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Abstract

We study the problem of nonepisodic reinforcement learning (RL) for nonlinear1

dynamical systems, where the system dynamics are unknown and the RL agent2

has to learn from a single trajectory, i.e., without resets. We propose Nonepisodic3

Optimistic RL (NEORL), an approach based on the principle of optimism in4

the face of uncertainty. NEORL uses well-calibrated probabilistic models and5

plans optimistically w.r.t. the epistemic uncertainty about the unknown dynamics.6

Under continuity and bounded energy assumptions on the system, we provide a7

first-of-its-kind regret bound of O(βT

√
TΓT ) for general nonlinear systems with8

Gaussian process dynamics. We compare NEORL to other baselines on several9

deep RL environments and empirically demonstrate that NEORL achieves the10

optimal average cost while incurring the least regret.11

1 Introduction12

In recent years, data-driven control approaches, such as reinforcement learning (RL), have demon-13

strated remarkable achievements. However, most RL algorithms are devised for an episodic setting,14

where during each episode, the agent interacts in the environment for a predetermined episode15

length or until a termination condition is met. After the episode, the agent is reset back to an initial16

state from where the next episode commences. Episodes prevent the system from blowing up, i.e.,17

maintain stability, while also restricting exploration to states that are relevant to the task at hand.18

Moreover, resets ensure that the agent explores close to the initial states and does not end up at19

undesirable parts of the state space that exhibit low reward. In simulation, resetting is typically20

straightforward. However, if we wish to enable agents to learn by interacting with the real world,21

resets are often prohibitive since they typically involve manual intervention. Instead, agents should22

be able to learn autonomously (Sharma et al., 2021) i.e., from a single trajectory. While several works23

in the Deep RL community have addressed this challenge, (c.f., Section 5), the theoretical results for24

this setting are fairly limited. In particular, the setting has been extensively studied for finite state and25

action spaces (Kearns & Singh, 2002; Brafman & Tennenholtz, 2002; Jaksch et al., 2010) and linear26

systems (Abbasi-Yadkori & Szepesvári, 2011; Simchowitz & Foster, 2020; Dean et al., 2020; Lale27

et al., 2020). However, the extension to nonlinear systems is much less understood. In our work, we28

address this gap and propose a practical RL algorithm that is grounded in theory. In particular, we29

make the following contributions.30

Contributions31

1. We propose, NEORL, a novel model-based RL algorithm based on the principle of optimism in32

the face of uncertainty. NEORL operates in a nonepisodic setting and picks average cost optimal33

policies optimistically w.r.t. to the model’s epistemic uncertainty.34

2. We show that when the dynamics lie in a reproducing kernel Hilbert space (RKHS) of kernel35

k, NEORL exhibits a regret of O(βT

√
TΓT ), where the regret, akin to prior work, is measured36

w.r.t to the optimal average cost under known dynamics, T is the number of environment steps37
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and ΓT the maximum information gain of kernel k (Srinivas et al., 2012). Our regret bound is38

similar to the ones obtained in the episodic setting (Kakade et al., 2020; Curi et al., 2020; Sukhija39

et al., 2024; Treven et al., 2024) and Gaussian process (GP) bandit optimization (Srinivas et al.,40

2012; Chowdhury & Gopalan, 2017; Scarlett et al., 2017). To the best of our knowledge, we are41

the first to obtain regret bounds for the setting.42

3. We evaluate NEORL on several RL benchmarks against common model-based RL baselines.43

Our experimental results demonstrate that NEORL consistently achieves sublinear regret, also44

when neural networks are employed instead of GPs for modeling dynamics. Moreover, in all45

our experiments, NEORL converges to the optimal average cost.46

2 Problem Setting47

We consider a discrete-time dynamical system with running costs c.48

xt+1 = f∗(xt,ut) +wt, (xt,ut) ∈ X × U , x(0) = x0 (1)
c(x,u) ∈ R≥0 (Running cost)

Here xt ∈ X ⊆ Rdx is the state, ut ∈ U ⊆ Rdu the control input, and wt ∈ W ⊆ Rw the process49

noise. The dynamics f∗ are unknown and the cost c is assumed to be known.50

Task In this work, we study the average cost RL problem (Puterman, 2014), i.e., we want to learn51

the solution to the following minimization problem52

A(π∗,x0) = min
π∈Π

A(π,x0) = min
π∈Π

lim sup
T→∞

1

T
Eπ

[
T−1∑
t=0

c(xt,ut)

]
. (2)

Moreover, we consider the nonepisodic RL setting where the system starts at an initial state x0 ∈ X53

but never resets back during learning, that is, we seek to learn from a single trajectory. After each step54

t in the environment, the RL system receives a transition tuple (xt,ut,xt+1) and updates its policy55

based on the data Dt collected thus far during learning. The average cost formulation is common56

for the nonepisodic setting (Jaksch et al., 2010; Abbasi-Yadkori & Szepesvári, 2011; Simchowitz &57

Foster, 2020), and the cumulative regret for the learning algorithm in this case is defined as58

RT =

T−1∑
t=0

Ext,ut|x0
[c(xt,ut)−A(π∗,x0)]. (3)

Studying the average cost criterion for general continuous state-action spaces is challenging even59

when the dynamics are known, since the average cost exists only for special classes of nonlinear60

systems (Arapostathis et al., 1993). In the following, we impose assumptions on the dynamics and61

policy class Π that enable our theoretical analysis.62

2.1 Assumptions63

Imposing continuity on f∗ is quite common in the control theory (Khalil, 2015) and reinforcement64

learning literature (Curi et al., 2020; Sussex et al., 2023; Sukhija et al., 2024). To this end, for our65

analysis, we make the following assumption.66

Assumption 2.1 (Continuity of f∗ and π). The dynamics model f∗ and all π ∈ Π are continuous.67

Next, we make an assumption on the system’s stochasticity.68

Assumption 2.2 (Process noise distribution). The process noise is i.i.d. Gaussian with variance69

σ2, i.e., wt
i.i.d∼ N (0, σ2I).70

For simplicity, we focus on the homoscedastic setting. However, the analysis can be extended for the71

more general heteroscedastic case. In the following, we make assumptions on our policy class. To72

this end, we first introduce the class of K∞ functions.73

Definition 2.3 (K∞-functions). The function ξ : R≥0 → R≥0 is of class K∞, if it is continuous,74

strictly increasing, ξ(0) = 0 and ξ(s)→∞ for s→∞.75

Assumption 2.4 (Policies with bounded energy). We assume there exists κ, ξ ∈ K∞, positive76

constants K,Cu, Cl with Cu > Cl, and γ ∈ (0, 1) such that for each π ∈ Π we have,77
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Bounded energy: There exists a Lyapunov function V π : X → [0,∞) for which78

|V π(x)− V π(x′)| ≤ κ(∥x− x′∥) (uniform continuity)
Clξ(∥x∥) ≤ V π(x) ≤ Cuξ(∥x∥) (positive definiteness)

Ex′|x,π[V
π(x′)] ≤ γV π(x) +K (drift condition)

Bounded norm of cost:79

sup
x∈X

c(x,π(x))

1 + V π(x)
<∞

Boundedness of the noise with respect to κ:80

Ew [κ(∥w∥)] <∞, Ew

[
κ2(∥w∥)

]
<∞

The bounded energy assumption is introduced to ensure that the system does not end up in states from81

which it cannot recover. In particular, the Lyapunov function V π can be viewed as an energy function82

for the dynamical system, and the drift condition above ensures that in expectation the energy at83

the next state x′ is not increasing to∞, that is, the system is not “blowing up”. Other works that84

study learning nonlinear dynamics (Foster et al., 2020; Sattar & Oymak, 2022; Lale et al., 2021)85

in the nonepisodic setting also make stability assumptions such as global exponential stability for86

their analysis. In similar spirit, we make the bounded energy assumption for our policy class. The87

drift condition on the Lyapunov function is also used to study the ergodicity of Markov chains for88

continuous state spaces (Meyn & Tweedie, 2012; Hairer & Mattingly, 2011), which is crucial for our89

analysis of the infinite horizon behavior of the system. Moreover, for a very rich class of problems,90

the drift condition is satisfied. We highlight this in the corollary below.91

Corollary 2.5. Assume f∗ is uniformly continuous and for all π ∈ Π, x ∈ X , ∥π(x)∥ ≤ umax.92

Further assume, there exists πs ∈ Π such that we have constants K,Cu, Cl with Cu > Cl, γ ∈ (0, 1),93

κ, α ∈ K∞ and a Lyapunov function V : X → [0,∞) for which94

|V (x)− V (x′)| ≤ κ(∥x− x′∥)
Clξ(∥x∥) ≤ V (x) ≤ Cuξ(∥x∥)

Ex′|x,πs
[V (x′)] ≤ γV (x) +K.

