
The Benchmark Lottery

Mostafa Dehghani∗, Yi Tay∗, Alexey A. Gritsenko∗, Zhe Zhao, Neil Houlsby,
Fernando Diaz, Donald Metzler†, Oriol Vinyals†

Google Research & DeepMind
{dehghani, yitay, agritsenko}@google.com

Abstract
The world of empirical machine learning (ML) strongly relies on benchmarks in1

order to determine the relative effectiveness of different algorithms and methods.2

This paper proposes the notion of a benchmark lottery that describes the overall3

fragility of the ML benchmarking process. The benchmark lottery postulates that4

many factors, other than fundamental algorithmic superiority, may lead to a method5

being perceived as superior. On multiple benchmark setups that are prevalent in6

the ML community, we show that the relative performance of algorithms may be7

altered significantly simply by choosing different benchmark tasks, highlighting the8

fragility of the current paradigms and potential fallacious interpretation derived from9

benchmarking ML methods. Given that every benchmark makes a statement about10

what it perceives to be important, we argue that this might lead to biased progress in11

the community. We discuss the implications of the observed phenomena and provide12

recommendations on mitigating them using multiple machine learning domains13

and communities as use cases, including natural language processing, computer14

vision, information retrieval, recommender systems, and reinforcement learning.15

1 Introduction16

Quantitative evaluation is a cornerstone of machine learning research. As a result, benchmarks,17

including those based on data sets and simulations, have become fundamental to tracking the progress18

of machine learning research. Benchmarks have a long history in artificial intelligence research19

generally. There have been several attempts at designing milestones to capture progress toward20

artificial intelligence (e.g., human level game performance, the Turing test [Turing, 1950]). Specific21

system properties are measured through specialized benchmarks (e.g. for vision, natural language22

processing, robotics). All of these benchmarks, by design, encode values about what is salient23

and important, both across domains (e.g. natural language processing benchmarks versus robotics24

benchmarks) and within them (e.g. which languages are considered in an NLP benchmark, which25

environments are considered in a robotics benchmark).26

As benchmarks become widely accepted, researchers adopt them, often without questioning their27

assumptions, and algorithmic development becomes slowly tied to these success metrics. Indeed, over28

time, the research community makes collective decisions about what shared tasks–and values–are29

important (through peer review norms and resource investment) and which are not.30

Because of this, it is important for the research community to understand the individual, community,31

social, and political pressures that influence why some benchmarks become canonical and others do32

not. This paper shares some opinions on this topic along with case studies calling for discussion and33

reconsiderations on several issues with benchmarking in machine learning and argues that a meta-level34

understanding of benchmarks is a prerequisite for understanding how the progress in machine learning35

is made. This paper presents analyses on how benchmarks may affect the direction and pace of progress36

in machine learning and puts forward the notion of a benchmark lottery. We argue that many factors37

other than the algorithmic superiority of a method may influence the emergence of algorithms that are38

perceived as better. Moreover, we claim that for a method to emerge successful, it has to first win the39
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benchmark lottery. Out of the many potential trials in this lottery, a method has to be first well-aligned40

with the suite of benchmarks that the community has accepted as canonical. We refer to the alignment41

between the tasks brought forth by the community and successful algorithms as the task selection bias.42

We empirically show that the task selection process has a great influence over the relative performance43

of different methods. Moreover, we argue that benchmarks are stateful, meaning that the method has to44

also participate in the lottery at the right moment, and to align well with existing techniques, tricks, and45

state-of-the-art. Related to this, we also briefly discuss how benchmark reuse may affect the statistical46

validity of the results of new methods.47

As a whole, as we researchers continue to participate in the benchmark lottery, there are long-term48

implications, which we believe are important to be explicitly aware of. As such, the main goals of this49

paper are to (i) raise awareness of these phenomena and potential issues they create; and to, (ii) provide50

some recommendations for mitigating these issues. We argue that community forces and task selection51

biases, if left unchecked, may lead to unwarranted overemphasis of certain types of models and to52

unfairly hinder the growth of other classes of models - which may be important for making fast and53

reliable progress in machine learning.54

The notion of what makes a benchmark canonical, in the sense that is widely accepted by the55

community, is also diverse depending on the field of study. On one hand, fields like natural language56

processing (NLP) or computer vision (CV) have well-established benchmarks for certain problems.57

On the other hand, fields such as recommender systems or reinforcement learning tend to allow58

researchers more freedom in choosing their own tasks and evaluation criteria for comparing methods.59

We show how this may act as rigging the lottery, where researchers can “make their own luck” by60

fitting benchmarks and experimental setups to models instead.61

Overall, this paper explores these aspects of model evaluation in machine learning research. We frame62

this from a new perspective of the benchmark lottery. While there has been recent work that peers63

deeply into the benchmark tasks themselves [Bowman and Dahl, 2021], this work takes meta- and64

macro-perspectives to encompass factors that go beyond designing reliable standalone tasks.65

The remainder of the paper is organized as follow: Section 2 discusses how benchmarks can influence66

long-term research directions in a given (sub-)field. Section 3 introduces the task selection bias and67

using established benchmarks as examples shows how relative performance of algorithms is affected68

by the task selection process. Section 4 takes another view of the task selection bias and proposes69

community bias as a higher-level process that influences task selection. We show that forces from70

the broader research community directly impact the task selection process and as a result, play a71

substantial role in creating the lottery. Section 5 posits that benchmarks are stateful entities and that72

participation in a benchmark differs vastly depending upon its state. We also argue continual re-use73

of the same benchmark may be problematic. Section 6 discusses rigging the lottery, the issue that74

some communities (e.g. recommender systems and reinforcement learning) face, where the lack of75

well-established community-driven sets of benchmarks or clear guidelines may inadvertently enable76

researchers to fit benchmarks to model. We highlight the potential drawbacks of such an approach.77

