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ABSTRACT

Retrosynthesis, the process of breaking down a target molecule into simpler precur-
sors through a series of valid reactions, stands at the core of organic chemistry and
drug development. Although recent machine learning (ML) research has advanced
single-step retrosynthetic modeling and subsequent route searches, these solutions
remain restricted by the extensive combinatorial space of possible pathways. Con-
currently, large language models (LLMs) have exhibited remarkable chemical
knowledge, hinting at their potential to tackle complex decision-making tasks in
chemistry. In this work, we explore whether LLMs can successfully navigate the
highly constrained, multi-step retrosynthesis planning problem. We introduce an
efficient scheme for encoding reaction pathways and present a new route-level
search strategy, moving beyond the conventional step-by-step reactant prediction.
Through comprehensive evaluations, we show that our LLM-augmented approach
excels at retrosynthesis planning and extends naturally to the broader challenge of
synthesizable molecular design.

1 INTRODUCTION

Retrosynthesis Corey & Wipke (1969); Corey et al. (1985) concerns with breaking down a target
molecular structure into a sequence of simpler or more readily available precursor structures and
chemical reactions Boström et al. (2018). It is essential for many chemistry problems that require the
realization of proposed molecular structures from organic synthesis to drug discovery Blakemore
et al. (2018). Nevertheless, the search space for a given target is tremendous as the number of
possible synthesis pathways grows exponentially with the number of reaction steps or the depth of
the route tree. Consequently, efficient decision-making in retrosynthesis planning, and more broadly,
in chemical design, remains a critical challenge.

Recent research has harnessed machine learning to tackle retrosynthesis by modeling reactions with a
single-step model which predicts a reaction template, i.e., a reaction coded as a pattern, to synthesize
the given target molecule Segler & Waller (2017); Coley et al. (2017); Liu et al. (2017), including
graph neural networks Dai et al. (2019a); Chen & Jung (2021a), and subsequently reverse the template
to obtain the reactants. Another branch of single-step models do not rely on the provided reaction
templates and directly predict reactants Liu et al. (2017); Schwaller et al. (2020); Igashov et al.. After
training the single-step models, they are further connected with a search algorithm (e.g. Monte Carlo
tree search Segler et al. (2018b) or A* search Chen et al. (2020a) to perform multi-step retrosynthetic
analysis, which halts when a path to a set of predefined purchasable molecules is found.

Recent studies have shown that large language models (LLMs) implicitly encode substantial chemical
knowledge, as evidenced by their remarkable performance in searching molecular structures with
optimized properties Wang et al. (2024). In addition, LLMs have been leveraged for reasoning
and planning problems, such as automated experimentation in chemistry M. Bran et al. (2024);
Boiko et al. (2023). Despite the apparent promise, the extent to which LLMs can handle tightly
constrained decision processes, such as retrosynthesis planning, remains largely unexplored. Unlike
open-ended tasks like text generation, retrosynthesis imposes rigorous constraints on the sequence of
actions (reaction steps). Only certain reaction templates are valid, and only commercially available or
otherwise feasible precursors can be used.

In this paper, we investigate whether the knowledge embedded in LLMs can be effectively leveraged
for complex sequential decision-making tasks in chemistry such as retrosynthesis planning. Crucially
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and by contrast to existing LLM works for retrosynthesis Nguyen-Van et al. (2024); Yang et al.
(2024), we do not tune the base LLM. Instead, by exploring how LLMs perform under heavy
constraints, we aim to gain insights into their potential to serve as powerful decision-making engines,
ultimately advancing our understanding of their capabilities in chemistry and beyond. Furthermore,
we expand the scope to study the capability of LLMs in not only finding a synthesis pathway, but also
simultaneously optimizing the property of the target molecule, known as synthesizable molecular
design Bradshaw et al. (2019; 2020); Gottipati et al. (2020); Horwood & Noutahi (2020); Korovina
et al. (2020); Gao et al. (2022; 2024); Koziarski et al. (2024); Cretu et al. (2024); Seo et al. (2024);
Swanson et al. (2024). Our main contributions are as follows:

▷ We propose an efficient and effective way to encode the sequence of synthesis decisions: (1)
a language to describe reactions that LLMs understand and (2) efficient data structures to
store the exponential-growth tree-structured synthesis pathways.

▷ We propose a novel way of searching sequence-level decisions with a smooth reward function
and partial feedback by sampling from the space of decision sequences (full multi-step
synthetic pathways) rather than individual states (a single reaction step).

▷ Experimentally, we study both the retrosynthesis planning and synthesizable molecular
design problems in this unifying paradigm of LLM-augmented reaction decision program.

2 PROBLEM FORMULATION

We formulate the retrosynthesis planning problem as a sequential decision making problem. At the
core of this task is a molecule set, which contains either the molecules we aim to synthesize (target)
or purchase directly (permitted commercial building blocks). We initialize the molecule set with only
the target molecule and evolve over successive search steps until there is no molecule in the set that
is non-purchasable.

At each step, we use a backward reaction to decompose a molecule in the set (the product) into its
reactants. This involves removing the product from the molecule set and adding the corresponding
reactants generated by the selected backward reaction. The process terminates when either all
molecules remaining in the set are purchasable or the maximum budget of attempts is reached.

A reaction is formally defined by a reaction template, which specifies a structural transformation
pattern in the form of a SMARTS string Daylight Chemical Information Systems. We denote the
set of feasible reaction templates by T and the set of purchasable compounds by C. Both T and C
are flexible and can be refined or expanded without altering the underlying framework, ensuring
adaptability to various chemical spaces.

Given T and C, our goal is to iteratively select backward reactions that construct a valid synthetic
route for the target molecule. Each molecule in the synthetic route, including intermediates, is
explicitly defined through the application of reaction templates to its reactants. Compared to general
molecule generation tasks, retrosynthesis planning introduces additional challenges, such as enforcing
chemical reaction rules and ensuring the use of commercially available building blocks.