Then, V also satisfies the drift condition for all π ∈ Π, i.e., is a Lyapunov function for all policies.95

We prove this corollary in Appendix A. Intuitively, if the inputs are bounded, the energy inserted into96

the system by another policy is also bounded. Nearly all real-world systems have bounded inputs due97

to the physical limitations of actuators. For these systems, it suffices if only one policy in Π satisfies98

the drift condition. In Appendix A.4, we discuss an alternative set of assumptions on the costs, that99

relaxes the bounded energy requirement on the policy class Π.100

The boundedness assumptions for the cost and the noise in Assumption 2.4 are satisfied for a rich101

class of cost and K∞ functions.102

Under these assumptions, we can show the existence of the average cost solution.103

Theorem 2.6 (Existence of Average Cost Solution). Let Assumption 2.1 – 2.4 hold. Consider any104

π ∈ Π and let Pπ denote its transition kernel, i.e., Pπ(x,A) = P(x′ ∈ A|x,π(x)). Then Pπ105

admits a unique invariant measure P̄π and there exists C2, C3 ∈ (0,∞), λ ∈ (0, 1) such that106

Average Cost;107

A(π) = lim
T→∞

1

T
Eπ

[
T−1∑
t=0

c(xt,ut)

]
= Ex∼P̄π [c(x,π(x))]

Bias Cost; Letting B(π,x0) = limT→∞ Eπ

[∑T−1
t=0 c(xt,ut)−A(π)

]
denote the bias, we have108

|B(π,x0)| =
∣∣∣∣∣ limT→∞

Eπ

[
T−1∑
t=0

c(xt,ut)−A(π)

]∣∣∣∣∣ ≤ C2(1 + V π(x0))
1

1− λ

for all x0 ∈ X .109
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Theorem 2.6 is a crucial result for our analysis since it implies that the average cost is bounded and110

independent of the initial state x0. Furthermore, it also shows that the bias is bounded. Similar to the111

discounted case, the average cost criterion satisfies the following Bellman equation (Puterman, 2014)112

B(π,x) +A(π) = c(x,π(x)) + Ex′ [B(π,x′)|x,π] (4)

Accordingly, the bias term plays an important role in the regret analysis (also notice its similarity to113

our regret term in Equation (3)).114

Thus far, we have only made assumptions that make the average cost problem tractable. In the115

following, we make an assumption on the dynamics that allow us to learn it from data. We start with116

the definition of a well-calibrated statistical model of f∗.117

Definition 2.7 (Well-calibrated statistical model of f∗, Rothfuss et al. (2023)). Let Z def
= X × U . An118

all-time well-calibrated statistical model of the function f∗ is a sequence {Mn(δ)}n≥0, where119

Mn(δ)
def
=
{
f : Z → Rdx | ∀z ∈ Z,∀j ∈ 1, . . . , dx : |µn,j(z)− fj(z)| ≤ βn(δ)σn,j(z)

}
,

if, with probability at least 1 − δ, we have f∗ ∈ ⋂n≥0Mn(δ). Here, µn,j and σn,j denote the120

j-th element in the vector-valued mean and standard deviation functions µn and σn respectively,121

and βn(δ) ∈ R≥0 is a scalar function that depends on the confidence level δ ∈ (0, 1] and which is122

monotonically increasing in n.123

Next, we assume that f∗ resides in a Reproducing Kernel Hilbert Space (RKHS) of vector-valued124

functions and show that this is sufficient for us to obtain a well-calibrated model.125

Assumption 2.8. We assume that the functions f∗
j , j ∈ 1, . . . , dx lie in a RKHS with kernel k126

and have a bounded norm B, that is f∗ ∈ Hdx

k,B , with Hdx

k,B = {f | ∥fj∥k ≤ B, j = 1, . . . , dx}.127

Moreover, we assume that k(x,x) ≤ σmax for all x ∈ X .128

The mean and epistemic uncertainty of the vector-valued function f∗ are denoted with µn(z) =129

[µn,j(z)]j≤dx , and σn(z) = [σn,j(z)]j≤dx and have an analytical solution130

µn,j(z) = µ̄j(z) + k⊤
n (z)(Kn + σ2I)−1(yj

1:n − µ̄j
1:n),

σ2
n,j(z) = k(x,x)− k⊤

n (z)(Kn + σ2I)−1kn(x),
(5)

Here, yj
1:n corresponds to the noisy measurements of f∗

j , i.e., the observed next state from the131

transitions dataset D1:n, µ̄j(z) corresponds to the fixed mean function, e.g., µ̄j(z) = x, µ̄j
1:n its132

values on the dataset, kn = [k(z, zi)]i≤nT , zi ∈ D1:n, and Kn = [k(zi, zl)]i,l≤nT , zi, zl ∈ D1:n133

is the data kernel matrix. The restriction on the kernel k(x,x) ≤ σmax has also appeared in works134

studying the episodic setting for nonlinear systems (Mania et al., 2020; Kakade et al., 2020; Curi135

et al., 2020; Sukhija et al., 2024; Wagenmaker et al., 2023).136

Lemma 2.9 (Well calibrated confidence intervals for RKHS, Rothfuss et al. (2023)). Let f∗ ∈ Hdx

k,B .137

Suppose µn and σn are the posterior mean and variance of a GP with kernel k, c.f., Equation (5).138

There exists βn(δ), for which the tuple (µn,σn, βn(δ)) is a well-calibrated statistical model of f∗.139

In summary, in the RKHS setting, a GP is a well-calibrated model. For more general models like140

BNNs, methods such as Kuleshov et al. (2018) can be used for calibration. Our results can also be141

extended beyond the RKHS setting to other classes of well-calibrated models similar to Curi et al.142

(2020).143

3 NEORL144

In the following, we present our algorithm: Nonepisodic Optimistic RL (NEORL) for efficient145

nonepisodic exploration in continuous state-action spaces. NEORL builds on recent advances in146

episodic RL (Kakade et al., 2020; Curi et al., 2020; Sukhija et al., 2024; Treven et al., 2024) and147

leverages the optimism in the face of uncertainty paradigm to pick policies that are optimistic w.r.t. the148

dynamics within our calibrated statistical model. Moreover, NEORL suggests policies according to149

the following decision rule150

(πn,fn)
def
= argmin

π∈Π, f∈Mn−1∩M0

A(π,f). (6)
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Algorithm 1 NEORL: NONEPISODIC OPTIMISTIC RL

Init: Aleatoric uncertainty σ, Probability δ, Statistical model (µ0,σ0, β0(δ)), H0

for n = 1, . . . , N do
πn = argmin

π∈Π
min

f∈Mn−1∩M0

A(π,f) ➤ Prepare policy

Hn = 2Hn−1 ➤ Set horizon
Dn ← ROLLOUT(πn) ➤ Collect measurements for horizon Hn

Update (µn,σn, βn)← Dn ➤ Update model

end for

Here, fn is a dynamical system such that the cost by controlling fn with its optimal policy πn is151

the lowest among all the plausible systems fromMn−1 ∩M0. Note, from Lemma 2.9 we have152

that f∗ ∈Mn−1 ∩M0 (with high probability) and therefore the solution to Equation (6) gives an153

optimistic estimate for the average cost.154

NEORL proceeds in the following manner. Similar to Jaksch et al. (2010), we bin the total time T155

the agent spends interacting in the environment into N “artificial” episodes. At each episode, we156

pick a policy according to Equation (6) and roll it out for Hn steps on the system. Next, we use157

the data collected during the rollout to update our statistical model. Finally, we double the horizon158

Hn+1 = 2Hn, akin to Simchowitz & Foster (2020), and continue to the next episode without resetting159

the system back to the initial state x0. The algorithm is summarized in Algorithm 1.160

3.1 Theoretical Results161

In the following, we study the theoretical properties for NEORL and provide a first-of-its-kind bound162

on the cumulative regret for the average cost criterion for general nonlinear dynamical systems. Our163

bound depends on the maximum information gain of kernel k (Srinivas et al., 2012), defined as164

ΓT (k) = max
A⊂X×U ;|A|≤T

1

2
log
∣∣I + σ−2KT

∣∣ .
ΓT represents the complexity of learning f∗ and is sublinear for a very rich class of kernels (Vakili165

et al., 2021). In Appendix A, we report the dependence of ΓT on T in Table 1.166

Theorem 3.1 (Cumulative Regret of NEORL). Let Assumption 2.1 – 2.8 hold, and define H0 as the167

smallest integer such that168

H0 >
log (Cu/Cl)

log (1/γ)
.

Then with probability at least 1− δ, we have the following regret for NEORL169

RT ≤ D4(x0,K, γ)βT

√
TΓT +D5(x0,K, γ) log2

(
T

H0
+ 1

)
. (7)

with D4(x0,K, γ), D5(x0,K, γ) ∈ (0,∞) when ∥x0∥ <∞, K <∞, and γ < 1.170

Theorem 3.1 gives sublinear regret for a rich class of RKHS functions. Moreover, it also gives a171

minimal horizon H0 that we need to maintain before switching to the next policy. Even for the172

linear case, fast switching between stable controllers can destabilize the closed-loop system. We173

ensure this does not happen in our case by having a minimal horizon of H0. Lastly, the regret174

bound depends on constants D4 and D5. The constants are finite when γ < 1, K < ∞ (bounded175

energy from Assumption 2.4 is satisfied), and ∥x0∥ <∞. Theorem 3.1 can also be derived beyond176

the RKHS setting for a more general class of well-calibrated models. In this case, the maximum177

information gain is replaced by the model complexity from Curi et al. (2020) (c.f., Curi et al. (2020);178

Sukhija et al. (2024); Treven et al. (2024) for further detail).179

3.2 Practical Modifications180

For testing NEORL, we make three modifications that simplify its deployment in practice in terms181

of implementation and computation time. First, instead of doubling the horizon Hn we pick a fixed182

horizon H during the experiment. This makes the planning and training of the agent easier. Next,183
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Algorithm 2 Practical NEORL:
Init: Aleatoric uncertainty σ, Probability δ, Statistical model (µ0,σ0, β0(δ))
for n = 1, . . . , N do

for h = 1, . . . ,H do

min
u0:HMPC−1,η0;HMPC−1

E

[
HMPC−1∑
h=0

c(x̂h,uh)

]
;x0 = xn

h ➤ Solve MPC problem

(xh
n,u

∗
0,x

h+1
n )← ROLLOUT(u∗

0) ➤ Collect transition

end for
Update (µn,σn, βn)← Dn

end for

we use a receding horizon controller, i.e., model predictive control (MPC) (García et al., 1989),184

instead of directly optimizing for the average cost in Equation (6). MPC is widely used to obtain a185

feedback controller for the infinite horizon setting. Moreover, while for linear systems, the Riccati186

equations (Anderson & Moore, 2007) provide an analytical solution to Equation (2), no such solution187

exists for the nonlinear case and MPC is commonly used as an approximation. Further, under188

additional assumptions on the cost and dynamics, MPC also obtains a policy with bounded average189

cost, which is crucial for the nonepisodic case (c.f., Assumption 2.4). We use the iCEM optimizer for190

planning (Pinneri et al., 2021). Finally, instead of optimizing overMn ∩M0, we optimize directly191

overMn. This allows us to use the reparameterization trick from Curi et al. (2020) and obtain a192

simple and tractable optimization problem. In summary, for each step t in the environment, we solve193

the following optimization problem194

min
u0:HMPC−1,η0;HMPC−1

E

[
HMPC−1∑
h=0

c(x̂h,uh)

]
, (8)

s.t. x̂h+1 = µn−1(x̂h,uh) + βn−1(δ)σn−1(x̂h,uh)ηh +wh and x̂0 = xt.

