

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CAN LLMS REASON SOUNDLY IN LAW? AUDITING INFERENCE PATTERNS FOR LEGAL JUDGMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper presents a method to analyze the inference patterns used by Large Language Models (LLMs) for judgment in a case study on legal LLMs, so as to identify potential incorrect representations of the LLM, according to human domain knowledge. Unlike traditional evaluations on language generation results, we propose to evaluate the correctness of the detailed inference patterns of an LLM behind its seemingly correct outputs. To this end, we quantify the interactions between input phrases used by the LLM as primitive inference patterns, because recent theoretical achievements (26; 42) have proven several mathematical guarantees of the faithfulness of the interaction-based explanation. We design a set of metrics to evaluate the detailed inference patterns of LLMs. Experiments show that even when the language generation results appear correct, a significant portion of the inference patterns used by the LLM for the legal judgment may represent misleading or irrelevant logic¹.

1 INTRODUCTION

Large language models (LLMs) (57; 29; 1; 15; 24) have demonstrated state-of-the-art performance on a wide range of tasks. However, for high-stakes applications, only high accuracy of the generated outputs is still insufficient to ensure the reliability of LLMs (37; 59; 23; 53; 51) for the following main reasons. (1) We find that even when a top-tier LLM generates correct tokens, the LLM still relies on problematic *inference patterns* to generate the next token. (2) In particular, for LLMs towards legal judgment (16; 13; 8; 4; 35), such problematic inference patterns directly influence the choice of the LLM among multiple seemingly acceptable judgments, which constitutes an encroachment upon domains traditionally recognized as within judges' discretionary authority. Thus, this would introduce significant potential unfairness and risks.

Therefore, in this paper, we focus on LLMs for legal judgment as a case study, as it serves as a typical high-stakes application. We explore the intense problematic inference patterns used by an LLM for judgments, and discuss the potential harm of these inference patterns. In fact, the first problem in this study is whether an LLM's prediction can be faithfully decomposed into a set of inference patterns. Recent works in explainable AI (47; 50; 42; 26; 39; 6) have demonstrated that **the inference score of a deep network can be faithfully represented by a set of interactions between input features²**. As shown in Figure 1, an *interaction* extracted from an LLM captures a nonlinear relationship between input tokens, and contributes a numerical score that quantifies their joint influence on the LLM's prediction.

Despite above theoretical achievements, in this paper, we focus on a crucial yet long-overlooked issue in the community, *i.e.*, the correctness of detailed representations of an LLM. It is still unknown (1) *how many problematic interactions are modeled in LLMs (e.g., legal LLMs), and (2) to what extent these interactions influence legal judgments.*

In particular, we obtain three findings. (1) We find that over half of interactions actually represent clearly unreasonable or even incorrect justifications for the judgment predictions. (2) Although the appearance of long-chain reasoning capabilities exhibited in chains-of-thought prompting (55; 29; 57;

¹The names used in the legal cases follow an alphabetical convention, *e.g.*, Andy, Bob, Charlie, etc., which do not represent any bias against actual individuals.

²Please see the video demo in the supplementary material for the interaction-based explanation.



Figure 1: Correctness of the detailed inference patterns of an LLM. The AND-OR logical model $h(\cdot)$ accurately fits the output score of the LLM $v(\cdot)$ when making the judgment “Assault” for Andy, $h(\text{"Assault"}|\mathbf{x}) = v(\text{"Assault"}|\mathbf{x})$, no matter how the input legal case \mathbf{x} is masked in the bottom-right figure. Blue edges connect *reliable interaction effects* (R_S^{AND} and R_S^{OR}) that contribute to the output score $v(\text{"Assault"}|\mathbf{x})$, typically aligning with legal domain knowledge. Red edges connect *unreliable interaction effects* (U_S^{AND} and U_S^{OR}) that contribute to $v(\text{"Assault"}|\mathbf{x})$, often reflecting problematic patterns used by the LLM for the judgment.

37), we find that the essence is simple interactions of *local* tokens to guess judgments, even just like a bag-of-the-words model (36). (3) We find that LLMs tend to model a large number of canceling interactions, where positive and negative contributions between input tokens offset each other, which often represent unreliable noise patterns.

Risk warning or Benchmark. We acknowledge that we cannot exhaustively analyze all legal cases³, but **our objective is to** provide sufficient examples to alert the deep learning community to the severity of representational flaws reflected by interactions encoded in LLMs. It is because our experiments show that the representation quality of current LLMs fails far short of supporting the benchmark evaluation of detailed interaction patterns. For example, Figure 1 shows LLMs use a large number of problematic interactions to make judgments, making it hard to compare the quality of interactions in different LLMs in a meaningful way.

Instead, we choose to illustrate a wide range of problematic interaction patterns. While not exhaustive³, in this paper, let us simply introduce three common types of potential representational flaws frequently observed in LLMs: (1) LLMs tend to make judgments based on semantically irrelevant phrases; (2) LLMs often make judgments using the behavior of incorrect entities; (3) LLMs tend to produce judgments that are biased by identity discrimination.

Experiments have shown that even when the LLM generated correct target tokens, a significant portion of the interactions encoded by the LLM for the legal judgment are unreliable. This reflects a significant yet long overlooked problem for LLMs.

³In addition to the large number of legal provisions, the variation in laws across countries presents another challenge.

108 **2 EVALUATING DETAILED INFERENCE PATTERNS USED BY LLMs**
109110 **2.1 PRELIMINARIES: EXTRACTING INTERACTIONS AS THEORETICALLY GUARANTEED**
111 **INFERENCE PATTERNS**
112

113 Recent advancements in explanation theory (26; 39; 42; 6) have proven that using an AND-OR logical
114 model can accurately match all varying outputs of an LLM on exponentially augmented inputs. Please
115 see the video demo in the supplementary material for the interaction-based explanation. Specifically,
116 given an input prompt $\mathbf{x} = [x_1, x_2, \dots, x_n]^\top$ with n input phrases indexed by $N = \{1, 2, \dots, n\}$,
117 where each input phrase represents a semantic unit, such as a token, a word, or a phrase/short sentence.
118 Then, let $v(\mathbf{x}) \in \mathbb{R}$ denote the *scalar* output score of generating a sequence of the target m tokens
119 $[y_1, y_2, \dots, y_m]$, as follows.

$$120 \quad v(\mathbf{x}) \stackrel{\text{def}}{=} \sum_{t=1}^m \log \frac{p(y = y_t | \mathbf{x}, \mathbf{Y}_t^{\text{previous}})}{1 - p(y = y_t | \mathbf{x}, \mathbf{Y}_t^{\text{previous}})} \quad (1)$$

122 where $\mathbf{Y}_t^{\text{previous}} \stackrel{\text{def}}{=} [y_1, y_2, \dots, y_{t-1}]^\top$ represents the sequence of the previous $(t-1)$ tokens before
123 generating the t -th token. $p(y = y_t | \mathbf{x}, \mathbf{Y}_t^{\text{previous}})$ denotes the probability of generating the t -th token.
124 In particular, $\mathbf{Y}_1^{\text{previous}} = []$.
125

126 Theorem 1 proves that given an input prompt \mathbf{x} , the output score of the LLM $v(\mathbf{x})$ can be well
127 predicted/fitted by the following AND-OR logical model $h(\mathbf{x})$, no matter how we enumerate all 2^n
128 masked states of the input prompt⁴.
129

$$130 \quad h(\mathbf{x}_{\text{mask}}) \stackrel{\text{def}}{=} h(\mathbf{b}) + \sum_{S \in \Omega^{\text{AND}}} \mathbb{1}_{\text{AND}}(S | \mathbf{x}_{\text{mask}}) \cdot I_S^{\text{AND}} + \sum_{S \in \Omega^{\text{OR}}} \mathbb{1}_{\text{OR}}(S | \mathbf{x}_{\text{mask}}) \cdot I_S^{\text{OR}} \quad (2)$$

133 • **The AND trigger function** $\mathbb{1}_{\text{AND}}(S | \mathbf{x}_{\text{mask}}) \in \{0, 1\}$ represents a binary AND logic (also termed
134 an *AND interaction pattern*) between input phrases of the masked sample \mathbf{x}_{mask} in S . It returns 1 if
135 **all** phrases in S are present (not masked) in \mathbf{x}_{mask} ; otherwise, it returns 0. I_S^{AND} is the scalar weight.
136 Here, $\Omega^{\text{AND}} \subseteq 2^N = \{S \subseteq N\}$ represents the set of AND interaction patterns. \mathbf{b} is a scalar bias.
137

138 • **The OR trigger function** $\mathbb{1}_{\text{OR}}(S | \mathbf{x}_{\text{mask}}) \in \{0, 1\}$ represents a binary OR logic (also termed an *OR*
139 *interaction pattern*) between input phrases of the masked sample \mathbf{x}_{mask} in S . It returns 1 when **any**
140 phrase in S appears (not masked) in \mathbf{x}_{mask} ; otherwise, it returns 0. I_S^{OR} is the scalar weight. Here,
141 $\Omega^{\text{OR}} \subseteq 2^N = \{S \subseteq N\}$ denotes the set of OR interaction patterns.
142

Theorem 1 (Universal matching property, proof in Section C). *When scalar weights in
143 the logical model are set to $\forall S \subseteq N, I_S^{\text{AND}} \stackrel{\text{def}}{=} \sum_{T \subseteq S} (-1)^{|S|-|T|} v_{\text{and}}(\mathbf{x}_T)$ ⁵ and $I_S^{\text{OR}} \stackrel{\text{def}}{=}$
144 $- \sum_{T \subseteq S} (-1)^{|S|-|T|} v_{\text{or}}(\mathbf{x}_{N \setminus T})$, subject to $v_{\text{and}}(\mathbf{x}_T) + v_{\text{or}}(\mathbf{x}_T) = v(\mathbf{x}_T)$, $\mathbf{b} = v(\mathbf{x}_\emptyset)$, then we
145 have*

$$146 \quad \forall T \subseteq N, v(\mathbf{x}_T) = h(\mathbf{x}_T) \quad (3)$$

147 where \mathbf{x}_T is the masked sample⁴ that each input variable $i \in N \setminus T$ is masked. $v(\mathbf{x}_T)$ is the LLM's
148 scalar output score of the masked sample \mathbf{x}_T ⁴. $\Omega^{\text{AND}} = 2^N = \{S \subseteq N\}$, $\Omega^{\text{OR}} = 2^N = \{S \subseteq N\}$.
149

150 Theorem 1 shows that an AND-OR logical model $h(\cdot)$ in Equation (2) can well predict/match all
151 output score of the LLM $v(\cdot)$ on all 2^n enumerated masked states⁴ of the input prompt \mathbf{x} . **It partially
152 guarantees that we can roughly consider each AND-OR interaction logic in the logical model
153 $h(\cdot)$ represents an AND-OR inference pattern equivalently used by the LLM.**

154 **Sparsity of interaction patterns (inference patterns) and settings of Ω^{AND} and Ω^{OR} .** Another
155 issue is the conciseness of explanation. To this end, Ren et al. (42) have proven that the logical model

156 ⁴We followed (26) to obtain two discrete states for each input phrase, *i.e.*, the masked and unmasked states.
157 Therefore, given an input prompt with n phrases, there are 2^n possible masked states of the input prompt. To
158 obtain the masked sample \mathbf{x}_T , we replaced the embedding of each token in the input phrase $i \in N \setminus T$ with the
159 baseline value $b_i \in \mathbb{R}^d$, where d is the embedding dimension of each token. The baseline value b_i was trained as
160 described in (40). Please see Section L.6 for details.

161 ⁵The numerical effect of AND interaction pattern I_S^{AND} is also known as the Harsanyi dividend (18) in the
cooperative game theory.

162 obtained in Theorem 1 can be compressed into a concise AND-OR logical model by pruning all
 163 interactions with almost zero weight I_S^{AND} and I_S^{OR} . Specifically, given an input prompt \mathbf{x} with n
 164 input phrases, there are only $\mathcal{O}(n^p)$ interaction patterns have considerable numerical scores. All other
 165 interactions have negligible numerical scores, *i.e.*, $I_S^{\text{AND}}, I_S^{\text{OR}} \approx 0$. It is usually found $1.5 \leq p \leq 2.0$.
 166 This guarantees a deep network to be explained concisely.

167 **Interaction extraction (pseudo-code in Algorithm 1).** For implementation, the concise AND-OR
 168 logical model can be obtained by setting $v_{\text{and}}(\mathbf{x}_T) = 0.5v(\mathbf{x}_T) + \gamma_T$ and $v_{\text{or}}(\mathbf{x}_T) = 0.5v(\mathbf{x}_T) - \gamma_T$
 169 in Theorem 1, with a set of learnable parameters $\{\gamma_T | T \subseteq N\}$. We follow (61) to learn the
 170 parameters $\{\gamma_T | T \subseteq N\}$, and extract the sparsest (the simplest) AND-OR interaction explanation
 171 using a LASSO-like loss function, *i.e.*, $\min_{\{\gamma_T\}} \sum_{S \subseteq N, S \neq \emptyset} [|I_S^{\text{AND}}| + |I_S^{\text{OR}}|]$. All salient interactions
 172 in $\Omega^{\text{AND}} \stackrel{\text{def}}{=} \{S \subseteq N : |I_S^{\text{AND}}| > \tau\}$ and $\Omega^{\text{OR}} \stackrel{\text{def}}{=} \{S \subseteq N : |I_S^{\text{OR}}| > \tau\}$ are selected to construct the
 173 logical model for explanation, where τ is a small threshold.
 174

175 2.2 RELEVANT PHRASES, IRRELEVANT PHRASES, AND FORBIDDEN PHRASES

177 In this subsection, we annotate the *relevant*, *irrelevant*, and *forbidden* phrases in the input legal case,
 178 in order to accurately identify the reliable and unreliable interaction effects used by the legal LLMs
 179 for the legal judgment (see Figure 1). Here, an input phrase can be set as a token, a word, or a phrase.

180 Specifically, we engage 16 legal experts and volunteers⁶ to manually partition the set of all input
 181 phrases N into three mutually disjoint subsets, *i.e.*, the set of relevant phrases \mathcal{R} , the set of irrelevant
 182 phrases \mathcal{I} , and the set of forbidden phrases \mathcal{F} , subject to $\mathcal{R} \cup \mathcal{I} \cup \mathcal{F} = N$, with $\mathcal{R} \cap \mathcal{I} = \emptyset$, $\mathcal{R} \cap \mathcal{F} = \emptyset$,
 183 and $\mathcal{I} \cap \mathcal{F} = \emptyset$, according to their legal domain knowledge, as follows.
 184

185 **Phrase annotation.** We first clarify principles to guide legal experts to annotate different types of
 186 phrases for judgments according to their legal domain knowledge.

187 (1) **Generally speaking, relevant phrases** refer to phrases that are closely related to, or directly
 188 contribute to the legal judgment result, based on their ground-truth relevance to the judgment result.
 189 For example, as Figure 1 shows, there are 10 informative input phrases chosen by legal experts.
 190 Among them, $\mathcal{R} = \{[\text{chased}], [\text{with an axe}], [\text{bit}], [\text{slightly injured}]\}$ are the direct reason for the
 191 judgment “*Assault*” for Andy, thereby being annotated as relevant phrases. In the computation of
 192 interactions, all tokens in the brackets [] are taken as a single input phrase.

193 (2) **Irrelevant phrases** are phrases that describe the defendant but are not sensitive phrases
 194 that directly contribute to the judgment result. For example, as Figure 1 shows, $\mathcal{I} =$
 195 $\{[\text{morning}], [\text{had an argument}]\}$ are *not* the direct reason for the judgment “*Assault*” for Andy, thereby
 196 being annotated as irrelevant phrases.

197 (3) **Forbidden phrases** are usually sensitive yet misleading phrases in the legal case,
 198 *e.g.*, phrases describing incorrect defendant. For example, as Figure 1 shows, $\mathcal{F} =$
 199 $\{[\text{hit}], [\text{with a shovel}], [\text{injuring}], [\text{death}]\}$ should not influence the judgment for Andy, because these
 200 words describe the actions and consequences of Bob, not actions of Andy, thereby being annotated as
 201 forbidden phrases for Andy.

202 Please see Section I for more examples of the annotated relevant phrases, irrelevant phrases, and
 203 forbidden phrases in real legal cases.

204 In particular, we set up **two principles** to guide 16 legal experts and volunteers to annotate phrases to
 205 enable a convincing evaluation. Please see Section I for detailed principles. We acknowledge that the
 206 above three types of phrases are not a complete enumeration of all problematic phrases in legal cases.
 207 Instead, this paper just aims to illustrate the existence of a large ratio of unreliable inference patterns
 208 used by the LLMs, rather than exhausting all potential issues with an LLM.
 209

210 2.3 RELIABLE AND UNRELIABLE INTERACTION EFFECTS

212 Since the scalar weight I_S^{AND} (or I_S^{OR}) denotes the numerical effect for the interaction (or called
 213 *interaction effect* for short), the annotation of *relevant*, *irrelevant*, and *forbidden* phrases enables
 214 us to decompose the overall interaction effects I_S^{AND} and I_S^{OR} in Theorem 1 into reliable effects
 215

⁶In particular, there are two senior legal experts who have been practicing for over 10 years.

(R_S^{AND} and R_S^{OR}) and unreliable effects (U_S^{AND} and U_S^{OR}), i.e., $I_S^{\text{AND}} \stackrel{\text{decompose}}{=} R_S^{\text{AND}} + U_S^{\text{AND}}$ and $I_S^{\text{OR}} \stackrel{\text{decompose}}{=} R_S^{\text{OR}} + U_S^{\text{OR}}$. The absolute effect ($|I_S^{\text{AND}}|$ and $|I_S^{\text{OR}}|$) is termed the *interaction strength*.

In this way, we can define **reliable interaction effects** (R_S^{AND} and R_S^{OR}) as interaction effects that align with human domain knowledge, and usually contain relevant phrases and exclude forbidden phrases. In contrast, **unreliable interaction effects** (U_S^{AND} and U_S^{OR}) are defined as interaction effects that do not match human domain knowledge, which are attributed to irrelevant or forbidden phrases.

