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Abstract

Computing systems interacting with real-world processes must safely and reliably1

process uncertain data. The Monte Carlo method is a popular approach for comput-2

ing with such uncertain values. This article introduces a framework for describing3

the Monte Carlo method and highlights two advances in the domain of physics-4

based non-uniform random variate generators (PPRVGs) to overcome common5

limitations of traditional Monte Carlo sampling. This article also highlights recent6

advances in architectural techniques that eliminate the need to use the Monte Carlo7

method by leveraging distributional microarchitectural state to natively compute8

on probability distributions. Unlike Monte Carlo methods, uncertainty-tracking9

processor architectures can be said to be convergence-oblivious.10

1 Introduction11

Uncertainty arises when systems carry out computations based on measurements (aleatoric uncer-12

tainty) or limited knowledge (epistemic uncertainty). Uncertainty introduces risk to actions taken13

based on measurements or limited knowledge. Studying and quantifying how uncertainty propagates14

through computations is a requirement when making principled decisions about the suitability of an15

uncertain system for an application.16

Despite the importance of quantifying and understanding uncertainty, computer architectures and17

circuit implementations lack numerically-robust and computationally-efficient methods to program-18

matically process and reason about uncertainty. State-of-the-art techniques often employ the Monte19

Carlo method [1, 2, 3, 4] to estimate the effect of long sequences of arithmetic operations on inputs20

that are uncertain when closed-form propagation of uncertainty is not possible. Monte-Carlo-based21

methods can be sample-inefficient: the variance in the result of Monte Carlo integration using n22

samples scales as 1√
n

[3]. This means that if we wanted to halve the variance, we would need to23

quadruple the number of samples.24

This article presents a framework for describing Monte-Carlo-based methods (Section 2). The25

framework poses them as the application of three steps: sampling, evaluation, and post-processing. In26

Section 3 we describe recent advances in physics-based programmable non-uniform random variate27

generators (PPRVGs) which can improve the sampling phase of Monte Carlo methods. Section 428

shows how a novel uncertainty-tracking microarchitecture, Laplace [5, 6], can provide a more efficient29

way to represent and compute on uncertain variables. Section 6 compares the performance of Laplace30

to the traditional Monte Carlo method.31
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2 The Monte Carlo Method32

The phrase Monte Carlo method refers to a wide class of computational methods that sample from33

random variables to calculate solutions to computational problems. The earliest example of the use34

of a Monte Carlo method is attributed to Georges-Louis LeClerc [4], Comte de Buffon, who, in the35

eighteenth century, simulated a value of π by dropping needles onto a lined background. He showed36

that when the needle has the same length as the distance between parallel lines, the probability that a37

randomly-thrown needle will overlap with a line is 2
π . Therefore, π can be estimated by throwing a38

large number of needles and averaging the number of times they overlap with a line.39

2.1 The Monte Carlo Method: Sampling, Evaluation, and Post-Processing40

The Monte Carlo method approximates a desired numerical property of the outcome of transforma-41

tions of random variables. Practitioners use the Monte Carlo method when the desired property is not42

available analytically or because the analytical solution is computationally expensive. The desired43

property could be the expectation of the resulting random variable (Monte Carlo integration), a44

sample from it (Monte Carlo sampling), or its probability density function (Monte Carlo simulation).45

Suppose that we want to obtain a property from the random variable Y that is defined by transforming46

the random variable X using the transformation f : X → Y (i.e., Y = f(X)). We summarize the47

steps of the Monte Carlo method to approximate the desired numerical properties as follows:48

1. Sampling: The Monte Carlo method first generates i.i.d. samples from X . Let n denote the49

number of samples of the random variable X in the set {xi}ni=1. This step typically uses a50

random number generator program running on a computer that can generate pseudo-random51

numbers from a uniform distribution. Samples from more complex random variables are52

generated using Monte Carlo sampling, where the Monte Carlo method itself is used to53

generate samples by transforming the uniform random variates. Examples of Monte Carlo54

sampling include the Box-Muller method [7] for generating standard Gaussian samples,55

inverse transform sampling for sampling from random variables for which an inverse56

cumulative distribution function (ICDF) exists1, and Markov Chain Monte Carlo (MCMC)57

for more complex random variables [2].58

As an alternative to Monte Carlo sampling, we can use physical hardware to efficiently59

sample from a non-uniform random variable. Section 3 presents several such methods from60

the research literature which can provide large-batch single-shot convergence-oblivious61

random variate generation by exploiting physical processes that generate non-uniform62

entropy and can be sampled in parallel.63

2. Evaluation: The second step of the Monte Carlo method then evaluates the transformation64

f on the set of samples {xi}ni=1 to obtain a set {yi}ni=1 of n samples of Y , where each65

yi = f(xi). This step is called Monte Carlo evaluation.66

In the Monte Carlo method, the evaluation step is carried out on each sample xi, one at a67

time. Section 4 presents recent research on computer architectures that can process compact68

representations of entire distributions at once, rather than one sample at a time as is the case69

for the traditional Monte Carlo method.70

3. Post-processing: In the third and final step, the Monte Carlo method approximates the71

desired numerical property from the samples {yi}ni=1 by applying an operation on their72

set. For example, taking their average (as in the case of Monte Carlo integration), applying73

the identity function (as in Monte Carlo sampling), or generating a representation of the74

probability density function, such as a histogram (as in Monte Carlo simulation).75