Here HMPC is the MPC horizon. We take the first input from the solution of the problem above,195

i.e., u∗
0, and execute this in the system. We then repeat this procedure for H steps and then update196

our statistical modelMn. The resulting optimization above considers a larger action space as it197

includes the hallucinated controls η (Curi et al., 2020) as additional input variables. Moreover, the198

final algorithm can be seen as a natural extension to H-UCRL (Curi et al., 2020) for the nonepisodic199

setting. We summarize the algorithm in Algorithm 2. Note while these modifications deviate from200

our theoretical analysis, empirically they work well for GP and BNN models, c.f., Section 4.201

4 Experiments202

We evaluate NEORL on the Pendulum-v1 and MountainCar environment from the OpenAI gym203

benchmark suite (Brockman et al., 2016), Cartpole, Reacher, and Swimmer from the DeepMind204

control suite (Tassa et al., 2018), the racecar simulator from Kabzan et al. (2020), and a soft robotic205

arm from Tekinalp et al. (2024). The swimmer and the soft robotic arm are fairly high-dimensional206

systems – the swimmer has a 28-dimensional state and 5-dimensional action space, and the soft arm207

is represented by a 58-dimensional state and has a 12-dimensional action space. All environments208

are never reset during learning. Moreover, the Pendulum-v1, MountainCar, CartPole, and Reacher209

environments operate within a bounded domain and thus inherently satisfy Assumption 2.4. The210

swimmer, racecar, and soft arm can operate in an unbounded domain but have a cost function that211

penalizes the distance between the system’s state xt and a target state x∗. Therefore, the cost212

encourages the system to move towards the target and remain within a bounded domain, as elaborated213

on further in Appendix A.4.214

Baselines In this work, we focus on model-based RL (MBRL) algorithms due to their sample215

efficiency. To this end, we consider common techniques for planning with unknown dynamics, such216

as planning with the mean, trajectory sampling (Chua et al., 2018), and Thompson sampling (Osband217

& Van Roy, 2017). We adapt these three for our setting similar to as discussed in Section 3.2. For218

all experiments with probabilistic ensembles, we consider TS1 from Chua et al. (2018) for trajectory219

sampling, and for the GP experiment, we use distribution sampling from Chua et al. (2018). We220
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Figure 1: Average reward A(π) and cumulative regret RT over ten different seeds for all environ-
ments. We report the mean performance with one standard error as shaded regions. During all
experiments, the environment is never reset. For all baselines, we model the dynamics with proba-
bilistic ensembles, except in the Pendulum-GP experiment, where GPs are used instead. NEORL
significantly outperforms all baselines and converges to the optimal average reward, A(π∗) = 0,
showing sublinear cumulative regret RT for all environments.

call the three baselines NEMEAN (nonepisodic mean), NEPETS (nonepisodic PETS), and NETS221

(nonepisodic Thompson sampling). NEMEAN and NEPETS are greedy w.r.t. the current estimate222

of the dynamics, i.e., do not explicitly encourage exploration. In our experiments, we show that223

being greedy does not suffice to converge to the optimal average cost, that is, obtain sublinear regret.224

Convergence to the optimal average cost In Figure 1 we report the normalized average cost225

and cumulative regret of NEORL, NEMEAN, NEPETS, and NETS. The normalized average cost226

is defined such that A(π∗) = 0 for all environments. We observe that NEMEAN fails to converge227

to the optimal average cost for the Pendulum-v1 environment for both probabilistic ensembles and228

a GP model. It also fails to solve the MountainCar environment and is unstable for the Reacher229

and CartPole. In general, NEMEAN performs the worst among all methods. This is similar to the230

episodic case, where using the mean model often leads to the policy “overfitting” to the model231

inaccuracies (Chua et al., 2018). NEPETS performs better than the mean, however still significantly232

worse than NEORL. Even in the episodic setting, PETS tends to underexplore (Curi et al., 2020). We233

observe the same for the nonepisodic case, especially for the MountainCar task, which is a challenging234

RL environment with a sparse cost. Here NEPETS is also not able to achieve the optimal average235

cost and thus does not have sublinear cumulative regret. NETS performs similarly to NEPETS and is236

also not able to solve the MountainCar task.237

NEORL performs the best among the baselines and converges to the optimal average cost achieving238

sublinear cumulative regret using only ∼ 103 environment interactions. Moreover, this observation is239

consistent between different dynamics models (GPs and probabilistic ensembles) and environments.240
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Even in environments that are unbounded, i.e., Swimmer, SoftArm, and RaceCar, we observe that241

NEORL converges to the optimal average cost the fastest. We believe this is due to the MPC, which242

encourages the system to move closer to the target.243

5 Related Work244

Average cost RL for finite state-action spaces A significant amount of work studies the average245

cost/reward RL setting for finite-state action spaces. Moreover, seminal algorithms such as E3 (Kearns246

& Singh, 2002) and R-max (Brafman & Tennenholtz, 2002) have established PAC bounds for247

the nonepisodic setting. These bounds are further improved for communicating MDPs by the248

UCRL2 (Jaksch et al., 2010) algorithm, which, similar to NEORL, is based on the optimism in the249

face of uncertainty paradigm and picks policies that are optimistic w.r.t. to the estimated dynamics.250

Their result is extended for weakly-communicating MDPs by REGAL (Bartlett & Tewari, 2012),251

similar results are derived for Thompson sampling based exploration (Ouyang et al., 2017), and252

for factored-MDP (Xu & Tewari, 2020). Albeit the significant amount of work for the finite case,253

progress for continuous state-action spaces has mostly been limited to linear dynamical systems.254

Nonepisodic RL for linear systems There is a large body of work for nonepisodic learning with255

linear systems (Abbasi-Yadkori & Szepesvári, 2011; Cohen et al., 2019; Simchowitz & Foster,256

2020; Dean et al., 2020; Lale et al., 2020; Faradonbeh et al., 2020; Abeille & Lazaric, 2020; Treven257

et al., 2021). For linear systems with quadratic costs, the average reward problem, also known as258

the linear quadratic-Gaussian (LQG), has a closed-form solution which is obtained via the Riccati259

equations (Anderson & Moore, 2007). Moreover, for LQG, stability and optimality are intertwined,260

making studying linear systems much easier than their nonlinear counterpart. For studying nonlinear261

systems, additional assumptions on their stability are usually made.262

Nonepisodic RL beyond linear systems In the case of nonlinear systems, guarantees have mostly263

been established for the episodic setting (Mania et al., 2020; Kakade et al., 2020; Curi et al., 2020;264

Wagenmaker et al., 2023; Sukhija et al., 2024; Treven et al., 2024). Only a few works consider the265

nonepisodic/single-trajectory case. For instance, Foster et al. (2020); Sattar & Oymak (2022) study the266

problem of system identification of a closed-loop globally exponentially stable dynamical system from267

a single trajectory. Lale et al. (2021) study the nonepisodic setting for nonlinear systems with MPC.268

Moreover, they consider finite-order or exponentially fading NARX systems that lie in the RKHS269

of infinitely smooth functions, which they further approximate with random Fourier features (Rahimi270

& Recht, 2007) ϕ with feature size D. Further, they assume access to bounded persistently exciting271

inputs w.r.t. the feature matrix ΦtΦ
⊺
t . This assumption is generally tough to verify and common exci-272

tation strategies such as random exploration often don’t perform well for nonlinear systems (Sukhija273

et al., 2024). Further, the algorithm acts greedily w.r.t. the estimated dynamics, akin to NEMEAN,274

and requires the feature size D to increase with the horizon T . They give a regret bound of O
(
T

2/3
)

275

where the regret is measured w.r.t. to the oracle MPC with access to the true dynamics. Lale et al.276

(2021) also assume exponential input-to-output stability of the system to avoid blow-up during explo-277

ration. Our work considers more general RKHS, does not require apriori knowledge of persistently278

exciting inputs, and gives a regret bound of O(βT

√
TΓT ) w.r.t. the optimal average cost criterion.279

Moreover, our regret bound is similar to the ones obtained for nonlinear systems in the episodic case280

and Gaussian process bandits (Srinivas et al., 2012; Chowdhury & Gopalan, 2017; Scarlett et al.,281

2017). To the best of our knowledge, we are the first to give such a regret bound for nonlinear systems.282

6 Conclusion283

We propose, NEORL, a novel model-based RL algorithm for the nonepisodic setting with nonlinear284

dynamics and continuous state and action spaces. NEORL seeks for average-cost optimal policies285

and leverages the model’s epistemic uncertainty to perform optimistic exploration. Similar to the286

episodic case (Kakade et al., 2020; Curi et al., 2020), we provide a regret bound for NEORL of287