2.1 RETROSYNTHESIS PLANNING

Given a target molecule Mtarget, the objective is to identify a sequence of reactions {r1, r2, . . . , rn}
such that:

1. Mtarget can be recursively decomposed into reactants by applying reaction templates from T.

2. The final set of reactants consists exclusively of molecules in C.

3. Each reaction ri ∈ T is chemically valid and adheres to the predefined reaction rules.

At each decision step t, we select a reaction rt ∈ T to apply to a molecule Mt in the molecule set.
This generates its reactants {Mt,1,Mt,2, . . . }, which are then added to the molecule set, replacing
Mt. The task is completed when all terminal nodes in the synthetic pathway correspond to molecules
in C.
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Figure 1: Overview of the LLM-Syn-Planner. 1. INITIALIZATION: Based on the target molecule,
reaction routes of similar molecules are retrieved and scored by the SC score (Coley et al., 2018). 2.
EVALUATION: The LLM generates new routes which are evaluated. 3. SELECTION: Starting
from invalid steps in the reaction routes, the SC score of the molecules at this step are computed and
the top nc routes are selected. 4. MUTATION: Starting from these invalid steps, the LLM proposes
mutations to modify the molecules and/or reactions at this step. Repeat until a solution is found or
the budget is reached.

2.2 SYNTHESIZABLE MOLECULAR DESIGN

In contrast to retrosynthesis planning, we consider the synthesizable molecular design problem,
where the goal is to find molecules with optimal properties evaluated by an oracle function O, while
simultaneously ensuring that they are synthetically accessible through feasible reaction pathways.

argmax
m∈Ω

O(m) s.t. V (R(m)) = 1

where Ω is the set of generated molecules, R(·) returns the synthesis path, and V (·) checks the
validity of the path.

3 METHODOLOGY

3.1 ROUTE FORMATTING

Traditional machine learning methods directly predict reaction classes or reactants based on input
molecules, which by definition, defines the synthesis route when the full set of reaction classes
and molecules are considered (Zhong et al., 2024). However, using LLMs as retrosynthesis route
generators necessitates a well-defined textual input-output format, as LLMs are highly sensitive to
prompt design (Sclar et al., 2024). A critical challenge lies in determining how to represent the
retrosynthesis route for LLMs. Prior research has proposed two main representation formats:

▷ Textual descriptions (Liu et al., 2024a): Textual descriptions align naturally with the text
generation capabilities of LLMs and uses descriptive language to detail each reaction
step. However, the flexibility and lack of standardization in textual descriptions make it
challenging to consistently extract essential information, such as reactants, products, and
reactions. This ambiguity complicates the evaluation of individual steps and the validation
of the overall synthesis route.

▷ Tree structures (Chang et al.): Tree structures (Figure 2a) represent synthetic pathways as
hierarchical trees, capturing the relationships between reactants and products in a structured
manner. While tree structures provide a more systematic representation, their complexity
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increases significantly in multi-step retrosynthesis tasks, leading to deeply nested struc-
tures that can overwhelm the LLM’s reasoning capabilities. Additionally, the lack of an
explicit reasoning process within tree representations can limit the performance of LLMs in
retrosynthesis planning.

To address these limitations, we draw inspiration from traditional tree search-based approaches to
retrosynthesis planning (Segler et al., 2018a). In these approaches, the nodes in the search tree
represent synthetic states, and the tree itself contains all molecules required to synthesize the target
molecule at the root. A target molecule is considered synthesized when all leaf nodes in the tree
correspond to purchasable building blocks. The edges of the tree correspond to reactions, which
specify a chemical transformation between states of connected nodes.

Building on this framework, we reformulate retrosynthesis planning into a step-by-step decision-
making process that is more suitable for LLMs (Figure 2b). Specifically, we represent the synthesis
route as a sequence of decisions, where each step involves proposing a reaction from a database of
reaction results, i.e., reaction templates. The LLM maintains a dynamic molecule set that starts with
the target molecule and evolves as reactions are selected, ending when all molecules in the set are
purchasable. To improve the decision-making process, we integrate a reasoning component called the
"Rational" at each step. This reasoning step encourages the LLM to think before making decisions
(Wei et al., 2022). Additionally, we ask the LLM to explicitly output the product and reactants in
each step, in order to keep the generated route more consistent.

{
  "molecule": Target Molecule SMILES,
  "children": [
    {
      "molecule": Precursor 1 SMILES,
      "children": [...]
    },
    {
      "molecule": "Precursor 2 SMILES",
      "children": [
        {
          "molecule": "Sub Precursor 1 SMILES",
          "children": [...]
        }
        {
          "molecule": "Sub Precursor 2 SMILES",
          "children": [...]
        }
      ]
    }
  ]
}

(a) Route represented in tree structures

<ROUTE>[
  {

'Molecule set': "[Target Molecule]",
'Rational': Step analysis,
'Product': "[Target Molecule]",
'Reaction': "[Reaction template]",
'Reactants': "[Reactant 1, Reactant 2]",
'Updated molecule set': "[Reactant 1, Reactant 2]"

  },
  {

'Molecule set': "[Reactant 1, Reactant 2]",
'Rational': Step analysis,
'Product': "[Reactant 2]",
'Reaction': "[Reaction template]",
'Reactants': "[Sub Reactant 1, Sub Reactant 2]",
'Updated molecule set': "[Reactant 1, Sub Reactant 1, 

Sub Reactant 2]"
  }
  ...
]</ROUTE>
<EXPLANATION> Explanation</EXPLANATION>

(b) Route represented in sequential structures

Figure 2: Different route formats of retrosynthesis routes

3.2 LLM AS A SINGLE-STEP PREDICTION MODEL

Recent studies have demonstrated the potential of utilizing LLMs as planners for complex decision-
making tasks (Song et al., 2023; Huang et al., 2024). A common approach is integrating LLMs
with traditional search algorithms such as MCTS (Zhao et al., 2024) and A* search (Zhuang et al.,
2023). This integration addresses a key limitation of LLMs: their lack of a systematic mechanism
to explore structured solution spaces. Without such mechanisms, LLMs may struggle to effectively
navigate complex decision-making scenarios. The core idea of these methods is straightforward: treat
the LLM as a policy that directly generates the next action based on the history of past actions and
observations. Meanwhile, search algorithms like MCTS and A* systematically explore and optimize
the solution space, ensuring robustness and completeness.

Building on this, we propose using LLMs as single-step retrosynthesis predictors, and operate in
the template-based approach, where we start with a pre-defined templates set that represents all the
reactions the LLM could suggest and a reference reactions database based on USPTO. The product
molecule in each step serves as the input, and the LLM is queried to predict a reaction that synthesizes
this product molecule. To do this, we first task the LLM with identifying substructures and functional
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Algorithm 1: LLM-Syn-Planner Algorithm
Data: The target molecule T ; the reward function F ; the evaluation function E; the population

size nc; the number of retrieval size no; the routes retrieval set O; the maximum number
of attempts budget.