3 Physics-Based Programmable Non-Uniform Random Variate Generation76

Section 2 described the sampling of (possibly non-uniform) random variables as the first step of the77

Monte Carlo method. Most computing systems use pseudo-random number generators to generate78

uniform random variates. Computers generate samples from non-uniform random variables by using79

Monte Carlo sampling (Section 2). Since Monte Carlo methods could require large numbers of80

samples, these methods can be computationally-expensive and can lead to a significant overhead.81

1Leemis et al [8] provides a good source of relationships between univariate random variables.
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Two recent methods of generating non-uniform random variates from physical processes, Spot [9]82

and Grappa [10] have the following key features:83

• They can efficiently generate non-uniform random variates: Spot, for example, can generate84

Gaussian random variables 260× faster than the Box-Muller transformation running on an85

ARM Cortex-M0+ microcontroller, while dissipating less power than such a microcontroller.86

• They are physics-based: Spot generates random variates using electron tunneling noise,87

while Grappa exploits the transfer characteristics of Graphene field-effect transistors.88

• They are programmable: The distributions from which they can sample from are not fixed;89

their host systems can dynamically and digitally configure them to produce samples from a90

required probability distribution.91

Due to these features, we call methods such as Spot and Grappa physics-based programmable92

non-uniform random variate generators (PPRVGs).93

Spot: Spot is a method for generating random numbers by sampling a one-dimensional distribution94

associated with a Gaussian voltage noise source [11]. Using an analog-to-digital converter (ADC),95

Spot takes measurements of a physical process that generates Gaussian noise. Spot then maps this96

physically-generated univariate Gaussian to any other univariate Gaussian using only two operations:97

a multiplication and an addition [9]. Samples from any other non-uniform random variable are98

generated by creating a mixture of Gaussians.99

Grappa: Grappa is a Graphene Field-Effect Transistor (GFET)-based programmable analog func-100

tion approximation architecture [12]. Grappa relies on the non-linear transfer characteristics of101

GFETs to transform a uniform random sample into a non-uniform random sample [12].102

Grappa implements a linear least-squares Galerkin approximation [13] to approximate the ICDF103

of a target distribution and carry out inverse transform sampling. The required orthonormal basis104

functions are obtained from the GFET transfer characteristics using the Gram-Schmidt process [14].105

Tye et al. showed that Monte Carlo integration using samples generated by Grappa is at least 1.26×106

faster than using a C++ lognormal random number generator. Subsequent work [12] demonstrated an107

average speedup of up to 2x compared to MATLAB for lognormal, exponential, generalized Pareto,108

and Gaussian mixture distributions, with the execution time independent of the target distribution.109

4 Beyond the Monte Carlo Method110

Let X be a random variable and f : X → Y be a transformation of X . Denoting the resulting111

random variable as Y = f(X), from the change of variable formula for random variables (Theorem112

1 in Appendix A), we obtain probability density function pY of Y . If pX is the probability density113

function of X , then the probability density function of pY of Y is,114

pY (y) = pX ◦ f−1(y)|det∇f−1(y)|, (1)

where y ∈ Y , and ∇yf
−1 is the Jacobian matrix. Using the change of variables technique of integrals,115

we obtain116

EpX
[f(X)] =

∫
X

f(x)pX(x) dx by Equation 7 in Appendix A

=

∫
Y

ypY ◦ f−1(y)|det∇f−1(y)| dy by change of variables (integration)

=

∫
Y

ypY (y) dy by Theorem 1 in Appendix A

= EpY
[Y ].

Thus, if we had access to pY of Y , we can evaluate EpX
[f(X)] by taking the expectation of the117

random variable Y with respect to the pY . When pY isn’t directly accessible, we usually obtain the118

expectation of Y by using Monte Carlo integration. However, having access to pY would eliminate119

the need to use the Monte Carlo method completely.120
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Laplace [5, 6] is a computer microarchitecture that is capable of directly computing pY by representing121

distributional information in its microarchitectural state and tracking how these distributions evolve122

under arithmetic operations, transparently to the applications running on it. Laplace provides a123

representation for the distribution (see Definition 3 in Appendix A) of random variables, and carries124

out deterministic computations on this distribution.125

Laplace’s in-processor distribution representation has an associated representation size that describes126

the precision at which the probability distribution is represented. Higher values of the representa-127

tion size result in a more accurate representation. A useful analogy is the IEEE-754 standard for128

representing the uncountable infinite set of real numbers as floating-point numbers [15, 16] on a129

finite-precision computer.130

Computer architectures such as Laplace eliminate the need for using the Monte Carlo method and131

can therefore have far-reaching consequences in areas where the Monte Carlo method is used. For132

example, to approximate the predictive Gaussian Process posterior distribution with an uncertain133

input, Deisenroth et al [17, 18] used moment-matching; Laplace could compute the posterior exactly,134

up to the precision of the representation.135

5 Methods136

The remaining text compares and evaluates Monte Carlo methods and Laplace-based methods. Both137

methods were evaluated on single-threaded applications written in the C programming language.138

Monte Carlo method: We use the standard Monte Carlo method that we described in Section 2.139