O(βT

√
TΓT ) for Gaussian process dynamics. To our knowledge, we are the first to obtain this result288

in the nonepisodic setting. We compare NEORL to other model-based RL methods on standard289

deep RL benchmarks. Our experiments demonstrate that NEORL, converges to the optimal average290

cost of A(π∗) = 0 across all environments, suffering sublinear regret even when Bayesian neural291

networks are used to model the dynamics. Moreover, NEORL outperforms all our baselines across292

all environments requiring only ∼ 103 samples for learning.293
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Appendices385

A Proofs386

In this section, we prove Theorem 2.6 and Theorem 3.1. First, we start with the proof of Corollary 2.5.387

Proof of Corollary 2.5. We first analyze the following term Ew[V (f∗(x,π(x)) + w) −388

V (f∗(x,πs(x)) +w)] for any π ∈ Π.389

Ew[V (f∗(x,π(x)) +w)− V (f∗(x,πs(x)) +w)]

≤ Ew[κ(∥f∗(x,π(x)) +w − (f∗(x,πs(x)) +w)∥)] (Uniform continuity of V )
= κ(∥f∗(x,π(x))− f∗(x,πs(x))∥)
≤ κ(κf∗(∥π(x)− πs(x)∥)) (Uniform continuity of f∗)
≤ κ(κf∗(2umax)). (Bounded inputs)

Therefore,390

Ex′|π,x[V (x′)] = Ew[V (f∗(x,π(x)) +w)]

≤ Ew[V (f∗(x,πs(x)) +w)] + κ(κf∗(2umax))

= Ex′|πs,x[V (x′)] + κ(κf∗(2umax))

≤ γV (x) +K + κ(κf∗(2umax))

= γV (x) + K̃ (K̃ = K + κ(κf∗(2umax)))

Hence, V satisfies the drift condition for π. Furthermore, since V also satisfies positive definiteness391

by assumption, the bounded energy condition holds for all π ∈ Π.392

A.1 Proof of Theorem 2.6393

For proving Theorem 2.6, we invoke the results from (Hairer & Mattingly, 2011, Theorem 1.2 – 1.3).394

For this we require that the Markov chain induced by a policy π satisfies the drift condition. In our395

setting, this corresponds to Assumption 2.4. Next, we show that the chain satisfies the following396

minorisation condition.397

Lemma A.1 (Minorisation condition). Consider the system in Equation (1) and let Assump-398

tion 2.1 – 2.4 hold. Let Pπ denote the transition kernel for the policy π ∈ Π, i.e., Pπ(x,A) =399

P(x′ ∈ A|x,π(x)) . Then, for all π ∈ Π, exists a constant α ∈ (0, 1) and a probability measure400

ζ(·) s.t.,401

inf
x∈C

Pπ(x, ·) ≥ αζ(·) (9)

with C def
= {x ∈ X ;V π(x) ≤ R} for some R > 2K/1−γ402

Proof. We prove it in 3 steps. First, we show that C is contained in a compact domain. From the403

Assumption 2.4 we pick the function ξ ∈ K∞. Since Clξ(0) = 0, lims→∞ ξ(s) = +∞ and Clξ is404

continuous, there exists M such that Clξ(M) = R. Then for ∥x∥ > M we have:405

V π(x) ≥ Clξ(∥x∥) > ξ(M) = R.

Therefore we have: C ⊆ B(0,M)
def
= {x | ∥x− 0∥ ≤ M}. In the second step we show that406

f(C,π(C)) is bounded, in particular we show that there exists B > 0 such that: f(C,π(C)) ⊆407

B(0, B). This is true since continuous image of compact set is compact and the observation:408

C ⊆ B(0,M) =⇒ f(C,π(C)) ⊆ f(B(0,M),π(B(0,M))).

Since f(B(0,M),π(B(0,M))) is compact there exists B such that f(C,π(C)) ⊆ B(0, B). In409

the last step we prove that α def
= 2−dxe−B2/σ2

and ζ with law of N
(
0, σ2

2

)
satisfy condition of410

Lemma A.1. It is enough to show that ∀µ ∈ B(0, B),∀x ∈ Rdx we have:411

α
1

(2π)
dx
2

(
σ2

2

) dx
2

e−
∥x∥2

σ2 ≤ 1

(2π)
dx
2 (σ2)

dx
2

e−
∥x−µ∥2

2σ2

which can be proven with simple algebraic manipulations.412

11



Through the minorisation condition and Assumption 2.4, we can prove the ergodicity of the closed-413

loop system for a given policy π ∈ Π.414

Theorem A.2 (Ergodicity of closed-loop system). Let Assumption 2.1 – 2.4, consider any probability415

measures ζ1, ζ2, and θ > 0, define Pπζ, ∥φ∥1+θV π , ρπθ as416

(Pπζ) (A) =
∫
X
Pπ(x,A)ζ(dx)

∥φ∥1+θV π = sup
x∈X

|φ(x)|
1 + θV π(x)

ρπθ (ζ1, ζ2) = sup
φ:∥φ∥1+θV π≤1

∫
X
φ(x)(ζ1 − ζ2)(dx) =

∫
X
(1 + θV π(x))|ζ1 − ζ2|(dx).

We have for all π ∈ Π, that Pπ admits a unique invariant measure P̄π. Furthermore, there exist417

constants C1 > 0, θ > 0, λ ∈ (0, 1) such that418

ρπθ (P
πζ1, P

πζ2) ≤ λρπθ (ζ1, ζ2) (1)∥∥Ex∼(Pπ)t [φ(x)]− Ex∼P̄π [φ(x)]
∥∥
1+V π ≤ C1λ

t ∥φ− Ex∼P̄π [φ(x)]∥1+V π . (2)

holds for every measurable function φ : X → R with ∥φ∥1+V π < ∞. Here (Pπ)t denotes the419

t-step transition kernel under the policy π.420

Moreover, θ = α0/K, and421

λ = max

{
1− (α− α0),

2 + R/Kα0γ0
2 + R/Kα0

}
(10)

for any α0 ∈ (0, α) and γ0 ∈ (γ + 2K/R, 1).422

Proof. From Assumption 2.4, we have a value function for each policy that satisfies the drift condition.423

Furthermore, in Lemma A.1 we show that our system also satisfies the minorisation condition for all424

policies. Under these conditions, we can use the results from Hairer & Mattingly (2011, Theorem 1.2.425

– 1.3.).426

Note that ∥·∥1+θV π represents a family of equivalent norms for any θ > 0. Now we prove Theo-427

rem 2.6.428

Proof of Theorem 2.6. From Theorem A.2, we have429

ρπθ ((P
π)t+1, (Pπ)t) = ρπθ (P

π(Pπ)t, Pπ(Pπ)t−1) ≤ λtρπθ (P
πδx0 , δx0),

where δx0
is the dirac measure. Therefore, (Pπ)t is a Cauchy sequence. Furthermore, ρπθ is complete430

for the set of probability measures integrating V, thus ρπθ ((P
π)t, P̄π)→ 0 for t→∞ (c.f., Hairer &431

Mattingly (2011) for more details). In particular, we have for φ such that ∥φ∥1+θV π ≤ 1,432

lim
t→∞

∫
X
φ(x)(Pπ)t(dx) =

∫
X
φ(x)P̄π(dx).

Note that since all ∥·∥1+θV π norms are equivalent for θ > 0, if ∥c∥1+V π ≤ C (Assumption 2.4),433

then ∥c∥1+θV π ≤ C ′ for some C ′ ∈ (0,∞). Furthermore, note that c(·) ≥ 0. Therefore,434 ∫
X
c(x)P̄π(dx) = lim

t→∞

∫
X
c(x)(Pπ)t(dx)

≤ C lim
t→∞

∫
X
(1 + V π(x))(Pπ)t(dx)

= C + C lim
t→∞

Ex∼(Pπ)t [V
π(x)]

= C + C lim
t→∞

Ex∼(Pπ)t−1 [Ex′∼(Pπ)[V
π(x′)|x]]

≤ C + C
(
lim
t→∞

γEx∼(Pπ)t−1 [V π(x)] +K
)

(Assumption 2.4)
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≤ C + C lim
t→∞

γtV π(x0) +K
1− γt

1− γ

= C

(
1 +K

1

1− γ

)
In summary, we have Ex∼P̄π [c(x)] ≤ C

(
1 +K 1

1−γ

)
435

Consider any t > 0, and note that from Theorem A.2 we have436 ∥∥Ex∼(Pπ)t [c(x)]− Ex∼P̄π [c(x)]
∥∥
1+V π = sup

x0∈X

|Ex∼(Pπ)t [c(x)]− Ex∼P̄π [c(x)] |
1 + V π(x0)

≤ C1λ
t ∥c− Ex∼P̄π [c(x)]∥1+V π (Theorem A.2)

≤ C1λ
t ∥c∥1+V π + C1λ

tEx∼P̄π [c(x)]

= C2λ
t,

where C2 = C1(∥c∥1+V π + CK 1
1−γ ).437

Moreover, since the inequality holds for all x0, we have438

|Ex∼(Pπ)t [c(x)]− Ex∼P̄π [c(x)] |
1 + V π(x0)

≤ C2λ
t.

In summary,439

|Ex∼(Pπ)t [c(x)]− Ex∼P̄π [c(x)] | ≤ C2(1 + V π(x0))λ
t.

Consider any T ≥ 0, and define with c̄ = Ex∼P̄π [c(x,π(x))].440

Eπ

[
T−1∑
t=0

c(xt,ut)− c̄

]
=

T−1∑
t=0

E(Pπ)t [c(xt,ut)]− c̄

≤
T−1∑
t=0

∣∣E(Pπ)t [c(xt,ut)]− c̄
∣∣

≤ C2(1 + V π(x0))

T−1∑
t=0

λt

= C2(1 + V π(x0))
1− λT

1− λ

Hence, we have441

lim
T→∞

∣∣∣∣∣Eπ

[
T−1∑
t=0

c(xt,ut)− c̄

]∣∣∣∣∣ ≤ C2(1 + V π(x0))
1

1− λ
,

and for any x0 in a compact subset of X442

lim
T→∞

1

T
Eπ

[
T−1∑
t=0

c(xt,ut)− c̄

]
= 0.