Reliable interactions and unreliable interactions. Figure 1 further provides an example of using AND-OR interactions to explain the inference patterns of a legal LLM. The legal LLM correctly attributes the judgment of “*Assault*” to interactions involving the relevant phrases “*chased*,” “*with an axe*,” “*bit*,” and “*slightly injured*.” However, the legal LLM also uses the irrelevant phrases (“*morning*” and “*had an argument*”), and the forbidden phrases (“*hit*,” “*with a shovel*,” “*injuring*,” and “*death*”) to compute the output score of the judgment of “*Assault*.” These irrelevant phrases do not directly contribute to the legal judgment result for Andy, and the forbidden phrases are actions and consequences that are not directly related to Andy, e.g., actions are not taken by Andy. Obviously, the judgment should not rely on such inference patterns.

In this way, we define *reliable* and *unreliable* interaction effects for AND-OR interactions, as follows.

For AND interactions. Because the AND interaction I_S^{AND} is activated only when all input phrases (tokens or phrases) in S are present in the input legal case, the reliable interaction effect for AND interaction R_S^{AND} w.r.t. S must include relevant phrases in \mathcal{R} , and completely exclude forbidden phrases in \mathcal{F} , i.e., $S \cap \mathcal{R} \neq \emptyset, S \cap \mathcal{F} = \emptyset$. Otherwise, if S contains any forbidden phrases in \mathcal{F} , or if S does not contain any relevant phrases in \mathcal{R} , then the AND interaction I_S^{AND} represents an incorrect logic for judgment. In this way, the reliable AND interaction effects R_S^{AND} and unreliable AND interaction effects U_S^{AND} w.r.t. S can be computed as follows.

$$\begin{aligned} \text{if } S \cap \mathcal{F} = \emptyset, S \cap \mathcal{R} \neq \emptyset \text{ then } R_S^{\text{AND}} &= I_S^{\text{AND}}, \quad U_S^{\text{AND}} = 0 \\ \text{otherwise, } R_S^{\text{AND}} &= 0, \quad U_S^{\text{AND}} = I_S^{\text{AND}} \end{aligned} \quad (4)$$

For OR interactions. The OR interaction I_S^{OR} affects the LLM’s output when any input variable (token or phrase) in S appears in the input legal case. Therefore, we can define the reliable effect R_S^{OR} as the numerical component in I_S^{OR} allocated to relevant input phrases in $S \cap \mathcal{R}$. To this end, just like in (10), we uniformly allocate the OR interaction effects to all input phrases in S . The reliable interaction effects R_S^{OR} and unreliable interactions effects U_S^{OR} are those allocated to relevant variables, and those allocated to irrelevant and forbidden variables, respectively.

$$\forall S \subseteq N, S \neq \emptyset, \quad R_S^{\text{OR}} = \frac{|S \cap \mathcal{R}|}{|S|} \cdot I_S^{\text{OR}}, \quad U_S^{\text{OR}} = \left(1 - \frac{|S \cap \mathcal{R}|}{|S|}\right) \cdot I_S^{\text{OR}} \quad (5)$$

In fact, such a uniform allocation of interaction effects to input phrases has sufficient theoretical supports and has been widely used, e.g., being used in the computation of the Shapley value (45; 32).

In this way, according to Equation (2) with the setting $\mathbf{x}_{\text{mask}} = \mathbf{x}$, the output score of the legal judgment result $v(\mathbf{x})$ can be formulated as the sum of all reliable effects (R_S^{AND} and R_S^{OR}) that align with human domain knowledge, and all unreliable effects (U_S^{AND} and U_S^{OR}) that do not match human domain knowledge.

$$v(\mathbf{x}) = v(\mathbf{x}_\emptyset) + \underbrace{\sum_{S \in \Omega^{\text{AND}}} R_S^{\text{AND}} + \sum_{S \in \Omega^{\text{OR}}} R_S^{\text{OR}}}_{\text{reliable interaction effects}} + \underbrace{\sum_{S \in \Omega^{\text{AND}}} U_S^{\text{AND}} + \sum_{S \in \Omega^{\text{OR}}} U_S^{\text{OR}}}_{\text{unreliable interaction effects}} \quad (6)$$

Ratio of reliable interaction effects. We design a metric to evaluate the alignment quality between the interaction patterns used by the legal LLM and human domain knowledge. Definition 1 introduces the ratio of reliable interaction effects that align with human domain knowledge.

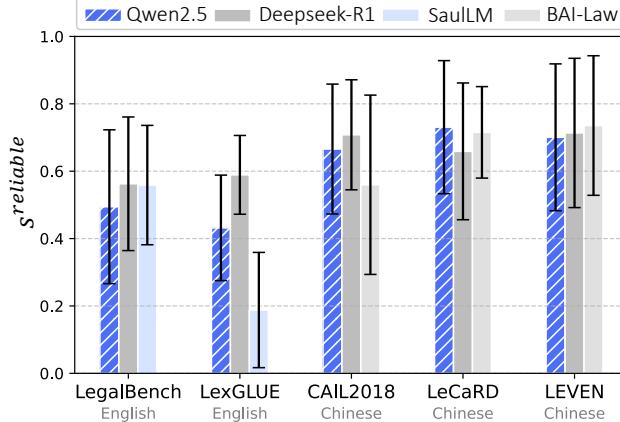


Figure 2: Ratio of reliable interaction effects (measured by s^{reliable}) among all the interaction patterns used by the LLM for judgment.

Definition 1 (Ratio of reliable interaction effects). *Given an LLM, the ratio of reliable interaction effects to all salient interaction effects s^{reliable} is computed as follows.*

$$s^{\text{reliable}} = \frac{\sum_{S \in \Omega^{\text{AND}}} |R_S^{\text{AND}}| + \sum_{S \in \Omega^{\text{OR}}} |R_S^{\text{OR}}|}{\sum_{S \in \Omega^{\text{AND}}} |I_S^{\text{AND}}| + \sum_{S \in \Omega^{\text{OR}}} |I_S^{\text{OR}}|} \quad (7)$$

A larger value of $s^{\text{reliable}} \in [0, 1]$ indicates that a higher proportion of interaction effects align with human domain knowledge, which means the judgment rationale of an LLM is more aligned with that of human experts.

3 EXPERIMENTS

In this section, we conducted experiments to evaluate the correctness of interaction patterns (inference patterns) used by the LLMs for legal judgments. Specifically, we identified and quantified the reliable interaction effects and unreliable interaction effects used by the LLM.

We evaluated the correctness of interaction patterns used by four LLMs: two general-purpose LLMs, including Qwen2.5-14B-Base (57), and Deepseek-R1-Distill-Qwen-14B (29), and two law-specific LLMs, including SaulLM-7B-Instruct (7), and BAI-Law-13B (21). Among them, SaulLM-7B-Instruct was trained on English legal corpora, while BAI-Law-13B was fine-tuned on Chinese legal corpora.

Examining the faithfulness of the interaction-based explanation. We conducted experiments to evaluate the sparsity property and the universal matching property of the extracted interactions in Section J. The successful verification of the two properties indicated that the intricate inference logic used by the LLM for judgment on exponentially many masked input legal cases could be faithfully mimicked by the few extracted AND-OR interactions.

3.1 EVALUATING THE RELIABILITY OF INTERACTIONS USED FOR JUDGMENT

The disentanglement of reliable interaction effects and unreliable interaction effects provides new perspectives to analyze the representation quality of an LLM.

Ratio of reliable interaction effects. Figure 2 compares the ratio of reliable interaction effects s^{reliable} used by different LLMs for judgment. Specifically, for English legal tasks, we evaluated Qwen, Deepseek, and SaulLM on legal cases from the ECtHR dataset in the LexGLUE benchmark (5) and the Learned Hand Crime dataset in the LegalBench benchmark (17). For Chinese legal tasks, we evaluated Qwen, Deepseek, and BAI-Law on cases from the CAIL2018 dataset (56), the LeCaRD dataset (33), and the LEVEN dataset (58). For each task, we evaluated 100 randomly selected samples, with 10 informative input phrases chosen by two senior legal experts with over 10 years of professional experience. Then, we invited a group of 16 legal experts and volunteers to annotate each phrase as relevant, irrelevant, and forbidden phrases in the input legal case. Please refer to Section L.1 for more implemantal details.

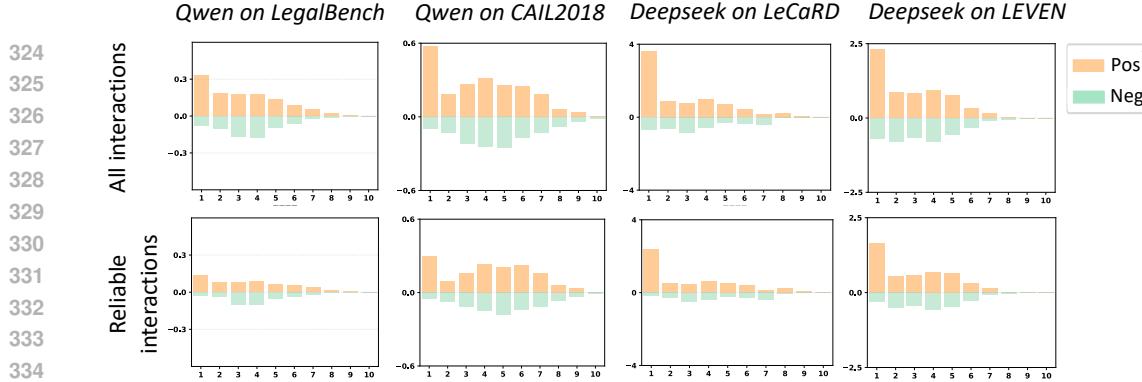


Figure 3: Distribution of all interactions over different orders (complexities) (denoted by $A^{(o),\text{pos}}$ and $A^{(o),\text{neg}}$) and that of all reliable interactions (denoted by $A_{\text{reliable}}^{(o),\text{pos}}$ and $A_{\text{reliable}}^{(o),\text{neg}}$).

Empirical results demonstrated that neither general-purpose LLMs nor legal-domain-specific LLMs exhibited sufficient reliable interaction effects. In particular, over half of interactions represented unreasonable or even incorrect justifications for the judgment predictions. This reminded us that although current LLMs conducted correct predictions on legal tasks, their decisions relied on a large number of problematic rationales, which could introduce significant potential unfairness and risks.

Complexity of interactions. We analyzed the complexity of interactions used for judgment. We used the order of an interaction, *i.e.*, the number of input phrases in $|S|$, to represent the complexity of interactions. Specifically, let $A^{(o),\text{pos}} = \sum_{\text{op} \in \{\text{AND,OR}\}} \sum_{S \in \Omega^{\text{op}}, |S|=o} \max(0, I_S^{\text{op}})$ and $A^{(o),\text{neg}} = \sum_{\text{op} \in \{\text{AND,OR}\}} \sum_{S \in \Omega^{\text{op}}, |S|=o} \min(0, I_S^{\text{op}})$ to represent the strength of all positive o -order interactions and the strength of all negative o -order interactions. Figure 3 shows the histogram of $A^{(o),\text{pos}}$ and $A^{(o),\text{neg}}$ to represent the distribution of interactions over different orders (complexities). Similarly, we computed the distribution of reliable interactions over different orders by quantifying $A_{\text{reliable}}^{(o),\text{pos}}$ and $A_{\text{reliable}}^{(o),\text{neg}}$ on reliable interactions $\{R_S^{\text{AND}}, R_S^{\text{OR}}\}_S$ in the same manner (please see Figure 3).

As evidenced in Figure 3, the LLM consistently demonstrated a strong preference for using low-order interactions for legal judgments, regardless of whether we examined the distribution of all interactions or the distribution of only reliable interactions. The low-order interactions mainly used local patterns on few input phrases to facilitate heuristic-based inference, rather than conducting comprehensive analysis of all case factors. *This finding had challenged the prevailing assumption that LLMs possessed long-chain reasoning capabilities.*

Significance of conflicted interaction patterns. Besides, we also quantified the significance of conflicts between different interaction effects. We can consider positive interaction effects as supporting evidence for generating the target tokens, while negative interaction effects serve as anti-evidence. Therefore, we quantified the significance of such cancellation for interactions as $s^{\text{conflict}} = 1 - \sum_{\text{op} \in \{\text{AND,OR}\}} |\sum_{S \in \Omega^{\text{op}}} I_S^{\text{op}}| / \sum_{\text{op} \in \{\text{AND,OR}\}} \sum_{S \in \Omega^{\text{op}}} |I_S^{\text{op}}| \in [0, 1]$. Table 4 in Section L.2 shows the significance of mutual cancellation of interaction patterns. We found that roughly more than 60% effects of the interaction patterns had been mutually cancelled out. The mutually canceling interaction effects demonstrated the inherent ambiguity in an LLM’s judgment. In contrast, more reliable large models typically exhibited lower cancellation level.

3.2 CASE STUDIES

In this subsection, we visualized the interaction patterns on specific legal cases, and identified potential representation flaws of LLMs. While not exhaustive, let us introduce three common types of potential representation flaws frequently observed in LLMs: (1) making judgments using the behavior of incorrect entities, (2) making judgments influenced by identity-based discrimination, and (3) making judgments based on semantically irrelevant phrases. Due to the limit of the page number, we analyzed legal cases of the first and second types, and put results of the third type in Section K. We tested legal LLMs SaulLM and BAI-Law make judgments on legal cases in the CAIL2018 dataset (56). For the SaulLM-7B-Instruct model, we translated the Chinese legal cases into English and performed the analyses on the translated cases to enable fair comparisons.

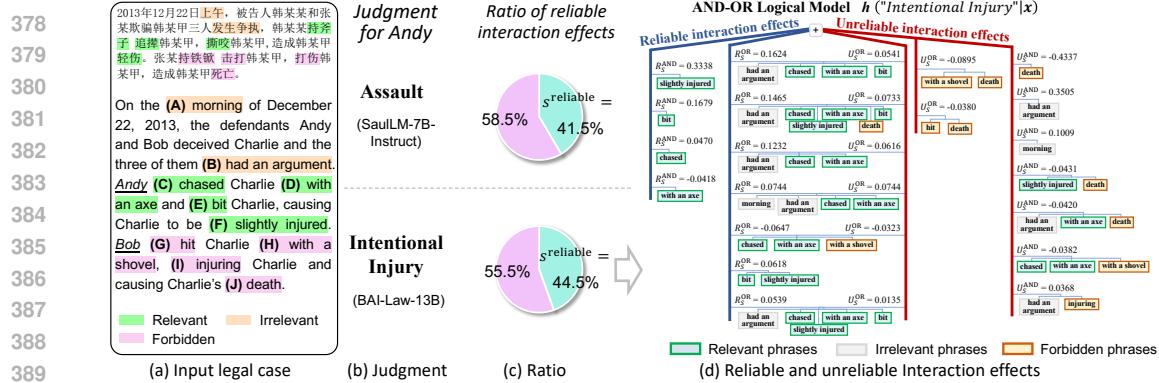


Figure 4: Visualization of judgments affected by incorrect entities’ actions. (a) Irrelevant phrases were annotated in the legal case, including the time and defendant’s actions that were not the direct reason for the judgment. Criminal actions of the defendant were annotated as relevant phrases. Criminal actions of the unrelated person were annotated as forbidden phrases. (b) Judgments predicted by the two legal LLMs, which were both correct according to laws of the two countries. (c,d) We quantified the reliable and unreliable interaction effects.

Case 1: making judgments based on incorrect entities’ actions. Despite the high accuracy of legal LLMs in predicting judgment results, we observed that the legal LLMs used a significant portion of interaction patterns that were mistakenly attributed to criminal actions made by incorrect entities. In other words, the legal LLMs mistakenly used the criminal action of a person (entity) to make judgment on another unrelated person (entity). To evaluate the impact of such incorrect entity matching on both the SaulLM and BAI-Law models, we engaged legal experts to annotate misleading phrases that described incorrect defendant as the *forbidden phrases* in \mathcal{F} . These forbidden phrases should not influence the legal judgment for the target defendant.

Figure 4 shows the legal case, which showed Andy bit Charlie, constituting an assault, and then Bob hit Charlie with a shovel, resulting in Charlie’s death. Here, when the legal LLMs judged the actions of Andy, input phrases such as “hit,” “with a shovel,” “injuring,” and “death” were annotated as forbidden phrases in \mathcal{F} , because these phrases described Bob’s actions and consequences and were not directly related to Andy. We observed that the SaulLM *did* use several interaction patterns which aligned with legal experts’ domain knowledge for the judgment in Figure 1. For example, an AND interaction pattern $S_1 = \{\text{“slightly injured”}\}$, an AND interaction pattern $S_2 = \{\text{“bit”}\}$, and an OR interaction pattern $S_3 = \{\text{“bit”, “slightly injured”}\}$ contributed salient reliable interaction effects $R_{S_1}^{\text{AND}} = 0.47$, $R_{S_2}^{\text{AND}} = 0.33$, and $R_{S_3}^{\text{OR}} = 0.10$, respectively, to the confidence score $v(\text{“Assault”}|\mathbf{x})$ of the judgment “Assault” for Andy. However, the legal LLM also used a significant portion of problematic interaction patterns that based on an incorrect entity’s actions. For example, three AND interaction patterns $S_4 = \{\text{“death”}\}$, $S_5 = \{\text{“with a shovel”}\}$, and $S_6 = \{\text{“injuring”}\}$ that described Bob’s actions and consequences contributed unreliable interaction effects $U_{S_4}^{\text{AND}} = -1.04$, $U_{S_5}^{\text{AND}} = 0.93$ and $U_{S_6}^{\text{AND}} = 0.19$ to the confidence score of the judgment “Assault” for Andy, respectively. In sum, the SaulLM model only used a ratio of $s^{\text{reliable}} = 41.5\%$ reliable interaction effects for the legal judgment. This reflected a representation flaw, *i.e.*, the LLM tended to memorize the sensitive tokens, such as the weapons, alongside the legal judgment results, rather than understand the true logic in the input prompt, *e.g.*, identifying *who* performed *which* actions.