Finally, in Section 7 we provide recommendations for finding a way out of the lottery by building78

better benchmarks and rendering more accurate judgments when comparing models.79

Overall, unified benchmarks have led to incredible progress and breakthroughs in machine learning80

and artificial intelligence research [Kingma and Welling, 2013, Mikolov et al., 2013, Sutskever et al.,81

2014, Bahdanau et al., 2014, Goodfellow et al., 2014, Hinton et al., 2015, Silver et al., 2016, He et al.,82

2016a, Vaswani et al., 2017, Devlin et al., 2018, Brown et al., 2020, Dosovitskiy et al., 2020]. There is83

certainly a lot of benefits of having the community come together to solve shared tasks and benchmarks.84

Given that the role of benchmarks is indispensable and highly important for measuring progress, this85

work seeks to examine, introspect and find ways to improve.86

2 Background87

Measuring progress is one of the most difficult aspects of empirical computer science and machine88

learning. Such questions as “What are the best setup and task to use for evaluation?” [Ponce et al.,89

2006, Machado et al., 2018, Lin, 2019, Bowman and Dahl, 2021, Recht et al., 2019, Lin et al., 2021,90

Gulcehre et al., 2020, Perazzi et al., 2016, Vania et al., 2020, Musgrave et al., 2020], “Which data91

or benchmark are most applicable?” [Metzler and Kurland, 2012, Beyer et al., 2020, Northcutt et al.,92

2021, Gulcehre et al., 2020, Dacrema et al., 2019], “Which metrics are suitable?” [Machado et al.,93

2018, Bouthillier et al., 2021, Balduzzi et al., 2018, Bouthillier et al., 2019, Musgrave et al., 2020],94

or “What are the best practices for fair benchmarking?” [Torralba and Efros, 2011, Armstrong et al.,95

2009, Machado et al., 2018, Sculley et al., 2018, Lin, 2019, Bowman and Dahl, 2021, Bouthillier et al.,96

2021, Recht et al., 2019, Lin et al., 2021, Balduzzi et al., 2018, Lipton and Steinhardt, 2018, Bouthillier97

et al., 2019, Vania et al., 2020, Mishra and Arunkumar, 2021, Marie et al., 2021, Dodge et al., 2019]98
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Figure 1: Disagreement of model rankings on the SuperGLUE benchmark as a function of the number
of selected benchmark tasks. The x-axis represents the number of tasks in each sub-selection of tasks
and each line corresponds to a different value of k for the Top-k in the rankings. Points are labels as
A/B, where A is the number of unique model rankings and B is the total number of possible task
combinations for this subset size. IfA=1, then all rankings are equivalent and consistent across all task
selections; higher values ofA correspond to higher degrees of disagreement between models rankings.

are of utmost importance to correct empirical evaluation of new ideas and algorithms, and have been99

extensively studied. Nevertheless, the jury is still out on most of these questions.100

We argue that some models and algorithms are not inherently superior to their alternatives, but are101

instead perceived as such by the research community due to various factors that we discuss in this102

paper. One of these factors is the software and hardware support for an idea, as captured in the concept103

of hardware lottery by Hooker [2020]. Here however we focus mainly on benchmarking-related104

factors, and discuss the role they play in the selection of a model as “fashionable” in the research world,105

and how this is often conflated with the model being better. When a class of models or algorithms106

gets recognition in the community, there will be more follow up research, adaption to more setups,107

more tuning and discovery of better configurations, which lead to better results. This is a valid way108

of propelling the field further. However, a question that we should also ask is how much progress could109

have been made by investing the same amount of time, effort, computational resources and talent in a110

different class of models. In other words, assuming model development as a complex high-dimensional111

optimization process, in which researchers are exploring a fitness surface, the initial point, as well112

as the fitness function, are the key factors for ending up with better optima, and both these factors113

are highly affected by the benchmarks used for evaluation.114

3 Task selection bias115

As we show in this section, relative model performance is highly sensitive to the choice of tasks and116

datasets it is measured on. As a result, the selection of well-established benchmarks plays a more117

important role than is perhaps acknowledged, and constitutes a form of partiality and bias - the task118

selection bias.119

3.1 Case Studies120

In this section, we study different popular benchmarks and use the data from the leaderboards of these121

benchmarks to run analyses that highlight the effect of task selection bias.122

3.1.1 SuperGLUE123

In order to study the effect of aggregated scores and how findings change by emphasizing and de-124

emphasizing certain tasks, we explore the SuperGLUE dataset [Wang et al., 2019]. To demonstrate the125

task selection bias on this benchmark, we re-compute the aggregated scores using different combina-126

tions of eight SuperGLUE tasks. We consider over 55 different top performing models that are studied127

in [Narang et al., 2021], including transformer-based models with various activation functions, normal-128

ization and parameter initialization schemes, and also architectural extensions (e.g., Evolved Transform-129

ers [So et al., 2019], Synthesizers [Tay et al., 2020a], Universal Transformer [Dehghani et al., 2019], and130

Switch Transformers [Fedus et al., 2021]) as well as convolution-based models (e.g. lightweight and131

dynamic convolutions). We consider the fine-grained scores of these models on the 8 individual tasks of132