We use the pseudo-random number generator rand from the Standard C Library [19] to sample140

from uniform distributions and use the modified Box-Muller method [20] as implemented by the141

gsl_ran_gaussian_ziggurat function in the GNU Scientific Library [21]. We compile our code using clang,142

the C family front-end to LLVM [22] , with optimization set to -O3
2.143

Laplace: We use Laplace as a replacement for the Monte Carlo method, as described in Section 4.144

In our experiments, we exclusively use Laplace’s Telescopic Torques Representation (TTR) [5] as145

provided by a commercial implementation of Laplace [23], release 2.6.146

We compare these methods by empirically measuring and reporting the average run time and the147

average Wasserstein distance [24] of the output to a ground truth in two different applications of148

Monte Carlo simulation. We change the number of samples (for Monte-Carlo-based methods), or the149

representation size (for Laplace-based methods) to observe the trade-offs between accuracy and run150

time. For each configuration of number of samples or representation size, we repeat the experiments151

30 times to account for variation in the process of sampling3. See Appendix C for more detail on our152

methods. Figure 1 summarizes our results.153

5.1 Applications154

We carry out the experiments described above on two applications of Monte Carlo simulation.155

Monte Carlo Convergence Challenge Example: Let Xcon be the initial random variable that we156

sample from, with its probability density function pXcon being a Gaussian mixture. given by:157

pXcon(x) = 0.6

(
1

0.5
√
2π

e−2(x−2)2
)
+ 0.4

(
1

1.0
√
2π

e
−(x+1)2

2

)
. (2)

For the Monte Carlo evaluation step of Section 2, we define a function f con as a sigmoidal function:158

f con(x) =
1

1 + e−(x−1)
. (3)

2We will make all code necessary for exact replication of our experiments available through Github.
3We calculate the Wasserstein distance for Laplace’s representation of the output distributions by generating

1,000,000 samples from the representation. Therefore, we also repeat the Laplace experiments 30 times for
each representation size even though Laplace’s uncertainty-tracking methods are deterministic and convergence-
oblivious. The variation we see in the results in Figure 1 is therefore only due to sampling variance.
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For the Traditional Monte Carlo method, we evaluated on n ∈ {4, 256, 1152, 2048, 4096, 8192,159

16000, 32000, 128000, 256000}. For Laplace, we evaluated on r ∈ {16, 32, 64, 256, 2048}.160

Poiseuille’s Law for Blood Transfusion As a real-world application, we use Poiseuille’s Law, a161

mathematical model from fluid dynamics used to calculate the rate of laminar flow, Q, of a viscous162

fluid through a pipe of constant radius [25, 26]. This model is used in medicine as a simple method163

for approximating the rate of flow of fluids, such as blood, during transfusion [27, 28]. We look at164

Poiseuille’s Law applied to the case of blood transfusion using a pump with the following parameters:165

∆P : Pressure difference created by the pump, where ∆P ∼ N (5500000mPa, 360002).166

µ: Viscosity of the fluid, where µ ∼ U(3.88mPas, 4.12mPas).167

l: Length of the tube from the cannula to the pump, where l ∼ U(6.95 cm, 7.05 cm).168

r: Radius of the cannula, where r ∼ U(0.0845 cm, 0.0855 cm).169

We assume the cannula to have a gauge of 14 (a radius of 0.85mm) and the viscosity of blood to170

be 4mPas [28]. [29] reported that for porcine blood, the uncertainty of using a ventricular assist171

device to measure blood viscosity in real time was ±0.12mPas; we use this as the uncertainty of the172

viscosity.173

The flow rate Q is therefore measured in cm3/s. Using these parameters, we can calculate the flow174

rate using Poiseuille’s Law:175

Q =
πr4∆P

8µl
. (4)

For the Traditional Monte Carlo method, we evaluated on n ∈ {4, 256, 1152, 4096, 8192, 32000,176

128000, 256000, 512000, 640000}. For Laplace, we evaluated on r ∈ {16, 32, 64, 128, 256, 2048}.177

6 Results178

Figure 1 shows Pareto plots of the mean run time against the Wasserstein distance from the ground179

truth for both applications. A key observation is that the variance of the Laplace-based methods180

is more or less constant as we increase the representation size. Laplace carries out deterministic181

computations on probability distributions; this variance is caused by using a finite number of samples182

from Laplace’s representation of the output distribution to calculate the Wasserstein distance. It is183

possible to calculate the Wasserstein distance directly from the Laplace processor representation but184

we did not do so at the time of writing. This calculation would be deterministic since it only depends185

on the representation of the distribution. In contrast, each run of the Monte Carlo method results in a186

different output distribution; to reduce this variance we need to increase the number of samples. In187

this way, Laplace is convergence-oblivious to the number of samples.188

Increasing the representation size larger than r = 32 provides a worse trade-off with the run time for189

both applications. Table 1 shows that for the accuracy obtained by Laplace, the equivalent Monte190