Result: Found synthesis routes population P∗

begin
P0 = [];
while len(P0) < nc do

sample Po = {pi}no
n=1 from O proportionally to their products’ Tanimoto similarity to T ;

R0.append(INITIALIZATION(T,Po));
for p ∈ P0 do

Compute F (p);
for t ∈ [1, budget] do

offspring = [];
for num_mutations do

sample p from Pt proportionally to reward F (p);
evaluate p using the evaluation function E(p) to get feedback f ;
offspring.append(MUTATION(T, p, f));

for p ∈ Pt do
Compute F (p);

Pt+1 ← sorted(Pt)[: nc];
Return Pbudget;

groups in the product molecule. Next, we draw inspiration from Coley et al. (2017) and compute the
Tanimoto similarity between the substructures and the product molecules in the reference reactions
database. The hypothesis is that similar product molecules are synthesized from similar reactions.
Following these steps, the LLM retrieves a template from the pre-defined list, which is important
as it removes any possibility of hallucinated templates. The template is then applied to the product
molecule to obtain a set of predicted reactants.

By contrast to existing single-step prediction models Maziarz et al. (2023), it is non-trivial to obtain
a probability of choosing a template from an LLM. Therefore, we assign pseudo-probabilities to
the predicted reactions by employing self-consistency frequency, which is an ensemble approach
that samples k independent reactions for the next step, denoted as {r(j)t+1}kj=1 ∼ p(rt+1|m) at step
t. From these samples, we identify the unique reactions and consider them as the set of potential
next-step reactions. The frequency of each reaction in this set is then used to compute its cumulative
score, given by:

p(n) =
#{j | r(j)t+1 = n}

k
,

where #{j | r(j)t = n} denotes the count of samples for reaction n. In essence, this expression
computes how many times each reaction appears in k sampled reactions.

Finally, we integrate the LLM as a single-step predictor with MCTS (Segler et al., 2018a) or Retro*
(Chen et al., 2020b) search algorithms to explore retrosynthesis pathways.

3.3 LLM AS A SYNTHESIS PATHWAY SAMPLER

Although LLMs can leverage search algorithms to explore the search space, akin to existing works that
pair single-step reaction prediction with search algorithms (Zhong et al., 2024), we are particularly
interested in their ability to design synthesis routes directly for a given target molecule. To this end,
we propose an evolutionary search algorithm named LLM-Syn-Planner that enables LLMs to generate
and optimize the whole retrosynthetic pathways directly. We emphasize generate as the LLM is not
explicitly retrieving a reaction template like in the case of using the LLM as a single-step prediction
model and coupling a search algorithm. Unlike existing works that follow this paradigm Zhong et al.
(2024), our approach generates the entire multi-step synthesis tree directly. The algorithm operates
as follows: Given a target molecule, we first generate an initial pool of retrosynthetic routes using
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INITIALIZATION queries from LLMs, where each route is evaluated using a reward function, F (·).
Next, a route is sampled with a probability proportional to its reward and edited using a MUTATION
operator to generate offspring. This mutation process is repeated num_mutation times, after which the
newly generated offspring are added to the population. The offspring are then evaluated using F (·),
and the nc fittest candidates at each step are selected to pass on to the next generation. This iterative
process continues until the maximum number of model calls is reached. The overall workflow consists
of four key stages: (1) Initialization, (2) Evaluation, (3) Selection, and (4) Mutation. This process
is outlined in Algorithm 1.

Initialization. In the INITIALIZATION function, we query the LLM to generate initial retrosynthesis
routes for the target molecule. To enhance its predictions, we employ a molecular similarity-based
retrieval-augmented generation (RAG) approach, providing reference routes for the LLM. Specifically,
we use the Morgan molecular fingerprint with Tanimoto similarity to identify structurally similar
molecules in a database and retrieve their corresponding synthesis routes. We then provide the
synthesis routes of the top three most similar molecules as references to the LLM.

Table 1: Three levels of feedback in the evaluation
stage.

Level Type Explanation

Molecule Validity Whether the molecule is valid (RDKit parsable)

Availability Whether the molecule is commercially available,
i.e., in the building block stock

Reaction Existence Whether the reaction exists in the database

Validity Whether the product can be synthesized
from the proposed reactants

Route Connectivity Whether the route is connected

Evaluation. We propose a three-level evalua-
tion process to assess the quality of each step
in the generated synthetic route: molecule level,
reaction level, and route level, as shown in Table
1.

At the molecule level, we validate whether the
molecules in the molecule set are both valid
and purchasable. At the reaction level, we first
perform reaction mapping to verify the reactions
proposed by the LLM. This involves grounding
and matching them against a reaction database.
We begin by searching for exact matches. If no
exact match is found, we retrieve the top 100 most similar reactions based on reaction fingerprint
similarity. These candidates are then filtered by assessing whether the proposed reaction is chemically
feasible for the given product molecule, as even if the retrieved route is for a similar molecule, slight
differences in the target molecule structure can render the reaction incompatible. The most similar
valid reaction is retained as the matched reaction. Finally, we replace the original reaction proposed
by the LLM with the identified match, thus removing the possibility of a hallucinated reaction that we
cannot easily verify the chemical soundness of. If no valid match is found in this process, we label
the reaction as non-existent. At the route level, we evaluate route connectivity by checking whether
the ’molecule set’ in a given step aligns with the ‘updated molecule set’ from the previous step and
whether the expected ‘product’ appears in the current step’s molecule set. A step is considered valid
if all evaluations pass, except for molecule availability.

Selection. The selection stage is the foundation of our evolutionary framework, ensuring the
maintenance and progression of a population of candidate routes. In retrosynthesis planning, the
success rate is commonly used to evaluate a route’s quality. However, within the evolutionary
framework, most current routes are unsuccessful. Therefore, we introduce a partial reward mechanism
based on SC score (Coley et al., 2018) to assess these incomplete routes. Given a route, we traverse it
from the first step sequentially to identify the first invalid step. The molecule set at this step, denoted
as M, is then used to compute the reward for the route. The reward function F (·) is defined as follows,
where C is the set of purchasable compounds:

F (M) = −
∑

m∈M,m/∈C

sc_score(m)

The top nc routes, as ranked by SC score are selected as the population for the next round of evolution.