SuperGLUE and their different combinations. For each combination of tasks, we take a mean-aggregate133

model performance for all models on the selected tasks and produce a ranking of all 55 models. To134

make this ranking more meaningful, we only consider its Top-k entries, where k∈{1,3,5,10}.135

Ranking inconsistency. Figure 1 gives a concise overview of the number of unique Top-k rankings136

produced obtained from fixed-size subsets of tasks. For example among the 70 different possibilities137

of selecting 4 out of 8 tasks, there are 6 distinct model ranking orders produced for Top-1 (i.e. there138

are 6 different possible top models). Moreover, when considering Top-3 or even Top-5, almost 60139

out of 70 rankings do not agree with each other. Overall, the rankings become highly diverse as the140

subset of tasks selected from the benchmark is varied. This forms the core of the empirical evidence141
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(a) Different categories. (b) Different task.
Figure 2: Rank correlation between the full VTAB score and the score for subsets of the benchmark.

of the task selection bias. More analyses on ranking of models on all possible combinations of tasks,142

rank correlation between SuperGLUE score and individual tasks, effect of relative raking of models143

in Appendix A.1,A.2, and A.3.144

3.1.2 Visual Task Adaptation Benchmark (VTAB)145

A similar situation can be observed for the Visual Task Adaptation Benchmark (VTAB; [Zhai et al.,146

2019]) benchmark. VTAB is used for evaluating the quality of representations learned by different147

models in terms of their ability to adapt to diverse, unseen tasks with few examples. VTAB defines148

a total of 19 tasks, grouped into three categories: Natural, Specialized, and Structured. We have149

evaluated 32 different models against all the 19 VTAB tasks. The difference between models is on their150

architectures (e.g. WAE-GAN [Tolstikhin et al., 2017] vs. VIVI[Tschannen et al., 2020]), their sizes151

(e.g. ResNet-50 vs. ResNet-101 [Kolesnikov et al., 2019]), or the dataset they were pre-trained on (e.g.152

ResNet-50 pretrained on ImageNet-21k vs. ResNet-50 pretrained on JFT [Kolesnikov et al., 2019]).153

Models we considered in our study are those that are introduced as “representation learning algorithms”154

in [Zhai et al., 2019]. More details on the tasks, categories, and models can be found in Appendix A.4.155

First, we study the agreement of the aggregated score across all 19 tasks with the aggregated scores156

obtained from different combinations of the three task categories: natural (NA), specialized (SP), and157

structured (ST). Figure 2a shows the Kendall rank correlation, when ranking different models based158

on the full VTAB score and based on the category (combination) score. It can be seen that rankings of159

models based on different combinations of categories are not always perfectly correlated. For instance,160

the structured (ST) subcategory has a correlation of≈0.7 with the full VTAB score, thus highlighting161

rather different aspects of the competing models. A more striking point is the full disagreement of162

different subcategories on the winning model, i.e. top-1 that is shown in Appendix B, where we future163

present the results that show disagreement in the top-1, 2, and 3 rank positions based on different164

combinations of sub-categories and tasks. This shows that crowning a model as the winner based on a165

single score can be suboptimal, and demonstrates how the random nature of task selection can become166

a lottery that algorithms need to win.167

Figure 2b also presents the correlations between the rankings based on the individual tasks and the168

aggregated VTAB score. Unsurprisingly, an even stronger disagreement between rankings is observed169

(mean Kendall correlation of≈0.60), including tasks with negative correlation. For more analyses170

and additional case studies (Long Range Arena and RL-Unplugged) check Appendix A.171

3.2 Score and rank aggregation172

So far, we highlighted the issue with reporting a single aggregated score that is supposed to reflect173

the performance on multiple tasks, by showcasing the disagreement between different subsets of tasks.174

One of the main difficulties for aggregating scores of multiple tasks is the lack of a clear mechanism175

for incorporating the difficulty of tasks into account. This is made more complex by the fact that there176

are multiple facets to what makes a task difficult. For instance, the size of the training data for different177

tasks, the number of prediction classes (and consequently the score for a random baseline for the task),178

distribution shift between the pretraining dataset and the downstream tasks, different performance179

ranges across tasks, or overrepresenting particular aspects by multiple tasks that introduces biases180

into averages [Balduzzi et al., 2018]. As a concrete example, in the case of VTAB some tasks use181

the same input data thus upweighting those domains, e.g. CLEVR-Count and CLEVR-Dist use the182

same data for different tasks, and for this particular example, given the negative correlation between183

CLEVR-Dist and the mean score, this upweighting effect makes the aggregated score even noisier.184

To address some of these issues, there are alternative ways for ranking models instead of using the mean185

score across all tasks as the model performance on the benchmark. For instance, One can grouping186

tasks based on their domain) and use macro-averaging to account for the effect upweighting some187

domains [Zhai et al., 2019]. Given that using simple averaging for aggregation across multiple tasks,188

the maximum score is bounded, this may limit the range of performances, implicitly upweighting tasks189

with more headroom. To address this issue, one can use geometric mean instead of arithmetic mean.190
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There are also solutions for rank aggregation that ignore absolute score differences in favor of relative191

ordering [Dwork et al., 2001, Tabrizi et al., 2015]: For instance, the “average rank” that is obtained by192

ranking the methods for each task based on their score and then computing the average ranks across tasks.193

Another alternatives are, for instance, robust average rank, where, before averaging ranks across tasks,194

the accuracy is binned into buckets of size 1% and all methods in the same bucket get the same rank or195

elimination ranking (which is equivalent to an exhaustive ballot voting system) [Hao and Ryan, 2016].196