Carlo simulation is 113.85× (for the Monte Carlo Convergence Challenge example) and 51.53× (for191

the Poiseuille’s Law for Blood Transfusion application) slower. If much better accuracy is required,192

then the Monte Carlo method will need to be used. However, if the accuracy provided by Laplace193

is sufficient, it provides a potentially-orders-of-magnitude-faster alternative that is also consistent194

outputs across repetitions.195

Tables with the numerical results are in Appendix F. Appendix F also compares histograms of the196

resulting distributions and provides additional discussion.197

7 Conclusions198

The Monte Carlo method is a powerful and historically-significant tool for solving complex problems199

that might otherwise be intractable. It involves three simple steps: sampling, evaluating and post-200

processing. Despite its versatility, the Monte Carlo method can suffer from inefficiencies. One of201

these is that generating samples for the first step of the Monte Carlo method is inefficient when202

samples are required from non-uniform probability distributions. Recent advances in physics-based203

random number generators, namely Spot [9, 11] and Grappa [12] address these challenges.204
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(a) Pareto plot for the Monte Carlo Convergence Chal-
lenge application from Section 5.1. We omitted n =
4, 256 for clarity; see Table 2 in Appendix F.
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(b) Pareto plot for the Poiseuille’s Law for Blood Trans-
fusion application from Section 5.1. We have omitted
n = 4, 256 for clarity.; see Table 3 in Appendix F.

Figure 1: Pareto plots between the mean run time, and the mean Wasserstein distance from the
ground truth output distribution. The error bars show ±1 standard deviation. For the Monte Carlo
Convergence Challenge example (a), Traditional Monte Carlo obtains similar accuracy to Laplace
with r = 32 at 32,000 samples. For the Poiseuille’s Law for Blood Transfusion application (b),
Traditional Monte Carlo obtains similar accuracy than Laplace with r = 32 at 128,000 samples. In
the legends, MC stands for Traditional Monte Carlo, implemented in C. We use the log scale on the
vertical axis.

Problem Core Representation Size /
Number of samples

Wasserstein Distance
(mean ± std. dev.)

Run time (ms)
(mean ± std. dev.)

Monte Carlo Convergence Challenge Laplace 32 0.00167± 0.00007 0.020± 0.004
Monte Carlo Convergence Challenge Traditional Monte Carlo 32000 0.00158± 0.00068 2.277± 0.346

Poiseuille’s Law for Blood Transfusion Laplace 32 0.00033± 0.00003 0.173± 0.006
Poiseuille’s Law for Blood Transfusion Traditional Monte Carlo 128000 0.00033± 0.00009 8.914± 1.566

Table 1: Results show the mean Wasserstein distance and the run time required the best overall
configuration for Laplace and the close-to-equivalent results Monte Carlo configurations. For the
Monte Carlo Convergence Challenge example, Traditional Monte Carlo takes approximately 113.85×
longer than Laplace with r = 32. For the Poiseuille’s Law for Blood Transfusion application,
Traditional Monte Carlo takes approximately 51.53× longer than Laplace with r = 32.

Techniques such as Laplace [5, 6] represent probability distributions in a computing system using205

an approximate fixed-bit-width representation in a manner analogous to how traditional computer206

architectures approximately represent real-valued numbers using fixed-bit-width representations207

such as the IEEE-754 floating-point [15, 16] representation. The computations of Laplace are208

approximations of explicit Monte Carlo methods in much the same way that computations on floating-209

point are approximations of arithmetic on real numbers. Laplace does not require iterative and210

repeated processing of samples until convergence to a target distribution is achieved, nor does it211

suffer from the high variance observed across Monte Carlo runs. Methods like Laplace are therefore212

convergence-oblivious.213
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Supplementary Material292

A Mathematical Preliminaries293

To establish a consistent framework for discussing the Monte Carlo method, we first introduce key294

definitions and theorems that we will use throughout this article. Let R+ be the set of positive real295

numbers (i.e., [0,∞)).296

Definition 1 (Probability density function) Let X be a set and pX be a map from X to R+,297

pX : X → R+,

that satisfies:298 ∫
X

pX(x) dx = 1.

We define pX to be the probability density function on X .299

Definition 2 (Random Variable) Let X be a set and pX a probability density function on X . We300

define the tuple (X, pX) as a random variable4.301

Often, the set X will be a real space Rd. A random variable is a variable that can take on different302

values from its defining set X . The probability density function pX is a function that calculates how303

likely X is to take on a particular value x ∈ X . Generating an instance value from a random variable304

is called sampling from the random variable.305

For brevity, we use the following notation: an uppercase letter, such as X , denotes a random variable306

and the matching lowercase letter x denotes an instance value of the random variable X . We denote a307

set of n independently and identically distributed (i.i.d.) samples or variates of a random variable X308

as {xi}ni=1, where i indexes this set and each xi is an instance value of X .309

Let f : X → Y denote a transformation from a random variable X to a random variable Y (i.e.,310

Y = f(X))5. We can also apply f to an instance value x of X to obtain an instance value y = f(x)311

of Y .312

The probability distribution of a random variable is a set function PX : ΩX → R+ that tells us about313

the probability of the random variable taking on the values inside the given set, where ΩX is a set of314

subsets of X . ΩX must technically be a σ-algebra, but for our purposes, it can be thought of as a set315

of sets each of which can be expressed as a countable union of disjoint sets that also belong to ΩX
6.316

Since we are only considering random variables that contain probability density functions, we define317

the distribution of a random variable as:318

Definition 3 (Distribution of a Random Variable) Given a random variable X with probability319

density function pX , the distribution of X is given by the set function320

PX : ΩX → R+

ω =
⋃
i

Ui 7→ PX(ω) =
∑
i

∫
Ui

pX(x) dx,
(5)

where Ui is a collection of disjoint sets whose union equals the input set ω.321

If f is invertible and once-differentiable, then Theorem 1 derives the probability density function of322

Y , denoted as pY [31, Chapter 3.7].323

Theorem 1 (Change of variables) Given a random variable X with a probability density function324

pX and an invertible and once-differentiable transformation f : X → Y , the probability density325

4There can be measure theoretic random variables, such as the random variable that has the Cantor distribution,
that do not admit probability density functions [30]. In this article, we do not consider such exotic random
variables.

