processing natural versus Al-generated images. This differential uncertainty
provides a reliable basis for distinguishing between the two image types. DINOvV2 is a self-supervised
learning model, employing a student-teacher framework where the student model 6 is trained to
align with the representations of the teacher model 6,. Consequently, we utilize the feature similarity
between the embeddings produced by the teacher and student models as the prediction:

g(x) = f(x;0)" f(x;00), (11)

where f(x;6) denotes the L2-normalized features of an input image x when inferring with the
parameter . However, estimating uncertainty with DINOv2 presents challenges in obtaining multiple
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Figure 4: Comparison of cosine similarity between features on original and perturbed models. The
generated images are from: (a) ADM, (b) BigGAN, and (c) DDPM.

predictions. First, as DINOv2 does not employ dropout during training, MC Dropout may yield
suboptimal results (see Table[2)). Second, training multiple DINOv2-scale models is computationally
infeasible, rendering Deep Ensemble impractical. Instead, we use an alternative approach, weight
perturbation, to obtain multiple predictions. Specifically, let 85 denote the perturbed parameters of
the student network, according to Eq. |10} the predictive uncertainty «(x) can be calculated by,

n

n x: AT x; 0,
w60 =+ 31706007 0 — 3 TS0 G5O (12)

n
k=1

However, we cannot access the teacher model 6;, making it challenging to calculate the uncertainty.
Moreover, even if it is available, introducing two models for calculation leads to low computation
efficiency. Fortunately, we can calculate an upper bound of «(x). This can be formalized by,

n

2
u(0) < =37 |70~ -3 )| 1FGeoIF =2 23 Flx0) Fx0), (13)
j k=1

k=1

where 6 denotes the parameter of student model before injecting perturbation, and we leverage an
unbiased assumption that the expectation Ey, f(x; 6;) approaches the feature f(x; ) extracted by the
non-perturbed parameter 6. Eq.[I3|provides a simple approach to calculate the uncertainty without
needing a teacher model used in the training phase of DINOv2. We provide an analysis of the validity
of this upper bound in Appendix [D] The insight of Eq. [[3|is intuitive. Specifically, if an image x
causes a high feature similarity between the original and perturbed parameter, the image leads to a
low uncertainty and is more likely to be a natural image.

3.3 Theoretical analysis of the effectiveness of weight perturbation

In this section, we present a theoretical analysis elucidating why weight perturbations effectively
distinguish between natural and Al-generated images. We establish a formal metric to quantify the
sensitivity of neural network feature representations to parameter perturbations and demonstrate its
differential behavior across natural images and Al-generated images.

To formalize this notion, we introduce the following definition of perturbation sensitivity:

Definition 3.1 (Perturbation Sensitivity). For a neural network f : X — R?, parameterized by
6 € RP, which maps an input x € X to a feature vector f(x;#), the sensitivity to parameter
perturbations is defined as:

sen(z) = || Vo f (w3 0)|%, (14)
where Vg f(x; 0) denotes the Jacobian matrix of the feature mapping with respect to 0, and || - || ¢
represents the Frobenius norm.

This metric captures the magnitude of variation in the feature representation induced by infinitesimal
changes in the model parameters, providing a robust measure of sensitivity to weight perturbations.

We proceed to establish the differential sensitivity of the model across distributions through the
following theorem:

Theorem 3.2 (Differential Sensitivity). Let a neural network f(z;0) be trained on a
large amount of natural images sampled from natural image distribution D': T =
{(=t,yY), (2%,9?), ..., (@™, y")} ~ DL The expected sensitivity of the feature representations
to parameter perturbations is lower for inputs drawn from D' compared to those drawn from a
generated image distribution D°, generated by generative models. Formally:

E,p [sen(x)] < E,po [sen(x)]. (15)



Table 1: Al-generated image detection performance on ImageNet. Values are percentages. Bold

numbers are superior results. We compare training methods and training-free methods separately.

Models .
ADM ADMG LDM DiT BigGAN GigaGAN  StyleGAN XL RQ-Transformer ~ Mask GIT Average

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

Methods

Training Methods

CNNspot 6225 63.13 63.28 6227 63.16 64.81 6285 61.16 8571 84.93 7485 7145 6841 68.67 61.83 6291 6098 61.69 67.04 66.78
Ojha 8337 8295 79.60 78.15 8035 79.71 8293 8172 93.07 92.77 8745 84.88 8536 83.15 8519 8422 90.82 90.71 8535 84.25
DIRE 51.82 5029 53.14 5296 5283 51.84 5467 5510 51.62 50.83 50.70 5027 5095 5136 5595 54.83 5258 5210 52.70 52.18
NPR 85.68 80.86 84.34 79.79 9198 86.96 86.15 8126 89.73 84.46 8221 7820 84.13 7873 8021 73.21 89.61 84.15 86.00 80.84
PatchCraft 81.83 79.65 70.88 69.36 6847 6519 7538 7329 99.85 99.26 98.55 9791 9633 9625 91.28 9147 9256 92.17 86.13 84.95
FatFormer 91.77 9036 83.58 83.17 92.58 92.06 86.93 85.14 98.76 98.47 97.65 98.02 97.64 97.57 96.55 9596 97.65 97.27 93.68 93.11
DRCT 90.26 90.07 8574 83.85 90.24 89.88 88.27 89.06 9587 94.99 86.89 86.12 89.11 8839 9238 9241 9444 9447 90.36 89.92
‘WePe* 93.89 9242 90.21 87.15 91.73 88.69 88.00 84.94 99.85 99.83 99.03 99.04 99.52 9951 9831 97.84 99.63 99.54 9557 9433

Training-free Methods
AEROBLADE 55.61 5426 61.57 56.58 62.67 60.93 8588 87.71 4436 45.66 4739 48.14 4728 4854 67.05 67.69 4805 4875 57.87 57.85
RIGID 87.16 85.08 80.09 77.07 7243 6930 7040 6594 90.08 89.26 86.39 84.11 86.32 8544 90.06 88.74 89.30 89.25 83.58 81.58
WePe 89.79 8732 83.20 7880 7847 7350 77.13 7121 94.24 93.64 92.15 9029 93.86 9286 93.50 91.47 89.55 86.25 87.99 85.04
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Figure 5: Performance varies with perturbation intensity under different degradation mechanisms,
including (a) JPEG compression, (b) Gaussian blur, and (c) Gaussian noise.