3.3 Human evaluation bias197

Related to the task selection bias we discussed in this section, human evaluation bias within a task can198

also play a role in model selection in some tasks like natural language generation. Lack of consistency199

in how human evaluation, e.g. due to different levels of expertise, cognitive biases, or even inherent200

ambiguity in the annotation task can introduce a large variability in model comparisons [Schoch et al.,201

2020]. In the context of measuring the reliability in human annotation, it has been shown that selecting202

a subset of annotators for evaluation may change the performance of models [Van Der Lee et al., 2019,203

Amidei et al., 2018, Schoch et al., 2020, Amidei et al., 2020], which can be framed as “annotation204

bias” that also contribute to the benchmark lottery.205

4 Community bias206

Even when viewed as a random process, the task selection bias described in Section 3 alone is sufficient207

for creating arbitrary selection pressures for machine learning models. We argue however that there is208

also a higher-level process in which the broader research community influences the task selection, and209

that counterintuitively leads to the lottery forces not being diminished, but instead more pronounced.210

This section takes a people perspective of the benchmark lottery and postulates that it is not only the211

“gamemasters” (benchmark proposers) but also the community that contribute to and reinforce it.212

While researchers technically have the freedom to select any dataset to showcase their method, this213

choice is often moderated by the community. A common feedback in the review process of scientific214

publications that any ML researcher will face eventually is a criticism of the choice of benchmark. For215

example “the method was not evaluated on X or Y dataset” or “the method’s performance is not SOTA216

on dataset Z”. Over time, ML researchers tend to gravitate to safe choices of tasks and benchmarks.217

For example, most papers proposing new pretrained language models [Lan et al., 2019, Liu et al., 2019,218

Clark et al., 2020, Yang et al., 2020] evaluate on GLUE even if alternatives exist (see example below for219

further substantiation). In other words, the selection of tasks commonly used in publication is largely220

driven by the community. Moreover, whether a benchmark is selected as the canonical testbed or not, is221

not necessarily governed by the quality of the test examples, metrics, evaluation paradigm, or even what222

the benchmark truly measures. In fact, an argument that the community is solely responsible for the task223

selection bias is not without merit, since the community is the final endorser and enforcer of these circum-224

stances. There can be no task selection bias if there is no one to act upon it. To this end, the community225

might ‘double down’ on a benchmark where it becomes almost an unspoken rule for one to evaluate226

on a particular benchmark. Once a benchmark builds up a following and becomes well-established, it227

is not hard to imagine that reviewers would ask for results on these benchmarks, potentially regardless228

of suitability and/or appropriateness. This makes it difficult to fix potentially broken benchmarks.229

As foreshadowed, commonly used benchmarks are not immune to containing errors. While these errors230

are likely to be small (as otherwise they would presumably be noticed early on), they do matter in close231

calls between competing methods. Northcutt et al. [2021] identified label errors in test sets of 10 of232

the most commonly-used computer vision, natural language, and audio datasets; for example, there are233

label errors in 6% of the examples in the ImageNet validation set. They showed that correcting label234

errors in these benchmarks changes model ranking, especially for models that had similar performance.235

In the field of NLP, it was later found in SNLI [Bowman et al., 2015], which is a dataset for natural236

language inference (NLI), a large amount of annotation artifacts exists, and it is possible to simply237

infer the correct label by only using the premise and not the hypothesis [Gururangan et al., 2018]. It238

is worth noting that SNLI, being the canonical benchmark for NLI, was easily perceived as mandatory239

for almost any NLI based research.240

The possibility of having such an issue is not only restricted to the peer review process, but it may extend241

to the public perception of papers after they are published regardless of whether they went through the242

peer review process or not. The community bias problem can be raised as the community collectively243

assigning a weighted impact score for doing well on arbitrarily selected tasks. Achieving state of the244

art on task Y is then deemed significantly less meaningful than doing that for taskX . Moreover, this245

is not necessarily done without any explicit reasoning as to why one task is preferred to the other, or246

even how such a“decision” was made. The main concern with respect to the community bias is that247

research is becoming too incremental and biased toward the common expectations, since a completely248

new approach will initially have a hard time competing against established and carefully fine-tuned249

models. For more discussion and concrete examples on the community bias check Appendix C.250
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5 Benchmarks are stateful251

With leaderboards and the continuous publication of new methods, it is clear that benchmarks are stateful252

entities. At any point in time, the attempt of a new idea for beating a particular benchmark depends on253

the information gathered from previous submissions and publications. This is a natural way of making254

progress on a given problem. But when viewed from the perspective of the selective pressures it causes,255

it creates another kind of lottery. For many machine learning benchmarks, researchers have full access256

to the holdout set. Although not explicitly, this typically leads to the violation of the most basic datum257

of “one should not train on test/holdout set” by getting inspiration from already published works by258

others who presumably report only the best of the numerous models they evaluated on the test set.259

Beyond that, it is common to copy-paste hyper-parameters, use the same code, and more recently to260

even start from pre-retrained checkpoints of previous successful models 2. In such setups, where the261

discovery of new models is built on top of thousands of queries, direct or indirect, to the test set, the error262

rate on test data does not necessarily reflect the true population error [Arora and Zhang, 2021, Blum and263