In comparison, we evaluated the above legal case on the BAI-Law model, as shown in Figure 4. The BAI-Law model used a bit higher ratio of $s^{\text{reliable}} = 44.5\%$ reliable interaction effects. Many interaction patterns used by the BAI-Law-13B model were also used by the SaulLM model, such as an AND interaction pattern $S_1 = \{\text{“slightly injured”}\}$, and an AND interaction pattern $S_2 = \{\text{“bit”}\}$, and an OR interaction pattern $S_3 = \{\text{“bit”, “slightly injured”}\}$ contributed salient reliable interaction effects $R_{S_1}^{\text{AND}} = 0.33$, $R_{S_2}^{\text{AND}} = 0.17$, and $R_{S_3}^{\text{OR}} = 0.06$ to the confidence score $v(\text{“Intentional Injury”}|\mathbf{x})$ of the judgment “Intentional Injury” for Andy, respectively. This indicated that these two legal LLMs *did* identify some direct reasons for the legal judgment. However, the BAI-LAW-13B model also primarily relied on unreliable interaction effects for the legal judgment on Andy, such as an AND interaction pattern $S_4 = \{\text{“death”}\}$, which included forbidden phrases for the consequence of Bob’s actions, to contribute unreliable interaction effects $U_{S_4}^{\text{AND}} = -0.43$ to the confidence score

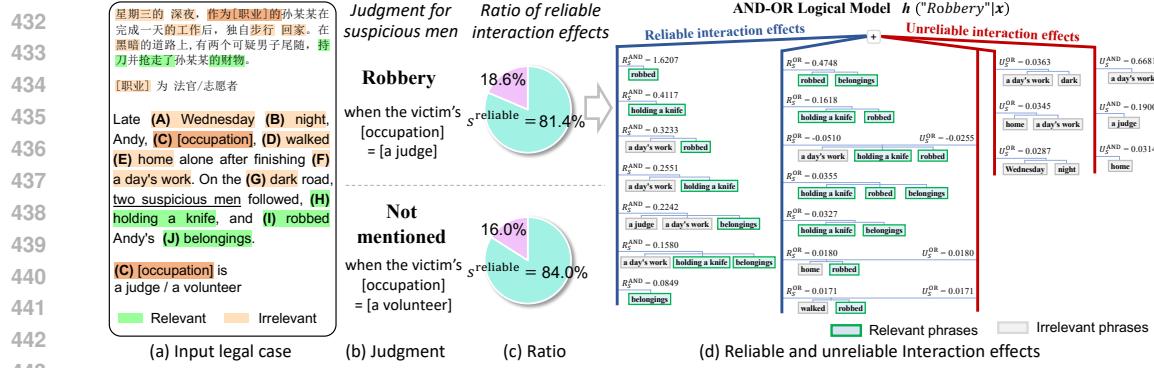


Figure 5: Visualization of judgments biased by discrimination in identity. (a) Irrelevant phrases were annotated in the legal case, including the occupation, time and actions that are not the direct reason for the judgment. Criminal actions of the defendant were annotated as relevant phrases. (b) The SaullLM-7B-Instruct model predicted the judgment based on the legal case with different occupations. (c,d) We quantified the reliable and unreliable interaction effects.

of the judgment “*Intentional Injury*” for Andy. Additional examples of making judgments based on incorrect entities’ actions are provided in Section L.4.

Case 2: discrimination in identity may affect judgments. We observed that the legal LLMs used interaction patterns that were attributed to the occupation information. This would lead to a significant occupation bias. More interestingly, we observed that when we replaced the occupation phrase with another occupation phrase, the unreliable interaction effect containing the occupation phrase would be significantly changed. This indicates a common identity bias problem, because similar bias may also happen on other identities (e.g., age, gender, education level, and marital status).

Figure 5 shows the legal case, in which Andy was robbed of his belongings by two suspicious men. The SaullLM used several interaction patterns that aligned with legal experts’ domain knowledge for the legal judgment, e.g., an AND interaction pattern $S_1 = \{“robbed”\}$, and an OR interaction pattern $S_2 = \{“robbed”, “belongings”\}$, and an OR interaction pattern $S_3 = \{“holding a knife”, “robbed”\}$ contributed salient reliable interaction effects to the confidence score $v(“Robbery”|x)$ of the judgment “Robbery.” However, the legal LLM also used problematic interaction patterns, i.e., an AND interaction pattern $S_4 = \{“a judge”\}$ for the occupation information contributed salient unreliable interaction effects $U_{S_4}^{AND} = 0.19$ to boost the output score of the judgment.

More interestingly, if we substituted Andy’s occupation from the phrase “*a judge*” to “*a volunteer*,” the interaction pattern $S_5 = \{“[occupation]”, “a day’s work”, “belongings”\}$ decreased its reliable interaction effects from $R_{S_5}^{AND} = 0.22$ to $R_{S_5}^{AND} = 0.06$ (see Figure 11 in Appendix). The interaction patterns containing the occupation phrase were important factors that changed the legal judgment result from “Robbery” to “Not mentioned.” We verified similar phenomena on different occupations, e.g., substituting the occupation phrase with law-related occupations such as “*a lawyer*” and “*a policeman*” also maintained the judgment result, while the other occupations such as “*a programmer*” changed the judgment to “Not mentioned.” Please see Section L.5 for reliable and unreliable interaction effects for all these occupations. This suggested considerable occupation bias. In comparison, we evaluated the same legal case on the BAI-Law in Section L.5. This experiment showed the potential of our method to identify the identity (e.g., occupation) bias used by the LLM.

4 CONCLUSIONS AND DISCUSSION

In this paper, we proposed a method to evaluate the correctness of the detailed inference patterns used by an LLM. The universal matching property and the sparsity property of interactions provide mathematical support for the faithfulness of interaction-based explanations. Thus, in this paper, we designed new metrics to identify and quantify reliable and unreliable interaction effects. Experiments showed that the legal LLMs often used a significant portion of problematic interaction patterns to make judgments, even when the legal judgment prediction appeared correct. The evaluation of the alignment between the interaction patterns of LLMs and human domain knowledge has broader implications for high-stake tasks, such as finance and healthcare data analytics, although we focus on legal LLMs as a case study.

486 REFERENCES
487

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

[2] Marco Ancona, Cengiz Oztireli, and Markus Gross. Explaining deep neural networks with a polynomial time algorithm for shapley value approximation. In *International conference on machine learning*, pages 272–281. PMLR, 2019.

[3] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022.

[4] Ilias Chalkidis, Ion Androutsopoulos, and Nikolaos Aletras. Neural legal judgment prediction in English. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 4317–4323. Association for Computational Linguistics, 2019.

[5] Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos, Daniel Martin Katz, and Nikolaos Aletras. Lexglue: A benchmark dataset for legal language understanding in english. *arXiv preprint arXiv:2110.00976*, 2021.

[6] Lu Chen, Siyu Lou, Benhao Huang, and Quanshi Zhang. Defining and extracting generalizable interaction primitives from dnns. *International Conference on Learning Representations*, 2024.

[7] Pierre Colombo, Telmo Pessoa Pires, Malik Boudiaf, Dominic Culver, Rui Melo, Caio Corro, Andre F. T. Martins, Fabrizio Esposito, Vera Lúcia Raposo, Sofia Morgado, and Michael Desa. Saullm-7b: A pioneering large language model for law. *arXiv preprint arXiv:2403.03883*, 2024.

[8] Junyun Cui, Xiaoyu Shen, and Shaochun Wen. A survey on legal judgment prediction: Datasets, metrics, models and challenges. *IEEE Access*, 2023.

[9] Huiqi Deng, Qihan Ren, Hao Zhang, and Quanshi Zhang. Discovering and explaining the representation bottleneck of dnns. In *International Conference on Learning Representations*, 2022.

[10] Huiqi Deng, Na Zou, Mengnan Du, Weifu Chen, Guocan Feng, Ziwei Yang, Zheyang Li, and Quanshi Zhang. Unifying fourteen post-hoc attribution methods with taylor interactions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

[11] Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong, Richard Socher, and Byron C Wallace. Eraser: A benchmark to evaluate rationalized nlp models. In *Proceedings of the 58th annual meeting of the association for computational linguistics*, pages 4443–4458, 2020.

[12] Nouha Dziri, Andrea Madotto, Osmar Zaïane, and Avishek Joey Bose. Neural path hunter: Reducing hallucination in dialogue systems via path grounding. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, 2021.

[13] Zhiwei Fei, Xiaoyu Shen, Dawei Zhu, Fengzhe Zhou, Zhuo Han, Songyang Zhang, Kai Chen, Zongwen Shen, and Jidong Ge. Lawbench: Benchmarking legal knowledge of large language models. *arXiv preprint arXiv:2309.16289*, 2023.

[14] Katja Filippova. Controlled hallucinations: Learning to generate faithfully from noisy data. *Findings of the Association for Computational Linguistics: EMNLP*, 2020.

[15] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.

[16] Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Alex Chohlas-Wood, Austin Peters, Brandon Waldon, Daniel Rockmore, Diego Zambrano, et al. Legalbench: A collaboratively built benchmark for measuring legal reasoning in large language models. *Advances in Neural Information Processing Systems*, 36, 2024.

540 [17] Neel Guha, Julian Nyarko, Daniel E. Ho, Christopher Re, and et al. Legalbench: A collabora-
 541 tively built benchmark for measuring legal reasoning in large language models. In *Advances in*
 542 *Neural Information Processing Systems (Track on Datasets and Benchmarks)*, 2023.

543 [18] John C Harsanyi. A simplified bargaining model for the n-person cooperative game. *International*
 544 *Economic Review*, 4(2):194–220, 1963.

545 [19] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qian-
 546 glong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in
 547 large language models: Principles, taxonomy, challenges, and open questions. *arXiv preprint*
 548 *arXiv:2311.05232*, 2023.

549 [20] Yichong Huang, Xiachong Feng, Xiaocheng Feng, and Bing Qin. The factual inconsistency
 550 problem in abstractive text summarization: A survey. *arXiv preprint arXiv:2104.14839*, 2021.

551 [21] Baiyulan Open AI Research Institute. Baiyulan open ai. 2023.

552 [22] Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan,
 553 Zhonghao He, Jiayi Zhou, Zhaowei Zhang, et al. Ai alignment: A comprehensive survey. *arXiv*
 554 *preprint arXiv:2310.19852*, 2023.

555 [23] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
 556 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation.
 557 *ACM Computing Surveys (CSUR)*, 55(12), 2023.

558 [24] Gueyoung Jung, Matti A Hiltunen, Kaustubh R Joshi, Richard D Schlichting, and Calton Pu.
 559 Mistral: Dynamically managing power, performance, and adaptation cost in cloud infrastruc-
 560 tures. In *2010 IEEE 30th International Conference on Distributed Computing Systems*, pages
 561 62–73. IEEE, 2010.

562 [25] Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
 563 agent alignment via reward modeling: a research direction. *arXiv preprint arXiv:1811.07871*,
 564 2018.

565 [26] Mingjie Li and Quanshi Zhang. Does a neural network really encode symbolic concept? In
 566 *International Conference on Machine Learning*, 2023.

567 [27] Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure:
 568 Towards a mechanistic understanding. In *International Conference on Machine Learning*, pages
 569 19689–19729. PMLR, 2023.

570 [28] Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic
 571 human falsehoods. In *Proceedings of the 60th Annual Meeting of the Association for Compu-
 572 tational Linguistics (Volume 1: Long Papers)*, 2021.

573 [29] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 574 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 575 *arXiv:2412.19437*, 2024.

576 [30] Dongrui Liu, Huiqi Deng, Xu Cheng, Qihan Ren, Kangrui Wang, and Quanshi Zhang. Towards
 577 the difficulty for a deep neural network to learn concepts of different complexities. *Advances in*
 578 *Neural Information Processing Systems*, 2024.

579 [31] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
 580 and Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of*
 581 *the Association for Computational Linguistics*, 12:157–173, 2024.

582 [32] Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances*
 583 *in neural information processing systems*, 2017.

584 [33] Yixiao Ma, Yunqiu Shao, Yueyue Wu, Yiqun Liu, Ruizhe Zhang, Min Zhang, and Shaoping
 585 Ma. Lecard: a legal case retrieval dataset for chinese law system. In *Proceedings of the 44th*
 586 *international ACM SIGIR conference on research and development in information retrieval*,
 587 pages 2342–2348, 2021.

[34] Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality in abstractive summarization. *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, 2020.

[35] Masha Medvedeva, Martijn Wieling, and Michel Vols. Rethinking the field of automatic prediction of court decisions. *Artificial Intelligence and Law*, 31(1):195–212, 2023.

[36] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. *arXiv preprint arXiv:1301.3781*, 2013.

[37] OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

[38] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.

[39] Jie Ren, Mingjie Li, Qirui Chen, Huiqi Deng, and Quanshi Zhang. Defining and quantifying the emergence of sparse concepts in dnns. *IEEE Conference on Computer Vision and Pattern Recognition*, 2023.

[40] Jie Ren, Zhanpeng Zhou, Qirui Chen, and Quanshi Zhang. Can we faithfully represent masked states to compute shapley values on a dnn? *International Conference on Learning Representations*, 2023.

[41] Qihan Ren, Huiqi Deng, Yunuo Chen, Siyu Lou, and Quanshi Zhang. Bayesian neural networks avoid encoding perturbation-sensitive and complex concepts. *International Conference on Machine Learning*, 2023.

[42] Qihan Ren, Jiayang Gao, Wen Shen, and Quanshi Zhang. Where we have arrived in proving the emergence of sparse interaction primitives in dnns. In *International Conference on Learning Representations*, 2024.

[43] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pages 1135–1144, 2016.

[44] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 618–626, 2017.

[45] Lloyd S Shapley. A value for n-person games. In *Contributions to the Theory of Games*, 2(28):307–317, 1953.

[46] Wen Shen, Lei Cheng, Yuxiao Yang, Mingjie Li, and Quanshi Zhang. Can the inference logic of large language models be disentangled into symbolic concepts? *arXiv preprint arXiv:2304.01083*, 2023.

[47] Mukund Sundararajan, Kedar Dhamdhere, and Ashish Agarwal. The shapley taylor interaction index. In *International conference on machine learning*, pages 9259–9268. PMLR, 2020.

[48] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In *International conference on machine learning*, pages 3319–3328. PMLR, 2017.

[49] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

[50] Che-Ping Tsai, Chih-Kuan Yeh, and Pradeep Ravikumar. Faith-shap: The faithful shapley interaction index. *Journal of Machine Learning Research*, 24(94):1–42, 2023.

[51] Cunxiang Wang, Sirui Cheng, Qipeng Guo, Yuanhao Yue, Bowen Ding, Zhikun Xu, Yidong Wang, Xiangkun Hu, Zheng Zhang, and Yue Zhang. Evaluating open-qa evaluation. *Advances in Neural Information Processing Systems*, 36, 2024.

648 [52] Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng
 649 Shang, Xin Jiang, and Qun Liu. Aligning large language models with human: A survey. *arXiv*
 650 *preprint arXiv:2307.12966*, 2023.

651 [53] Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training
 652 fail? *Advances in Neural Information Processing Systems*, 36:80079–80110, 2023.

653 [54] Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training
 654 fail? In *Advances in Neural Information Processing Systems*, volume 36, 2023.

655 [55] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
 656 Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
 657 *Advances in neural information processing systems*, 35:24824–24837, 2022.

658 [56] Chaojun Xiao, Haoxi Zhong, Zhipeng Guo, Cunchao Tu, Zhiyuan Liu, Maosong Sun, Yansong
 659 Feng, Xianpei Han, Zhen Hu, Heng Wang, et al. Cail2018: A large-scale legal dataset for
 660 judgment prediction. *arXiv preprint arXiv:1807.02478*, 2018.

661 [57] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 662 Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 663 *arXiv:2412.15115*, 2024.

664 [58] Feng Yao, Chaojun Xiao, Xiaozhi Wang, Zhiyuan Liu, Lei Hou, Cunchao Tu, Juanzi Li, Yun
 665 Liu, Weixing Shen, and Maosong Sun. Leven: A large-scale chinese legal event detection
 666 dataset. *arXiv preprint arXiv:2203.08556*, 2022.

667 [59] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large
 668 language model (llm) security and privacy: The good, the bad, and the ugly. *High-Confidence*
 669 *Computing*, page 100211, 2024.

670 [60] Quanshi Zhang, Xin Wang, Jie Ren, Xu Cheng, Shuyun Lin, Yisen Wang, and Xiangming Zhu.
 671 Proving common mechanisms shared by twelve methods of boosting adversarial transferability.
 672 *arXiv preprint arXiv:2207.11694*, 2022.

673 [61] Huilin Zhou, Hao Zhang, Huiqi Deng, Dongrui Liu, Wen Shen, Shih-Han Chan, and Quanshi
 674 Zhang. Explaining generalization power of a dnn using interactive concepts. In *Proceedings of*
 675 *the AAAI Conference on Artificial Intelligence*, volume 38, pages 17105–17113, 2024.

676 [62] Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
 677 Universal and transferable adversarial attacks on aligned language models. *arXiv preprint*
 678 *arXiv:2307.15043*, 2023.