Mutation. To optimize the current route, we explore the flexibility of LLMs in synthetic route
reproduction. Specifically, we enable the LLM to analyze and edit the current route through prompt-
based mutation. The LLM is instructed to modify the existing route or propose an alternative if
deemed necessary, incorporating evaluation results from multiple perspectives as feedback. If the
current route contains reaction-level errors, we retrieve reference routes from O, weighted by their
products’ Tanimoto similarity to the ‘product’ molecule in this step and provide them to the LLM.
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Table 2: Summary of retrosynthesis planning performance across the four datasets. The best model
for each experiment setting is bolded and the top three are underlined. All runs were limited to 30
minutes per molecule. N denotes the model call limit. † The RootAligned model does not achieve
100 model calls in 30 minutes due to high computational cost so the values across N are the same.

Algorithm
USPTO Easy USPTO-190 Pistachio Reachable Pistachio Hard
Solve Rate (%) Solve Rate (%) Solve Rate (%) Solve Rate (%)

N=100 300 500 N=100 300 500 N=100 300 500 N=100 300 500

Graph2Edits(MCTS) 90.0 93.5 95.5 42.7 54.7 60.5 77.3 88.4 94.2 26.0 41.0 59.0
RootAligned(MCTS) 98.0 98.0 98.0 79.4 79.4 79.4 99.3 99.3 99.3 83.0 83.0 83.0
LocalRetro(MCTS) 92.5 94.5 95.5 44.3 50.9 58.3 86.7 90.0 95.3 52.0 55.0 62.0

Graph2Edits(Retro*) 92.0 95.5 97.0 51.1 59.4 78.5 94.0 95.0 95.5 71.0 74.0 79.0
RootAligned(Retro*)† 99.0 99.0 99.0 86.8 86.8 86.8 98.7 98.7 98.7 78.0 78.0 78.0

LocalRetro(Retro*) 95.5 97.5 98.0 51.0 65.8 73.7 97.3 99.3 99.3 63.0 69.0 72.0

LLM(MCTS) 54.5 68.5 75.5 25.8 27.2 31.3 12.7 17.3 20.7 0.0 4.0 5.0
LLM(Retro*) 56.0 69.0 75.5 23.2 26.8 30.6 14.7 19.3 13.3 0.0 2.0 5.0

LLM-Syn-Planner 97.0 98.0 98.5 60.0 70.0 80.5 92.0 94.7 96.7 64.0 73.0 80.0

Additionally, for mutation queries, we retain the valid steps of the current route and provide the LLM
with only the partial route starting from the first invalid step.

3.4 OPTIMIZATION FOR SYNTHESIZABLE MOLECULAR DESIGN

LLM-Syn-Planner can be easily extended to design optimized molecular structures alongside their
corresponding synthesis pathways. A simple approach is to first optimize a molecular structure for the
desired properties and then determine its synthesis pathway. As a proof of concept, we propose LLM-
Syn-Designer, which integrates MolLEO (Wang et al., 2024) as the molecular structure optimizer,
which leverages LLMs as genetic operators for molecular optimization. Specifically, we ask the LLM
to generate a synthesizable molecule and analyze the synthetic route during the optimization process.
To ensure synthesizability, we filter out molecules proposed by LLMs if their SC score exceeds 3.5 at
each iteration of the optimization process. Additionally, in every round of evolutionary search, our
framework acts as the synthesis pathway finder for the generated molecules. By combining these
components, the integrated framework enables the end-to-end design of synthesizable molecules,
harnessing the power of LLMs for both molecular optimization and synthesis planning.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We conduct experiments using the USPTO (Schneider et al., 2016; Dai et al., 2019a) and
Pistachio (pis) datasets. For USPTO, we utilize USPTO-190 (Chen et al., 2020b) and a simplified
subset, USPTO-EASY, which is randomly sampled from the test set used in Retro* single-step model
training. For the Pistachio dataset, we adopt the version from Yu et al. (2024) but remove the starting
material constraints. The route database is constructed using the training and validation sets from
Retro*, while the reaction database is a processed version of USPTO-Full, as used in Yu et al. (2024).
For the building block set, we canonicalize all SMILES strings from the 23 million purchasable
building blocks available in eMolecules, following the approach of Chen et al. (2020b). We show the
statistics of the datasets in Appendix A.1.

Baseline. We consider three single-step retrosynthesis models in combination with two search
algorithms: MCTS (Segler et al., 2017) and Retro* (Chen et al., 2020b). The single-step models are:
Graph2Edits (Zhong et al., 2023) is a template-free graph generative model that systematically edits
the molecular graph of the target product to generate valid reactant structures. RootAligned (Zhong
et al., 2022) is another template-free approach that enforces a strict one-to-one mapping between
product and reactant SMILES strings by aligning them to a shared root atom. LocalRetro (Chen &
Jung, 2021a) is a template-based method that employs local reaction templates involving atom and
bond edits, coupled with a global attention mechanism to capture non-local effects.

Metrics. For retrosynthesis planning tasks, we use the success rate as the evaluation metric. For
synthesizable molecular design tasks, we measure performance using the top-1 expected property in
the designed molecules.
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Figure 3: Fitness score of the best molecule found by each molecule optimization method. Only
LLM-Syn-Designer here ensures the synthesizability of the found molecule.

Configuration We utilize GPT-4o 1 (Hurst et al., 2024) as our LLM and set the temperature to 0.7
for all queries, ensuring a balanced trade-off between creativity and reliability. To maintain efficiency,
we impose a maximum search time of 30 minutes per molecule.

4.2 RETROSYNTHESIS PLANNING

We present the retrosynthesis planning results in Table 2. The LLM-based approaches show a clear
distinction between using LLMs as single-step predictors within a search algorithm and leveraging
them to generate complete retrosynthetic routes optimized via tree evolutionary algorithms (LLM-
Syn-Planner). When LLMs are integrated into MCTS or Retro*, their solve rates are significantly
lower than those of traditional models, particularly on challenging datasets (e.g., Pistachio Hard,
where solve rates are near zero). This suggests that current LLM-based single-step models struggle
to produce high-quality reaction predictions, leading to suboptimal search performance. Moreover,
increasing the number of model calls does not consistently improve results, especially on the USPTO-
190 and Pistachio datasets, highlighting intrinsic limitations in LLMs’ single-step reaction prediction
capabilities.