Hardt, 2015, Dwork et al., 2015]. The adaptive data analysis framework [Dwork et al., 2015] provides264

evaluation mechanisms with guaranteed upper bounds on the difference between average error on the265

test examples and the expected error on the full distribution (population error rates). Based on this266

framework, if the test set has sizeN , and the designer of a new model can see the error of the first i−1267

models on the test set before designing the i-th model, one can ensure the accuracy of the i-th model on268

the test set is as high as Ω(
√
i/N) by using the boosting attack [Blum and Hardt, 2015]. In other words,269

Dwork et al. [2015] state that once we have i�N the results on the test set are no longer an indication270

of model quality. It has been argued that what matters is not only the number of times that a test set271

has been accessed as stated by adaptive data analysis, but also how it is accessed. Some empirical272

studies on some popular datasets [Recht et al., 2018, Yadav and Bottou, 2019, Recht et al., 2019]273

demonstrated that overfitting to holdout data is less of a concern than reasoning from what has been274

suggested in [Blum and Hardt, 2015]. Roelofs et al. [2019] also studied the holdout reuse by analyzing275

data from machine learning competitions on the Kaggle and show no significant adaptive overfitting276

on the classification competitions. Other studies showed that additional factors may prevent adaptive277

overfitting to happen in practice. For instance, [Feldman et al., 2019b,a] show that in multi-class278

classification, the large number of classes makes it substantially harder to overfit due to test set reuse. In279

a recent study, Arora and Zhang [2021] argue that empirical studies that are based on creating or using280

new test sets (e.g. [Recht et al., 2018, Yadav and Bottou, 2019, Recht et al., 2019]), although reassuring281

in some level, are not always possible especially in datasets concerning rare or one-time phenomena.282

They emphasize the need for computing an effective upper bound for the difference between the test283

and population errors. They propose an upper bound using the description length of models that is284

based on the knowledge available to model designers before and after the creation of a test set.285

From the benchmark lottery point of view, the most important aspect of the above phenomena is that the286

development of new models is shaped by the knowledge of the test errors of all models before it. First of287

all, there had been events in the past where accessing the test set more than others, intentionally, secured288

a margin for victory in the race 3. In other words, having the ability to access the test set more than others289

can be interpreted as buying more lottery tickets. Besides, even when there is no explicit intention, the290

tempting short-term rewards of incremental research polarize people and reinforce the echo chamber291

effect - leading models are quickly adapted by re-using their code, pre-trained weights, and hyper-292

parameters are re-used to build something on top of them even faster. Unfortunately, this process makes293

no time for considering how it affects the statistical validity of results reported on the benchmark.294

Another aspect of benchmarks being stateful is that participating in shared tasks at a later stage is vastly295

different from the time of its inception. By then the landscape of research with respect to the specific296

benchmark is filled with tricks, complicated and specialized strategies, and know-how for obtaining top297

performance on the task. The adapted recipes for scoring high are not necessarily universal and may be298

applicable only to a single narrow task or setup. For example, a publication might discover that a niche299

twist to the loss function produces substantially better results on the task. It is common for all papers300

subsequently to follow suit. As an example, the community realized that pre-training on MNLI is301

necessary for obtaining strong performance on RTE and STS datasets [Liu et al., 2019, Clark et al., 2020],302

and this became common practice later on. Experience shows that it is not uncommon for benchmark303

2This is in particular common when a paper provides results based on large scale experiments that are not
necessarily feasible to redo for many researchers. For instance, the majority of the papers that propose follow up
ideas to Vision Transformer [Dosovitskiy et al., 2020] start by initializing weights from the released pretrained
models and follow the setups of the original paper. Similarly, several NLP papers use BERT pretrained models and
the same hyper-parameters as BERT in their experimental setup.

3https://image-net.org/challenges/LSVRC/announcement-June-2-2015
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tasks to accumulate lists of best practices and tricks that are dataset- and task-specific 4. Whether a304

novel algorithm is able to make use of these tricks (or whether they are available at all) is again a form of305

lottery, in which models that cannot incorporate any of the earlier tricks are significantly disadvantaged.306

6 Rigging the lottery: making your own luck307

For some tasks and problems, there are already standard benchmarks and established setups that308

are followed by most of the community. However, for some others, inconsistencies in the employed309

benchmarks or reported metrics can be observed. This diversity of evaluation paradigms makes310

comparisons between publications extremely difficult. Alternatively, in some cases, there is simply311

no standard benchmark or setup, either because the problem is still young, or because there has never312

been an effort to unify the evaluation. Sometimes this is due to the high computational cost of proper313

evaluation, like when reporting variance over multiple random seeds is important [Bouthillier et al.,314

2019]. While in other instances, the root cause is of behavioral nature, where researchers prefer315

to showcase only what their method shines at - oftentimes to avoid negative reviews, unsuccessful316

experiments, although performed, are simply not reported. Here, we study two known examples of317

this issue, which we refer to as rigging the lottery.318

6.1 Recommender systems and benchmark inconsistencies319

Unlike the fields of NLP or CV, there are no well-established evaluation setups for recommender320

systems [Zhang et al., 2019] that provide canonical ranked lists of model performance. While there321

has been a famous Netflix prize challenge5, this dataset has not been extensively used in academic322

research or for benchmarking new models. Moreover, even popular datasets like MovieLens [Harper323

and Konstan, 2015] or Amazon Reviews [He and McAuley, 2016] generally do not have a canonical324

test split, metric or evaluation method. Therefore, it is still quite unclear about which modern RecSys325

method one should adopt, as model comparisons are difficult to interpret [Dacrema et al., 2019].326

Furthermore, RecSys evaluation is also very challenging for a number of reasons. (i) Different327

recommendation platforms tackle slightly different problems (e.g retrieval [Yi et al., 2019], ranking328