679 [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288] [289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312] [313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336] [337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360] [361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384] [385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408] [409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432] [433] [434] [435] [436] [437] [438] [439] [440] [441] [442] [443] [444] [445] [446] [447] [448] [449] [450] [451] [452] [453] [454] [455] [456] [457] [458] [459] [460] [461] [462] [463] [464] [465] [466] [467] [468] [469] [470] [471] [472] [473] [474] [475] [476] [477] [478] [479] [480] [481] [482] [483] [484] [485] [486] [487] [488] [489] [490] [491] [492] [493] [494] [495] [496] [497] [498] [499] [500] [501] [502] [503] [504] [505] [506] [507] [508] [509] [510] [511] [512] [513] [514] [515] [516] [517] [518] [519] [520] [521] [522] [523] [524] [525] [526] [527] [528] [529] [530] [531] [532] [533] [534] [535] [536] [537] [538] [539] [540] [541] [542] [543] [544] [545] [546] [547] [548] [549] [550] [551] [552] [553] [554] [555] [556] [557] [558] [559] [560] [561] [562] [563] [564] [565] [566] [567] [568] [569] [569] [570] [571] [572] [573] [574] [575] [576] [577] [578] [579] [580] [581] [582] [583] [584] [585] [586] [587] [588] [589] [589] [590] [591] [592] [593] [594] [595] [596] [597] [598] [599] [599] [600] [601] [602] [603] [604] [605] [606] [607] [608] [609] [609] [610] [611] [612] [613] [614] [615] [616] [617] [618] [619] [619] [620] [621] [622] [623] [624] [625] [626] [627] [628] [629] [629] [630] [631] [632] [633] [634] [635] [636] [637] [638] [639] [639] [640] [641] [642] [643] [644] [645] [646] [647] [648] [648] [649] [650] [651] [652] [653] [654] [655] [656] [657] [658] [659] [659] [660] [661] [662] [663] [664] [665] [666] [667] [668] [669] [669] [670] [671] [672] [673] [674] [675] [676] [677] [678] [679] [679] [680] [681] [682] [683] [684] [685] [686] [687] [688] [689] [689] [690] [691] [692] [693] [694] [695] [696] [697] [698] [699] [699] [700] [701]

702 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
703704 In this paper, large language models (LLMs) were used solely for partial language refinement.
705706 707 B RELATED WORK
708709 Previous works have evaluated different aspects of trustworthiness and safety in LLMs, including
710 factuality and hallucination problems, value alignment, and susceptibility to attacks. First, the
711 evaluation of factuality refers to whether the language generalization results of LLMs align with
712 the verifiable facts (28; 37; 51). Hallucination in LLMs typically arises when the generated results
713 contradict the source material or cannot be verified from the provided input (14; 34; 19; 34; 20; 12; 23).
714 Second, value alignment aims to ensure an LLM to behave in accordance with human intentions and
715 values (25; 52; 22), which is another classical perspective for evaluating the bias and safety of LLMs.
716 Recent studies have used Supervised Fine-Tuning (SFT) (38; 37) and Reinforcement Learning from
717 Human Feedback (RLHF) (38; 37; 49) to align LLM’s behavior with human expectations. Third,
718 susceptibility to attacks is also another significant concern for LLMs. Recent studies have shown that
719 even the latest LLMs remain vulnerable to adversarial inputs to generate harmful content (62; 54; 3;
720 37), which is also known as “jailbreaks.”
721722 However, above evaluation methods mainly focus on the quality or correctness of output results of
723 LLMs. The high accuracy of the LLM usually makes the evaluation a long-tail search for incorrect
724 results.725 In comparison, our evaluation approach examines the correctness of internal interaction patterns.
726 Even when the LLM outputs correct results on a testing sample, experimental results show that more
727 than a half detailed interaction patterns encoded by the legal LLM may still represent chaotic features.
728 Thus, we can consider the interaction pattern as a much more efficient evaluation strategy. Our goal
729 is to enhance the trustworthiness of the LLMs, particularly in high-stake tasks. Essentially, two types
730 of evaluation strategies can be roughly analogized to the distinction between procedural fairness and
731 outcome fairness.732 **Reviewing the development of the interaction explanation theory.** A representative approach
733 in explainable AI was to explain the interactions between input variables (47; 50). Based on the
734 game theory, (39) first used the Harsanyi dividend (18) to quantify the the interaction effect between
735 input variables encoded by the DNN. Then, (26) discovered and (42) further proved that the output
736 scores of DNNs can be faithfully explained as a small number of interaction patterns between
737 input variables. Furthermore, (9; 30; 41) further demonstrated the representation bottleneck of
738 different neural networks from the perspective of interactions, *i.e.*, proving interactions of specific
739 complexities are difficult for specific DNNs to encode. (61) explored the relationship between the
740 complexity of interactions and the generalization power of DNNs. Additionally, (10) proved that
741 the interaction theory provides a unified explanation for mathematical mechanisms of 14 most
742 widely used attribution methods, including Grad-CAM (44), Integrated Gradients (48), and Shapley
743 values (45; 32). (60) proved that the interaction theory provides a unified explanation for the shared
744 mathematical mechanism of 12 classical transferability-boosting methods.745
746 C PROOF OF THEOREM
747748
749 **Theorem 1** (Universal matching property) When scalar weights in the logical model are set to
750 $\forall S \subseteq N, I_S^{\text{AND}} \stackrel{\text{def}}{=} \sum_{T \subseteq S} (-1)^{|S|-|T|} v_{\text{and}}(\mathbf{x}_T)$ and $I_S^{\text{OR}} \stackrel{\text{def}}{=} -\sum_{T \subseteq S} (-1)^{|S|-|T|} v_{\text{or}}(\mathbf{x}_{N \setminus T})$, subject
751 to the requirement $v_{\text{and}}(\mathbf{x}_T) + v_{\text{or}}(\mathbf{x}_T) = v(\mathbf{x}_T)$, then we have $\forall T \subseteq N, v(\mathbf{x}_T) = h(\mathbf{x}_T)$.752 In other words, we have to prove the following theorem.
753754 Given an input sample \mathbf{x} , the network output score $v(\mathbf{x}_T) \in \mathbb{R}$ on each masked sample $\{\mathbf{x}_T | T \subseteq N\}$
755 can be well matched by a surrogate logical model $h(\mathbf{x}_T)$ on each masked sample $\{\mathbf{x}_T | T \subseteq N\}$. The
surrogate logical model $h(\mathbf{x}_T)$ uses the sum of AND interactions and OR interactions to accurately

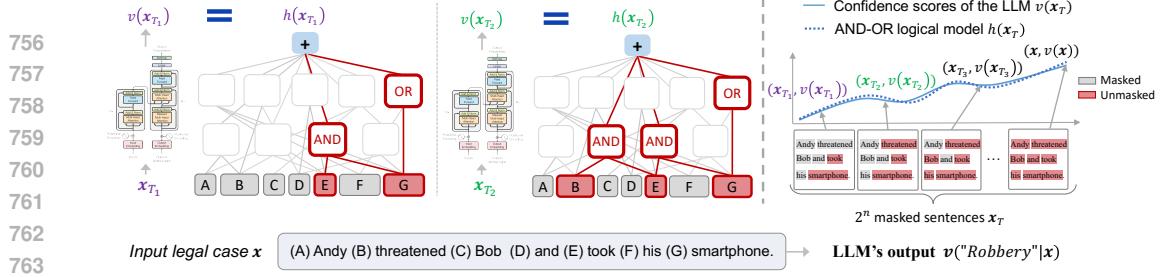


Figure 6: Theorem 1 proves that the AND-OR logical model $h(\cdot)$ can accurately match the confidence score of the LLM’s outputs $v(\cdot)$ when we augment the input prompt \mathbf{x} by enumerating its all 2^n masked states. Here, the left figure shows that the masked input prompt \mathbf{x}_{T_1} with two unmasked token “*took*” and “*smartphone*” activates an AND interaction pattern $S = \{\text{“took”}, \text{“smartphone”}\}$ and an OR interaction pattern $S = \{\text{“his”}, \text{“smartphone”}\}$, and they contribute numerical values (interaction effects) to the logical model $h(\mathbf{x}_{T_1})$. The right figure shows that the logical model can always match the LLM’s outputs on all masked states of the input prompt, $\forall T \subseteq N, h(\text{“Robbery”} | \mathbf{x}_T) = v(\text{“Robbery”} | \mathbf{x}_T)$.

fit the network output score $v(\mathbf{x}_T)$.

$$\forall T \subseteq N, v(\mathbf{x}_T) = h(\mathbf{x}_T).$$

$$\begin{aligned} h(\mathbf{x}_T) &= v(\mathbf{x}_\emptyset) + \sum_{S \subseteq N, S \neq \emptyset} \mathbb{1}_{\text{AND}}(S | \mathbf{x}_T) \cdot I_S^{\text{AND}} + \sum_{S \subseteq N, S \neq \emptyset} \mathbb{1}_{\text{OR}}(S | \mathbf{x}_T) \cdot I_S^{\text{OR}} \\ &= v(\mathbf{x}_\emptyset) + \underbrace{\sum_{S \subseteq T, S \neq \emptyset} I_S^{\text{AND}}}_{v_{\text{and}}(\mathbf{x}_T)} + \underbrace{\sum_{S \subseteq N, S \cap T \neq \emptyset} I_S^{\text{OR}}}_{v_{\text{or}}(\mathbf{x}_T)} \end{aligned} \quad (8)$$

Proof. Let us set a surrogate logical model $h(\mathbf{x}_T) = v(\mathbf{x}_T), \forall T \subseteq N$, which utilizes the sum of AND interactions $I_S^{\text{AND}} = \sum_{T \subseteq S} (-1)^{|S|-|T|} v_{\text{and}}(\mathbf{x}_T)$ and OR interactions $I_S^{\text{OR}} = -\sum_{T \subseteq S} (-1)^{|S|-|T|} v_{\text{or}}(\mathbf{x}_{N \setminus T})$ to fit the network output score $v(\mathbf{x}_T)$, *i.e.*, $v_{\text{and}}(\mathbf{x}_T) + v_{\text{or}}(\mathbf{x}_T) = v(\mathbf{x}_T)$.

To be specific, (1) we use the sum of AND interactions I_S^{AND} to compute the component for AND interactions $v_{\text{and}}(\mathbf{x}_T)$, *i.e.*, $v_{\text{and}}(\mathbf{x}_T) = \sum_{S \subseteq T} I_S^{\text{AND}}$. (2) Then, we use the sum of OR interactions I_S^{OR} to compute the component for OR interactions $v_{\text{or}}(\mathbf{x}_T)$, *i.e.*, $v_{\text{or}}(\mathbf{x}_T) = \sum_{S \subseteq N, S \cap T \neq \emptyset} I_S^{\text{OR}}$. (3) Finally, we use the surrogate logical model $h(\cdot)$ (which uses the sum of AND interactions and OR interactions) to fit the network output score $v(\cdot)$, *i.e.*, $\forall T \subseteq N, v_{\text{and}}(\mathbf{x}_T) + v_{\text{or}}(\mathbf{x}_T) = v(\mathbf{x}_T) = h(\mathbf{x}_T)$.

(1) Universal matching property of AND interactions.

(39) first used the Harsanyi dividend I_S^{AND} in the cooperative game theory (18) to state the universal matching property of AND interactions. The output score of a well-trained DNN on all 2^n masked samples $\{\mathbf{x}_T | T \subseteq N\}$ could be universally explained by the all interaction patterns in $T \subseteq N$, *i.e.*, $\forall T \subseteq N, v_{\text{and}}(\mathbf{x}_T) = \sum_{S \subseteq T} I_S^{\text{AND}}$.

Specifically, the AND interaction (as known as Harsanyi dividend) is defined as $I_S^{\text{AND}} := \sum_{L \subseteq S} (-1)^{|S|-|L|} v_{\text{and}}(\mathbf{x}_L)$. To compute the sum of AND interactions $\forall T \subseteq N, \sum_{S \subseteq T} I_S^{\text{AND}} = \sum_{S \subseteq T} \sum_{L \subseteq S} (-1)^{|S|-|L|} v_{\text{and}}(\mathbf{x}_L)$, we first exchange the order of summation of the set $L \subseteq S \subseteq T$ and the set $S \supseteq L$. That is, we compute all linear combinations of all sets S containing L with respect to the model outputs $v_{\text{and}}(\mathbf{x}_L)$, given a set of input phrases L , *i.e.*, $\sum_{S: L \subseteq S \subseteq T} (-1)^{|S|-|L|} v_{\text{and}}(\mathbf{x}_L)$. Then, we compute all summations over the set $L \subseteq T$.

In this way, we can compute them separately for different cases of $L \subseteq S \subseteq T$. In the following, we consider the cases (1) $L = S = T$, and (2) $L \subseteq S \subseteq T, L \neq T$, respectively.

(1) When $L = S = T$, the linear combination of all subsets S containing L with respect to the model output $v_{\text{and}}(\mathbf{x}_L)$ is $(-1)^{|T|-|L|} v_{\text{and}}(\mathbf{x}_L) = v_{\text{and}}(\mathbf{x}_L)$.

(2) When $L \subseteq S \subseteq T, L \neq T$, the linear combination of all subsets S containing L with respect to the model output $v_{\text{and}}(\mathbf{x}_L)$ is $\sum_{S: L \subseteq S \subseteq T} (-1)^{|S|-|L|} v_{\text{and}}(\mathbf{x}_L)$. For all sets $S : T \supseteq S \supseteq L$, let us consider the linear combinations of all sets S with number $|S|$ for the model output $v_{\text{and}}(\mathbf{x}_L)$, respectively. Let $m := |S|-|L|$, $(0 \leq m \leq |T|-|L|)$, then there are a total of $C_{|T|-|L|}^m$ combinations of all sets S of order $|S|$. Thus, given L , accumulating the model outputs $v_{\text{and}}(\mathbf{x}_L)$ corresponding to all $S \supseteq L$, then $\sum_{S: L \subseteq S \subseteq T} (-1)^{|S|-|L|} v_{\text{and}}(\mathbf{x}_L) = v_{\text{and}}(\mathbf{x}_L) \cdot \underbrace{\sum_{m=0}^{|T|-|L|} C_{|T|-|L|}^m (-1)^m}_{=0} = 0$.

Please see the complete derivation of the following formula.

$$\begin{aligned}
 \sum_{S \subseteq T} I_S^{\text{AND}} &= \sum_{S \subseteq T} \sum_{L \subseteq S} (-1)^{|S|-|L|} v_{\text{and}}(\mathbf{x}_L) \\
 &= \sum_{L \subseteq T} \sum_{S: L \subseteq S \subseteq T} (-1)^{|S|-|L|} v_{\text{and}}(\mathbf{x}_L) \\
 &= \underbrace{v_{\text{and}}(\mathbf{x}_T)}_{L=T} + \sum_{L \subseteq T, L \neq T} v_{\text{and}}(\mathbf{x}_L) \cdot \underbrace{\sum_{m=0}^{|T|-|L|} C_{|T|-|L|}^m (-1)^m}_{=0} \\
 &= v_{\text{and}}(\mathbf{x}_T).
 \end{aligned} \tag{9}$$

Furthermore, we can understand the above equation in a physical sense. Given a masked sample \mathbf{x}_T , if \mathbf{x}_T triggers an AND relationship S (the co-appearance of all input phrases in S), then $S \subseteq T$. Thus, we accumulate the interaction effects I_S^{AND} of any AND relationship S triggered by \mathbf{x}_T as follows,

$$\begin{aligned}
 &v(\mathbf{x}_\emptyset) + \sum_{S \subseteq N, S \neq \emptyset} \mathbb{1}_{\text{AND}}(S | \mathbf{x}_T) \cdot I_S^{\text{AND}} \\
 &= v(\mathbf{x}_\emptyset) + \sum_{S \subseteq T, S \neq \emptyset} I_S^{\text{AND}} \\
 &= \sum_{S \subseteq T} I_S^{\text{AND}} \\
 &= v_{\text{and}}(\mathbf{x}_T).
 \end{aligned} \tag{10}$$

(2) Universal matching property of OR interactions.

According to the definition of OR interactions, we will derive that $\forall T \subseteq N, v_{\text{or}}(\mathbf{x}_T) = \sum_{S \subseteq N, S \cap T \neq \emptyset} I_S^{\text{OR}}$, s.t., $I_\emptyset^{\text{OR}} = v_{\text{or}}(\mathbf{x}_\emptyset) = 0$.

Specifically, the OR interaction is defined as $I_S^{\text{OR}} := -\sum_{L \subseteq S} (-1)^{|S|-|L|} v_{\text{or}}(\mathbf{x}_{N \setminus L})$. To compute the sum of OR interactions $\forall T \subseteq N, \sum_{S \subseteq N, S \cap T \neq \emptyset} I_S^{\text{OR}} = \sum_{S \subseteq N, S \cap T \neq \emptyset} \left[-\sum_{L \subseteq S} (-1)^{|S|-|L|} v_{\text{or}}(\mathbf{x}_{N \setminus L}) \right]$, we first exchange the order of summation of the set $L \subseteq S \subseteq N$ and the set $S \cap T \neq \emptyset$. That is, we compute all linear combinations of all sets S containing L with respect to the model outputs $v_{\text{or}}(\mathbf{x}_{N \setminus L})$, given a set of input phrases L , i.e., $\sum_{S \cap T \neq \emptyset, N \supseteq S \supseteq L} (-1)^{|S|-|L|} v_{\text{or}}(\mathbf{x}_{N \setminus L})$. Then, we compute all summations over the set $L \subseteq N$.

In this way, we can compute them separately for different cases of $L \subseteq S \subseteq N, S \cap T \neq \emptyset$. In the following, we consider the cases (1) $L = N \setminus T$, (2) $L = N$, (3) $L \cap T \neq \emptyset, L \neq N$, and (4) $L \cap T = \emptyset, L \neq N \setminus T$, respectively.

(1) When $L = N \setminus T$, the linear combination of all subsets S containing L with respect to the model output $v_{\text{or}}(\mathbf{x}_{N \setminus L})$ is $\sum_{S \cap T \neq \emptyset, S \supseteq L} (-1)^{|S|-|L|} v_{\text{or}}(\mathbf{x}_{N \setminus L}) = \sum_{S \cap T \neq \emptyset, S \supseteq L} (-1)^{|S|-|L|} v_{\text{or}}(\mathbf{x}_T)$. For all sets $S \supseteq L, S \cap T \neq \emptyset$ (then $S \neq N \setminus T, S \neq L$), let us consider the linear combinations of all sets S with number $|S|$ for the model output $v_{\text{or}}(\mathbf{x}_T)$, respectively. Let $|S'| := |S| - |L|$, $(1 \leq |S'| \leq |T|)$, then there are a total of $C_{|T|}^{|S'|}$ combinations of all sets S of order $|S|$. Thus, given L , accumulating the model outputs $v_{\text{or}}(\mathbf{x}_T)$ corresponding to all $S \supseteq L$, then $\sum_{S \cap T \neq \emptyset, S \supseteq L} (-1)^{|S|-|L|} v_{\text{or}}(\mathbf{x}_{N \setminus L}) = v_{\text{or}}(\mathbf{x}_T) \cdot \underbrace{\sum_{|S'|=1}^{|T|} C_{|T|}^{|S'|} (-1)^{|S'|}}_{=-1} = -v_{\text{or}}(\mathbf{x}_T)$.