This theorem asserts that feature representations of natural images, optimized through training on
D', exhibit greater robustness to parameter perturbations than those of Al-generated images, which
lie outside the training distribution. This differential sensitivity underpins the efficacy of weight
perturbations in Al-generated image detection, enabling the model to distinguish natural images from
Al-generated images. A rigorous proof of this theorem is provided in Appendix [C|

3.4 Sharpening discriminative uncertainty through precise calibration

The original DINOv2 model reveals notable uncertainty disparities between natural and generated
images. With access to the training dataset, fine-tuning can amplify this uncertainty gap, enhancing
detection performance. Specifically, we introduce the following loss function:

L(0) = Epext [f(x:0)T f(x:6")] = Egexo [f(x:0) 7 f(x:67)] , (16)

where 0* = 6 + P represents a perturbed parameter set, with P being a randomized perturbation
matrix drawn from a predefined distribution. This formulation builds on the uncertainty upper bound
established in Eq.[I3]to guide optimization. The loss encourages high confidence for natural images
(X1 and low confidence for generated images (X°), thereby sharpening the model’s ability to
distinguish between the two classes. We call this method WePe*.

4 Experiments
4.1 Experiment setup

Datasets and evaluation metrics. Following previous works (He et al., 2024;|Zhu et al., 2023), we
evaluate the performance of WePe on ImageNet (Deng et al.,2009), LSUN-BEDROOM (Yu et al.|
2015), Genlmage (Zhu et al., 2023) and DRCT-2M (Chen et al.| 2024)), with the following evaluation
metrics: (1) the average precision (AP), (2) the area under the receiver operating characteristic curve
(AUROC) and (3) the classification accuracy (ACC).

Baselines. Following RIGID, we take both training-free methods and training methods as baselines.
For training-free methods, we take RIGID (He et al.| 2024)) and AEROBLADE (Ricker et al.,[2024)
as baselines. For training methods, we take DIRE (Wang et al.,|2023)), CNNspot (Wang et al., 2020),
Ojha (Ojha et al., [2023)), PatchCraft (Zhong et al. 2023), FatFormer (Liu et al.||2024), DRCT (Chen
et al., 2024) and NPR (Tan et al.,[2024) as baselines. Besides, on Genlmage, we also report the result
of Frank (Frank et al., 2020), Durall (Durall et al.| [2020), Patchfor (Chai et al., [2020), F3Net (Qian
et al., 2020), SelfBlend (Shiohara and Yamasaki, [2022), GANDetection (Mandelli et al., [2022)),
LGrad (Tan et al.| [2023)), ResNet-50 (He et al.,|2016), DeiT-S (Touvron et al.,[2021)), Swin-T (Liu
et al.,[2021)), Spec (Zhang et al.,|2019), GramNet (Liu et al., 2020).
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Experiment details. To balance detection performance Taple 2: The effect of perturbation type.
and efficiency, we use DINOv2 ViT-L/14. Due to the

. is AUR AP
randomness of the added noise, we report the average N'om . | UROC |
results under five different random seeds and report the %@;S‘an noise g;gz 22'2‘2‘
variance in Figure [[0} In our experiments we find that Lg;g conoine | 8713 8422
perturbing the high layers may lead to a large corruption in MC Dropout 81.63 7971

the features of the natural images, resulting in sub-optimal
results. Therefore, we do not perturb the high-level parameters. In DINOv2 ViT-L/14, the model
has 24 transformer blocks, and we only perturb the parameters of the first 19 blocks with Gaussian
perturbations of zero mean. The variance of Gaussian noise is proportional to the mean value of the
parameters in each block, with the ratio set to 0.1.

4.2 Results

Comparison with other baselines. We conduct full comparative experiments on four benchmarks
mentioned. As shown in Table[T} [T0] [TT]and [0] WePe achieves good detection performance on Ima-
geNet, LSUN-BEDROOM, DRCT-2M and Genlmage. Experimental results show the effectiveness of
uncertainty estimation in detecting Al-generated images. It is worth noting that without any training,
and relying only on the nature of the pre-trained model itself, WePe shows the potential to differentiate
between natural and generated images. When further trained to amplify the uncertainty disparity
between natural and generated images, WePe* achieves superior average performance compared
to other methods and demonstrates robust generalization capabilities across diverse datasets. To
further illustrate the effectiveness of our method, we count the difference in feature similarity between
natural and generated images on the pre- and post-perturbation models. As shown in Figure[d] small
perturbation of the model has less effect on the natural images than on generated images, resulting in
higher feature similarity before and after the perturbation. The discrepancy effectively distinguishes
the natural image from the generated image.

Comparison under attacks. In real-world scenarios, malicious actors may attempt to modify
generated images to evade detection. To assess the robustness of the model under such conditions,
we simulate an attack by introducing Gaussian noise (with a variance of 0.1) to the generated images.
Then the clean natural image and the attacked generated image are fed into the detector to determine
whether the two can be reliably distinguished. Beyond spatial domain attacks, we also investigate
attacks in the frequency domain, given the frequency differences between natural and generated
images. As in Table E], several detectors, such as NPR and RIGID, are vulnerable to this simple form
of attack. In contrast, WePe, which identifies differences in the distributions of natural and generated
images, demonstrates resilience to attacks, as the added noise further accentuates these distributional
disparities, thereby enhancing WePe’s capacity to differentiate between the two types of images.

4.3 Ablation study

In this section, we perform ablation experiments. Unless oth-
erwise stated, experiments are conducted on ImageNet. model | AUROC| AP

. . DINOv2: ViT-S/14 | 72.83 | 71.63
Robustness to Image Perturbations Robustness to various  piNnov2: VITLB/14 | 81.82 | 80.64

perturbations is a critical metric for detecting generated images. ~ DINOv2: ViT-L/14 | 87.99 | 85.04
In real-world scenarios, images frequently undergo perturba- ~ PINOv2: ViT-g/l4 | 84.92 | 81.83

. . . ) CLIP: ViT-L/14 84.82 | 84.20
tions that can impact detection performance. Following RIGID,
we assess the robustness of detectors against three types of perturbations: JPEG compression (with
quality parameter ¢q)), Gaussian blur (with standard deviation ), and Gaussian noise (with standard
deviation o). As illustrated in Figure 3] training-free methods generally exhibit superior robustness
compared to training-based methods, with our method achieving the best overall performance.