([Pei et al., 2019]), or multitask learning ([Zhao et al., 2019])), and each requires their own evaluation329

setup. (ii) As is common for user interacting systems, user’s reaction towards different algorithms330

can be different. Constructing offline datasets of user behaviors from an existing system creates an331

off-policy evaluating challenge [Swaminathan et al., 2016]. (iii) A real-world recommendation system332

trains on billions of users and items, the scale of user-item interactions makes it extremely difficult333

to create a complete dataset containing all possible user-item interactions [He et al., 2016b]. As a334

result, evaluation setups in many recommender system papers tend to be arbitrary.335

There exists a small number of public datasets (see Appendix E), such as MovieLens [Harper and336

Konstan, 2015] or Amazon Product Review [He and McAuley, 2016] that are commonly used for337

evaluating recommender systems. However, even these datasets are tweaked differently in various338

publications, leading sometimes to contradictory results [Rendle et al., 2020, Zheng et al., 2019].339

For example, some papers use Hit Ratio and NDCG as evaluation metrics [He et al., 2017], while340

others resort to using Recall@K [Zheng et al., 2019]. Interestingly, in this particular example, the341

same methods reverse their performance when a different metric is used. Holdout test sets can also342

be created differently, with some papers for example using random split [Beutel et al., 2017] and others343

using an out-of-time split [Zhang et al., 2020].344

While the majority of this paper discusses cases where a standardized benchmark may lead to biased345

progress in the ML community, here we instead discuss the exact opposite - implications of having346

no consensus datasets or evaluation setups. Having no unified benchmark for the community to make347

progress on has numerous flaws. To name a few, (i) this hinders progress in the field, while possibly348

(ii) creating an illusion of progress. It is not surprising that under these circumstances researchers349

(potentially unknowingly) tend to find good experimental setups that fit their models. For a case study350

on inconsistencies of the evaluation setup in ALE benchmark check Appendix D.351

7 What can we do?352

While the previous sections of the paper focused on the challenges that arise from the lottery-like inter-353

action between ML benchmarks and the research community, here we would like to show that there are354

reasons to be optimistic about future developments in this regard. We present suggestions for improving355

the idea benchmarking process in ways that make it less of a lottery. These recommendations can be also356

4As an example, for achieving scores that are comparable to top-ranked models on the GLUE benchmark, there
are a series of extremely specific actions and setups used in pretraining/finetuning that are known as “standard
GLUE tricks” introduced/used by submissions to the leaderboard [Liu et al., 2019, Yang et al., 2019, Lan et al.,
2019]. Check the Pre-training and fine-tuning details in the appendix of [Clark et al., 2020].

5https://netflixprize.com/index.html

7

https://netflixprize.com/index.html


framed as checklists6 for different parts of the process, like making benchmarks, using benchmarks, eval-357

uation of a new ideas. Appendix F presents a proposed benchmarking checklist for the review process.358

7.1 Investing in making guidelines359

We believe that the risks of “rigging the lottery” that is described in Section 6 can be minimized by360

standardizing the recipe for creating and using benchmarks.361

Guidelines for creating benchmarks. Investing into shared guidelines for creating new benchmarks362

can be extremely beneficial to the long-term health of the research community. In our view, such363

guidelines should include the current best practices and aspects that require special attention; and should364

highlight potential concerns for issues that may emerge in the future when different models and algo-365

rithms are applied to the benchmarks. Fortunately, there have been some efforts in providing guidelines366

and best practices for making new benchmarks. For example, Zhang [2021] discusses the need for how367

robotic warehouse picking benchmarks should be designed. Kiela et al. [2021] proposed a framework368

for benchmarking in NLP that sets clear standards for making new tasks and benchmarks. Denton et al.369

[2020] look at the dataset construction process with respect to the concerns along the ethical and politi-370

cal dimensions of what has been taken for granted, and discuss how thinking about data within a dataset371

must be holistic, future-looking, and aligned with ethical principles and values. Bender and Friedman372

[2018] also proposed using data statements for NLP datasets in order to provide context that allows373

users to better understand how experimental results on that dataset might generalize, how software374

might be appropriately deployed, and what biases might be reflected in systems built on the software.375

In Section 6 we pointed out that sometimes the blocking factor or conduction rigorous evaluation is376

the high computational costs, in particular for the academic environment. For instance, analyzing377

all possible sources of variance in the performance is prohibitively expensive. As a potential solution to378

this problem, the community can invest more in setting up initiatives like reproducibility challenges7 or379

specialized tracks at conferences that offer help in terms of expertise, infrastructure, and computational380

resources for extensive evaluation to the papers submitted to that conference.381

Guidelines for benchmark usage. Besides the necessity of making guidelines for “how to make new382

benchmark”, it is important to have clear guidelines for “how to use a benchmark”, which for instance383

includes the exact setup that the benchmark should be used for evaluation or how the results should384

be reported. This would be a great help with reducing the instances of rigging the lottery prevalent385

in some domains (Section 6). There are also several efforts targeting this goal. For instance, Albrecht386

et al. [2015], Machado et al. [2018] propose specific standards for the ALE benchmark (discussed387

in Section D.1). Ethayarajh and Jurafsky [2020] argue against ranking models merely based on their388

performance and propose to always report model size, energy efficiency, inference latency, and metrics389

indicating model robustness and generalization to the out-of-distribution data. Gebru et al. [2018]390

proposed that every dataset be accompanied by a datasheet that documents its motivation, composition,391

collection process, recommended uses, etc with the goal of increasing transparency and accountability,392

mitigating unwanted biases in ML systems, facilitating greater reproducibility, and helping researchers393

and practitioners select more appropriate datasets for their chosen tasks.394

Another important problem that can benefit from established regulation is the hyper-parameter tuning395

budget used by researchers to improve their model performance. Spending enough time and compute396

to precisely tune hyper-parameters of the model or the training process can improve the results a great397

deal [Li et al., 2018, Bello et al., 2021, Steiner et al., 2021]. Given that, a guideline on limiting the398

budget for the hyper-parameter tuning can curb the improvements that are solely based on exhausting399

hyper-parameter search and gives a chance to have comparisons that are tied less to the computational400

budget of the proposing entity, but more to the merits of the methods themselves.401