(2) When $L = N$ (then $S = N$), the linear combination of all subsets S containing L with respect to the model output $v_{\text{or}}(\mathbf{x}_{N \setminus L})$ is $\sum_{S \cap T \neq \emptyset, S \supseteq L} (-1)^{|S|-|L|} v_{\text{or}}(\mathbf{x}_{N \setminus L}) = (-1)^{|N|-|N|} v_{\text{or}}(\mathbf{x}_{\emptyset}) = v_{\text{or}}(\mathbf{x}_{\emptyset}) = 0$, ($I_S^{\text{OR}} = v_{\text{or}}(\mathbf{x}_{\emptyset}) = 0$).

(3) When $L \cap T \neq \emptyset, L \neq N$, the linear combination of all subsets S containing L with respect to the model output $v_{\text{or}}(\mathbf{x}_{N \setminus L})$ is $\sum_{S \cap T \neq \emptyset, S \supseteq L} (-1)^{|S|-|L|} v_{\text{or}}(\mathbf{x}_{N \setminus L})$. For all sets $S \supseteq L, S \cap T \neq \emptyset$, let us consider the linear combinations of all sets S with number $|S|$ for the model output $v_{\text{or}}(\mathbf{x}_T)$, respectively. Let us split $|S| - |L|$ into $|S'|$ and $|S''|$, i.e., $|S| - |L| = |S'| + |S''|$, where $S' = \{i | i \in S, i \notin L, i \in N \setminus T\}$, $S'' = \{i | i \in S, i \notin L, i \in T\}$ (then $0 \leq |S''| \leq |T| - |T \cap L|$) and $S' + S'' + L = S$. In this way, there are a total of $C^{|S''|}_{|T|-|T \cap L|}$ combinations of all sets S'' of order $|S''|$. Thus, given L , accumulating the model outputs $v_{\text{or}}(\mathbf{x}_{N \setminus L})$ corresponding to all $S \supseteq L$, then $\sum_{S \cap T \neq \emptyset, S \supseteq L} (-1)^{|S|-|L|} v_{\text{or}}(\mathbf{x}_{N \setminus L}) = v_{\text{or}}(\mathbf{x}_{N \setminus L}) \cdot \sum_{S' \subseteq N \setminus T \setminus L} \underbrace{\sum_{|S''|=0}^{|T|-|T \cap L|} C^{|S''|}_{|T|-|T \cap L|} (-1)^{|S'|+|S''|}}_{=0} = 0$.

(4) When $L \cap T = \emptyset, L \neq N \setminus T$, the linear combination of all subsets S containing L with respect to the model output $v_{\text{or}}(\mathbf{x}_{N \setminus L})$ is $\sum_{S: S \cap T \neq \emptyset, S \supseteq L} (-1)^{|S|-|L|} v_{\text{or}}(\mathbf{x}_{N \setminus L})$. Similarly, let us split $|S| - |L|$ into $|S'|$ and $|S''|$, i.e., $|S| - |L| = |S'| + |S''|$, where $S' = \{i | i \in S, i \notin L, i \in N \setminus T\}$, $S'' = \{i | i \in S, i \in T\}$ (then $0 \leq |S''| \leq |T|$) and $S' + S'' + L = S$. In this way, there are a total of $C^{|S''|}_{|T|}$ combinations of all sets S'' of order $|S''|$. Thus, given L , accumulating the model outputs $v_{\text{or}}(\mathbf{x}_{N \setminus L})$ corresponding to all $S \supseteq L$, then $\sum_{S \cap T \neq \emptyset, S \supseteq L} (-1)^{|S|-|L|} v_{\text{or}}(\mathbf{x}_{N \setminus L}) = v_{\text{or}}(\mathbf{x}_{N \setminus L}) \cdot \sum_{S' \subseteq N \setminus T \setminus L} \underbrace{\sum_{|S''|=0}^{|T|} C^{|S''|}_{|T|} (-1)^{|S'|+|S''|}}_{=0} = 0$.

Please see the complete derivation of the following formula.

$$\begin{aligned}
\sum_{S \subseteq N, S \cap T \neq \emptyset} I_S^{\text{OR}} &= \sum_{S \subseteq N, S \cap T \neq \emptyset} \left[- \sum_{L \subseteq S} (-1)^{|S|-|L|} v_{\text{or}}(\mathbf{x}_{N \setminus L}) \right] \\
&= - \sum_{L \subseteq N} \sum_{S \cap T \neq \emptyset, N \supseteq S \supseteq L} (-1)^{|S|-|L|} v_{\text{or}}(\mathbf{x}_{N \setminus L}) \\
&= - \left[\sum_{|S'|=1}^{|T|} C^{|S'|}_{|T|} (-1)^{|S'|} \right] \cdot \underbrace{v_{\text{or}}(\mathbf{x}_T)}_{L=N \setminus T} - \underbrace{v_{\text{or}}(\mathbf{x}_{\emptyset})}_{L=N} \\
&\quad - \sum_{L \cap T \neq \emptyset, L \neq N} \left[\sum_{S' \subseteq N \setminus T \setminus L} \left(\sum_{|S''|=0}^{|T|-|T \cap L|} C^{|S''|}_{|T|-|T \cap L|} (-1)^{|S'|+|S''|} \right) \right] \cdot v_{\text{or}}(\mathbf{x}_{N \setminus L}) \\
&\quad - \sum_{L \cap T = \emptyset, L \neq N \setminus T} \left[\sum_{S' \subseteq N \setminus T \setminus L} \left(\sum_{|S''|=0}^{|T|} C^{|S''|}_{|T|} (-1)^{|S'|+|S''|} \right) \right] \cdot v_{\text{or}}(\mathbf{x}_{N \setminus L}) \\
&= -(-1) \cdot v_{\text{or}}(\mathbf{x}_T) - v_{\text{or}}(\mathbf{x}_{\emptyset}) - \sum_{L \cap T \neq \emptyset, L \neq N} \left[\sum_{S' \subseteq N \setminus T \setminus L} 0 \right] \cdot v_{\text{or}}(\mathbf{x}_{N \setminus L}) \\
&\quad - \sum_{L \cap T = \emptyset, L \neq N \setminus T} \left[\sum_{S' \subseteq N \setminus T \setminus L} 0 \right] \cdot v_{\text{or}}(\mathbf{x}_{N \setminus L}) \\
&= v_{\text{or}}(\mathbf{x}_T)
\end{aligned} \tag{11}$$

Furthermore, we can understand the above equation in a physical sense. Given a masked sample \mathbf{x}_T , if \mathbf{x}_T triggers an OR relationship S (the presence of any input variable in S), then $S \cap T \neq \emptyset, S \subseteq N$.

918 Thus, we accumulate the interaction effects I_S^{OR} of any OR relationship S triggered by \mathbf{x}_T as follows,
 919

$$\begin{aligned} 920 \quad & \sum_{S \subseteq N, S \neq \emptyset} \mathbb{1}_{\text{OR}}(S | \mathbf{x}_T) \cdot I_S^{\text{OR}} \\ 921 \quad & = \sum_{S \subseteq N, S \cap T \neq \emptyset} I_S^{\text{OR}} \\ 922 \quad & = v_{\text{or}}(\mathbf{x}_T). \\ 923 \\ 924 \\ 925 \end{aligned} \tag{12}$$

926 **(3) Universal matching property of AND-OR interactions.**

927 With the universal matching property of AND interactions and the universal matching property of OR
 928 interactions, we can easily get $v(\mathbf{x}_T) = h(\mathbf{x}_T) = v_{\text{and}}(\mathbf{x}_T) + v_{\text{or}}(\mathbf{x}_T) = v(\mathbf{x}_\emptyset) + \sum_{S \subseteq T, S \neq \emptyset} I_S^{\text{AND}} +$
 929 $\sum_{S \subseteq N, S \cap T \neq \emptyset} I_S^{\text{OR}}$, thus, we obtain the universal matching property of AND-OR interactions.
 930

□

931 **D SPARSITY PROPERTY OF INTERACTIONS**

932 The surrogate logical model $h(\mathbf{x}_T)$ on each randomly masked sample $\mathbf{x}_T, T \subseteq N$ mainly uses the
 933 sum of a small number of salient AND interactions in Ω^{AND} and salient OR interactions in Ω^{OR} to
 934 approximate the network output score $v(\mathbf{x}_T)$.
 935

$$936 \quad v(\mathbf{x}_T) = h(\mathbf{x}_T) \approx v(\mathbf{x}_\emptyset) + \sum_{S \in \Omega^{\text{AND}}} \mathbb{1}_{\text{AND}}(S | \mathbf{x}_T) \cdot I_S^{\text{AND}} + \sum_{S \in \Omega^{\text{OR}}} \mathbb{1}_{\text{OR}}(S | \mathbf{x}_T) \cdot I_S^{\text{OR}} \tag{13}$$

937 *Proof.* (42) have proven that under some common conditions⁷, the confidence score $v_{\text{and}}(\mathbf{x}_T)$ of a
 938 well-trained DNN on all 2^n masked samples $\{\mathbf{x}_T | T \subseteq N\}$ could be universally approximated by a
 939 small number of AND interactions $T \in \Omega^{\text{AND}}$ with salient interaction effects I_S^{AND} , s.t., $|\Omega^{\text{AND}}| \ll 2^n$,
 940 i.e., $\forall T \subseteq N, v_{\text{and}}(\mathbf{x}_T) = \sum_{S \subseteq T} I_S^{\text{AND}} \approx \sum_{S \subseteq T: S \in \Omega^{\text{AND}}} I_S^{\text{AND}}$.
 941

942 According to Equation (10), $v_{\text{and}}(\mathbf{x}_T) = \sum_{S \subseteq T} I_S^{\text{AND}} = v(\mathbf{x}_\emptyset) + \sum_{S \subseteq N, S \neq \emptyset} \mathbb{1}_{\text{AND}}(S | \mathbf{x}_T) \cdot I_S^{\text{AND}}$.
 943 Therefore, $v_{\text{and}}(\mathbf{x}_T) \approx v(\mathbf{x}_\emptyset) + \sum_{S \in \Omega^{\text{AND}}} \mathbb{1}_{\text{AND}}(S | \mathbf{x}_T) \cdot I_S^{\text{AND}}$.
 944

945 Besides, as proven in Section H, the OR interaction can be considered as a specific AND interaction.
 946 Thus, the confidence score $v_{\text{or}}(\mathbf{x}_T)$ of a well-trained DNN on all 2^n masked samples $\{\mathbf{x}_T | T \subseteq N\}$
 947 could be universally approximated by a small number of OR interactions $T \in \Omega^{\text{OR}}$ with salient
 948 interaction effects I_S^{OR} , s.t., $|\Omega^{\text{OR}}| \ll 2^n$. Similarly, $v_{\text{or}}(\mathbf{x}_T) = \sum_{S \subseteq N, S \neq \emptyset} \mathbb{1}_{\text{OR}}(S | \mathbf{x}_T) \cdot I_S^{\text{OR}} \approx$
 949 $\sum_{S \in \Omega^{\text{OR}}} \mathbb{1}_{\text{OR}}(S | \mathbf{x}_T) \cdot I_S^{\text{OR}}$.
 950

951 In this way, the surrogate logical model $h(\mathbf{x}_T)$ on each randomly masked sample $\mathbf{x}_T, T \subseteq N$
 952 mainly uses the sum of a small number of salient AND interactions and salient OR interactions
 953 to approximate the network output score $v(\mathbf{x}_T)$, i.e., $v(\mathbf{x}_T) = h(\mathbf{x}_T) = v_{\text{and}}(\mathbf{x}_T) + v_{\text{or}}(\mathbf{x}_T) \approx$
 954 $v(\mathbf{x}_\emptyset) + \sum_{S \in \Omega^{\text{AND}}} \mathbb{1}_{\text{AND}}(S | \mathbf{x}_T) \cdot I_S^{\text{AND}} + \sum_{S \in \Omega^{\text{OR}}} \mathbb{1}_{\text{OR}}(S | \mathbf{x}_T) \cdot I_S^{\text{OR}}$.
 955

□

961 **E THE CORRECTNESS OF THE DETAILED INFERENCE PATTERNS OF AN LLM**

962 **Unlike traditional studies focused on the correctness of language generation results, this paper is**
 963 **driven by a different motivation, i.e., evaluating the correctness of the detailed inference patterns of an**

964
 965
 966
 967
 968
 969
 970
 971
⁷There are three assumptions. (1) The high order derivatives of the DNN output with respect to the input
 972 phrases are all zero. (2) The DNN works well on the masked samples, and yield higher confidence when the
 973 input sample is less masked. (3) The confidence of the DNN does not drop significantly on the masked samples.

972 LLM behind its seemingly correct outputs. Although previous studies have been proposed to evaluate
 973 the performance of LLMs, rigorously evaluating the reliability of their inference patterns requires
 974 theoretically grounded mechanistic explanations, which is an area that remains unexplored. Thanks
 975 to advances in Explainable AI, we can use a set of interactions between input features to faithfully
 976 represent the inference score of a deep network. However, despite these theoretical achievements, it
 977 remains unknown (1) how many problematic interactions are modeled in LLMs (e.g., legal LLMs),
 978 and (2) to what extent these interactions influence legal judgments.

979 In this paper, we quantified these interactions and conducted experiments across different LLMs and
 980 datasets. We found that,

- 982 • Over half of the interactions modeled by LLMs actually represent clearly unreasonable or even
 983 incorrect justifications for their predictions.

984 • LLMs tend to use simple interactions of local tokens to guess judgments.

985 • LLMs tend to model a large number of canceling interactions.

987 These findings help us gain deeper insights into the inference patterns of LLMs, particularly in
 988 high-stakes tasks where they provide quantitative metrics to indicate the degree to which LLM
 989 judgments can be trusted. The key contributions of the proposed mechanistic explanation method are,

990 • Revealing reasoning patterns, not just attribution. Attribution methods (48; 43; 32) tell us what
 991 words are important. For example, in "this movie is not bad," attribution highlights "not" and "bad."
 992 In contrast, the interaction-based approach (47; 26; 42) further reveals that the model relies on the
 993 interaction ("not", "bad") to reverse the sentiment. This allows us to distinguish whether the LLM is
 994 truly performing semantic composition or just using Bag-of-Words statistics.

995 • Evaluating the faithfulness and reliability of LLMs in high-stakes decisions. In high-stakes domains
 996 (e.g., medicine, finance, law), it is not enough for an LLM to be correct, it must be correct for the
 997 right reasons. For example, a legal LLM might learn a spurious correlation, associating a specific
 998 occupation with a "guilty" verdict (Case 2 in the paper). By quantifying interactions between input
 999 phrases, we can explicitly capture this biased reasoning. This provides a quantitative metric for
 1000 reliability and serves as a tool for model auditing.

1001 • Diagnosing shortcut learning. LLMs are adept at using statistical shortcuts to guess answers rather
 1002 than performing genuine, complex reasoning. Interaction analysis can diagnose this behavior. For
 1003 instance, when processing long texts, an LLM might rely only on a few local, low-order interactions
 1004 to make a decision. By analyzing interaction order (complexity), we can quantify this phenomenon.

1007 F MASKING IN EXPLAINABLE ARTIFICIAL INTELLIGENCE

1009 Masking is a common practice in Explainable AI. For instance, in interaction-based methods (47; 26;
 1010 42), it is standard to evaluate many masked variants of input and restrict the analysis to short examples
 1011 (e.g., ≈ 10 phrases). Similarly, in perturbation-based attribution methods, such as LIME (43), Shapley
 1012 sampling values, KernelSHAP (32), and DASP (2), it is also a widely adopted approach to evaluate
 1013 numerous masked input variants, often restricting the analysis to short examples (e.g., < 16 phrases).

1015 Besides, this challenge can be alleviated through engineering techniques. First, we can use classic
 1016 attribution methods (e.g. Integrated Gradients (48), LIME (43)) as a heuristic to identify and prioritize
 1017 salient words or phrases, pruning the search space. Prior works (31; 27) have shown that LLMs
 1018 exhibit attention on only a few sparse regions in inputs. Second, the input phrases in this paper are
 1019 flexible units of analysis. They are not limited to single tokens but can represent multiple words,
 1020 phrases, short sentences, or even paragraphs as input units (26; 42) Empirically, 10-12 input phrases
 1021 were typically sufficient for effective analysis (43; 42; 11).

1023 G HOW DOES THIS METHOD GUIDE MODEL IMPROVEMENT?

1025 There are several methods that can be employed to enhance model performance.

1026
 1027 **Enforce interaction consistency across models.** Reliable patterns are typically consistent across
 1028 different models, while unreliable, high-order interactions are often model-specific and generalize
 1029 poorly (26). We can jointly train two models using an interaction consistency loss to penalize
 1030 differences in their learned patterns on the same input. This encourages models to converge on
 1031 reliable reasoning, boosting overall performance.

1032 **Refine supervised fine-tuning (SFT) with reliability scores.** We can integrate interaction analysis
 1033 into both dataset construction and sample weighting. For dataset construction, identifying unreliable
 1034 interactions allows us to create counterfactual data that explicitly targets weak reasoning spots, e.g.,
 1035 alleviating the identity discrimination. SFT instructions can also be designed to explicitly guide the
 1036 model to use reliable interaction paths. For sample weighting, we can adjust sample weights based on
 1037 the interaction reliability score (s_{reliable}). Samples where the model is correct but s_{reliable} is very low
 1038 (i.e., "correct output for the wrong reason") are assigned higher training weights, forcing the model to
 1039 repair its underlying reasoning mechanism.