In contrast, LLM-Syn-Planner performs remarkably well, achieving solve rates comparable to—or
even exceeding—some single-step model-guided search. Notably, LLM-Syn-Planner significantly
outperforms LLM (MCTS/Retro*), indicating that optimizing full multi-step retrosynthetic routes
rather than predicting step-by-step transformations enhances LLM effectiveness. While LLMs may
not yet rival expert-designed single-step models in reaction prediction precision, they can generate
promising retrosynthetic routes by using their long-term planning capabilities.

These findings suggest that while LLMs are not yet competitive as single-step predictors in
MCTS/Retro*, their strength lies in generating full retrosynthetic pathways that can be optimized
through evolutionary techniques. This underscores a potential shift in focus from improving LLMs
for single-step retrosynthesis to developing methods that exploit their generative capabilities for
full-route planning combined with downstream optimization strategies like EA. We show ablation
studies in Appendix C.1.

4.3 SYNTHESIZABLE DESIGN

To evaluate the synthesizable design capability of LLM, we first consider common heuristic oracle
functions relevant to bioactivity and drug discovery. We compare LLM-Syn-Designer with various
molecular optimization methods, including Graph-GA Jensen (2019), REINVENT Olivecrona et al.
(2017), MolLEO Wang et al. (2024), and MARS Xie et al. (2021), and present the results in
Figure 3. Notably, the baseline methods do not enforce synthesizability constraints, allowing
them to explore a broader chemical space and achieve higher scores, albeit with non-synthesizable
molecules. The results demonstrate that LLM-Syn-Designer effectively balances optimization
efficiency and synthesizability. In all cases, the best molecules identified by LLM-Syn-Designer
exhibit competitive or superior fitness compared to traditional algorithms and MolLEO, while
ensuring synthesizability. Specifically, for the isomers_C9H10N2O2PF2Cl target, LLM-designs

1GPT-4o-2024-11-20
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achieve comparable or higher scaled fitness values with fewer oracle calls than all other methods.
This suggests that integrating synthesizability constraints within the optimization process does not
necessarily compromise efficiency.

5 RELATED WORK

5.1 MACHINE LEARNING SINGLE-STEP RETROSYNTHESIS MODEL

Single-step retrosynthesis models predict the outcome of a single reaction step, i.e., given an input
molecule, how can it be decomposed and into which constituents? Early works directly predicted
precursors by seq-to-seq translation on SMILES Weininger (1988); Liu et al. (2017) or using
fingerprints Segler & Waller (2017); Coley et al. (2017); Fortunato et al. (2020). More recently,
single-step retrosynthesis models have employed transformers Vaswani (2017) and graph neural
networks (GNNs). Methods can be categorized into template-based, template-free, or semi-template
methods. Template-based methods use pre-defined chemical rules which can be advantageous if they
are defined with high granularity Szymkuć et al. (2016); Grzybowski et al. (2018); Segler & Waller
(2017); Dai et al. (2019b); Ishida et al. (2019); Seidl et al. (2022); Chen & Jung (2021b); Xie et al.
(2023). Template-free methods attempt to learn these rules from data and learn a translation Liu
et al. (2017); Zheng et al. (2019); Schwaller et al. (2020); Zhong et al. (2022). Finally, semi-template
methods make intermediate predictions (such as synthons) and then predict the precursors based on
these Shi et al. (2020); Somnath et al. (2021); Sacha et al. (2021); Zhong et al. (2023).

5.2 SEARCH-DIRECTED RETROSYNTHESIS PLANNING

By coupling a search algorithm with single-step retrosynthesis models, multi-step retrosynthesis
can be performed. Exemplary works include applying Monte Carlo tree search (MCTS) Segler
et al. (2018a), Retro* Chen et al. (2020b), Planning with Dual Value Networks (PDVN) Liu et al.
(2023), and a recent double-ended search algorithm Yu et al. (2024). Since retrosynthesis has
broad applicability for molecular discovery, many retrosynthesis platforms exist, encompassing
industrial Szymkuć et al. (2016); Grzybowski et al. (2018); Genheden et al. (2020); Saigiridharan
et al. (2024); Watson et al. (2019); Molecule.one; Schwaller et al. (2020) and open-source Genheden
et al. (2020); Saigiridharan et al. (2024); Coley et al. (2019); Tu et al. (2025) solutions. Very recently,
works have investigated applying LLMs for retrosynthesis through fine-tuning Nguyen-Van et al.
(2024), instruction-tuning Yang et al. (2024), platform assistants Zhang et al. (2025), experimental
planning agents Liu et al. (2024b), and integration with knowledge graphs for synthesis planning of
polymers Ma et al. (2025).

6 CONCLUSION

In this paper, we studied the retrosynthesis problem with LLMs. Specifically, we experimented with
using LLMs as single-step reaction prediction models with a search algorithm and found LLMs
significantly underperformed specialized reaction models. To improve this, we proposed to sample
entire multi-step synthetic pathways and introduced an evolutionary process to optimize them. To
scale this approach, we leveraged a linear format to store reaction steps and designed partial rewards
with retrieved reaction sub-trajectories. In the end, we bridged the performance gap and matched the
SOTA performance in retrosynthesis planning. In addition, we demonstrated LLMs can be easily
adapted to the synthesizable molecular design problem to find property-optimized molecules that are
synthesizable.

Limitation and future work: Despite promising results, we observed that LLMs suffered signif-
icantly with sparse rewards (e.g. in the shooting setup) while improved significantly with partial
rewards and retrieved sub-trajectories. It is worth studying how to incorporate a search algorithm into
our framework when LLMs struggle to generate any synthesis paths with the desired target molecule.
For future work, it is promising to study more flexible design criteria enabled by LLMs such as
material-constrained synthesis planning (Guo & Schwaller, 2024b).
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be highlighted. However, in the future, the framework, if properly experimentally validated, could
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Sara Szymkuć, Ewa P Gajewska, Tomasz Klucznik, Karol Molga, Piotr Dittwald, Michał Startek,
Michał Bajczyk, and Bartosz A Grzybowski. Computer-assisted synthetic planning: the end of the
beginning. Angewandte Chemie International Edition, 55(20):5904–5937, 2016.