Table 3: The effect of models.




Selecting which layers’ parameters to perturb? As shown in Figure[7} we explore the choice of
which layers’ parameters to perturb would achieve good performance. The horizontal coordinates in
the graph indicate that the first k£ blocks are perturbed, not the kth block. The experimental results
exhibit that our method obtains good performance when the parameters of the first 9 to the first 20
blocks are chosen to be perturbed. This demonstrates the robustness of our method. In practice, we
can select the layers to be perturbed by a small set of natural and generated images. And when the
generated images are not available, we can also use the probe to determine which layers are perturbed
using only the natural image. We describe our method in Appendix

The effect of perturbation type. In experiments, model parameters are perturbed with Gaussian
noise. We further explore other perturbation, such as adding uniform or Laplace noise to the weight.
Besides, we also explore MC Dropout, i.e., using dropout during inference. As shown in Table 2] all
three weight perturbation methods achieve good performance, and outperform MC Dropout.

The impact of the degree of perturbation. As shown in Figure [6] we explore the effect of the
degree of perturbation on the performance of WePe. It can be seen that WePe is quite robust to the
level of perturbation noise. It is only when the noise is very large or very small that it leads to a
degradation in performance. When the noise level is small, the features obtained before and after
the model perturbation are extremely similar, while when the noise level is very large, the features
obtained before and after the model perturbation are extremely dissimilar, and these two cases will
result in the inability to effectively differentiate between natural and generated images.

The effect of models. In our experiments, we mainly used DINOv2 ViT-L/14 to extract features.
We further explore the effect of using other models of DINOv2, including ViT-S/14, ViT-B/14, and
ViT-g/14. In addition to this, we conduct experiments on the CLIP:ViT-L/14. As shown in Table[3]
the performance on CLIP is not as good as on DINOv2. We hypothesize that the difference comes
from the training approach of these models. CLIP learns features using image captions as supervision,
which may make the features more focused on semantic information, whereas DINOv2 learns features
only from images, which makes it more focused on the images themselves, and thus better able to
capture subtle differences in natural and generated images.

5 Related work

Al-Generated images detection. Recent advancements in generative models, such as those by (Brock
et al.,2019;Ho et al.,2020), have led to the creation of highly realistic images, highlighting the urgent
need for effective algorithms to distinguish between natural and generated images. Prior research,
including works by (Frank et al.| 2020; Marra et al.| 2018)), primarily focuses on developing specialized
binary classification neural networks to differentiate between natural and generated images. Notably,
CNNspot (Wang et al.,|2020) demonstrates that a standard image classifier trained on ProGAN can
generalize across various architectures when combined with specific data augmentation techniques.
NPR (Tan et al.,|2024)) introduces the concept of neighboring pixel relationships to capture differences
between natural and generated images. PatchCraft (Zhong et al.| [2023)) proposes an efficient Al-
generated image detector by exploring texture patch artifacts. FatFormer (Liu et al.| 2024) introduces
a forgery-aware adaptive Transformer that adapts a pre-trained CLIP model to effectively discern and
integrate local forgery traces from both image and frequency domains. DRCT (Chen et al.|, [2024)
presents a Diffusion Reconstruction Contrastive Training framework to improve the generalizability
of synthetic image detectors by training them to distinguish real images from their high-quality
diffusion-based reconstructions. Although these methods show superior performance on generators
in the training set, they often do not generalize well to unknown generators. In addition to this,
training-based methods are susceptible to small perturbations in the image. For this reason, recently,
some training-free methods have been proposed. AEROBLADE (Ricker et al.,[2024])) calculates the
reconstruction error with the help of the autoencoder used in latent diffusion models (Rombach et al.}
2022). RIGID (He et al.| [2024)) finds that natural images are more robust to small noise perturbations
than generated images in the representation space of the vision foundation models and exploits this
property for detection. However, these methods usually make overly strong assumptions about natural
or generated images, leading to insufficient generalization. In our paper, we propose a training-free
detection method through uncertainty analysis. Based on the widespread phenomenon that generated
images have greater uncertainty than natural images on models trained with natural images, our
method achieves robust detection performance.



Uncertainty estimation. Uncertainty estimation in machine learning has seen significant advance-
ments in recent years. (Gal and Ghahramani, 2016) introduces Monte Carlo Dropout (MC Dropout),
which uses dropout at inference to estimate uncertainty from the variance of multiple predictions.
(Lakshminarayanan et al., [2017) develops deep ensembles, demonstrating improved uncertainty
estimates through training multiple model independently with different initializations. Recent work
by (Snoek et al.,2019) analyzes the calibration of uncertainty in deep learning models, highlighting
the importance of reliable uncertainty measures. Additionally, (Guo et al.,2017) explore the use of
temperature scaling to enhance the calibration of model predictions. (Blundell et al.| 2015) introduce
Bayes by Backprop, a method for estimating weight uncertainty in neural networks by modeling the
posterior distribution over weights using variational inference, improving model generalization and
robustness. Similarly, (Ferrante et al., [2024)) leverage weight perturbation techniques to estimate
neural network uncertainty, demonstrating improved classification accuracy through robust uncer-
tainty quantification. (Pearce et al.| 2020) explore distribution-free uncertainty estimation, using
conformal prediction and quantile regression to estimate bounds on aleatoric uncertainty. (Chan
et al.}2024) introduce hyper-diffusion models, allowing to accurately estimate both epistemic and
aleatoric uncertainty with a single model.