Guidelines for conferences and reviewers. There have been attempts to ameliorate the problems402

related to the benchmark lottery, especially its community biases and the statefulness aspects403

(Sections 4 and 5). For example, NLP conferences have specially called out “not being SOTA” as404

an invalid basis for paper rejection8 We believe it is possible to leverage education through the review405

process in order to alleviate many negative aspects of benchmark lottery.406

As an example, we can make sure that in the review process, scores on a particular benchmark are407

not used for immediate comparison with the top-ranking method on that benchmark, but rather as408

a sanity check for new models and simply an efficient way of comparing against multiple baselines.409

This way, fundamentally new approaches will have a chance to develop and mature instead of being410

forced to compete for top performance right away or get rejected if not succeeded in the early attempts.411

6Similar to the reproducibility checklist https://www.cs.mcgill.ca/~jpineau/ReproducibilityC
hecklist.pdf [Dodge et al., 2019]

7For instance https://paperswithcode.com/rc2020, https://reproducibility-challenge.gi
thub.io/iclr_2019/, or https://reproducibility-challenge.github.io/neurips2019/

8https://2020.emnlp.org/blog/2020-05-17-write-good-reviews.
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7.2 Statistical significance testing412

The presence of established benchmarks and metrics alone does not necessarily lead to a steady413

improvement of research ideas; it should also be accompanied by rigorous procedures for comparing414

these ideas on the said benchmarks. For example, Armstrong et al. [2009] discuss the importance415

of comparing improvements to the strongest available baselines, however, the question of how do416

we know that if a new modelB is significantly better than its predecessor modelA remains anything417

but solved 10 years later [Lin et al., 2021].418

Benchmark results as random samples. Machine learning models are usually trained on a training419

set and evaluated on the corresponding held out test set, where some performance metricm is computed.420

Because model training is subject to sources of uncontrolled variance, the resulting metricm should421

be viewed as a single sample from the distribution describing the model’s performance. Because of422

that, deciding which of the two models is better based on point estimates of their performancesmA and423

mB may be unreliable due to chance alone. Instead distributions of these metrics p(mA) and p(mB)424

can be compared using statistical significance testing to determine whether the chance that model425

A is at least as good as modelB is low, i.e. p(A≤B)<α for some a priori chosen significance level426

α. Estimation of p(A≤B) forms for the crux of statistical significance testing. It can be done either427

by using parametric tests that make assumptions on distributions p(mA) and p(mB) and thus often428

need fewer samples from these distributions, or by using non-parametric tests that rely on directly429

estimating the metric distributions and require more samples.430

The popularity of standardized benchmarks and exponential growth in the amount of research that431

the ML community has experienced in recent years9 exacerbate the risk of inadvertently misguiding432

research through lax standards on declaring a model as an improvement on the SOTA. Indeed, if point433

estimates are used in place of statistical significance testing procedures, samplingm′A∼p(mA) and434

m′B ∼ p(mB) such that m′B >m
′
A is only a matter of time, even if performance of the two models435

is not actually different. Note that this is not the same as the issue described in Section 5, but could436

instead be thought of as winning a lottery if you purchase enough lottery tickets.437

Beyond a single train-test split. Unfortunately, researchers rarely go through the process of collecting438

strong empirical evidence that model B significantly outperforms model A. This is not surprising.439

As discussed in Bouthillier et al. [2021], obtaining such evidence amounts to running multiple trials440

of hyper-parameter optimization over sources of variation such as dataset splits, data ordering, data441

augmentation, stochastic regularisation (e.g. dropout), and random initialization to understand the442

models’ variance, and is prohibitively expensive10. If studied at all, mean model performance across443

several random parameter initializations is used for declaring that the proposed model is a significant444

improvement. This is vastly sub-optimal because dataset split contributes the most to model variance445

compared to other sources of variation [Bouthillier et al., 2021]. However, providing multiple dataset446

splits to estimate this variance is not standard practice in benchmark design.447

Benchmarks typically come with a single fixed test set, and thus could even be said to unintentionally448

discourage the use of accurate statistical testing procedures. This is particularly problematic for mature449

benchmarks, where the magnitude of model improvements may become comparable to the model vari-450

ance. Systematic variance underestimation may lead to a series of false positives (i.e. incorrectly declar-451

ing a model to be a significant improvement) that stall research progress, or worse - lead the research com-452

munity astray by innovating on “improved overfitting” in place of algorithmic improvements. Going453

forward, one way of addressing this limitation is to design benchmarks with multiple fixed dataset splits.454

As an added benefit, model performance reported across such standardized splits would also enable the455

application of a variety of statistical tests not only within the same study, but also across publications.456