Zhengkai Tu, Sourabh J Choure, Mun Hong Fong, Jihye Roh, Itai Levin, Kevin Yu, Joonyoung F
Joung, Nathan Morgan, Shih-Cheng Li, Xiaoqi Sun, et al. Askcos: an open source software suite
for synthesis planning. arXiv preprint arXiv:2501.01835, 2025.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Haorui Wang, Marta Skreta, Cher-Tian Ser, Wenhao Gao, Lingkai Kong, Felix Strieth-Kalthoff,
Chenru Duan, Yuchen Zhuang, Yue Yu, Yanqiao Zhu, et al. Efficient evolutionary search over
chemical space with large language models. arXiv preprint arXiv:2406.16976, 2024.

Ian A Watson, Jibo Wang, and Christos A Nicolaou. A retrosynthetic analysis algorithm implementa-
tion. Journal of cheminformatics, 11:1–12, 2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Shufang Xie, Rui Yan, Junliang Guo, Yingce Xia, Lijun Wu, and Tao Qin. Retrosynthesis prediction
with local template retrieval. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 5330–5338, 2023.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. Mars: Markov
molecular sampling for multi-objective drug discovery. In Proc. 9th International Conference on
Learning Representations, 2021.

Yifei Yang, Runhan Shi, Zuchao Li, Shu Jiang, Bao-Liang Lu, Yang Yang, and Hai Zhao. Batgpt-
chem: A foundation large model for retrosynthesis prediction. arXiv preprint arXiv:2408.10285,
2024.

Kevin Yu, Jihye Roh, Ziang Li, Wenhao Gao, Runzhong Wang, and Connor W Coley. Double-ended
synthesis planning with goal-constrained bidirectional search. arXiv preprint arXiv:2407.06334,
2024.

Chonghuan Zhang, Qianghua Lin, Biwei Zhu, Haopeng Yang, Xiao Lian, Hao Deng, Jiajun Zheng,
and Kuangbiao Liao. Synask: unleashing the power of large language models in organic synthesis.
Chemical Science, 16(1):43–56, 2025.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in Neural Information Processing Systems, 36, 2024.

Shuangjia Zheng, Jiahua Rao, Zhongyue Zhang, Jun Xu, and Yuedong Yang. Predicting retrosynthetic
reactions using self-corrected transformer neural networks. Journal of chemical information and
modeling, 60(1):47–55, 2019.

Weihe Zhong, Ziduo Yang, and Calvin Yu-Chian Chen. Retrosynthesis prediction using an end-to-end
graph generative architecture for molecular graph editing. Nature Communications, 14(1):3009,
2023.

Zipeng Zhong, Jie Song, Zunlei Feng, Tiantao Liu, Lingxiang Jia, Shaolun Yao, Min Wu, Tingjun
Hou, and Mingli Song. Root-aligned smiles: a tight representation for chemical reaction prediction.
Chemical Science, 13(31):9023–9034, 2022.

Zipeng Zhong, Jie Song, Zunlei Feng, Tiantao Liu, Lingxiang Jia, Shaolun Yao, Tingjun Hou, and
Mingli Song. Recent advances in deep learning for retrosynthesis. Wiley Interdisciplinary Reviews:
Computational Molecular Science, 14(1):e1694, 2024.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan A Rossi, Somdeb
Sarkhel, and Chao Zhang. Toolchain*: Efficient action space navigation in large language models
with a* search. arXiv preprint arXiv:2310.13227, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 3: Statistics of the dataset used in the experiments.

Name No. of Routes Avg. Route Length Avg. SA score Avg. SC score

USPTO Easy 200 3.7 2.8 3.8
USPTO-190 190 6.7 3.6 4.0

Pistachio Reachable 150 5.5 3.1 3.9
Pistachio Hard 100 7.5 3.6 3.9

A EXTENDED DESCRIPTIONS

A.1 DATASET STATISTICS

We show the dataset statistics in Table 3.

A.2 MCTS FOR RETROSYNTHESIS PLANNING

The single-step model predicts potential sets of reactants for a given product, transforming a target
molecule into plausible precursors. However, multiple steps may be needed to reach commercially
available or easily synthesized materials. This is why the single-step reaction model is integrated
with MCTS: it systematically explores these multi-step routes, pruning unlikely paths while focusing
on the most promising transformations. By striking a balance between exploration and exploitation,
MCTS avoids getting stuck in unproductive branches and can uncover synthetic routes that might not
be obvious through manual inspection alone.

Under the MCTS procedure, the target molecule is defined as the root node of a search tree, and each
edge represents a single-step retrosynthetic transformation predicted by the reaction model. A policy
network can be used to rank or filter the most promising disconnection suggestions at each step, while
a value function provides an estimate of how likely a given partial route is to succeed in the long
run. The algorithm selects which node to expand next using an Upper Confidence Bound (UCB),
which balances the value estimate (exploitation) with the uncertainty in that estimate (exploration). A
reward function then quantifies the outcome of each expansion—often based on reaction feasibility,
synthetic cost, or reaching known starting materials. These reward signals are backpropagated to
update the value estimates of each node. Finally, iterating selection, expansion, simulation, and
backpropagation until we reach a termination condition (time limit, enough solutions found).

A.3 RETRO* ALGORITHM

Retro* (Chen et al., 2020b) integrates neural networks with a best-first search strategy to solve
retrosynthesis problems. It models the problem as an AND-OR tree, where "AND" nodes represent
reactions and "OR" nodes correspond to molecules. A neural network, trained on prior retrosynthesis
experiences, estimates the cost of each node. Using a best-first search, the algorithm prioritizes the
most promising pathways based on these predictions. It then applies a single-step model to expand
the selected node, generating an AND-OR subtree. Finally, it updates the pathway costs to guide the
next selection step.

A.4 ADDITIONAL EXPERIMENTAL DETAILS

For single-step models, we use the checkpoints from syntheseus 2. In the MCTS algorithm, we
employ a basic reward function: a state receives a reward of 1.0 if all molecules are purchasable (i.e.,
the state is solved), and 0.0 otherwise. The value function is set as a constant 0.5. For policy, we
use softmax values derived from the single-step reaction model, scaled by a temperature of 3.0 and
normalized across the total number of reactions.

In the Retro* algorithm, we follow the retro*-0 variant described in the original paper (Chen et al.,
2020b). The OrNode cost function assigns a cost of 0 to purchasable molecules and infinity otherwise.
The AndNode cost function defines the reaction cost as -log(softmax) of the reaction model output,
thresholded at a minimum value. For the search heuristic (value function), we use a constant value of
0, consistent with the retro*-0 algorithm.