6 Conclusion

In this work, to effectively address the challenges of detecting Al-generated images, we propose
a novel approach that leverages predictive uncertainty as a key metric. Our findings reveal that
by analyzing the discrepancies in distribution between natural and Al-generated images, we can
significantly enhance detection performance. The use of large-scale pre-trained models allows for
accurate computation of predictive uncertainty, enabling us to identify images with high uncertainty
as likely Al-generated. Our method achieves robust detection performance in a simple untrained
manner. Overall, our approach demonstrates a promising direction for improving Al-generated
image detection and mitigating potential risks associated with their misuse. Future work could delve
deeper into refining the predictive models and exploring additional features that could further enhance
detection accuracy.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes],

Justification: The main claims made in the abstract and introduction accurately reflects the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes],
Justification: Limitations are discussed in Appendix [A]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper provides a full set of assumptions and a complete proof.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The data and code will be released once prepared.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper provides details of implementation in Appendix [Q]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average results under five different random seeds and report the
variance in Figure[T0]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The paper provide sufficient information on the computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The paper has discussed societal impacts in Appendix
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the original paper that produced the code package and dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We communicate the details of the code as part of our submission via structured
templates.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing and research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing and research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitation

A key limitation of the proposed method lies in its reliance on the assumption of distinct uncertainty
profiles between natural and generated images. As generative models continue to advance, the
uncertainty gap between these image types, as captured by the foundational model, may progressively
narrow. This convergence could undermine the method’s effectiveness, necessitating additional
calibration techniques such as the proposed WePe*, to amplify the differentiation in uncertainty.

B Social impacts

The proposed Al-generated image detection method contributes to mitigating societal risks posed
by generative model fraud. By improving the ability to identify synthetic media, such as deepfakes,
this work helps combat disinformation and enhances trust in digital content, particularly in critical
domains like journalism and legal evidence.

C Proof of THEOREM 3.2

Proof. Consider a neural network f(z;60) : X — R?, parameterized by § € RP, which maps an
input image « to a feature vector f(z;6). The model is trained on the natural image distribution D*
by minimizing a loss function:

L(0) = Egpr [((f(2:0),9)], (17)
where / is the loss, and vy is the label. The optimal parameters are denoted 6*.

To capture sensitivity, we define a loss function that measures the change in the feature vector under
parameter perturbations:

U(,0,6) = || £ (2:0 +€) = f(a:0)]3, (18)
where & ~ N(0, 021 represents a Gaussian perturbation with variance o-2. For small £, we approxi-
mate:

F@;0 4 &) ~ f(a;0) + Vo f(2;0) ¢, (19)
so:

U(,0,€) = |[Vof(2:0) €[5 = € (2) T J ()¢, (20)

where J(x) = Vo f(z;0) is the Jacobian matrix. The expected loss over perturbations is:
Eell(z,0,€)] = E¢ [¢ ' J(2) " T (x)¢] = ot (I (2) T I (2)) = o®||J () [ 21
Thus, the expected sensitivity is proportional to the expected loss:

Eyp [5en(2)] = B (170} = S5 BonnBelt(,6,6)] 2 0. 22)

According to PAC-Bayes theory (McAllester, | 1998)), we consider a prior distribution P over parame-
ters 6, typically P = N (0y, 021), and a posterior distribution Q, typically @ = N (6*, o), where
0* is the trained parameter. The PAC-Bayes theorem provides a bound on the expected loss under Q).

For a loss function /, the standard PAC-Bayes bound states that, with probability at least 1 — § over
the draw of a training set T = {(z;,v:)}}*.; ~ DV, for any posterior Q:

KL(Q||P)+In &
+ AN-1)

(23)

N
1
Egn@E(z,y)~p (0, 7,y)] < Eong [N > 00, zi,y:)
=1

where KL(Q|| P) is the Kullback-Leibler divergence between () and P.

Here, we adapt the loss to £(z,0,&) = || f(z;0 + &) — f(x;0)||3. Since £ is a perturbation, we
consider the expected loss over &, which can be formed as:

U(2,0) = Eeuno,00n) [[f(2:0 +€) = f(2:0)|15] = 0?]| T (2)][3- 24)
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Since ¢/ (z, §) depends on 6, we approximate by evaluating at 8*, and consider the empirical sensitivity
on the training set ' ~ D*:

0(T,0) = ZEg 1 (30 +€) — f(z:30)[13] - (25)

According to Eq. (23), we have the following inequality:

+1n—

. 26)

Eoq@Eennll (z,0)] < Eoolf (T, 0)] \/KL QHP),

For D = D!, the training set T' ~ D', and the model is optimized at #*. The empirical sensitivity is:
02 N
O(T,07) ~ = > ()l
i1

Since the model is optimized on T ~ D!, the training process minimizes the loss landscape’s
curvature around 0*, leading to a flat minimum (Hochreiter and Schmidhuber, [1997), which means
the empirical sensitivity tends to 0. At the same time, as n tends to infinity, resulting in the expectation
sensitivity converging to the empirical sensitivity. Therefore, we have:

Eypr [0%]1J(2)]7] = 0, (27)

which is consistent with our experimental results observed in Figure 3]

For D = DY, we evaluate the expected sensitivity on generated images, but the training set remains
T ~ D'. Since D is not optimized, the feature representations for z ~ D lie in regions of higher
curvature in the loss landscape, leading to larger singular values of J (). According to Eq. (22) and

Eq. (27), we have:
Eonpo [0?|J(2)[[F] | = 0~ Eypr [0 (2)]17] (28)

which implies E, p1 [sen(x)] < E,po [sen(x)]. Thus we complete this proof. O

D Analysis of the Upper Bounds for Uncertainty Estimation

In Eq.[I3] we employ an upper bound to estimate uncertainty. Next, we provide an analysis to
establish the validity of this estimation. The inequality is obtained through the Cauchy-Schwarz
inequality, and we can explore the validity of the upper bound by calculating the difference between
the two sides of the inequality. We define the difference:

A =111 (5 0) —fo (6:03) 12 11F 65 00) |12 = 11 (. 64) %Z (F (< 0|
) (29)

Thus, the difference A\ can be written as:

1« 1 ¢
A=|IF(x0k) = E;f(x;%) A1F Ges B0IP={ |1£ (x3 6) — 5j;f(><; 0)|[ I1f (xc:6,)]| cos 6
(30)

where 0 is the angle between f (x;6,) and f (x;0;) — £ Z? f(x;0;).

And finally, we obtain the following expression:
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Table 4: Performance on ImageNet under frequency domain attacks (FDA) and spatial domain
attacks (SDA). We report AUROC.