1040 **Enhance reinforcement learning (RL) optimization.** We can incorporate interaction reliability
 1041 into the reward dimension to shift RL optimization from the output result (What) to the reasoning
 1042 process (How). For example, we can add the interaction reliability score (s_{reliable}) as a new feature to
 1043 the reward model. The reward model would then reward generated texts not only based on human
 1044 preference but also on highly reliable interaction paths. Besides, we can also impose constraints on
 1045 the policy model during RL by applying an additional penalty term if the model's next token selection
 1046 significantly increases the weight of unreliable interaction paths.

1047 **Algorithm 1** Computing AND-OR interactions

1048 1: **Input:** Input legal case \mathbf{x} , the legal LLM $v(\cdot)$, and the annotations of the relevant, irrelevant, and
 1049 forbidden tokens in \mathbf{x} .
 1050 2: **Output:** A set of reliable interactions $I_{\text{and}}^{\text{reliable}}(S|\mathbf{x})$ and $I_{\text{or}}^{\text{reliable}}(S|\mathbf{x})$, and the ratio of reliable
 1051 interaction effects s^{reliable}
 1052 3: Input the legal case \mathbf{x} into the legal LLM, and generate the judgment (a sequence of tokens);
 1053 4: **for** $S \subseteq N$ **do**
 1054 5: For each masked sample \mathbf{x}_S , compute the confidence score $v(\mathbf{x}_S)$ based on Eq. (1);
 1055 6: **end for**
 1056 7: **for** $S \subseteq N$ **do**
 1057 8: Given $v(\mathbf{x}_S)$ for all combinations $S \subseteq N$, compute each AND interaction I_S^{AND} and each OR
 1058 interaction I_S^{OR} via $\min_{\{\gamma_T\}} \sum_{S \subseteq N, S \neq \emptyset} [|I_S^{\text{AND}}| + |I_S^{\text{OR}}|]$;
 1059 9: **end for**
 1060 10: **for** $S \subseteq N$ **do**
 1061 11: Compute the reliable AND interaction effect $I_{\text{and}}^{\text{reliable}}(S|\mathbf{x})$ and the reliable OR interaction
 1062 effect $I_{\text{or}}^{\text{reliable}}(S|\mathbf{x})$ based on Eqs. (4) and (5).
 1063 12: **end for**
 1064 13: Compute the ratio of reliable interaction effects s^{reliable} based on Eq. (7);
 1065 14: **return** $I_{\text{and}}^{\text{reliable}}(S|\mathbf{x})$, $I_{\text{or}}^{\text{reliable}}(S|\mathbf{x})$, s^{reliable}

1066
 1067 **H OR INTERACTIONS CAN BE CONSIDERED SPECIFIC AND INTERACTIONS**

1069 The OR interaction I_S^{OR} can be considered as a specific AND interaction I_S^{AND} , if we inverse the
 1070 definition of the masked state and the unmasked state of an input variable.

1072 Given a DNN $v : \mathbb{R}^n \rightarrow \mathbb{R}$ and an input sample $\mathbf{x} \in \mathbb{R}^n$, if we arbitrarily mask the input sample, we
 1073 can get 2^n different masked samples $\mathbf{x}_S, \forall S \subseteq N$. Specifically, let us use baseline values $\mathbf{b} \in \mathbb{R}^n$ to
 1074 represent the masked state of a masked sample \mathbf{x}_S , *i.e.*,

$$(\mathbf{x}_S)_i = \begin{cases} x_i, & i \in S \\ b_i, & i \notin S \end{cases} \quad (14)$$

1075
 1076 Conversely, if we inverse the definition of the masked state and the unmasked state of an input
 1077 variable, *i.e.*, we consider \mathbf{b} as the input sample, and consider the original value \mathbf{x} as the masked

1080 state, then the masked sample \mathbf{b}_S can be defined as follows.
 1081

$$(\mathbf{b}_S)_i = \begin{cases} b_i, & i \in S \\ x_i, & i \notin S \end{cases} \quad (15)$$

1084 According to the above definition of a masked sample in Equations (14) and (15), we can get
 1085 $\mathbf{x}_{N \setminus S} = \mathbf{b}_S$. To simply the analysis, if we assume that $v_{\text{and}}(\mathbf{x}_T) = v_{\text{or}}(\mathbf{x}_T) = 0.5v(\mathbf{x}_T)$, then the
 1086 OR interaction I_S^{OR} can be regarded as a specific AND interaction $I_S^{\text{AND}}(\mathbf{b})$ as follows.
 1087

$$\begin{aligned} I_S^{\text{OR}}(\mathbf{x}) &= - \sum_{T \subseteq S} (-1)^{|S|-|T|} v_{\text{or}}(\mathbf{x}_{N \setminus T}), \\ &= - \sum_{T \subseteq S} (-1)^{|S|-|T|} v_{\text{or}}(\mathbf{b}_T), \\ &= - \sum_{T \subseteq S} (-1)^{|S|-|T|} v_{\text{and}}(\mathbf{b}_T), \\ &= -I_S^{\text{AND}}(\mathbf{b}). \end{aligned} \quad (16)$$

1095 I ANNOTATION OF RELEVANT PHRASES, IRRELEVANT PHRASES, AND 1096 FORBIDDEN PHRASES

1098 We propose the following **two principles** to avoid unnecessary ambiguity in the annotation of the
 1099 three types of phrases. (1) The first principle is to avoid ambiguous legal cases. To ensure clarity, we
 1100 engage several legal experts to select a set of straightforward and unambiguous legal cases. We let
 1101 them to annotate the above three types of phrases to avoid ambiguity. (2) The second principle is
 1102 to avoid analyzing subtle legal differences between the laws in different countries⁸. Although our
 1103 algorithm can accurately explain the legal judgments made by legal LLMs based on sophisticated
 1104 legal statutes, the goal of this paper is not to focus on such nuanced differences. Therefore, we
 1105 let legal experts to select relatively simple and uncontroversial legal cases, enabling us to directly
 1106 compare the performance of an English legal LLM and a Chinese legal LLM on the same input case.
 1107

1108 For example, given an input legal case “*on June 1, during a conflict on the street, Andy stabbed Bob with a knife, causing Bob’s death*,”³ the legal LLM provides judgment
 1109 “*murder*” for Andy. In above example, the input phrases can be set as $N = \{[\text{on June 1}], [\text{during a conflict}], [\text{on the street}], [\text{Andy stabbed Bob with a knife}], [\text{causing Bob’s death}]\}$.
 1110 $\mathcal{R} = \{[\text{Andy stabbed Bob with a knife}], [\text{causing Bob’s death}]\}$ are the direct reason
 1111 for the judgment, thereby being annotated as *relevant phrases*, where all tokens in the
 1112 brackets [] are taken as a single input phrase. The set of irrelevant phrases are annotated as
 1113 $\mathcal{I} = \{[\text{on June 1}], [\text{during a conflict}], [\text{on the street}]\}$. The input phrase like “*during a conflict*” may
 1114 influence Andy’s behavior “*Andy stabbed Bob with a knife*,” but it is the input phrase “*Andy stabbed Bob with a knife*” that directly contributes to the legal judgment of “*murder*,” rather than the input
 1115 phrase “*during a conflict*.”
 1116

1117 Given another input legal case involving multiple individuals, such as “*Andy assaulted Bob on the head, causing minor injuries. Charlie stabbed Bob with a knife, causing Bob’s death*,”³ the legal
 1118 LLM assigns the judgment of “*assault*” to Andy.
 1119

1120 Let the set of all input phrases be $N = \{[\text{Andy assaulted Bob on the head}], [\text{causing minor injuries}],$
 1121 $[\text{Charlie stabbed Bob with a knife}], [\text{causing Bob’s death}]\}$. Although the input phrases “*Charlie*
 1122 *stabbed Bob with a knife*” and “*causing Bob’s death*” naturally all represent crucial facts for judgment,
 1123 they should not influence the judgment for Andy, because these words describe the actions of
 1124 Charlie, not actions of Andy. Therefore, these input phrases are annotated as forbidden phrases,
 1125 $\mathcal{F} = \{[\text{Charlie stabbed Bob with a knife}], [\text{causing Bob’s death}]\}$.
 1126

1127 J FAITHFULNESS OF THE INTERACTION-BASED EXPLANATION

1129 In this section, we conducted experiments to evaluate the **sparsity property** in Figure 7 and the
 1130 **universal matching property** in Figure 8 of the extracted interactions.
 1131

1132 ⁸We use an English legal LLM SaulLM-7B-Instruct (7), which is trained using legal corpora from English-
 1133 speaking jurisdictions such as the U.S., Canada, the UK, and Europe, and we use a Chinese legal LLM
 BAI-Law-13B (21), which is trained using legal corpora from China.

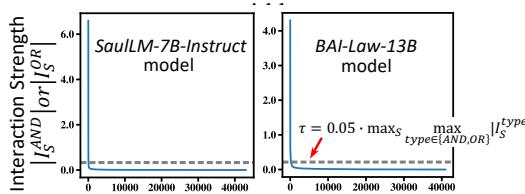


Figure 7: Sparsity property of interactions. We show the strength of different AND-OR interactions ($|I_S^{\text{AND}}|$ and $|I_S^{\text{OR}}|$) extracted from different samples in a descending order. Only about 0.5% interactions had salient effects.

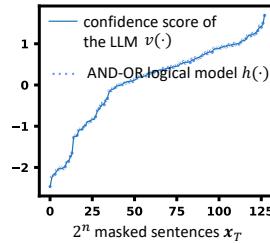


Figure 8: Universal matching property of interactions. Experiment verifies that the surrogate logical model $h(\mathbf{x}_T)$ can accurately fit the confidence scores of the LLM $v(\mathbf{x}_T)$ on all 2^n masked samples $\{\mathbf{x}_T | T \subseteq N\}$, i.e., $\forall T \subseteq N, v(\mathbf{x}_T) = h(\mathbf{x}_T)$, no matter how we randomly mask the input sample \mathbf{x} in 2^n different masking states $T \subseteq N$.

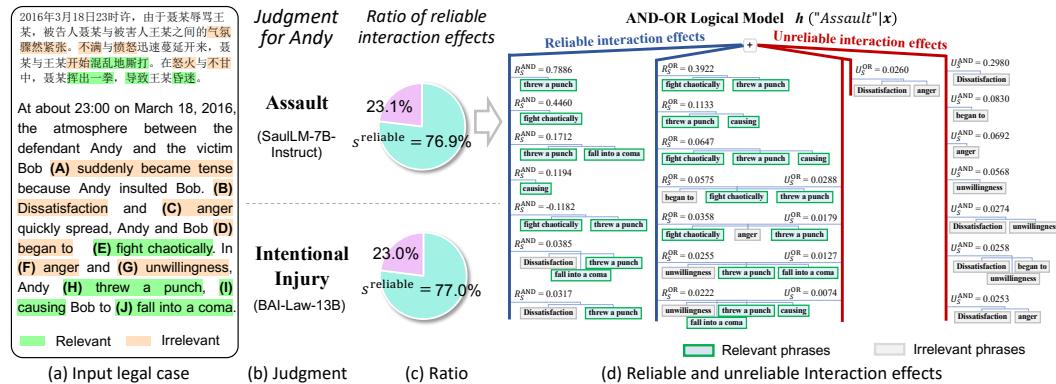


Figure 9: Visualization of judgments influenced by unreliable irrelevant phrases. (a) Irrelevant phrases include sentimental phrases that are not the direct reason for judgment. Criminal actions were annotated as relevant phrases. We also translated the legal case to English as the input of the SaulLM-7B-Instruct model. (b) Judgments predicted by the two legal LLMs, which were both correct according to laws of the two countries. (c,d) We quantified the reliable and unreliable interaction effects.

K MAKING JUDGMENTS BASED ON SEMANTICALLY IRRELEVANT PHRASES

Case 3: making judgments based on unreliable irrelevant phrases. We observed that although legal LLMs achieved great performance in predicting legal judgment results, the legal LLMs used a significant portion of interaction patterns that were attributed to semantically irrelevant phrases for judgment (*e.g.*, the time, the location, and the sentimental phrases that are not the direct reason for the judgment). To evaluate the impact of semantically irrelevant phrases on both the SaulLM-7B-Instruct and BAI-Law-13B models, we engaged legal experts to annotate phrases that served as the direct reason for the judgment as relevant phrases in \mathcal{R} , and those that were not the direct reason for the judgment as irrelevant phrases in \mathcal{I} , *e.g.*, semantically irrelevant phrases and unreliable sentimental phrases behind real criminal actions.

Figure 9 shows the first legal case, which showed Andy had a conflict with Bob and attacked Bob, committing an assault. Here, input phrases such as “*fight chaotically*,” “*threw a punch*,” “*causing*,” and “*fall into a coma*” were annotated as relevant phrases in \mathcal{R} , as these phrases served as the

1188 direct reason for the judgment “*Assault*.” On the other hand, input phrases like “*began to*” and
 1189 sentiment-driven phrases such as “*dissatisfaction*,” “*anger*” were annotated as irrelevant phrases in \mathcal{I} ,
 1190 as these phrases were not direct reason for the judgment.

1191 In this legal case, there were 28 AND interaction patterns and 22 OR interaction patterns in the top
 1192 50 most salient AND-OR interaction patterns. Here, the average interaction strength for top 50 most
 1193 salient interactions was 0.078, while the average interaction strength for the remaining AND-OR
 1194 interaction patterns among the $2 \times 2^{10} = 2048$ AND-OR interaction patterns was 0.005. The
 1195 legal LLM SaulLM-7B-Instruct *did* use several interaction patterns that aligned with legal experts’
 1196 domain knowledge for the legal judgment. For example, an AND interaction pattern $S_1 = \{\text{“threw a}$
 1197 *punch*”\}, and an AND interaction pattern $S_2 = \{\text{“threw a punch”}, \text{“fall into a coma”}\}$, and an OR
 1198 interaction pattern $S_3 = \{\text{“fight chaotically”}, \text{“threw a punch”}\}$ contributed salient reliable interaction
 1199 effects $R_{S_1}^{\text{AND}} = 0.79$, $R_{S_2}^{\text{AND}} = 0.17$, and $R_{S_3}^{\text{OR}} = 0.39$ to the confidence score $v(\text{“Assault”}|\mathbf{x})$ of
 1200 the judgment “*Assault*,” respectively. However, the legal LLM also used lots of interaction patterns
 1201 that did not match legal experts’ domain knowledge for the legal judgment. For example, two AND
 1202 interaction patterns $S_4 = \{\text{“dissatisfaction”}\}$, and $S_5 = \{\text{“anger”}\}$, which represented unreliable
 1203 sentiments instead of criminal actions, contributed salient unreliable interaction effects $U_{S_4}^{\text{AND}} = 0.30$
 1204 and $U_{S_5}^{\text{AND}} = 0.07$ to the confidence score of the judgment “*Assault*,” respectively. In sum, the
 1205 SaulLM-7B-Instruct model used a ratio of $s^{\text{reliable}} = 76.9\%$ reliable interaction effects for the legal
 1206 judgment. This indicated that the legal LLM mistakenly made judgments based on unreliable
 1207 irrelevant phrases, because unreliable sentimental tokens only served as explanations for criminal
 1208 actions, rather than the direct reason for the legal judgments.

1209 In comparison, we evaluated the above legal case on the BAI-Law-13B model, as shown in Figure 9
 1210 and Figure 10 in Appendix. There were 12 AND interaction patterns and 38 OR interaction patterns
 1211 in the top 50 most salient AND-OR interaction patterns. The average interaction value for top 50
 1212 most salient interactions was 0.048, while the average interaction value for the remaining AND-OR
 1213 interaction patterns was 0.004. Compared to the SaulLM-7B-Instruct model’s $s^{\text{reliable}} = 76.9\%$ ratio
 1214 of reliable interaction effects, the BAI-Law-13B model used similar reliable interactions, *i.e.*, using
 1215 a ratio of $s^{\text{reliable}} = 77.0\%$ reliable interaction effects and a ratio of $s^{\text{unreliable}} = 23.0\%$ unreliable
 1216 interaction effects to compute the confidence score. Many interaction patterns used by the BAI-Law-
 1217 13B model were also used by the SaulLM-7B-Instruct model, such as an AND interaction pattern
 1218 $S_1 = \{\text{“threw a punch”}\}$, and an OR interaction pattern $S_2 = \{\text{“fight chaotically”}, \text{“threw a punch”}\}$
 1219 contributed salient reliable interaction effects $R_{S_1}^{\text{AND}} = 0.34$ and $R_{S_2}^{\text{OR}} = 0.12$ to the confidence score
 1220 $v(\text{“Intentional Injury”}|\mathbf{x})$ of the judgment “*Intentional Injury*,” respectively. This indicated that
 1221 these two legal LLMs did successfully identify some direct reasons for the legal judgment. On the
 1222 other hand, the BAI-Law-13B model used problematic interaction patterns for the legal judgment,
 1223 such as two AND interaction patterns $S_3 = \{\text{“suddenly became tense”}\}$ and $S_4 = \{\text{“anger”}\}$
 1224 contributed salient unreliable interaction effects $U_{S_3}^{\text{AND}} = 0.08$ and $U_{S_4}^{\text{AND}} = 0.03$ to the confidence
 1225 score, respectively. The unreliable sentimental token should not be used to determine the judgment.
 1226 Additional examples of making judgments based on unreliable sentimental phrases are provided
 1227 make judgment on Andy in Section L.3.

L MORE EXPERIMENT RESULTS AND DETAILS

L.1 DISTRIBUTION OF PHRASE ANNOTATIONS BY LEGAL EXPERTS AND VOLUNTEERS

1228 In this subsection, we show the distribution of phrase annotations provided by legal experts. Specif-
 1229 ically, we consulted 16 legal experts to annotate the phrases in the input prompts using a majority
 1230 voting scheme. The selected cases are generally simple and straightforward, ensuring that phrase
 1231 annotations are relatively clear and unlikely to introduce major issues.