2https://github.com/microsoft/syntheseus
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Table 4: Ablation study of using different route format in syn-planner.

Format USPTO Easy USPTO 190

Textual + Extraction 71.5 27.9
Tree 54.5 12.1

Sequential 97.0 60.0

Table 5: Comparison of using and without using molecule RAG in the INITIALIZATION and
MUTATION prompt.

Format USPTO Easy USPTO 190

w/o RAG 55.0 16.3
w/ RAG 97.0 60.0

A.5 COMPUTATIONAL RESOURCES

Our experiments utilized the GPT-4o model; this refers to the GPT-4o checkpoint from 2024-11-20 3.
All GPT-4o checkpoints were hosted on Microsoft Azure4.

B EXTENDED RELATED WORK

B.1 SYNTHESIZABLE MOLECULAR DESIGN

Synthesizable molecular design aims to generate molecules (with optimal properties) that are also
synthesizable, as predicted by a retrosynthesis model. While retrosynthesis methods are often
described as "top-down" because they decompose a target molecule into purchasable precursors,
the most common methods in literature for synthesizable molecular design proceeds "bottom-up",
which combine building blocks to construct the final molecule. Therefore, instead of predicting the
resulting precursors from an input molecule, "bottom-up" approaches require a way to predict the
product molecule given precursors. To this end, existing approaches either use forward synthesis
prediction models Bradshaw et al. (2019; 2020) or define a set of templates which dictate how
building blocks can be combined Gao et al. (2022; 2024); Luo et al. (2024); Koziarski et al. (2024);
Cretu et al. (2024); Seo et al. (2024); Swanson et al. (2024); Jocys et al. (2024). These methods can
be broadly classified as synthesizability-constrained generative models. An alternative approach is
to couple retrosynthesis models directly into the optimization loop of generative models, such that
synthesizability is optimized for, rather than enforced in the generation process Guo & Schwaller
(2024a;b).

C EXTENDED EXPERIMENT RESULTS

C.1 ABLATION STUDY

Observation 1: The linear format of synthesis steps significantly outperforms the tree format.
We investigate the influence of route format in Table 4. The results suggest that linear storage
of decision steps better reduces the exponentially growing complexity of the synthesis pathway,
thus leading to much higher success rates. Additionally, we introduce a simple baseline named
(Textual + Extraction) to allow the LLM to generate in an arbitrary format, followed by a subsequent
query to extract the route from the returned response. Surprisingly, this approach also yields decent
performance, even with an unconstrained format.

Observation 2: Even rough intermediate feedback can be significantly useful for LLMs. To
assess the impact of incorporating Molecule RAG into the retrosynthesis planning process, we remove
RAG in the INITIALIZATION and MUTATION prompts. As summarized in Table 5, even if the Morgan
fingerprint does not directly reflect synthesis similarity and similar molecular structures do not always
exist in the database, RAG still significantly improves the performance.

3.https://platform.openai.com/docs/models
4 *.openai.azure.com
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Table 6: Comparison of using and without using partial rewards in the selection stage of LLM-Syn-
Planner.

USPTO Easy USPTO 190

w/ partial reward 97.0 60.0
w/ only final reward 68.0 22.6

Observation 3: Partial reward is crucial for long-horizon sequential decision-making. The
target reward is very sparse as it only evaluates if a generated synthesis pathway is valid. We validate
the importance of the partial reward by a simple synthesis accessibility evaluator (SC score) by
comparing it against one with only the final reward. With partial reward, the success rate improves
considerably across both datasets.

C.2 CASE STUDY

Top 1 from LLM-syn-designer, GSK3β = 0.95

Figure 4: Top 1 molecule of gsk3β found by LLM-Syn-Designer.

Top 1 from LLM-syn-designer, JNK3 = 0.96

Figure 5: Top 1 molecule of jnk3 found by LLM-Syn-Designer.

D PROMPTS

We show the prompts of INITIALIZATION and MUTATION for LLM-Syn-Planner. And LLM operators
prompt for LLM-Syn-Designer.
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LLM-Syn-Planner INITIALIZATION prompts

As a professional chemist specialized in synthesis analysis, you are tasked with
generating a retrosynthesis route for a target molecule provided in SMILES format.

A retrosynthesis route is a series of retrosynthesis steps that starts from the target
molecule and ends with some commercially purchasable compounds. The reactions are from
the USPTO dataset. Please also consider reactions in stereochemistry.

The route should be a list of steps wrapped in <ROUTE></ROUTE> with
<EXPLAINATION></EXPLAINATION> after it. Each step in the list should be a dictionary.
You need to keep a molecule set, which consists of the molecules we need to synthesize
or purchase. In each step, you need to select a molecule from the ’Molecule set’ as
the product molecule in this step and use a backward reaction to find the reactants.
After taking the backward reaction in this step, you need to remove the product
molecule from the molecule set and add the reactants you find into the molecule set,
and then name this updated set as the ’Updated molecule set’ in this step. In the next
step, the starting molecule set should be the ’Updated molecule set’ from the previous
step. In the last step, all the molecules in the ’Updated molecule set’ should be
purchasable. Here is an example:

<ROUTE>
[

{
'Molecule set': "[Target Molecule]",
'Rational': Step analysis,
'Product': "[Product molecule]",
'Reaction': "[Reaction template]",
'Reactants': "[Reactant1, Reactant2]",
'Updated molecule set': "[Reactant1, Reactant2]"

},
{

'Molecule set': "[Reactant1, Reactant2]",
'Rational': Step analysis,
'Product': "[Product molecule]",
'Reaction': "[Reaction template]",
'Reactants': "[subReactant1, subReactant2]",
'Updated molecule set': "[Reactant1, subReactant1, subReactant2]"