5f transforms the set X such that there exists a valid probability density function pY over the set Y .
6The sets in a σ-algebra must also satisfy that countable unions and intersections of arbitrary sets also belong

to ΩX , along with X and ∅.
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function pY of the random variable Y = f(X) is given by:326

pY : Y → R+,

y 7→ pY (y) = pX ◦ f−1(y)|det∇f
(
f−1(y)

)
|−1

= pX ◦ f−1(y)|det∇f−1(y)|,
where f−1 is the inverse of f and ∇f( · ) and ∇f−1( · ) denote the Jacobian matrices of f and f−1

327

respectively.328

A key statistic that is often computed of a random variable is its expectation.329

Definition 4 (Expectation of a random variable) Given a random variable X with probability330

density function pX , we define the expectation EpX
[X] of X as331

EpX
[X] =

∫
X

xpX(x) dx. (6)

Expectations can be calculated of transformations of random variables as well.332

Definition 5 (Expectation of a transformation of a random variable) Given a random variable333

X with probability density function pX and a transformation f : X → Y from X to a random334

variable Y 6, we define the expectation EpX
[f(X)] of the random variable f(X) as335

EpX
[f(X)] =

∫
X

f(x)pX(x) dx. (7)

This is called the Law of the Unconscious Statistician [32].336

B Buffon’s Needle337

In this section, we describe Buffon’s Needle in more detail. Let X be the random variable that338

denotes the location of a thrown needle and f be a transformation on X defined as:339

f : X → {0, 1},

x 7→ f(x) =

{
1 if needle lands on a line
0 otherwise.

f therefore identifies whether a dropped needle lands on a line. The resulting random variable f(X)340

is a Bernoulli random variable Bern(p), where the probability of success p is the probability of a341

needle landing on line. Since Ef(X)∼Bern(p)[f(X)] = p, the expectation of f(X) is precisely the342

probability of a needle landing on a line. The expectation of the resulting random variable f(X) is 2
π ,343

as shown by LeClerc [4]. One can approximate this expectation by sampling from X by dropping344

needles, evaluating f by checking whether each needle landed on a line, and taking the average of345

the resulting samples of f(X).346

C Methods: Additional detail347

C.1 Measuring the run time348

We measure the run time as the sum of the time taken to generate samples incurred during the349

sampling step of the Monte Carlo method or the initializing step of Laplace, and the time taken350

for the evaluation step. For both methods, we measure time using the gettimeofday function from the351

Standard C library [19]. We measure the time from the start of the main entry point until the end of352

key computations. The reported times omit any time spent by the programs on saving and reporting353

the results. We took further measures to ensure that our results were meaningful; these are detailed in354

the supplementary material.355

In order to explicitly quantify the post-processing step of the Monte Carlo method, we compute the356

mean and the variance of the samples obtained from the Monte-Carlo-based experiments. Such a step357

is not necessary with Laplace, because Laplace already provides a usable representation of the output358

distribution. We note that we are being generous to the Monte Carlo method, since the mean and the359

variance alone does not fully capture the shape of a non-Gaussian distribution. In contrast, Laplace360

captures the full distribution in its representation.361
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C.2 Measuring the Wasserstein Distance362

The Wasserstein distance [24] is a metric that measures the distance between probability distributions.363

We quantify the distance of the outputs to the ground truth using the Wasserstein distance between the364

output distribution calculated by each approach and the ground truth output distribution. We compute365

the ground truth output distribution by running the Monte Carlo method with 1,000,000 samples.366

In our experiments, we calculate the Wasserstein distance using the scipy.stats.wasserstein_distance367

function from the SciPy Python package [33].368

C.3 Experimental setup369

Let n be the number of samples used in the sampling step of a Monte Carlo simulation. We perform370

experiments with various values of n on an Apple M1 Pro with 16GB LPDDR5 RAM, running371

macOS 13.5.1. This provides a baseline for the performance of the Monte Carlo method that can be372

expected in the real-world.373

Similarly, for Laplace, we varied the representation size r. Since the Laplace cores generate in-374

processor representations of the output distribution, we take samples from this distribution to compute375

the Wasserstein distance. We take 1,000,000 samples, similar to the ground truth. We do not include376

the time taken for this sampling in the wall-clock time because this sampling is done solely to377

calculate the Wasserstein distance and is not part of a typical use case of Laplace.378