1232 **Legal background of legal experts.** These legal experts are either working in the legal profession
 1233 or studying law-related disciplines. Their experience in the legal field ranges from two to twelve
 1234 years, with academic backgrounds in areas such as criminal procedure law, international law, and
 1235 jurisprudence. Specifically, three of these experts have over eight years of experience as criminal
 1236 trial judges, one serves as an assistant to a criminal trial judge, and two are currently pursuing master
 1237 degrees in international law. The diverse backgrounds of these legal professionals greatly contribute

1242

1243

Table 1: Phrase annotation for Case 1.

1244

1245

Input phrase	Is relevant phrase?	Is irrelevant phrase?	Is forbidden phrase?	Final annotation
(A) tense	0	16	0	Irrelevant phrase
(B) Dissatisfaction	0	16	0	Irrelevant phrase
(C) anger	0	16	0	Irrelevant phrase
(D) began to	2	14	0	Irrelevant phrase
(E) fight chaotically	16	0	0	Relevant phrase
(F) anger	3	13	0	Irrelevant phrase
(G) unwillingness	3	13	0	Irrelevant phrase
(H) threw a punch	16	0	0	Relevant phrase
(I) causing	16	0	0	Relevant phrase
(J) fall into a coma	16	0	0	Relevant phrase

1254

1255

1256

Table 2: Phrase annotation for Case 2.

1257

1258

Input phrase	Is relevant phrase?	Is irrelevant phrase?	Is forbidden phrase?	Final annotation
(A) morning	0	16	0	Irrelevant phrase
(B) had an argument	3	13	0	Irrelevant phrase
(C) chased	14	2	0	Relevant phrase
(D) with an axe	15	1	0	Relevant phrase
(E) bit	15	1	0	Relevant phrase
(F) slightly injured	16	0	0	Relevant phrase
(G) hit	3	0	13	Forbidden phrase
(H) with a shovel	0	0	16	Forbidden phrase
(I) injuring	0	0	16	Forbidden phrase
(J) death	1	0	15	Forbidden phrase

1266

1267

1268

to the analysis of relevant, irrelevant, and forbidden phrases in legal cases, providing a nuanced legal perspective.

1269

1270

1271

Distribution of phrase annotations. We present the distribution of phrase annotations for each phrase in the three legal cases discussed in the main paper, as shown in Table 1, Table 2 and Table 3. The final annotation for each phrase in the input legal case was determined using a majority voting scheme.

1272

1273

1274

Case 1: At about 23:00 on March 18, 2016, the atmosphere between the defendant Andy and the victim Bob suddenly became tense because Andy insulted Bob. Dissatisfaction and anger quickly spread, and Andy and Bob began to fight chaotically. In anger and unwillingness, Andy threw a punch, causing Bob to fall into a coma.

1275

1276

Judgment of the legal LLM for Andy: Assault.

1277

1278

1279

1280

1281

1282

Table 3: Phrase annotation for Case 3.

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

Input phrase	Is relevant phrase?	Is irrelevant phrase?	Is forbidden phrase?	Final annotation
(A) Wednesday	0	16	0	Irrelevant phrase
(B) night	0	16	0	Irrelevant phrase
(C) a judge	0	16	0	Irrelevant phrase
(D) walked	0	16	0	Irrelevant phrase
(E) home	0	16	0	Irrelevant phrase
(F) a day's work	0	16	0	Irrelevant phrase
(G) dark	0	16	0	Irrelevant phrase
(H) holding a knife	16	0	0	Relevant phrase
(I) robbed	16	0	0	Relevant phrase
(J) belongings	16	0	0	Relevant phrase

1294

1295

Case 2: On the morning of December 22, 2013, the defendants Andy and Bob deceived Charlie and the three of them had an argument. Andy chased Charlie with an axe and bit Charlie, causing Charlie to be slightly injured. Bob hit Charlie with a shovel, injuring Charlie and causing Charlie' death.

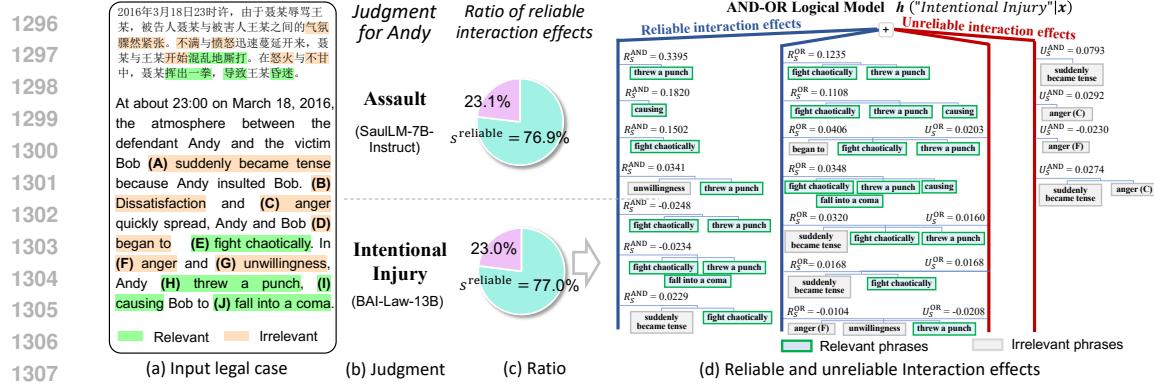


Figure 10: Visualization of judgments influenced by unreliable irrelevant phrases in the BAI-Law-13B model. (a) Irrelevant phrases include sentimental phrases that are not the direct reason for judgment. Criminal actions were annotated as relevant phrases. We also translated the legal case to English as the input of the SaulLM-7B-Instruct model. (b) Judgments predicted by the two legal LLMs, which were both correct according to laws of the two countries. (c,d) We quantified the reliable and unreliable interaction effects.

Judgment of the legal LLM for Andy: Assault.

Case 3: Late Wednesday night, Andy, a judge, walked home alone after finishing a day's work. On the dark road, two suspicious men followed, holding a knife and robbed Andy's belongings.

Judgment of the legal LLM for two suspicious men: Robbery.

L.2 SIGNIFICANCE OF CONFLICTED INTERACTION PATTERNS

This subsection shows the significance of mutual cancellation of interaction patterns. We found that over 60% effects of the interaction patterns had been mutually cancelled out in Table 4.

Table 4: Significance of mutual cancellation of interaction patterns (%), which is measured by s^{conflict} .

Dateset	Qwen	Deepseek	BAI	SaulLM
CAIL2018	78.00	82.46	62.67	-
LeCaRD	78.70	65.58	85.38	-
LEVEN	78.40	77.58	83.72	-
LegalBench	75.31	83.10	-	76.60
LexGLUE	98.25	96.18	-	29.97

L.3 MORE RESULTS OF JUDGMENTS INFLUENCED BY UNRELIABLE SENTIMENTAL TOKENS

We conducted more experiments to show the judgments influenced by unreliable sentimental tokens in Figure 12, Figure 13, and Figure 14, respectively. We observed that a considerable number of interactions contributing to the confidence score $v(x)$ were attributed to semantically irrelevant or unreliable sentimental tokens. In different legal cases, the ratio of reliable interaction effects to all salient interactions was within the range of 32.6% to 87.1%. It means that about 13~68% of interactions used semantically irrelevant tokens or unreliable sentimental tokens for the judgment.

L.4 MORE RESULTS OF JUDGMENTS AFFECTED BY INCORRECT ENTITY MATCHING

We conducted more experiments to show the judgments affected by incorrect entity matching in Figure 15, Figure 16, and Figure 17, respectively. We observed that a considerable ratio of the confidence score $v(x)$ was mistakenly attributed to interactions on criminal actions made by incorrect entities. In different legal cases, the ratio of reliable interaction effects to all salient interactions was within the range of 31.9% to 67.8%. It means that about 22~68% of interactions used semantically

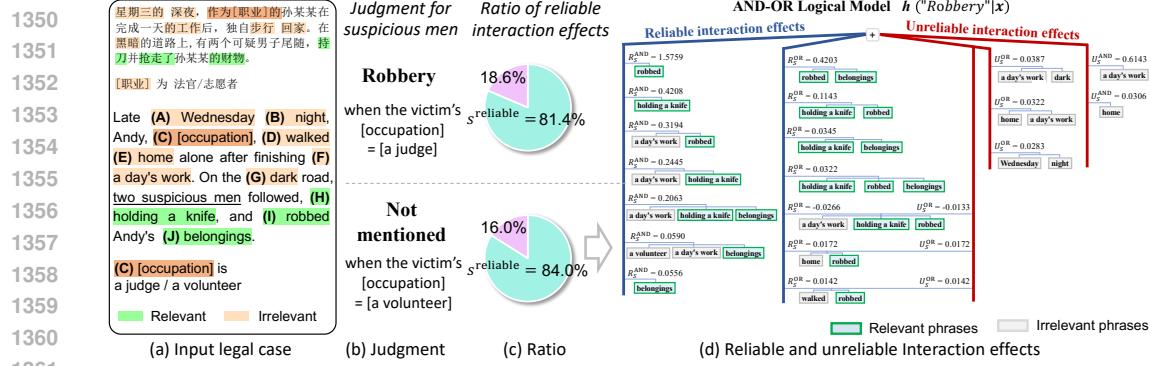


Figure 11: Visualization of judgments biased by discrimination in identity, when the victim’s [occupation] is [a volunteer]. To enable the fair comparison, we compute interactions on the output score $v(\text{"Robbery"}|\mathbf{x})$, instead of the actual LLM’s output score $v(\text{"Not mentioned"}|\mathbf{x})$. (a) Irrelevant phrases were annotated in the legal case, including the occupation, time and actions that are not the direct reason for the judgment. Criminal actions of the defendant were annotated as relevant phrases. (b) The SaulLM-7B-Instruct model predicted the judgment based on the legal case with different occupations. (c,d) We quantified the reliable and unreliable interaction effects.

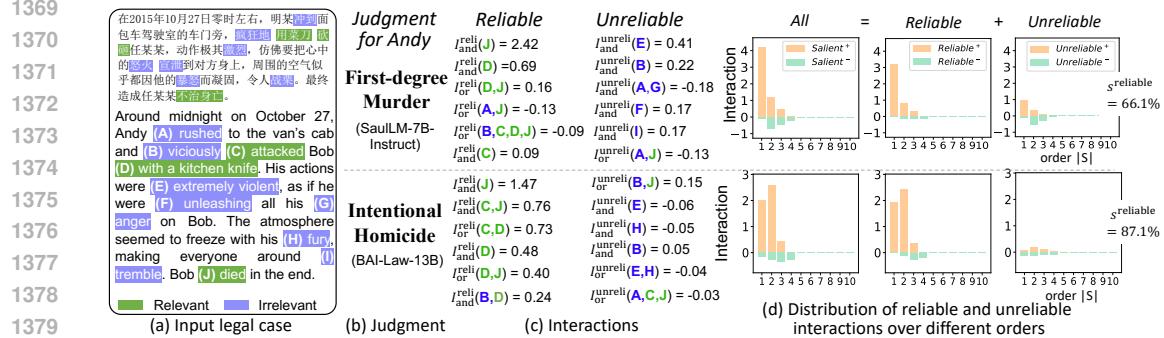


Figure 12: More results of judgments influenced by unreliable sentimental tokens. (a) A number of irrelevant tokens were annotated in the legal case, including unreliable sentimental tokens. Criminal actions were annotated as relevant tokens. We also translated the legal case to English as the input of the SaulLM-7B-Instruct model. (b) Judgements predicted by the two legal LLMs, which were both correct according to laws of the two countries. (c,d) We quantified the reliable and unreliable interaction effects of different orders. The SaulLM-7B-Instruct model used 66.1% reliable interaction effects, while the BAI-Law-13B model encoded 87.2% reliable interaction effects.

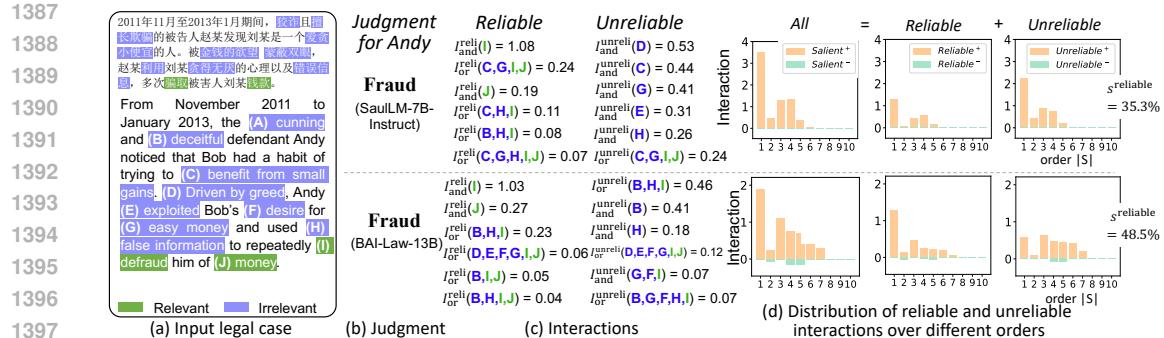


Figure 13: More results of judgments influenced by unreliable sentimental tokens. (d) The SaulLM-7B-Instruct model used 35.3% reliable interaction effects, while the BAI-Law-13B model encoded 48.5% reliable interaction effects.

irrelevant tokens for the judgment, or was mistakenly attributed on criminal actions made by incorrect entities.

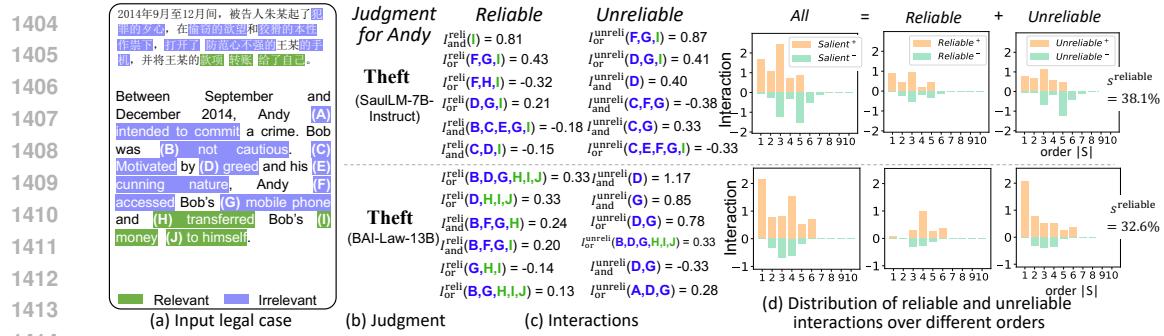


Figure 14: More results of judgments influenced by unreliable sentimental tokens. (d) The SaulLM-7B-Instruct model used 38.1% reliable interaction effects, while the BAI-Law-13B model encoded 32.6% reliable interaction effects.

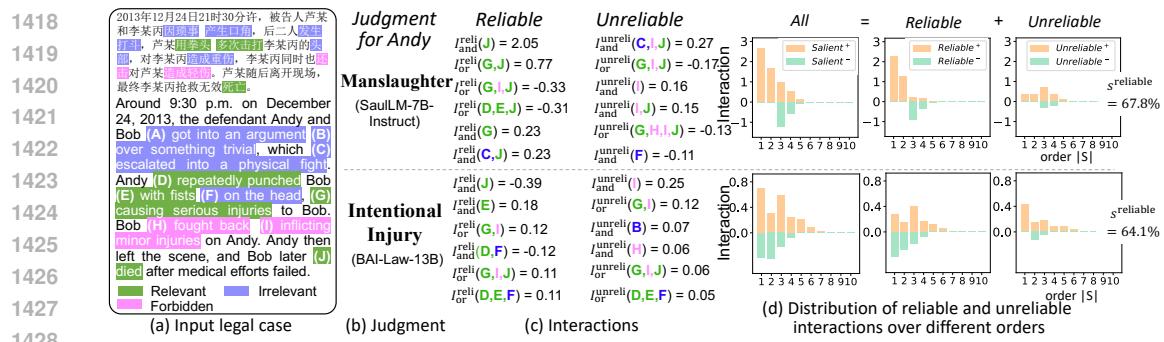


Figure 15: More results of judgments affected by incorrect entity matching. (a) A number of irrelevant tokens were annotated in the legal case, including the time and actions that were not the direct reason for the judgment. Criminal actions of the defendant were annotated as relevant tokens. Criminal actions of the unrelated person were annotated as forbidden tokens. (b) Judgements predicted by the two legal LLMs, which were both correct according to laws of the two countries. (c,d) We measured the reliable and unreliable interaction effects of different orders. The SaulLM-7B-Instruct model used 67.8% reliable interaction effects, while the BAI-Law-13B model encoded 64.1% reliable interaction effects.

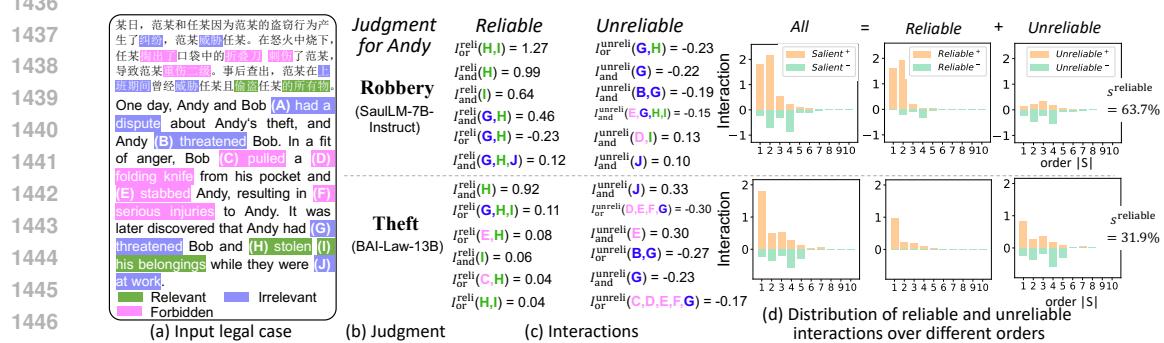


Figure 16: More results of judgments affected by incorrect entity matching. (d) The SaulLM-7B-Instruct model used 63.7% reliable interaction effects, while the BAI-Law-13B model encoded 31.9% reliable interaction effects.