Moreover,443

|B(π,x0)| ≤ C2(1 + V π(x0))
1

1− λ
.

444

Another interesting, inequality that follows from the proof above is the difference in bias inequality.445

|Ex0∼ζ1 [B(π,x0)]− Ex0∼ζ2 [B(π,x0)]| ≤
C3

1− λ

∫
X
(1 + V π(x)) |ζ1 − ζ2| (dx)
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for all probability measures ζ1, ζ2. To show this holds, define C ′ = maxπ∈Π ∥c(x,π(x))∥1+θV π .446

Furthermore, note that C ′ <∞ from Assumption 2.4 and ∥c(x,π(x))/C′∥1+θV π ≤ 1.447 ∣∣Ex∼(Pπ)tζ1c(x,π(x))− Ex∼(Pπ)tζ2c(x,π(x))
∣∣ = ∣∣∣∣∫

X
c(x,π(x))((Pπ)tζ1 − (Pπ)tζ2)(dx)

∣∣∣∣
= C ′

∣∣∣∣∫
X

1

C ′ c(x,π(x))((P
π)tζ1 − (Pπ)tζ2)(dx)

∣∣∣∣
≤ C ′ sup

φ:∥φ∥1+θV π≤1

∫
X
φ(x)((Pπ)tζ1 − (Pπ)tζ2)(dx) = C ′ρπθ ((P

π)tζ1, (P
π)tζ2)

≤ C ′λρπθ ((P
π)t−1ζ1, (P

π)t−1ζ2) (Theorem A.2)

≤ C ′λtρπθ (ζ1, ζ2).

Also, note that there exists Cθ ∈ (0,∞) such that Cθ ∥φ∥1+θV π ≥ ∥φ∥1+V π due to the equivalence448

of the two norms.449

ρπθ (ζ1, ζ2) = sup
φ:∥φ∥1+θV π≤1

∫
X
φ(x)(ζ1 − ζ2)(dx)

≤ sup
φ:∥φ∥1+V π≤Cθ

∫
X
φ(x)(ζ1 − ζ2)(dx)

= Cθ sup
φ:∥φ∥1+V π≤1

∫
X
φ(x)(ζ1 − ζ2)(dx)

= Cθρ
π
1 (ζ1, ζ2)

Therefore, for the bias we have450

|Ex0∼ζ1 [B(π,x0)]− Ex0∼ζ2 [B(π,x0)]|

≤ lim
T→∞

T−1∑
t=0

∣∣Ex∼(Pπ)tζ1c(x,π(x))− Ex∼(Pπ)tζ2c(x,π(x))
∣∣

≤ C ′ρπθ (ζ1, ζ2) lim
T→∞

T−1∑
t=0

λt =
C ′

1− λ
ρπθ (ζ1, ζ2)

≤ C ′Cθ

1− λ
ρπ1 (ζ1, ζ2) =

C ′Cθ

1− λ

∫
X
(1 + V π(x)) |ζ1 − ζ2| (dx)

Set C3 = C ′Cθ.451

A.2 Proof of bounded average cost for the optimistic system452

In this section, we show that the results from Theorem 2.6 also transfer over to the optimistic453

dynamics.454

Theorem A.3 (Existence of Average Cost Solution for the Optimistic System). Let Assumption 2.1 –455

2.8 hold. Consider any n > 0 and let πn,fn denote the solution to Equation (6), Pπ,fn its transition456

kernel. Then Pπ,fn admits a unique invariant measure P̄πn,fn and there exists C2, C3 ∈ (0,∞),457

λ̂ ∈ (0, 1) such that458

Average Cost;459

A(πn,fn) = lim
T→∞

1

T
Eπn,fn

[
T−1∑
t=0

c(xt,ut)

]
= Ex∼P̄πn,fn [c(x,πn(x))]

Bias Cost;460

|B(πn,fn,x0)| =
∣∣∣∣∣ limT→∞

Eπn,fn

[
T−1∑
t=0

c(xt,ut)−A(πn,fn)

]∣∣∣∣∣ ≤ C2(1 + V πn(x0))
1

1− λ̂

for all x0 ∈ X .461
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Difference in Bias;462

|Ex0∼ζ1 [B(πn,fn,x0)]− Ex0∼ζ2 [B(πn,fn,x0)]| ≤
C3

1− λ̂

∫
X
(1 + V π(x)) |ζ1 − ζ2| (dx)

for all probability measures ζ1, ζ2.463

Theorem A.3 shows that the optimistic dynamics fn retain the boundedness property from the464

true dynamics f∗ and give a well-defined solution w.r.t. average cost and the bias cost. To prove465

Theorem A.3 we show that the optimistic system also satisfies the drift and minorisation condition.466

Then we can invoke the result from Hairer & Mattingly (2011) similar to the proof of Theorem 2.6.467

Lemma A.4 (Stability of optimistic system). Let Assumption 2.1 – 2.8 hold, then we have with468

probability at least 1− δ for all n ≥ 0, π ∈ Π, f ∈Mn ∩M0, that there exists a constant K̂ > 0;469

Ex′|x,f ,π[V
π(x′)] ≤ γV π(x) + K̂.

470

Proof. Note, that V π is uniformly continuous w.r.t. κ471

|V π(x)− V π(x′)| ≤ κ(∥x− x′∥).

Furthermore, since f ∈ Mn ∩M0 and therefore f ∈ M0, we have that there exists some η ∈472

[−1, 1]dx such that473

f(x,π(x)) = µ0(x.π(x)) + β0σ0(x,π(x))η(x).

Ew[V π(µ0(x.π(x)) + β0σ0(x,π(x))η(x) +w)]− Ew[V π(f∗(x.π(x)) +w)]

≤ κ (∥µ0(x.π(x)) + β0σ0(x,π(x))η(x)− f∗(x.π(x))∥)
≤ κ (∥µ0(x.π(x))− f∗(x.π(x))∥+ ∥β0σ0(x,π(x))η(x)∥)
≤ κ

((
1 +

√
dx

)
β0

√
dxσmax

)
. (Assumption 2.8)

Therefore,474

Ex′|x,f ,π[V
π(x′)] ≤ Ex′|x,f∗,π[V

π(x′)] + κ
((

1 +
√

dx

)
β0

√
dxσmax

)
= Ex′|x,π[V

π(x′)] + κ
((

1 +
√
dx

)
β0

√
dxσmax

)
≤ γV π(x) +K + κ

((
1 +

√
dx

)
β0

√
dxσmax

)
. (Assumption 2.4)

Define K̂ = K + κ
((
1 +
√
dx
)
β0

√
dxσmax

)
.475

Lemma A.5 (Minorisation condition optimistic ystem). Consider the system476

x′ = f(x.π(x)) +w

for any n ≥ 0, π ∈ Π and f ∈ Mn ∩M0. Let Assumption 2.1 – 2.8 hold. Let Pπ,f denote the477

transition kernel for the policy π ∈ Π i.e., Pπ,f (x,A) = P(x′ ∈ A|x,π(x),f). Then, there exists478

a constant α̂ ∈ (0, 1) and a probability measure ζ̂(·) independent of n s.t.,479

inf
x∈C

Pπ,f (x, ·) ≥ α̂ζ̂(·) (11)

with C def
= {x ∈ X ;V π(x) < R̂} for some R̂ > 2K̂/1−γ480

Proof. First, we show that C is contained in a compact domain. From the Assumption 2.4 we pick481

the function ξ ∈ K∞. Since Clξ(0) = 0, lims→∞ ξ(s) = +∞ and Clξ is continuous, there exists482

M such that Clξ(M) = R̂. Then for ∥x∥ > M we have:483

V π(x) ≥ Clξ(∥x∥) > ξ(M) = R̂.
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Therefore we have: C ⊆ B(0,M)
def
= {x | ∥x− 0∥ ≤ M}. Since for any x ∈ C we have484

∥f(x,π(x))∥ ≤ ∥f∗(x,π(x))∥ + β0σmax. Since f∗ is continuous, there exists a B such that485

f∗(C,π(C)) ⊂ B(0, B). Therefore we have: f(C,π(C)) ⊂ B(0, B1), where B1 = B + β0σmax.486

In the last step we prove that α def
= 2−dxe−B2

1/σ
2

and ζ with law of N
(
0, σ2

2

)
satisfy condition of487

Lemma A.1. It is enough to show that ∀µ ∈ B(0, B1),∀x ∈ Rdx we have:488

α
1

(2π)
dx
2

(
σ2

2

) dx
2

e−
∥x∥2

σ2 ≤ 1

(2π)
dx
2 (σ2)

dx
2

e−
∥x−µ∥2

2σ2

which can be proven with simple algebraic manipulations.489

Proof of Theorem A.3. As for the true system, the drift condition from Lemma A.4 and the mi-490

norisation condition from Lemma A.5 are sufficient to show ergodicity of the optimistic system491

(c.f., Theorem A.2 or Hairer & Mattingly (2011)). The rest of the proof is similar to Theorem 2.6.492

A.3 Proof of Theorem 3.1493

Since NEORL works in artificial episodes n ∈ {0, N − 1} of varying horizons Hn. We denote with494

xn
k the state visited during episode n at time step k ≤ Hn. Crucial, to our regret analysis is bounding495

the first and second moment of V πn(xn
k ) for all n, k. Given the nature of Assumption 2.4, this496

requires analyzing geometric series. Thus, we start with the following elementary result of geometric497

series.498

Corollary A.6. Consider the sequence {Sn}n≥0 with Sn ≥ 0 for all n. Let the following hold499

Sn ≤ ρSn−1 + C

for ρ ∈ (0, 1) and C > 0. Then we have500

Sn ≤ ρnS0 + C
1

1− ρ
.