Models

Methods ADM ADMG LDM DiT BigGAN  GigaGAN StyleGAN XL RQ-Transformer Mask GIT ~ Average A

FDA SDA FDA SDA FDA SDA FDA SDA FDA SDA FDA SDA FDA SDA FDA SDA FDA SDA FDA SDA FDA SDA
Training Methods

CNNispot 59.47 52.15 59.88 51.86 58.41 51.05 55.43 51.29 71.85 53.87 58.54 50.36 6027 51.52 5474 4871 59.45 5032 59.78 51.24

Ojha 85.16 85.28 84.09 83.67 85.94 84.97 85.14 84.33 92.17 94.77 8539 90.18 88.16 86.73 8522 86.38 88.71 91.75 86.17 87.56 +0.82 +2.21

DIRE 53.82 52,93 51.19 54.89 53.18 50.33 54.17 49.37 52.59 50.02 55.54 51.95 52.44 50.44 5462 48.15 5211 51.29 53.30 51.04 +0.60

NPR 83.01 46.99 82.03 46.59 86.64 46.22 81.22 4522 84.41 4631 81.53 46.51 82.86 4578 8249 47.65 86.18 45.42 8337 4630

WePe* 96.42 93.86 93.67 88.58 94.73 84.90 91.47 81.93 99.64 96.67 98.54 94.69 99.46 97.33 9849 95.64 98.67 91.79 96.79 91.71 +1.22

Training-free Methods
AEROBLADA 40.30 23.08 42.87 27.87 45.51 28.18 43.93 28.77 41.84 27.09 4270 29.05 47.01 3278 51.62 31.96 51.62 32.71 44.90 29.05

RIGID 80.79 35.45 73.01 34.37 65.66 33.83 63.09 33.37 77.99 35.60 73.91 35.32 73.23 34.58 83.01 36.19 76.62 34.36 74.15 34.77
‘WePe 91.22 93.78 85.70 88.73 80.87 83.78 79.02 80.19 93.32 93.31 91.69 92.46 93.96 94.42 9395 95.11 88.44 88.84 88.68 90.07 +0.69 +2.08
2
1 — 9 )
A=If(x0) — S 0| - I1f (x:00)]* (1 = cos®0) (31)
Jj=1
2
1 - 2 .. 92
= (£ Gsbr) =~ > F 05| I (s 00)]" sin® 0 (32)
j=1

n
tighter the upper bound. In our experiment, the perturbation applied to the model was extremely

small, causing the image features to remain virtually unchanged, resulting in an extremely weak
deviation between f (x;6;) — L Z; f(x;0;) and f (x;6,), thereby enabling the upper bound to
provide a reliable basis for ranking the instances.

This result indicates that the smaller the angle between f (x;6) — + Z;L f(x;0;) and f (x;6;), the

E Performance under attacks.

As presented in Table ] we evaluate the robustness of the proposed method against malicious
manipulations of generated images. Specifically, for the FDA and SDA scenarios, we apply zero-
mean Gaussian noise with a standard deviation of 0.1 to perturb the generated images. The results
demonstrate that our method exhibits strong robustness to these perturbations.

F Discussion on distribution discrepancy

In this paper, the core assumption we make is that there is data distribution discrepancy between
natural and generated images. This assumption is valid for current generative models and has
been confirmed by many works (Tan et al., [2024; Ricker et al.|, |2024)). This assumption is also the
foundation of many generative image detection methods (we cannot distinguish between images that
are indistinguishable).

Secondly, we observe that this discrepancy in data distribution can be captured by the representation
space of a vision model pre-trained on a large number of natural images, i.e., there is feature
distribution discrepancy between the generated and natural images, as shown in Figure [§] However,
this remains an observation, and we have not found theoretical proof despite reviewing the literature.
We only observe a similar phenomenon in UnivFD (Ojha et al.l 2023), where the feature distribution
discrepancy is observed in the representation space of CLIP:ViT-L/14.

That said, we can confirm the existence of feature distribution discrepancy of generated and natural
images based on an important metric for evaluating generative models, the FID score. The FID score
measures the feature distribution discrepancy between natural and generated images on the Inception
network (Szegedy et al.|, 2015). When the FID score is 0, it indicates that the two distributions
do not differ. However, even on these simple networks such as Inception v3, advanced generative
models like ADM still achieve an FID score of 11.84, not to mention that on powerful models such
as DINOv2, we observe significant feature distribution discrepancy.
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Figure 8: Feature distribution discrepancy between the generated and natural images on DINOv?2 and
CLIP. e and e represent the feature of natural images and Al-generated images on the corresponding
models.

Table 5: Measuring feature distribution discrepancy with FID scores.

Models | Natural | ADM | StyleGAN | iDDPM | DDPM | Diffusion GAN | Unleashing Transformer | Projected GAN
FID score 1.09 18.25 52.31 59.94 80.44 116.06 130.00 13275
AUROC 50.00 | 73.85 83.50 86.23 88.84 94.16 94.18 95.34

G Measuring feature distribution discrepancy with FID scores

We further use the "FID" score to measure the difference in feature distribution between natural and
generated images. To avoid the effects of categories, we compute the FID scores using the DINOv2
model on the LSUN-BEDROOM benchmark. For each category of images, we randomly select
5000 images for calculation. In addition to calculating the FID scores between natural images and
generated images, we also calculate the FID scores between natural images and natural images. As
shown in Table [5] the FID scores between natural images and generated images are significantly
higher than the FID scores between natural images and natural images. Moreover, there is a clear
positive correlation between the detection performance of WePe and the FID score. This result fully
explains the existence of feature distribution discrepancy between natural and generated images on
DINOV2, and demonstrates that WePe can effectively detect the feature distribution discrepancy.

H WePe on large multi-modal models

In addition to CLIP, we further test the performance of WePe on BLIP (L1 et al.,[2022). As shown in
Table[7] the performance of WePe is unsatisfactory on these multimodal models, which may be due to
the fact that the image features of the multimodal models are more focused on semantic information,
in line with our discussions.

Table 6: Comparison of detection times. Table 7: WePe on large multi-
Method | Time (s) modal models.
AEROBLADE 17.6 Model | AUROC | AP
RIGID 3.7 DINOv2 87.99 85.04
WePe 4.5 BLIP 68.25 64.68

I Comparison of computational costs.