}
]
</ROUTE>
<EXPLANATION>: Explanation for the whole route. </EXPLANATION>\\

Requirements:
1. The ’Molecule set’ contains molecules we need to synthesize at this stage. In the
first step, it should be the target molecule. In the following steps, it should be the
’Updated molecule set’ from the previous step.
2. The ’Rational’ part in each step should be your analysis for synthesis planning in
this step. It should be in the string format wrapped with ´´
3. ’Product’ is the molecule we plan to synthesize in this step. It should be from
the ’Molecule set’. The molecule should be a molecule from the ’Molecule set’ in a
list. The molecule smiles should be wrapped with ´´.
4. ’Reaction’ is a reaction that can synthesize the product molecule. It should
be on a list. The reaction template should be in SMILES format. For example,
[Product»Reactant1.Reactant2].
5. ’Reactants’ are the reactants of the reaction. It should be on a list. The
molecule smiles should be wrapped with ´´.
6. The ’Updated molecule set’ should be molecules we need to purchase or synthesize
after taking this reaction. To get the ’Updated molecule set’, you need to remove
the product molecule from the ’Molecule set’ and then add the reactants in this step
into it. In the last step, all the molecules in the ’Updated molecule set’ should be
purchasable.
7. In the <EXPLANATION>, you should analyze the whole route and ensure the molecules
in the ’Updated molecule set’ in the last step are all purchasable.
My target molecule is:
{Target Molecule}
To assist you, example retrosynthesis routes that are either close to the target
molecule or representative will be provided.

<ROUTE>
Retrieved route here
</ROUTE>

Please propose a retrosynthesis route for my target molecule. The provided reference
routes may be helpful. You can also design a synthetic route based on your own
knowledge.
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LLM-Syn-Planner MUTATION prompts

As a professional chemist specializing in synthesis analysis, you are tasked with
modifying a retrosynthesis route for target molecules provided in SMILES format.
A retrosynthesis route is a series of retrosynthesis steps that starts from the given
target molecule set and ends with some commercially purchasable compounds. In the
route, you need to keep a molecule set, which are the molecules we need. In the
first step, the molecule set should be the target molecule set given by the user.
In each step, you need to provide a backward reaction and update this molecule set.
Specifically, you need to remove the product molecule of the reaction from the molecule
set and then add the reactants to it.
By doing so, you will end with a molecule set in which all the molecules are
commercially purchasable. The reactions are from the USPTO dataset. Please also
take reactions in stereochemistry into consideration. For example, E-configuration or
Z-configuration.
The route should be a list of steps wrapped in <ROUTE></ROUTE> with
<EXPLAINATION></EXPLAINATION> after it. Each step in the list should be a dictionary.
You need to keep a molecule set, which consists of the molecules we need to synthesize
or purchase. In each step, you need to select a molecule from the ’Molecule set’ as
the product molecule in this step and use a backward reaction to find the reactants.
After taking the backward reaction in this step, you need to remove the product
molecule from the molecule set add the reactants you find into the molecule set, and
then name this updated set as the ’Updated molecule set’ in this step. In the next
step, the starting molecule set should be the ’Updated molecule set’ from the previous
step. In the last step, all the molecules in the ’Updated molecule set’ should be
purchasable. Here is an example:

<ROUTE>
[

{
'Molecule set': "[Target Molecule]",
'Rational': Step analysis,
'Product': "[Product molecule]",
'Reaction': "[Reaction template]",
'Reactants': "[Reactant1, Reactant2]",
'Updated molecule set': "[Reactant1, Reactant2]"

},
{

'Molecule set': "[Reactant1, Reactant2]",
'Rational': Step analysis,
'Product': "[Product molecule]",
'Reaction': "[Reaction template]",
'Reactants': "[subReactant1, subReactant2]",
'Updated molecule set': "[Reactant1, subReactant1, subReactant2]"

}
]
</ROUTE>
<EXPLANATION>: Explanation for the whole route. </EXPLANATION>\\

Requirements:
1. The ’Molecule set’ contains molecules we need to synthesize at this stage. In the
first step, it should be the target molecule set. In the following steps, it should be
the ’Updated molecule set’ from the previous step.
2. The ’Rational’ part in each step should be your analysis for synthesis planning in
this step. It should be in the string format wrapped with ´´
3. ’Product’ is the molecule we plan to synthesize in this step. It should be from
the ’Molecule set’. The molecule should be a molecule from the ’Molecule set’ in a
list. The molecule smiles should be wrapped with ´´.
4. ’Reaction’ is a reaction that can synthesize the product molecule. It should
be on a list. The reaction template should be in SMILES format. For example,
[Product»Reactant1.Reactant2].
5. ’Reactants’ are the reactants of the reaction. It should be on a list. The
molecule smiles should be wrapped with ´´.
6. The ’Updated molecule set’ should be molecules we need to purchase or synthesize
after taking this reaction. To get the ’Updated molecule set’, you need to remove
the product molecule from the ’Molecule set’ and then add the reactants in this step
into it. In the last step, all the molecules in the ’Updated molecule set’ should be
purchasable.
7. In the <EXPLANATION>, you should analyze the whole route and ensure the molecules
in the ’Updated molecule set’ in the last step are all purchasable.

My target molecule set is:
{Target Molecule set}
Here are the feedbacks for the route:
{Feedback}
To assist you, example retrosynthesis routes that are close to the target molecules in
the starting molecule set will be provided.

<ROUTE>
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Retrieved route here
</ROUTE>

Please propose a retrosynthesis route for the starting molecule set. The provided
reference routes may be helpful. You can also design a synthetic route based on
your own knowledge. All the molecules should be in SMILES format. For example, Cl2
should be ClCl in SMILES format. Br2 should be BrBr in SMILES format. H2O should be
O in SMILES format. HBr should be [H]Br in SMILES format. NH3 should be N in SMILES
format. Hydrogen atoms are implicitly understood unless explicitly needed for clarity.

LLM-Syn-Designer prompts

I have two molecules and their JNK3 scores. The JNK3 score measures a molecularś
biological activity against JNK3.
Molecule 1 SMILES, Molecule 1 score
Molecule 2 SMILES, Molecule 2 score

Now I want to synthesize a new molecule that has a higher JNK3 score. Please propose a
new synthesizable molecule that has a higher JNK3 score. You can either make crossover
and mutations based on the given molecules or just propose a new molecule based on your
knowledge.

Your output should follow the format:

<EXPLANATION>Your analysis</EXPLANATION>
<MOLECULE>The SMILES of your proposed molecule</MOLECULE>

Here are the requirements:
1. In the <EXPLANATION>, you should analyze how to edit the given molecules to get
a better property score and then propose your edited molecule or your proposed new
molecule, and how to synthesize your proposed/edited molecule.
2. In the <MOLECULE>, you should provide the SMILES of the molecule you propose.
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