501

Proof.

Sn ≤ ρSn−1 + C ≤ ρ2Sn−2 + C(1 + ρ) ≤ ρnS0 + C

n∑
i=0

ρi ≤ ρnS0 + C
1

1− ρ
.

502

Lemma A.7. Let Assumption 2.1 – 2.8 hold and let H0 be the smallest integer such that503

H0 >
log (Cu/Cl)

log (1/γ)
.

Moreover, define ν = Cu

Cl
γH0 . Note, by definition of H0, ν < 1. Then we have for all k ∈504

{0, . . . ,Hn} and n > 0505

Bounded expectation over horizon506

Exn
k ,...,x

0
1|x0

[V πn(xn
k )] ≤ γkExn

0 ,...,x
0
1|x0

[V πn(xn
0 )] +K/(1− γ). (12)

Bounded expectation over episodes507

Exn
0 ,...,x

0
1|x0

[V πn(xn
0 )] ≤ νnV π0(x0) +

Cu

Cl
K/(1− γ)

1

1− ν
. (13)

Moreover, we have508

Exn
k ,...,x

0
1|x0

[V πn(xn
k )] ≤ D(x0,K, γ, ν), (14)

with D(x0,K, γ, ν) = V π0(x0) +K/(1− γ)
(

Cu

Cl

1
1−ν + 1

)
509
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Proof. We start with proving the first claim510

Exn
k ,...,x

0
1|x0

[V πn(xn
k )] = Exn

k−1,...,x
0
1|x0

[Exn
k |x

n
k−1

[V πn(xn
k )]]

≤ Exn
k−1,...,x

0
1|x0

[γV πn(xn
k−1) +K] (Assumption 2.4)

= γExn
k−1,...,x

0
1|x0

[V πn(xn
k−1)] +K

We can apply Corollary A.6 to prove the claim. For the second claim, we note that for any π,π′ and511

x ∈ X we have from Assumption 2.4512

V π(x) ≤ Cuα(∥x∥) ≤
Cu

Cl
V π′

(x).

Therefore,513

Exn
0 ,...,x

0
1|x0

[V πn(xn
0 )]

≤ Cu

Cl
Exn

0 ,...,x
0
1|x0

[V πn−1(xn
0 )]

=
Cu

Cl
Exn−1

Hn
,...,x0

1|x0
[V πn−1(xn−1

Hn
)] (Since xn

0 = xn−1
Hn

)

≤
(
Cu

Cl
γHn

)
Exn−1

0 ,...,x0
1|x0

[V πn−1(xn−1
0 )] +

Cu

Cl
K/(1− γ) (Equation (12))

For our choice of H0, we have for all n ≥ 0 that Cu

Cl
γHn ≤ Cu

Cl
γH0 ≤ ν < 1. From Corollary A.6,514

we get515

Exn
0 ,...,x

0
1|x0

[V πn(xn
0 )] ≤

(
Cu

Cl
γHn

)
Exn−1

0 ,...,x0
1|x0

[V πn−1(xn−1
0 )] +

Cu

Cl
K/(1− γ)

≤ νExn−1
0 ,...,x0

1|x0
[V πn−1(xn−1

0 )] +
Cu

Cl
K/(1− γ)

≤ νnV π0(x0) +
Cu

Cl
K/(1− γ)

1

1− ν
. (Corollary A.6)

Exn
k ,...,x

0
1|x0

[V πn(xn
k )] ≤ γkExn

0 ,...,x
0
1|x0

[V πn(xn
0 )] +K/(1− γ) (Equation (12))

≤ Exn
0 ,...,x

0
1|x0

[V πn(xn
0 )] +K/(1− γ)

≤ νnV π0(x0) +
Cu

Cl
K/(1− γ)

1

1− ν
+K/(1− γ) (Equation (13))

≤ V π0(x0) +
Cu

Cl
K/(1− γ)

1

1− ν
+K/(1− γ)

516

Lemma A.8. Let Assumption 2.1 – 2.8 hold and let H0 be the smallest integer such that517

H0 >
log (Cu/Cl)

log (1/γ)
.

Moreover, define ν = Cu

Cl
γH0 . Note, by definition of H0, ν < 1.518

Then we have for all k ∈ {0, . . . ,Hn} and n > 0519

Bounded second moment over horizon520

Exn
k ,...,x

0
1|x0

[
(V πn(xn

k ))
2
]
≤ γ2kExn

0 ,...,x
0
1|x0

[
(V πn(xn

0 ))
2
]
+

D2(x0,K, γ, ν)

1− γ2
(15)

with D2(x0,K, γ, ν) = 2KγD(x0,K, γ, ν) + K2 + Cw, and Cw = Ew

[
κ2(∥w∥)

]
+521

3(Ew [κ(∥w∥)])2.522
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Bounded second moment over episodes523

Exn
0 ,...,x

0
1|x0

[
(V πn(xn

0 ))
2
]
≤ ν2n (V π0(x0))

2
+

(
Cu

Cl

)2
D2(x0,K, γ, ν)

1− γ2

1

1− ν2
. (16)

Moreover, let D3(x0,K, γ, ν) = (V π0(x0))
2
+D2(x0,K, γ, ν)

((
Cu

Cl

)2
1

1−γ2
1

1−ν2 + 1
1−γ2

)
.524

Exn
k ,...,x

0
1|x0

[
(V πn(xn

k ))
2
]
≤ D3(x0,K, γ, ν)

525

Proof. Note that,526

Exn
k |x

n
k−1

[
(V πn(xn

k ))
2
]
=
(
Exn

k |x
n
k−1

[V πn(xn
k )]
)2

+ Exn
k |x

n
k−1

[(
V πn(xn

k )− Exn
k |x

n
k−1

[V πn(xn
k )]
)2]

.

We first bound the second term. Let x̄n
k = f∗(xn

k−1,πn(x
n
k−1)), i.e., the next state in the absence of527

transition noise.528

Exn
k |x

n
k−1

[(
V πn(xn

k )− Exn
k |x

n
k−1

[V πn(xn
k )]
)2]

= Exn
k |x

n
k−1

[(
V πn(xn

k )− V πn(x̄n
k ) + V πn(x̄n

k )− Exn
k |x

n
k−1

[V πn(xn
k )]
)2]

= Exn
k |x

n
k−1

[(
V πn(xn

k )− V πn(x̄n
k ) + Exn

k |x
n
k−1

[V πn(x̄n
k )− V πn(xn

k )]
)2]

≤ Ew

[
(κ(∥w∥) + Ew[κ(∥w∥)])2

]
(uniform continuity of V πn )

= Ew

[
κ2(∥w∥)

]
+ 3(Ew [κ(∥w∥)])2

= Cw (Assumption 2.4)

Therefore we have529

Exn
k |x

n
k−1

[
(V πn(xn

k ))
2
]
=
(
Exn

k |x
n
k−1

[V πn(xn
k )]
)2

+ Cw

≤ (γV πn(xn
k ) +K)

2
+ Cw

= γ2
(
V πn(xn

k−1)
)2

+ 2KγV πn(xn
k−1) +K2 + Cw.

Exn
k ,...,x

0
1|x0

[
(V πn(xn

k ))
2
]

= Exn
k−1,...,x

0
1|x0

[
Exn

k |x
n
k−1

[
(V πn(xn

k ))
2
]]

≤ γ2Exn
k−1,...,x

0
1|x0

[(
V πn(xn

k−1)
)2]

+ 2KγExn
k−1,...,x

0
1|x0

[
V πn(xn

k−1)
]
+K2 + Cw

≤ γ2Exn
k−1,...,x

0
1|x0

[(
V πn(xn

k−1)
)2]

+ 2KγD(x0,K, γ, ν) +K2 + Cw. (Lemma A.7)

Let D2(x0,K, γ, ν) = 2KγD(x0,K, γ, ν) +K2 + Cw. Applying Corollary A.6 we get530

Exn
k ,...,x

0
1|x0

[
(V πn(xn

k ))
2
]
≤ γ2kExn

0 ,...,x
0
1|x0

[
(V πn(xn

0 ))
2
]
+

D2(x0,K, γ, ν)

1− γ2

Similar to the first moment, we leverage that V πn(x) ≤ Cu

Cl
V πn−1(x) for all x ∈ X , Cu

Cl
γHn−1 ≤ ν,531

and get,532

Exn
0 ,...,x

0
1|x0

[
(V πn(xn

0 ))
2
]
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≤
(
Cu

Cl

)2

Exn
0 ,...,x

0
1|x0

[
(V πn−1(xn

0 ))
2
]

=

(
Cu

Cl

)2

Exn−1
Hn

,...,x0
1|x0

[(
V πn−1(xn−1

Hn
)
)2]

(Since xn
0 = xn−1

Hn
)

≤
(
Cu

Cl
γHn

)2

Exn−1
0 ,...,x0

1|x0

[(
V πn−1(xn−1

0 )
)2]

+

(
Cu

Cl

)2
D2(x0,K, γ, ν)

1− γ2
(Equation (15))

≤ ν2Exn−1
0 ,...,x0

1|x0

[(
V πn−1(xn−1

0 )
)2]

+

(
Cu

Cl

)2
D2(x0,K, γ, ν)

1− γ2

≤ ν2n (V π0(x0))
2
+

(
Cu

Cl

)2
D2(x0,K, γ, ν)

1− γ2

1

1− ν2
(Corollary A.6)

Moreover,533

Exn
k ,...,x

0
1|x0

[
(V πn(xn

k ))
2
]

≤ γ2kExn
0 ,...,x

0
1|x0

[
(V πn(xn

0 ))
2
]
+

D2(x0,K, γ, ν)

1− γ2
(Equation (15))