Our method use a perturbed pre-trained model that is fixed during inferring all test samples. Thus, our
method can be processed within two forward passes. This is equal to the cost of RIGID that requires
two forward passes for clean and noisy images. However, RIGID can concatenate clean and noisy
images in a mini batch and obtain detection results by with a single forward pass. AEROBLADE
requires only one forward pass, but it needs to compute the reconstruction error of the image. This
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takes a long time to reconstruct at the pixel level. Besides, AEROBLADE needs to use a neural
network to compute the LPIPS score, leading to computational complexity. As shown in Table[6] we
compare the time required to detect 100 images under the same conditions. Since AEROBLADE
needs to calculate the image reconstruction error, it has the lowest detection efficiency. RIGID can
obtain detection results in a single forward pass by concatenating clean and noisy images, whereas
WePe requires two forward passes, which results in WePe’s detection efficiency being inferior to
RIGID’s. However, WePe can be parallelized across two devices to obtain the detection results
in a single forward pass. In practice, WePe has high computational efficiency and is suitable for
large-scale applications.

J WePe with multiple perturbation

In our experiments, taking into account the detection efficiency, we perturb the model only once, and
then calculate the feature similarity of the test samples on the clean and perturbed models. We further
experiment with multiple perturbations and use the mean of the feature similarity of the test samples
on the clean model and all the perturbed models as the criterion for determining whether or not the
image is generated by the generative models. As shown in Figure [I0] multiple perturbations can
further improve performance.

K Comparison with OOD detection and uncertainty quantification methods

 Contrast with OOD Detection: Conventional OOD detection (Sun and Li [2022; Djurisic
et al., 2023} [Nie et al. [2024) usually relies on Maximum Softmax Probability (MSP)
scores, exploiting fixed ID categories to identify OOD samples with low probabilities. In
contrast, Al-generated detection involves diverse, unbounded categories, rendering MSP
scores ineffective. WePe introduces a novel uncertainty estimation approach tailored for
detecting generated images, achieving robust performance where traditional OOD methods
falter. As shown in Table[§] we further use the ImageNet pre-trained classification model
and used MSP and entropy as the scoring function to evaluate their performance on the
Al-generated image detection task. The results show that these methods fail.

 Contrast with Uncertainty Quantification: Standard techniques like MC-Dropout and Deep-
Ensemble are ill-suited for DINOv2. Training multiple DINOv2 models for DeepEnsemble
is computationally infeasible, and the absence of dropout in DINOv2 undermines MC-
Dropout’s efficacy. Our proposed weight perturbation method overcomes these limitations,
delivering a practical and effective uncertainty estimation tailored to DINOv2’s architecture,
as validated by our experiments.

L Analysis of Failure Cases

Table 8: The results of using classi-

WePe leverages the differential epistemic uncertainty exhib- )
fication models.

ited by pre-trained models, such as DINOv2, when processing
natural versus generated images to differentiate between them. _ model | score | AUROC| AP
Specifically, DINOv2, having been trained on an extensive  ResNetl8 | MSP 48.85 | 49.23
dataset of natural images, demonstrates lower epistemic uncer- %‘:‘TNf;llﬁg izltsrgpy gé;g 28‘?2
tainty for such images. Images that diverge from the distribution  viT.L/16 | entropy 6579 | 6197
of the training dataset—despite not being generated by a gen-
erative model—tend to elicit higher uncertainty from DINOvV2, leading to their misclassification as
generated images. As shown in Figure[0] we visualized the feature shifts in DINOv2’s representations
for a set of cartoon images, which were not produced by generative models, before and after weight
perturbation. These images, due to their deviation from the training natural distribution, exhibited
significant feature shifts post-perturbation, rendering them indistinguishable from generated images
in our analysis.

M Experiment results on Genlmage, LSUN-BEDROOM and DRCT-2M

As shown in Table[9] Table[I0]and Table [T} our method achieves good performance on Genlmage
LSUN-BEDROOM and DRCT-2M, confirming the robustness of the proposed method.
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(@) (b) ©
Figure 9: Feature shifts after model perturbation. Images are sampled from the following distributions:
(a) natural image distribution, (b) Al-generated image distribution, and (c) cartoon image distribution.

Table 9: Al-generated image detection performance (ACC, %) on Genlmage.

Methods Midjourney SD V1.4 SD V1.5 ADM GLIDE Wukong VQDM BigGAN Average
Training Methods
ResNet-50 54.9 99.9 99.7 535 619 98.2 56.6 52.0 72.1
DeiT-S 55.6 99.9 99.8 498 58.1 98.9 56.9 535 71.6
Swin-T 62.1 99.9 99.8 498 67.6 99.1 62.3 57.6 74.8
CNNspot 52.8 96.3 959 501 398 78.6 53.4 46.8 64.2
Spec 52.0 99.4 99.2 497 498 94.8 55.6 49.8 68.8
F3Net 50.1 99.9 999 499 500 99.9 49.9 49.9 68.7
GramNet 54.2 99.2 99.1 503 54.6 98.9 50.8 51.7 69.9
DIRE 60.2 99.9 99.8 509 550 99.2 50.1 50.2 70.7
UnivFD 732 84.2 840 552 769 75.6 56.9 80.3 73.3
PatchCraft 79.0 89.5 893 773 784 89.3 83.7 72.4 82.3
NPR 81.0 98.2 979 769 89.8 96.9 84.1 84.2 88.6
FatFormer 92.7 100.0 999 759 88.0 99.9 98.8 55.8 88.9
GenDet 89.6 96.1 96.1 58.0 784 92.8 66.5 75.0 81.6
DRCT 91.5 95.0 944 794 89.1 94.6 90.0 81.6 89.4
WePe* 91.7 99.5 98.4 823 936 98.1 95.0 87.1 93.2
Training-free Methods
AEROBLADE 80.3 87.5 868 672 815 83.7 51.1 52.5 73.83
RIGID 81.54 69.5 68.72 7235 8415 6857 7898  93.02  78.19
WePe 79.17 77.8 75.57 76.07 79.20 79.00 90.60 89.27  80.84

N SOFTWARE AND HARDWARE

We use python 3.8.16 and Pytorch 1.12.1, and several NVIDIA GeForce RTX-3090 GPU and NVIDIA
GeForce RTX-4090 GPU.