D Ensuring Meaningful Timing Results379

When running the experiments on the Monte Carlo method, each repetition of an experiment was380

run after a 5s delay. This delay ensures that we avoid buffer cache optimizations carried out by the381

operating system.382

We also note that we did not exploit parallelization when running Traditional Monte Carlo since the383

available implementation of Laplace did not exploit parallelization either. We felt that this provided384

an apples-to-apples comparison.385

E Applications: Additional Detail386

E.1 Monte Carlo Convergence Challenge Example387

Here, we present a more complete description of the Monte Carlo Convergence Challenge example.388

For ease of reading, we repeat the key equations.389

Let Xcon be the initial random variable that we sample from, with its PDF pXcon being a Gaussian390

mixture. The underlying set of Xcon is R, and pXcon is given by:391

pXcon(x) = 0.6

(
1

0.5
√
2π

exp
(
−2(x− 2)2

))
+ 0.4

(
1

1.0
√
2π

exp

(
−(x+ 1)2

2

))
.

(8)

For the Monte Carlo evaluation step of Section 2, we define a function f con as a sigmoidal function:392

f con : X → (0, 1),

x 7→ f con(x) =
1

1 + e−(x−1)
.

(9)
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(a) Graphs of the PDF pXcon (blue), the transfor-
mation fcon (red), and the output density function
pY con (black) of the Monte Carlo Convergence Chal-
lenge application.
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(b) Monte Carlo simula-
tion with 8 samples.
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(c) Monte Carlo simula-
tion with 256 samples.
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(d) Monte Carlo simula-
tion with 1024 samples.
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(e) Monte Carlo simula-
tion with 128,000 sam-
ples.

Figure 2: Left: graphs of the analytical input and output distributions, and the evaluation function for
the Monte Carlo Convergence Challenge example. Right: histograms of the output of Monte Carlo
simulation with 8 (b), 256 (b), 1024 (c), and 128,000 (d) samples. The input PDF has two modes,
and the output distribution is heavily influenced by them (see black curve). If only a few samples
are used during Monte Carlo simulation, such as in (b), then the resulting histogram will be biased
toward a single mode.

Let Y con = f con(Xcon) denote the output random variable. The underlying set of Y con is (0, 1). Its393

PDF pconY (y) can be analytically calculated using Theorem 1:394

pY con(y) =

(
0.6

(
1

0.5
√
2π

exp
(
−(logit(y)− 2)2

))
+0.4

(
1

1.0
√
2π

exp

(
−(logit(y) + 1)2

2

)))
×

∣∣∣∣ exp(1− logit(y))

(exp(1− logit(y)) + 1)
2

∣∣∣∣−1

,

(10)

where logit(y) is:395

logit(y) = 1 + log
y

1− y
. (11)

. Figure 2 plots the functions of Equations 8, 9, and 10, and highlights the problem of uncertainty396

propagation. The function f con (red curve) transforms the random variable Xcon (PDF shown as397

the blue curve) into the random variable Y con (PDF shown as the black curve). In particular, f con
398

transforms the two modes of Xcon into the two modes of Y con.399

We chose this application to showcase issues with convergence in traditional Monte Carlo simulation400

(see Figure 2). Due to the multi-modal distribution pXcon , using too few samples could bias the401

resulting histogram of the Monte Carlo simulation toward the largest mode and not represent the402

other mode well, as in Figure 2b. The fidelity of the output of Monte Carlo methods is therefore403

sensitive to the number of samples taken from Xcon, and to the shape of the function f con. By404

contrast, uncertainty-tracking processors such as Laplace are not sample-based and can be said to be405

convergence-oblivious.406

F Additional Results and Discussion407

We provide an abridged set of results and observations in this section. We have broken the discus-408

sion into three sections for comparing the relationship between the Wasserstein distance and run409

time, comparing the number of required dynamic instructions, and comparing histograms of output410

distributions.411
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(a) Pareto plot for the Monte Carlo Convergence Chal-
lenge application from Section 5.1. We have omitted
n = 4, 256 for clarity.
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(b) Pareto plot for the Poiseuille’s Law for Blood Trans-
fusion application from Section 5.1. We have omitted
n = 4, 256 for clarity.

Figure 3: Pareto plots between the mean run time, and the mean Wasserstein distance from the
ground truth output distribution. The error bars show ±1 standard deviation, as in Tables 2-3. For the
Monte Carlo Convergence Challenge application, (a) shows that Traditional Monte Carlo obtains
better accuracy than Laplace with r = 32 (up to 1-standard deviation) after 128,000 samples. For the
Poiseuille’s Law for Blood Transfusion application, (b) shows that Traditional Monte Carlo obtains
better accuracy than Laplace with r = 32 (up to 1-standard deviation) after 2048 samples. In the
legends, MC stands for Traditional Monte Carlo, implemented in C. We use the log scale on the
vertical axis.