≤ Exn
0 ,...,x

0
1|x0

[
(V πn(xn

0 ))
2
]
+

D2(x0,K, γ, ν)

1− γ2

≤ ν2n (V π0(x0))
2
+

(
Cu

Cl

)2
D2(x0,K, γ, ν)

1− γ2

1

1− ν2
+

D2(x0,K, γ, ν)

1− γ2
(Equation (16))

≤ (V π0(x0))
2
+D2(x0,K, γ, ν)

((
Cu

Cl

)2
1

1− γ2

1

1− ν2
+

1

1− γ2

)

534

Finally, we prove the regret bound of NEORL.535

Proof of Theorem 3.1. In the following, let x̂n
k+1 = fn(x

n
k ,πn(x

n
k ))+wn

k denote the state predicted536

under the optimistic dynamics and xn
k+1 = f∗

n(x
n
k ,πn(x

n
k )) +wn

k the true state.537

E

[
N−1∑
n=0

Hn−1∑
k=0

c(xn
k ,πn(x

n
k ))−A(π∗)

]

≤ E

[
N−1∑
n=0

Hn−1∑
k=0

c(xn
k ,πn(x

n
k ))−A(πn,fn)

]
(Optimism)

= E

[
N−1∑
n=0

Hn−1∑
k=0

B(πn,fn,x
n
k )−B(πn,fn, x̂

n
k+1)

]
(Bellman equation ( Equation (4)))

= E

[
N−1∑
n=0

Hn−1∑
k=0

B(πn,fn,x
n
k )−B(πn,fn,x

n
k+1) +B(πn,fn,x

n
k+1)−B(πn,fn, x̂

n
k+1)

]

=

N−1∑
n=0

Hn−1∑
k=0

E
[
B(πn,fn,x

n
k+1)−B(πn,fn, x̂

n
k+1)

]
(A)

+

N−1∑
n=0

Hn−1∑
k=0

E
[
B(πn,fn,x

n
k )−B(πn,fn,x

n
k+1)

]
(B)

First, we study the term (A).538

Proof for (A): Note that because fn ∈ Mn, there exists a η ∈ [−1, 1]dx such that x̂n
k+1 =539

µn(x
n
k ,πn(x

n
k ))+βnσn(x

n
k ,πn(x

n
k ))η(x

n
k )+wn

k . Furthermore, xn
k+1 = f∗(xn

k ,πn(x
n
k ))+wn

k540

and the transition noise is Gaussian. Let ζn2,k and ζn1,k denote the respective distributions of the541
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two random variables, i.e., ζn1,k ∼ N (f∗(xn
k ,πn(x

n
k )), σ

2I) and ζn2,k ∼ N (fn(x
n
k ,πn(x

n
k )), σ

2I).542

Next, define B̄ = Ex∼ζn
2,k

[B(πn,fn,x)], and consider the function h(x) = B(πn,fn,x) − B̄.543

Then we have544

Ewn
k

[
B(πn,fn,x

n
k+1)−B(πn,fn, x̂

n
k+1)

]
= Ex∼ζn

1,k
[B(πn,fn,x)]− Ex∼ζn

2,k
[B(πn,fn,x)]

= Ex∼ζn
1,k

[
B(πn,fn,x)− B̄

]
− Ex∼ζn

2,k

[
B(πn,fn,x)− B̄

]
= Ex∼ζn

1,k
[h(x)]− Ex∼ζn

2,k
[h(x)].

Note that Ex∼ζn
2,k

[h(x)] = 0 by the definition of h and thus,545

Ex∼ζn
1,k

[h(x)]− Ex∼ζn
2,k

[h(x)] = Ex∼ζn
1,k

[h(x)] ≤
√
Ex∼ζn

1,k
[h2(x)]. (17)

In the following, we bound the term above w.r.t. the Chi-squared distance546

Ewn
k

[
B(πn,fn,x

n
k+1)−B(πn,fn, x̂

n
k+1)

]
= Ex∼ζn

1,k
[h(x)]− Ex∼ζn

2,k
[h(x)]

=

∫
X
h(x)

(
1−

ζn2,k
ζn1,k

)
ζn1,k(dx) ≤

√
Ex∼ζn

1,k
[h2(x)]

√
dχ(ζn2,k, ζ

n
1,k)

((Kakade et al., 2020, Lemma C.2.,))

With dχ(ζ
n
2,k, ζ

n
1,k) being the Chi-squared distance.547

dχ(ζ
n
2,k, ζ

n
1,k) =

∫
X

(
ζn1,k − ζn2,k

)2
ζn1,k

(dx)

Since both bounds from Equation (17) and bound we got by applying (Kakade et al., 2020, Lemma548

C.2.,), we can apply minimum and have:549

Ewn
k

[
B(πn,fn,x

n
k+1)−B(πn,fn, x̂

n
k+1)

]
≤
√
Ex∼ζn

1,k
[h2(x)]

√
min

{
dχ(ζn2,k, ζ

n
1,k), 1

}
Therefore, following Kakade et al. (2020, Lemma C.2.,) we get550

Ewn
k

[
B(πn,fn,x

n
k+1)−B(πn,fn, x̂

n
k+1)

]
≤
√
Ex∼ζn

1,k
[h2(x)]min {1/σ ∥f∗(xn

k ,πn(x
n
k ))− fn(x

n
k ,πn(x

n
k ))∥ , 1}

≤
√
Ex∼ζn

1,k
[h2(x)](1 +

√
dx)βn/σ ∥σn(x

n
k ,πn(x

n
k ))∥ . ((Sukhija et al., 2024, Cor. 3))

Therefore, we have551

N−1∑
n=0

Hn−1∑
k=0

Exn
k ,...x

0
1|x0

[
Ewn

k

[
B(πn,fn,x

n
k+1)−B(πn,fn, x̂

n
k+1)

]]
≤

N−1∑
n=0

Hn−1∑
k=0

Exn
k ,...x

0
1|x0

[√
Ex∼ζn

1,k
[h2(x)](1 +

√
dx)βn/σ ∥σn(x

n
k ,πn(x

n
k ))∥

]
≤

N−1∑
n=0

Hn−1∑
k=0

(1 +
√
dx)βn/σ

√
Exn

k ,...x
0
1|x0

[
Ex∼ζn

1,k
[h2(x)]

]
Exn

k ,...x
0
1|x0

[
∥σn(xn

k ,πn(xn
k ))∥

2
]

≤ (1 +
√
dx)βT/σ

√√√√N−1∑
n=0

Hn−1∑
k=0

Exn
k ,...x

0
1|x0

[
Ex∼ζn

1,k
[h2(x)]

]

×

√√√√N−1∑
n=0

Hn−1∑
k=0

Exn
k ,...x

0
1|x0

[
∥σn(xn

k ,πn(xn
k ))∥

2
]
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Here, for the second and third inequality, we use Cauchy-Schwarz. Now we bound the two terms552

above individually.553

First we bound Ex∼ζn
1,k

[
h2(x)

]
.554

Ex∼ζn
1,k

[
h2(x)

]
= Ex∼ζn

1,k

[
(B(πn,fn,x)− B̄)2

]
= Ex∼ζn

1,k

[
(B(πn,fn,x)− Ex∼ζn

2,k
[B(πn,fn,x)])

2
]

≤
(

C2

1− λ̂

)2

Ex∼ζn
1,k

[
(2 + V πn(x) + Ex∼ζn

2,k
[V πn(x)])2

]
(Theorem A.3)

≤
(

C2

1− λ̂

)2

Ex∼ζn
1,k

[
(2 + V πn(x) + γV πn(xn

k ) + K̂)2
]

(Lemma A.4)

≤
(√

2C2

1− λ̂

)2

Ex∼ζn
1,k

[
(V πn(x))2 + (2 + γV πn(xn

k ) + K̂)2
]

≤
(√

2C2

1− λ̂

)2 (
Exn

k+1|x
n
k

[
(V πn(xk+1))

2
]
+ 2γ2(V πn(xn

k ))
2 + 2(2 + K̂)2

)

Furthermore, we have from Lemma A.8.555

Exn
k ,...x

0
1|x0

[
Exn

k+1|x
n
k

[
(V πn(xk+1))

2
]
+ 2γ2(V πn(xn

k ))
2
]

= Exn
k+1,...x

0
1|x0

[
(V πn(xk+1))

2
]
+ 2γ2Exn

k ,...x
0
1|x0

[
(V πn(xk+1))

2
]
≤ (1 + 2γ2)D3(x0,K, γ, ν).

In the end, we get556 √√√√N−1∑
n=0

Hn−1∑
k=0

Exn
k ,...x

0
1|x0

[
Ex∼ζn

1,k
[h2(x)]

]

≤
(√

2C2

1− λ̂

)√√√√N−1∑
n=0

Hn−1∑
k=0

(1 + 2γ2)D3(x0,K, γ, ν) + 2(2 + K̂)2

=

(√
2C2

1− λ̂

)√
(1 + 2γ2)D3(x0,K, γ, ν) + 2(2 + K̂)2

√√√√N−1∑
n=0

Hn

=

(√
2C2

1− λ̂

)√
(1 + 2γ2)D3(x0,K, γ, ν) + 2(2 + K̂)2

√
T .