O Using natural images only to select which layers to perturb

In our experiments, we use a small set of natural images and
generated images to pick the parameters that need to be per-

turbed. When all the generated images are not available, we 89.0 »

can also use only the natural images to select the layers that A 86.5
need to be perturbed. Specifically, we first perturb each block & 5o ¢ 86.0a
alone and calculate the similarity of the features on the model £ i <
of the natural image before and after the perturbation, as shown < ¢ 85.5
in Table[T2} We then sort the similarity and select the blocks 88.0 7 4 o

with the highest similarity for perturbation. As shown in Ta- I ‘ § 85-0
ble[T3] selecting the parameters to be perturbed in this way also 10 20

achieves good performance and has strong robustness.

Figure 10: WePe with multiple
P Details of Datasets perturbations.

IMAGENET. The natural images and generated images

can be obtained at https://github.com/layer6ai-labs/

dgm-eval. The images are provided by (Stein et al., [2023)).

The generative model includes: ADM, ADMG, BigGAN, DiT-XL-2, GigaGAN, LDM, StyleGAN-
XL, RQ-Transformer and Mask-GIT.
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Table 10: Al-generated image detection performance on LSUN-BEDROOM.

Models
Methods ADM DDPM iDDPM Diffusion GAN Projected GAN  StyleGAN  Unleashing Transformer Average
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP
CNNspot 64.83 64.24 79.04 80.58 7695 7628 8845 87.19 90.80 89.94 9517 9494 93.42 93.11 84.09 83.75
Ojha 7126 7095 79.26 7827 74.80 73.46 84.56 8291 82.00 7842 81.22 78.08 83.58 83.48 79.53  77.94
DIRE 57.19 56.85 6191 6135 59.82 5829 53.18 5348 5535 5493 57.66 5690 67.92 68.33 59.00 58.59
NPR 7543 72,60 9142 90.89 8949 8825 76.17 7419 7507 7459 6882 63.53 84.39 83.67 80.11 78.25
WePe* 7941 76.68 96.71 96.16 94.18 9344 99.81 99.80 99.83 99.82 97.06 96.51 99.45 99.37 9521 94.54
AEROBLADA 57.05 5837 6157 6149 5982 61.06 47.12 4825 4598 46.15 4563 47.06 59.71 57.34 5385 5425
RIGID 7190 7229 8831 88.55 84.02 84.80 9142 9190 92.12 9254 7729 7496 91.37 91.39 8520 85.20
WePe 73.85 7021 88.84 87.14 86.23 8382 9416 93.52 9534 9518 83.50 80.66 94.18 93.45 88.01 86.28
Table 11: Al-generated image detection performance (ACC, %) on DRCT-2M.
SD Variants Turbo Variants LCM Variants ControlNet Variants DR Variants
Method Avg.
SDXL- SD- SDXL- LCM- LCM- SDvl- SDv2- SDXL- SDvl- SDv2- SDXL-
LDM  SDvl4  SDvl.5 SDv2 SDXL  Refiner Turbo Turbo SDvLS SDXL Cul  Cul  Cul DR DR DR
CNNSpot 99.87  99.91 99.90 97.63  66.25 86.55 86.15 72.42 98.26 6172 9796  85.89 82.94 60.93 5141 5028  81.12
F3Net 99.85  99.78 99.79  88.60 55.85 87.37 63.29 63.66 97.39 5498 9798 7239 81.99 6542 5039 5027  71.13

CLIP/RN50  99.00  99.99 99.96 9461 62.08 9143 8440 64.40 9897 5743 99.74 80.69 8203 6583 50.67 50.47 80.05
GramNet 99.40  99.01 98.84 9530 62.63 80.68 71.19  69.32 93.05 57.02 89.97 7555 8268 5123 50.01 50.08  76.62

De-fake 92.10  95.53 99.51  89.65 64.02 69.24 92.00 93.93 99.13  70.89 5898 6234 66.66 50.12 50.16 50.00 75.52
Conv-B 99.97  100.0 99.97 9584 6444  82.00 60.75  99.27 99.27 6233  99.80 8340 7328 6165 5179 5041 79.11
Ojha 98.30  96.22 96.33  93.83 91.01 9391 8638 8592 90.44  89.99 9041 81.06 89.06 5196 51.03 5046 83.46
DIRE 54.62  75.89 76.04 99.87 5990 93.08 9755 8729 7253 67.85 99.69 6440 6440 4996 5248 4992 7255
DRCT 94.45 9435 94.24 9505 96.41 95.38 9481 9448 91.66 9554 9386 9350 9354 84.34 8320 67.61 91.35
FatFormer ~ 96.52  95.31 9327 9199 9287 91.78 88.15 87.48 9282 9176 9028 8699  88.19 6592 60.15 5513 85.53
WePe 9238  67.18 65.88 7405 7562 7223 66.82 6246 66.88  77.25 7541 7492 8034 6398 59.65 59.68 70.92
WePe* 97.06  96.03 9476 9645 96.59  97.81 9354  92.66 9629 9443  96.69 9617 9572 7599 7332 69.78 9145

LSUN-BEDROOM. The natural images and generated images can be obtained athttps://github.
com/layer6ai-labs/dgm-eval. The images are provided by (Stein et al.,2023). The generative
model includes: ADM, DDPM, iDDPM, StyleGAN, Diffusion-Projected GAN, Projected GAN and
Unleashing Transformers.

Genlmage. The natural images and generated images can be obtained at https://github.com/
GenImage-Dataset/GenImage. The images are provided by (Zhu et al.l |2023). The generative
model includes: Midjourney, SD V1.4, SD V1.5, ADM, GLIDE, Wukong, VQDM and BigGAN.
The natural images come from ImageNet, and different images have different resolutions.