F.1 Comparing Wasserstein Distance and Run Time412

Tables 2 and 3 show the means and the standard deviations of the run time and the Wasserstein413

distance7 for the Monte Carlo Convergence Challenge and the Poiseuille’s Law for Blood Trans-414

fusion examples, respectively. Figure 3 plots the run time and the Wasserstein distance across all415

experimental variations to show the Pareto boundary for each application. In general, these results416

match intuition, where an increase in n improves the accuracy of the output distributions compared to417

the ground-truth distribution, at the expense of run time. We analyze the results for each application418

in turn.419

F.1.1 Monte Carlo Convergence Challenge420

Table 2 and Figure 3a shows the key results for this application. A Laplace configuration with r > 32421

improves the Wasserstein distance less than it worsens the run time. Therefore, we chose r = 32 to422

be the best overall configuration of Laplace for this application. We see the Monte Carlo method423

requires approximately 32,000 samples to obtain a similar Wasserstein distance to Laplace with424

r=32. For this configuration, Laplace takes 113.85× less time. To obtain an accuracy that is better425

than Laplace with r=32 up to 1-standard deviation, the Monte Carlo method requires approximately426

128,000 samples, for which it takes 411.25× more time. Similarly, if we required the Monte Carlo427

method to obtain a Wasserstein distance better than Laplace with r=32 up to 2-standard deviations,428

it would require approximately 256,000 samples, for which it takes 732.35× more time.429

F.1.2 Poiseuille’s Law for Blood Transfusion430

Table 3 and Figure 3b show that the best trade-off between accuracy and run time is made by Laplace431

with r = 32. To match the mean accuracy of this configuration of Laplace, Traditional Monte Carlo432

requires 256, 000 samples. This takes 51.53× more time than Laplace. To obtain an accuracy better433

than Laplace with r = 32 up to 1-standard deviation and 2-standard deviations, Traditional Monte434

Carlo requires approximately 512,000 samples. This takes 160.06× more time than Laplace.435

7The Wasserstein distances are of very different scales. The scale of Wasserstein distances will depend on
the distributions being compared. However, the important insights from Table 2-3 and Figure 3 are the trends.
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Problem Core Representation Size /
Number of samples

Wasserstein Distance
(mean ± std. dev.)

Run time (ms)
(mean ± std. dev.)

Monte Carlo Convergence Challenge Laplace 16 0.00457± 0.00004 0.011± 0.001
Monte Carlo Convergence Challenge Laplace 32 0.00167± 0.00007 0.020± 0.004
Monte Carlo Convergence Challenge Laplace 64 0.00097± 0.00008 0.034± 0.004
Monte Carlo Convergence Challenge Laplace 128 0.00065± 0.00018 0.044± 0.003
Monte Carlo Convergence Challenge Laplace 256 0.00054± 0.00021 0.073± 0.002
Monte Carlo Convergence Challenge Laplace 2048 0.00042± 0.00020 0.531± 0.008

Monte Carlo Convergence Challenge Traditional Monte Carlo 4 0.13781± 0.06187 0.077± 0.049
Monte Carlo Convergence Challenge Traditional Monte Carlo 256 0.02136± 0.01130 0.086± 0.011
Monte Carlo Convergence Challenge Traditional Monte Carlo 1152 0.00844± 0.00363 0.155± 0.035
Monte Carlo Convergence Challenge Traditional Monte Carlo 2048 0.00659± 0.00277 0.243± 0.109
Monte Carlo Convergence Challenge Traditional Monte Carlo 4096 0.00437± 0.00205 0.381± 0.125
Monte Carlo Convergence Challenge Traditional Monte Carlo 8192 0.00307± 0.00123 0.727± 0.199
Monte Carlo Convergence Challenge Traditional Monte Carlo 16000 0.00270± 0.00139 1.260± 0.234
Monte Carlo Convergence Challenge Traditional Monte Carlo 32000 0.00158± 0.00068 2.277± 0.346
Monte Carlo Convergence Challenge Traditional Monte Carlo 128000 0.00086± 0.00035 8.225± 0.849
Monte Carlo Convergence Challenge Traditional Monte Carlo 256000 0.00067± 0.00038 14.645± 1.330

Table 2: Results show the mean Wasserstein distance, the run time and the factor increase in
dynamic instructions required, with their 1-standard deviation errors for the Monte Carlo Convergence
Challenge example. We have highlighted in bold the best overall configuration for Laplace and the
close-to-equivalent results Monte Carlo configurations. Traditional Monte Carlo takes approximately
113.85× more time than Laplace. To have better accuracy than the Laplace result up to 1-standard
deviation and 2-standard deviations, Traditional Monte Carlo requires approximately 128,000 samples
and 256,000 samples respectively. These take 411.25× and 732.35× more time than Laplace,
respectively.

Problem Core Representation Size /
Number of samples

Wasserstein Distance
(mean ± std. dev.)

Run time (ms)
(mean ± std. dev.)

Poiseuille’s Law for Blood Transfusion Laplace 16 0.00085± 0.00001 0.051± 0.003
Poiseuille’s Law for Blood Transfusion Laplace 32 0.00033± 0.00003 0.173± 0.006
Poiseuille’s Law for Blood Transfusion Laplace 64 0.00017± 0.00003 0.412± 0.006
Poiseuille’s Law for Blood Transfusion Laplace 128 0.00015± 0.00004 1.406± 0.017
Poiseuille’s Law for Blood Transfusion Laplace 256 0.00015± 0.00004 5.800± 0.055
Poiseuille’s Law for Blood Transfusion Laplace 2048 0.00014± 0.00005 480.637± 2.663