Benchmark design with statistical testing in mind. The choice of a suitable statistical testing457

procedure is non-trivial. It must consider the distribution of the metricm that is being compared, the458

assumption that can be safely made about the distribution (i.e whether a parametric test is applicable or459

a non-parametric test should be used), the number of statistical tests performed (i.e. whether multiple460

testing correction is employed) and can also change as the understanding of the metric evolves [Demšar,461

2006, Bouthillier et al., 2021, Lin et al., 2021]. We, therefore, recommend that benchmark design462

is accompanied by the recommendation of the suitable statistical testing procedures, including the463

number dataset splits discussed above, number of replicates experiments, known sources of variance464

that should be randomized, the statistic to be computed across these experiments and the significance465

level that should be used for determining statistically significant results. This would not only help466

the adoption of statistical testing for ML benchmarks, but also serve as a centralized source for best467

9https://neuripsconf.medium.com/what-we-learned-from-neurips-2020-reviewing-pro
cess-e24549eea38f

10Although Bouthillier et al. [2021] also propose a pragmatic alternative to the exhaustive study of all source of
variation.
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practices that are allowed to evolve. A detailed discussion of statistical testing is outside of the scope of468

this paper, and we refer interested readers to [Bouthillier et al., 2021, Dror et al., 2017] for an overview469

of statistical testing procedures for ML.470

Beyond a single dataset. Often we are interested in understanding whether modelB is significantly471

better than modelA across a range of tasks. These kinds of comparisons are facilitated by benchmarks472

that span multiple datasets (e.g. VTAB or GLUE). Already the question of what it means to do better on a473

multi-task benchmark is non-trivial due to the task selection bias (see Section 3) - is it sufficient for model474

B to do better on average; or should it outperform modelA on all tasks? It is not surprising that the statis-475

tical testing procedures for such benchmarks are also more nuanced - the answer to this question leads to476

different procedures. It is unclear whether the average metric across datasets, a popular choice for report-477

ing model performance, is meaningful11 because the errors on different datasets may not be commensu-478

rable, and because models can have vastly different performance and variances across these datasets. For479

this reason, more elaborate procedures are required. For example, for the case when we are interested in480

seeing whetherB outperformsA on average Demšar [2006] propose to ignore the variance on individual481

datasets and treat the modelA andB’s performance across datasets as samples from two distributions482

that should be compared. They recommend that the Wilcoxon signed-rank should be used in such a483

setup; but the recommended can have limited statistical power when the number of datasets in the bench-484

mark is small. Alternatively, for cases when we are interested in seeing whetherB is better thanA on all485

datasets Dror et al. [2017] propose to perform statistical testing on each of the datasets separately while486

performing multiple testing corrections. Here again the “right” statistical testing procedure depends on487

the benchmark, its composition, and the criteria for preferring one model over another; and we believe488

that the community would benefit if these questions were explicitly answered during benchmark design.489

7.3 Rise of living benchmarks490

Another major issue for many popular benchmarks is “creeping overfitting”, as algorithms over time491

become too adapted to the dataset, essentially memorizing all its idiosyncrasies, and losing the ability to492

generalize. This is essentially related to the statefulness of benchmarks discussed in Section 5. Besides493

that, measuring progress can be sometimes chasing a moving target since the meaning of progress might494

change as the research landscape evolves. This problem can be greatly alleviated by for instance chang-495

ing the dataset that is used for evaluation regularly, as it is done by many annual competitions or reoccur-496

ring evaluation venues, like WMT12 or TREC13. Besides that, withholding the test set and limiting the497

number of times a method can query the test set for evaluation on it can also potentially reduce the effect498

of adaptive overfitting and benchmark reuse. In a more general term, an effective approach is to turn our499

benchmarks into “living entities”. If a benchmark constantly evolves, for instance, adds new examples,500

adds new tasks, deprecates older data, and fixes labeling mistakes, it is less prone to “tricks” and highly501

robust models would find themselves consistently doing well across versions of the benchmark. As502

examples of a benchmark with such a dynamic nature, GEM is a living benchmark for natural language503

generation [Gehrmann et al., 2021] or Dynabench [Kiela et al., 2021] proposes putting humans and mod-504

els in the data collection loop where we continuously reevaluate the problem that we really care about.505

8 Epilogue506

Ubiquitous access to benchmarks and datasets has been responsible for much of the recent progress in507

machine learning. We are observing the constant emergence of new benchmarks. And on the one hand,508

the development of benchmarks is perhaps a sign of continued progress, but on the other hand, there509

is a danger of getting stuck in a vicious cycle of investing in making static benchmarks that soon will be510

rejected due to the inflexible flaws in their setup, or lack of generality and possibility for expansion and511

improvements. We are in the midst of a data revolution and have an opportunity to make faster progress512

towards the grand goals of artificial intelligence if we understand the pitfalls of the current state of513

benchmarking in machine learning. The “benchmark lottery” provides just one of the narratives of514

struggling against benchmark-induced model selection bias. Several topics we touched upon in this515

paper are discussed in the form of opinions or with a minimum depth as a call for further discussion.516

We believe each subtopic deserves a dedicated study, like how to better integrate checks for ethical517

concerns in the mainstream evaluation of every existing benchmark, how to develop tools and libraries518

that facilitate the rigorous testing of the claimed improvements, or a deep investigation of the social519

dynamics of the review process and how to improve it. In the end, there are many reasons to be excited520

about the future - the community is continuously taking positive delta changes that contribute to fixing521

issues with measuring progress in the empirical machine learning.522

11In fact for that reason it was not a popular choice until recently [Demšar, 2006].
12http://statmt.org/
13https://trec.nist.gov/
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