Next, we use the bound from Curi et al. (2020, Lemma 17.) for the second term.557 √√√√N−1∑
n=0

Hn−1∑
k=0

Exn
k ,...x

0
1|x0

[
∥σn(xn

k ,πn(xn
k ))∥

2
]
≤ C ′

√
ΓT

Here ΓT is the maximum information gain.558

If we set D4(x0,K, γ) = C′(1+
√
dx)

σ

(√
2C2

1−λ̂

)√
(1 + 2γ2)D3(x0,K, γ, ν) + 2(2 + K̂)2, we have559

N−1∑
n=0

Hn−1∑
k=0

Exn
k ,...x

0
1|x0

[
Ewn

k

[
B(πn,fn,x

n
k+1)−B(πn,fn, x̂

n
k+1)

]]

≤ (1 +
√
dx)βT/σ

√√√√N−1∑
n=0

Hn−1∑
k=0

Exn
k ,...x

0
1|x0

[
Ex∼ζn

1,k
[h2(x)]

]
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×

√√√√N−1∑
n=0

Hn−1∑
k=0

Exn
k ,...x

0
1|x0

[
∥σn(xn

k ,πn(xn
k ))∥

2
]

≤ (1 +
√
dx)βT/σ

(√
2C2

1− λ̂

)√
(1 + 2γ2)D3(x0,K, γ, ν) + 2(2 + K̂)2

√
TC ′

√
ΓT

≤ D4(x0,K, γ)βT

√
TΓT

Proof for (B):560

N−1∑
n=0

Hn−1∑
k=0

E
[
B(π,fn,x

n
k )−B(π,fn,x

n
k+1)

]
=

N−1∑
n=0

E
[
B(π,fn,x

n
0 )−B(π,fn,x

n
Hn

)
]

≤ C2

1− λ̂

N−1∑
n=0

(
2 + E

[
V π(xn

0 ) + V π(xn
Hn

)
])

(Theorem A.3)

≤ 2C2

1− λ̂

N−1∑
n=0

(1 +D(x0,K, γ)) (Lemma A.7)

=
2C2

1− λ̂
(1 +D(x0,K, γ))N

= D5(x0,K, γ)N.

Here D5(x0,K, γ) = 2C2

1−λ̂
(1 +D(x0,K, γ)). Finally, for our choice, Hn = H02

n, we get561

N−1∑
n=0

Hn = H0

N−1∑
n=0

2n = H0(2
N − 1) = T.

Therefore, N = log2

(
T
H0

+ 1
)

. To this end, we get for our regret562

RT = E

[
N−1∑
n=0

Hn−1∑
k=0

c(xn
k ,πn(x

n
k ))−A(π∗)

]
≤ D4(x0,K, γ)βT

√
TΓT +D5(x0,K, γ)N

≤ D4(x0,K, γ)βT

√
TΓT +D5(x0,K, γ) log2

(
T

H0
+ 1

)
563

This regret is sublinear for a very rich class of functions. We summarize bounds on ΓT from564

Vakili et al. (2021) in Table 1. Furthermore, note that D4(x0,K, γ) ∈ (0,∞) for all x0 ∈ X with565

∥x0∥ < ∞, K < ∞, γ ∈ (0, 1). The same holds for D5(x0,K, γ). Moreover, since V π(x) is566

Θ(ζ(∥x∥)), both D4 and D5 are Θ(ζ(∥x0∥)).567

Table 1: Maximum information gain bounds for common choice of kernels.
Kernel k(x,x′) ΓT

Linear x⊤x′ O (d log(T ))

RBF e−
∥x−x′∥2

2l2 O
(
logd+1(T )

)
Matèrn 1

Γ(ν)2ν−1

(√
2ν∥x−x′∥

l

)ν

Bν

(√
2ν∥x−x′∥

l

)
O
(
T

d
2ν+d log

2ν
2ν+d (T )

)
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A.4 Relaxing Assumption 2.4568

Our analysis assumes that Π consists only of policies with bounded energy. This assumption ensures569

that during the exploration our system remains stable. The average cost and stability are intertwined570

for the LQG case (Anderson & Moore, 2007). Moreover, a bounded average cost of a linear controller571

π(x) = Kx implies stability and vice-versa. This is not necessarily the case for nonlinear systems,572

i.e., stability implies a bounded average cost (c.f., Theorem 2.6) but not vice versa. An approach is to573

assume this link exists also for the nonlinear case.574

Definition A.9 (Stable Policies). We call ΠS(f) the set of stable policies for the dynamics f if575

there exists positive constants Cu, Cl with Cu > Cl, ζ, κ ∈ K∞, γ ∈ (0, 1) s.t., we have for all576

π ∈ ΠS(f),577

Bounded energy; There exists a Lyapunov function V π : X → [0,∞), K(π,f) <∞ for which578

|V π(x)− V π(x′)| ≤ κ(∥x− x′∥) (uniform continuity)
Clξ(∥x∥) ≤ V π(x) ≤ Cuξ(∥x∥) (positive definiteness)

Ex′|f ,π,x[V
π(x′)] ≤ γV π(x) +K(π,f) (drift condition)

Bounded norm of cost;579

sup
x∈X

c(x,π(x))

1 + V π(x)
<∞

Boundedness of noise with respect to κ580

Ew [κ(∥w∥)] <∞, Ew

[
κ2(∥w∥)

]
<∞

Assumption A.10 (Bounded average cost implies stability). Consider any dynamics f , let ΠA(f) be581

the set of policies with bounded average cost for f , i.e.,582

ΠA(f) = {π ∈ Π| A(π,f) <∞}. (18)

We assume ∀n ≥ 0, f ∈M0 ∩Mn that all policies π ∈ ΠA(f) are stable, i.e., π ∈ ΠS(f).583

With Assumption A.10 we link the average cost criterion to the stability of our system. A natural584

consequence of this link is the following corollary.585

Corollary A.11. Let Assumption A.10 hold. Then the following two statements are equivalent for all586

n ≥ 0, f ∈M0 ∩Mn, and π ∈ Π.587

1. π ∈ ΠA(f)588

2. π ∈ ΠS(f).589

Proof. 1 =⇒ 2 follows from Assumption A.10 and 2 =⇒ 1 from Theorem 2.6.590

Assumption A.12 (Existence of a stable policy). We assume ΠS(f
∗) ̸= ∅.591

Assumption A.12 assumes that there is at least one stable policy in Π. This is in contrast to592

Assumption 2.4, which assumes that all policies in Π are stable. We can relax this requirement593

because of Assumption A.10.594

In the following, we show that πn ∈ ΠS(fn) and that this implies πn ∈ ΠS(f
∗). In summary, when595

doing optimistic planning, we inherently pick stable policies for the true system.596

Lemma A.13. Let Assumption 2.1 – 2.2, 2.8, A.10, and Assumption A.12 hold. Let πn,fn denote597

the solution to Equation (6). Then we have with probability at least 1− δ, πn ∈ ΠS(f
∗).598

Proof. Since ΠS(f
∗) is nonempty, from Corollary A.11, we must have a policy π ∈ ΠA(f

∗), and599

thus A(π) < ∞. This implies that A(π∗) < ∞. Since, Equation (6) is an optimistic estimate of600

A(π∗), we have A(πn,fn) ≤ A(π∗) <∞. Thus, πn ∈ ΠA(fn). Again from Corollary A.11, we601

have πn ∈ ΠS(fn) and there exists a Lyapunov function V πn and K(πn,fn) such that602

Ex′|fn,πn,x[V
πn(x′)] ≤ γV πn(x) +K(πn,fn)

Furthermore, due to the uniform continuity of V πn we have603

Ex′|x,f∗,πn
[V πn(x′)] ≤ Ex′|x,fn,πn

[V πn(x′)] + κ
((

1 +
√
dx

)
β0

√
dxσmax

)
(c.f, Lemma A.4)

23



≤ γV πn(x) + κ
((

1 +
√

dx

)
β0

√
dxσmax

)
+K(πn,fn)

In summary, we have πn ∈ ΠS(f
∗) with K(πn,f

∗) = κ
((
1 +
√
dx
)
β0

√
dxσmax

)
+K(πn,fn).604

605

Lemma A.13 shows that Equation (6) returns policies that are stable for the true system and therefore606

with probability at least 1−δ is optimizing over ΠS(f
∗). Thus, even in cases where Π has policies that607

do not satisfy Assumption 2.4, these policies are not considered by NEORL. NEORL automatically608

optimizes over ΠS(f
∗) and the rest of the guarantees follow with K = maxπ∈ΠS(f∗) K(π,f∗).609
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B Experimental Details610

In the following, we provide all hyperparameters used in our experiments in Table 2 and the cost611

function for the environments in Table 3. For NEORL, we use βn = 2 for all the experiments, except612

for the Swimmer and the SoftArm environment where we use βn = 1.

Table 2: Hyperparameters for results in Section 4.
Environment iCEM parameters Model training parameters

Number of
samples

Number of
elites

Optimizer
steps Horizon Particles Number of

ensembles
Network

architecture Learning rate Batch size Number of
epochs H Action

Repeat

Pendulum-GP 500 50 10 20 5 - - 0.01 64 - 10 1
Pendulum 500 50 10 20 5 10 256× 2 0.001 64 50 10 1

MountainCar 1000 100 5 50 5 10 256× 2 0.001 64 50 10 2
Reacher 1000 100 10 50 5 10 256× 2 0.001 64 50 10 2
CartPole 1000 100 10 50 5 10 256× 2 0.001 64 50 10 2
Swimmer 500 50 10 30 5 10 256× 4 0.00005 64 100 200 4
SoftArm 500 50 10 20 5 10 256× 4 0.00005 64 50 20 1
RaceCar 1000 100 10 50 5 10 256× 2 0.001 64 50 10 1

613

Table 3: Cost function for the environments presented in Section 4.

Environment Cost c(xt,ut)

Pendulum θ2t + 0.1θ̇t + 0.1u2
t

MountainCar 0.1u2
t − 100(1{xt ∈ xgoal})

Reacher ∥xt − xtarget∥+ 0.1 ∥ut∥
CartPole

∥∥xpos
t − xpos

target

∥∥2 + 10(cos(θt)− 1)2 + 0.2 ∥ut∥2
Swimmer ∥xt − xtarget∥
SoftArm ∥xt − xtarget∥
RaceCar ∥xt − xtarget∥
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