Poiseuille’s Law for Blood Transfusion Traditional Monte Carlo 4 0.05379± 0.01818 0.066± 0.019
Poiseuille’s Law for Blood Transfusion Traditional Monte Carlo 256 0.00699± 0.00245 0.089± 0.031
Poiseuille’s Law for Blood Transfusion Traditional Monte Carlo 1152 0.00313± 0.00112 0.212± 0.299
Poiseuille’s Law for Blood Transfusion Traditional Monte Carlo 4096 0.00183± 0.00052 0.345± 0.049
Poiseuille’s Law for Blood Transfusion Traditional Monte Carlo 8192 0.00118± 0.00038 0.676± 0.204
Poiseuille’s Law for Blood Transfusion Traditional Monte Carlo 32000 0.00067± 0.00025 2.744± 0.935
Poiseuille’s Law for Blood Transfusion Traditional Monte Carlo 128000 0.00033± 0.00009 8.914± 1.566
Poiseuille’s Law for Blood Transfusion Traditional Monte Carlo 256000 0.00023± 0.00008 15.303± 2.611
Poiseuille’s Law for Blood Transfusion Traditional Monte Carlo 512000 0.00017± 0.00004 27.690± 3.361
Poiseuille’s Law for Blood Transfusion Traditional Monte Carlo 640000 0.00015± 0.00005 33.853± 1.270

Table 3: Results show the mean Wasserstein distance, the run time and the factor increase in dynamic
instructions required, with their 1-standard deviation errors for the Poiseuille’s Law for Blood
Transfusion example. We have highlighted in bold the best overall configuration for Laplace and the
close-to-equivalent results Monte Carlo configurations. Traditional Monte Carlo takes approxiamately
51.53× more time than Laplace with r = 32. To have better accuracy than the Laplace result up
to 1-standard deviation and 2-standard deviations, Traditional Monte Carlo requires approximately
512,000 samples. This takes 160.06× more time than Laplace.

F.2 Comparing Histograms of Output Distributions436

Figure 4 shows histograms of output distributions for each of the applications. A key observation437

from these is that the outcome of Laplace, even with high representation sizes is slightly different438

from the ground truth distributions. We can note that the distribution produced by Laplace puts higher439

probability density at the mode, and less on the tails. This is contrasted by the histograms of the440

Monte Carlo method, where the output distribution eventually approaches the ground truth, as the441

number of samples is increased.442
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(a) Monte Carlo Conver-
gence Challenge applica-
tion. Laplace. Represen-
tation size: 32, Wasser-
stein Distance: 0.00166,
Run time: 19 µs.
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(b) Monte Carlo Conver-
gence Challenge applica-
tion. Laplace. Represen-
tation size: 256, Wasser-
stein Distance: 0.00068,
Run time: 75 µs.
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(c) Monte Carlo Con-
vergence Challenge
application. Traditional
Monte Carlo simulation.
Number of samples:
32,000, Wasserstein
Distance: 0.00119, Run
time: 2.07 ms.
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(d) Monte Carlo Con-
vergence Challenge
application. Traditional
Monte Carlo simulation.
Number of samples:
256,000, Wasserstein
Distance: 0.00045, Run
time: 15.61 ms.
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(e) Poiseuille’s Law
for Blood Transfusion.
Laplace. Representation
size: 32, Wasserstein
Distance: 0.000358, Run
time: 171 µs.
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(f) Poiseuille’s Law
for Blood Transfusion.
Laplace. Representation
size: 256, Wasserstein
Distance: 0.000086, Run
time: 5.76 ms.
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(g) Poiseuille’s Law for
Blood Transfusion. Tra-
ditional Monte Carlo sim-
ulation. Number of sam-
ples: 128,000, Wasser-
stein Distance: 0.000207,
Run time: 8.66ms.
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(h) Poiseuille’s Law for
Blood Transfusion. Tra-
ditional Monte Carlo sim-
ulation. Number of sam-
ples: 640,000, Wasser-
stein Distance: 0.000111,
Run time: 30.72 ms.

Figure 4: Histograms from example experiments on all applications, showing outputs of Laplace ((a),
(b), (e), and (f)) and the Monte Carlo method ((c), (d), (g), and (h)). For the Laplace plots, we have
taken 1,000,000 samples from Laplace’s internal distribution representation. We set the number of
histogram bins to 100 for all cases. The black outline shows a kernel density estimation of the ground
truth obtained by Monte Carlo simulations with 1,000,000 samples. The gray vertical lines show the
deterministic evaluation, where all uncertain input values and parameters are assumed to have taken
their mean value. We also show the minimum and maximum sample values that were for the ground
truth.

15


	Introduction
	The Monte Carlo Method
	The Monte Carlo Method: Sampling, Evaluation, and Post-Processing

	Physics-Based Programmable Non-Uniform Random Variate Generation
	Beyond the Monte Carlo Method
	Methods
	Applications

	Results
	Conclusions
	Mathematical Preliminaries
	Buffon's Needle
	Methods: Additional detail
	Measuring the run time
	Measuring the Wasserstein Distance
	Experimental setup

	Ensuring Meaningful Timing Results
	Applications: Additional Detail
	Monte Carlo Convergence Challenge Example

	Additional Results and Discussion
	Comparing Wasserstein Distance and Run Time
	Monte Carlo Convergence Challenge
	Poiseuille's Law for Blood Transfusion

	Comparing Histograms of Output Distributions