DRCT-2M. The natural images of DRCT-2M come from CoCo and can be obtained from https:
//cocodataset.org/#download, Al-generated images of DRCT-2M can be obtained from https:
//modelscope.cn/datasets/BokingChen/DRCT-2M/files, which are provided by (Chen et al.;
2024). The generative model includes LDM, SDv1.4, SDv1.5, SDv2, SDXL, SDXL-Refiner, SD-
Turbo, SDXL-Turbo, LCM-SDv1.5, LCM-SDXL, SDv1-Ctrl, SDv2-Ctrl, SDXL-Ctrl, SDv1-DR,
SDv2-DR, SDXL-DR.

Q Implementation details

To balance detection performance and efficiency, we use DINOv2 ViT-L/14. We report the average
results under five different random seeds and report the variance in Figure In our experiments
we find that perturbing the high layers may lead to a large corruption in the features of the natural
images, resulting in sub-optimal results. Therefore, We do not perturb the high-level parameters.
In DINOv2 ViT-L/14, the model has 24 transformer blocks, and we only perturb the parameters
of the first 19 blocks with Gaussian perturbations of zero mean. The variance of Gaussian noise is
proportional to the mean value of the parameters in each block, with the ratio set to 0.1. Considering
the computational cost, we perturb the model only 1 time, i.e., n = 1. Multiple perturbations can
further improve the performance as shown in Table For WePe*, we leverage LoRa (Hu et al.}
2022)) for parameter-effcient fine-tuning. The Lora layers are applied on the q_proj and v_proj layers
of DINOV2. lora_r and lora_c are set to 8. And the model is optimized using the AdamW optimizer
with a learning rate of 1 x 1072, 8; = 0.9, B2 = 0.99, and a weight decay of 0.01. Following
CNNspot (Wang et al.l [2020), data augmentation techniques including JPEG compression and
Gaussian blur are employed to enhance robustness. For the IMAGENNET and LSUN-BEDROOM
benchmarks, the ProGAN dataset serves as the training set. For the Genlmage benchmark, SDv1.4
dataset is used as training set. For the DRCT-2M benchmark, SDv2 dataset is used as training
set. When testing, to ensure objectivity in calculating classification accuracy and mitigate biases

27


https://github.com/layer6ai-labs/dgm-eval
https://github.com/layer6ai-labs/dgm-eval
https://github.com/GenImage-Dataset/GenImage 
https://github.com/GenImage-Dataset/GenImage 
https://cocodataset.org/#download
https://cocodataset.org/#download
https://modelscope.cn/datasets/BokingChen/DRCT-2M/files
https://modelscope.cn/datasets/BokingChen/DRCT-2M/files

Table 12: Effect of perturbation position on natural images. We perturb each block individually,
observe the similarity of features on the model of the natural image before and after the perturbation
and rank these blocks.

[ block [ 0 ] [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [ 10 [ ™ [ 13 [ 1@ [ 15 [ 16 [ 17 [ 18 [ 19 [ 20 [ 21 [ 22 [ 23
| similarity(%) | 99.40 | 97.66 | 98.83 | 99.00 | 98.80 | 98.70 | 99.37 | 94.73 | 92.87 | 98.44 | 97.07 | 98.00 | 93.46 | 96.24 | 94.80 | 93.85 | 92.40 | 87.60 | 71.50 | 76.00 | 80.27 | 75.93 | 3481 | 47.90 |
[ rmk [ T [ 9 | & | 3 ] 5 [ 6 2 [ 1B 16 7 [ 10 8 [ 15 [ 1T [ 12 1@ [ 17 [ 18 [ 22 [ 20 [ 19 [ 2 [ 28 | 23]

Table 13: Al-generated image detection performance on ImageNet. We select the top-k blocks with
the highest similarity for perturbation based on the sorting results.

Models
Methods ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer ~ Mask GIT

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP
Training Methods

Average

CNNspot 6225 63.13 6328 6227 63.16 6481 6285 61.16 8571 84.93 7485 7145 6841 6867 61.83 6291 6098 61.69 67.04 66.78
Ojha 83.37 8295 79.60 78.15 8035 79.71 8293 81.72 93.07 92.77 8745 84.88 8536 83.15 8519 8422 90.82 90.71 8535 84.25
DIRE 51.82 5029 53.14 5296 5283 51.84 54.67 55.10 51.62 50.83 50.70 50.27 5095 5136 5595 54.83 5258 52.10 52.70 52.18
NPR 85.68 80.86 84.34 79.79 91.98 8696 86.15 81.26 89.73 84.46 8221 7820 84.13 7873 80.21 7321 89.61 84.15 86.00 80.84

Training-free Methods
AEROBLADA 5561 54.26 61.57 56.58 62.67 6093 85.88 87.71 4436 45.66 4739 48.14 4728 4854 6705 67.69 48.05 4875 57.87 57.85
RIGID 87.16 85.08 80.09 77.07 7243 69.30 7040 6594 90.08 89.26 86.39 84.11 8632 8544 90.06 88.74 89.30 8925 83.58 81.58

WePe top-8 89.25 86.53 82.66 78.08 79.29 73.88 7853 7248 93.90 92.61 92.07 89.65 93.06 9126 92.68 89.84 89.85 8691 87.92 84.59
WePe top-10 89.57 86.67 82.62 7933 7895 7442 77.15 7229 92.65 91.36 9191 90.60 93.77 9271 93.17 91.76 8842 86.46 87.58 85.07

WePe top-12 89.23 87.86 84.38 81.19 78.63 74.13 7533 70.50 9429 93.81 9253 9171 94.64 9432 93.15 92.15 89.90 8822 88.01 85.99
‘WePe top-14 89.69 87.57 82.60 7924 79.69 76.06 76.74 71.26 93.05 92.30 9245 9123 9471 9478 9496 9422 8944 88.14 88.15 86.09
WePe top-16 90.58 89.40 84.80 82.08 8028 76.54 76.57 7288 92.81 92.55 92.11 9110 92.89 9272 93.05 9226 9146 90.60 88.28 86.68

WePe top-18 90.02 87.83 83.39 80.58 79.12 74.64 76.18 71.12 91.82 91.36 9226 9171 93.77 93.39 93.68 92.89 89.12 87.57 87.71 85.68

arising from manually selected thresholds, following (Ojha et al.||2023)), we automatically determine
the optimal threshold by identifying the score that maximizes the separation between natural and
generated images, based on their computed classification scores.
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