L.5 MORE RESULTS OF JUDGMENTS BIASED BY DISCRIMINATION IN OCCUPATION

Experiment results of judgments biased by discrimination in occupation in Section 3. Figure 21 illustrates additional examples of how occupation influences the judgment of the legal case, which were tested on the SaUMLM-7B-Instruct model. It shows that if we replaced “*a judge*” with law-related occupations, such as “*a lawyer*” and “*a policeman*,” the judgment remained “*robbery*.” Besides, the occupation “*a programmer*” changed the judgment to “*not mentioned*.” The interactions containing

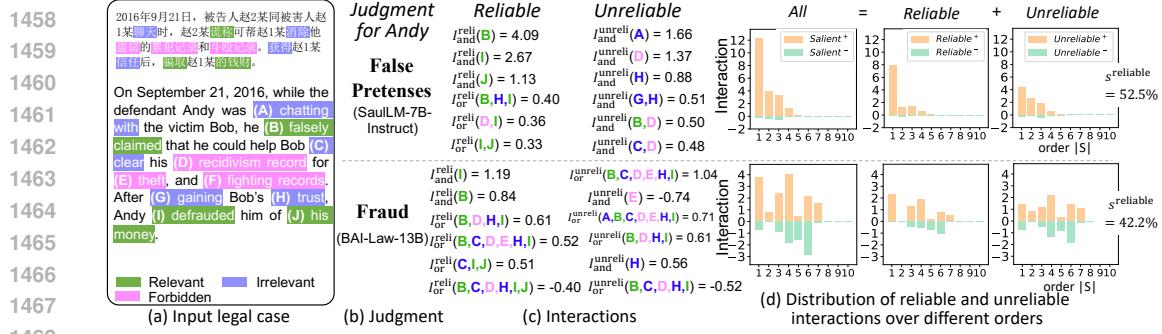


Figure 17: More results of judgments affected by incorrect entity matching. (d) The SaulLM-7B-Instruct model used 52.5% reliable interaction effects, while the BAI-Law-13B model encoded 42.2% reliable interaction effects.

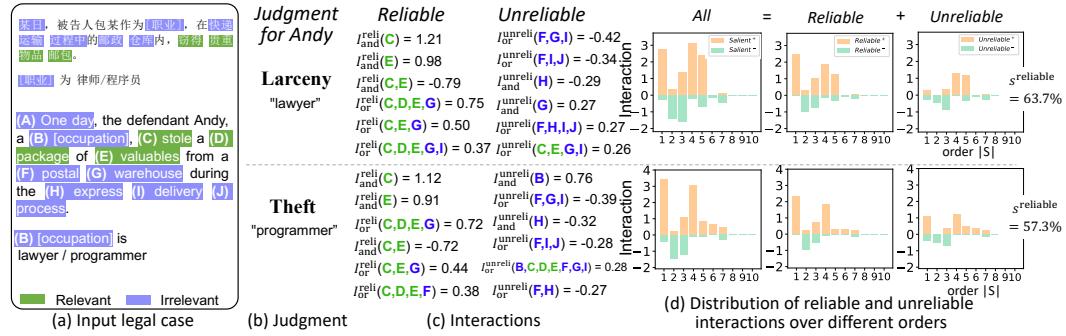
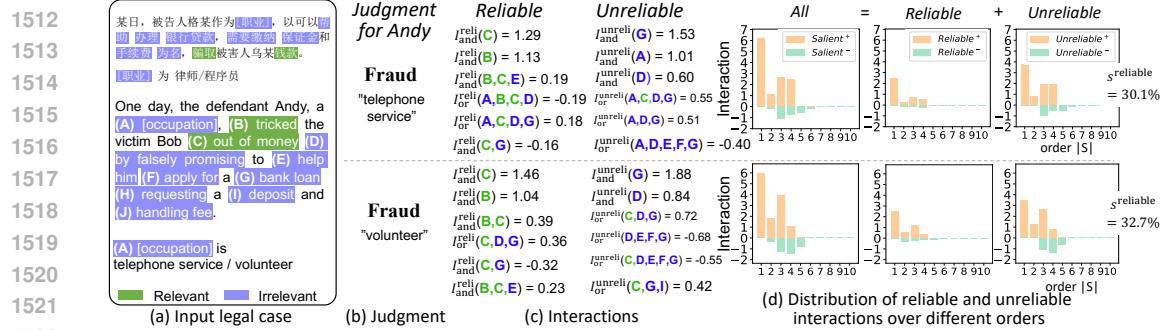


Figure 18: More results of judgments biased by discrimination in occupation. (a) A number of irrelevant tokens were annotated in the legal case, including the occupation, time and actions that are not the direct reason for the judgment. Criminal actions of the defendant were annotated as relevant tokens. (b) The SaulLM-7B-Instruct model predicted the judgment based on the legal case with different occupations, respectively. (c,d) We measured the reliable and unreliable interaction effects of different orders. When the occupation was set to “lawyer,” the LLM used 63.7% reliable interaction effects. In comparison, when the occupation was set to “programmer,” the LLM encoded 57.3% reliable interaction effects.

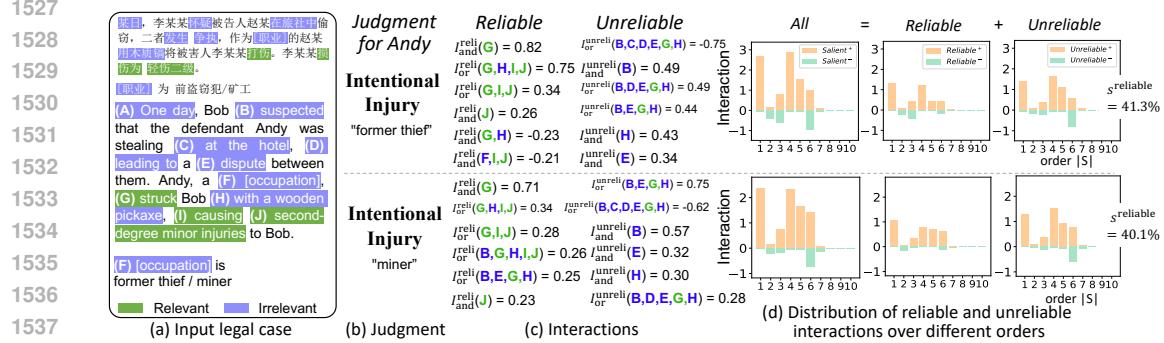
the occupation token (*i.e.*, “*a judge*”, “*a lawyer*”, “*a policeman*”, “*a programmer*”, and “*a volunteer*”) were important factors that changed the ratio of reliable interactions from 81.4% to 84.0%. This suggested that the legal LLM sometimes had considerable occupation bias.

Futhermore, Figure 22 shows the test of the BAI-Law-13B model on the legal case, in which *Andy, the victim with varying occupations, was robbed of his belongings by two suspicious men*. Similarly, we found that the BAI-Law-13B model encoded interactions with the occupation tokens “*a judge*,” which boosted the confidence of the judgment “*robbery*.” More interestingly, if we substituted the occupation tokens “*a judge*” to “*a policeman*,” the interaction of the occupation “*a policeman*” decreased from 0.29 to 0.11. The interactions containing the occupation token were important factors that changed the ratio of reliable interactions from 78.9% to 87.1%. This suggested that the legal LLM sometimes had considerable occupation bias.

More results of judgments biased by discrimination in occupation. We conducted more experiments to show the judgments biased by discrimination in occupation in Figure 18, Figure 19, and Figure 20, respectively. We found that the legal LLM usually used interactions on the occupation information to compute the confidence score $v(\mathbf{x})$. In different legal cases, the ratio of reliable interaction effects to all salient interactions was within the range of 30.1% to 63.7%. In particular, in Figure 18, changing the occupation from “*lawyer*” to “*programmer*” results in a decrease of the reliable interactions from 63.7% to 57.3%. The difference of interactions containing the occupation token changes the model output from “*Larceny*” to “*Theft*.”



1523 Figure 19: More results of judgments biased by discrimination in occupation. (b) The SaulLM-7B-
1524 Instruct model predicted the judgment based on the legal case with different occupations, respectively.
1525 (d) When the occupation was set to “telephone service,” the LLM used 30.1% reliable interaction
1526 effects. In comparison, when the occupation was set to “volunteer,” the LLM encoded 32.7% reliable
1527 interaction effects.



1544 Figure 20: More results of judgments biased by discrimination in occupation. (b) The BAI-Law-13B
1545 model predicted the judgment based on the legal case with different occupations, respectively. (d)
1546 When the occupation was set to “former thief,” the LLM used 41.3% reliable interaction effects. In
1547 comparison, when the occupation was set to “miner,” the LLM encoded 40.1% reliable interaction
1548 effects.

L.6 EXPERIMENT DETAILS OF MASKED SAMPLES

1549 This section discusses how to obtain the masked sample $\mathbf{x}_T, T \subseteq N$. Given the confidence score of a
1550 DNN $v(\mathbf{x})$ and an input sample $\mathbf{x} = [x_1, x_2, \dots, x_n]^\top$ with n input phrases, if we arbitrarily mask
1551 the input sample \mathbf{x} , we can get 2^n different masked samples $\mathbf{x}_T, \forall T \subseteq N$. Specifically, for each
1552 input variable $i \in N \setminus T$, we replace it with the baseline value b_i to represent its masked state. Let us
1553 use baseline values $\mathbf{b} = [b_1, b_2, \dots, b_n]^\top$ to represent the masked state of a masked sample \mathbf{x}_T , i.e.,

$$(\mathbf{x}_T)_i = \begin{cases} x_i, & i \in T \\ b_i, & i \notin T \end{cases} \quad (17)$$

1554 For sentences in a language generation task, the masking of input phrases is performed at the
1555 embedding level. Following the approach of (42; 46), we masked inputs at the embedding level
1556 by transforming sentence tokens into their corresponding embeddings. Given an input sentence
1557 $\mathbf{x} = [x_1, x_2, \dots, x_n]^\top$ with n input tokens, the i -th token x_i is mapped to its embedding $e_i \in \mathbb{R}^d$,
1558 where d is the dimension of the embedding layer. To obtain the masked sample \mathbf{x}_T , if $i \in N \setminus T$,
1559 the embedding is replaced with the (constant) baseline value $b_i \in \mathbb{R}^d$, i.e., $e_i = b_i$. Otherwise, the
1560 embedding remains unchanged, i.e., $e_i = e_i$. Following (40), we trained the (constant) baseline value
1561 $b_i \in \mathbb{R}^d$ to extract the sparsest interactions.

L.7 EXPERIMENT DETAILS OF USING THE SAME DATASET FOR COMPARISON

1563 This section presents the experiment details of using the CAIL2018 dataset (56) to ensure a fair
1564 comparison between two legal LLMs. For the BAI-Law-13B model, a Chinese legal LLM, we directly

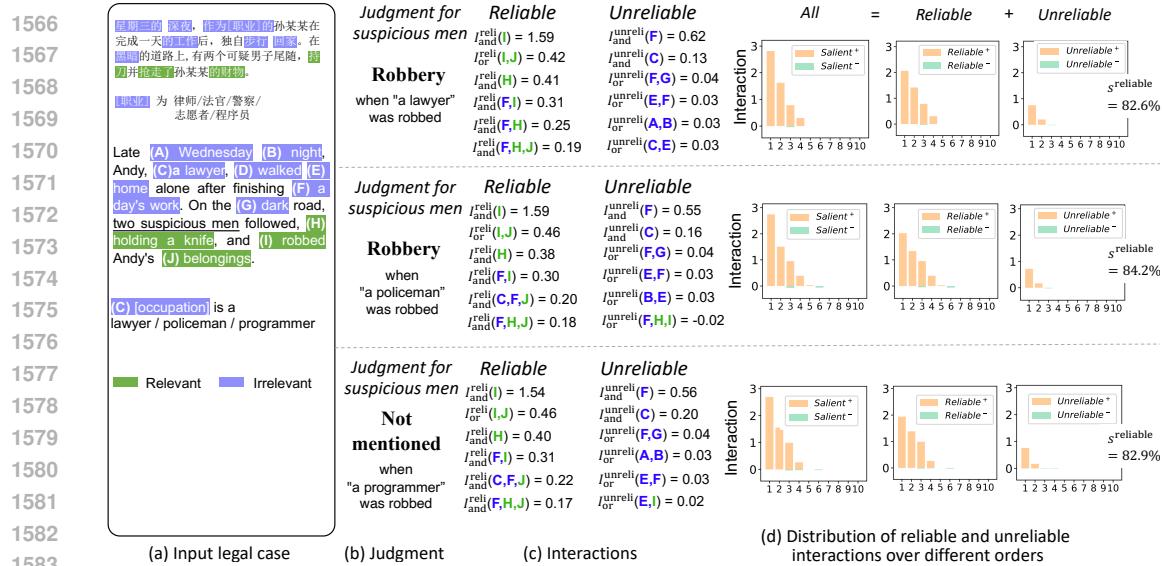


Figure 21: Visualization of judgments biased by discrimination in occupation. (a) A number of irrelevant tokens were annotated in the legal case, including the occupation, time and actions that are not the direct reason for the judgment. Criminal actions of the defendant were annotated as relevant tokens. (b) The SaulLM-7B-Instruct model predicted the judgment based on the legal case with different occupations, respectively. (c,d) We measured the reliable and unreliable interaction effects of different orders. When the occupation was set to “*a lawyer*,” the LLM used 82.6% reliable interaction effects. In comparison, when the occupation was set to “*a policeman*,” the LLM encoded 84.2% reliable interaction effects.

analyzed the Chinese legal cases from the CAIL2018 dataset. In contrast, for the SaullM-7B-Instruct model, an English legal LLM, we translated the Chinese legal cases into English and performed the analysis on the translated cases, to enable fair comparisons. To simplify the explanation and avoid ambiguity, we only explained the inference patterns on legal cases, which were correctly judged by the LLM.

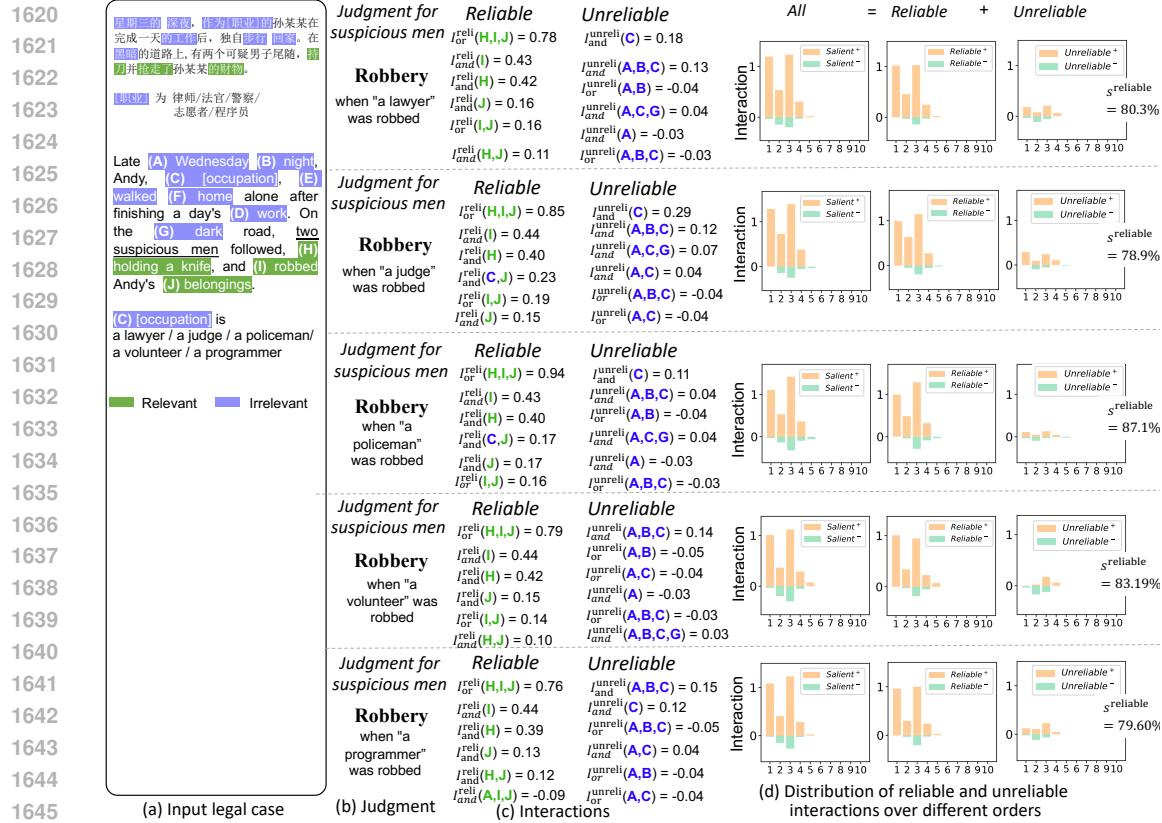
Starting with a complete fact descriptions of the legal case from the CAIL2018 dataset, we first condensed the case by removing descriptive details irrelevant to the judgment, retaining only the most informative tokens, such as the time, location, people, and events. To prompt the model to deliver its judgment, we added a structured prompt designed to extract a concise answer. The format is as follows:

“Question: [Fact descriptions of the case]. What crime did [the defendant] commit? Briefly answer the specific charge in one word. Answer: The specific charge is”

Here, *[Fact descriptions of the case]* is replaced with the details of the specific legal case, and *[the defendant]* is substituted with the name of the defendant.

To identify potential representation flaws behind the seemingly correct language generation results of legal LLMs, we introduced special tokens that were irrelevant to the judgments. For cases to assess if judgments were influenced by unreliable sentimental tokens, we added such tokens to describe actions in the legal case. We then observed whether a substantial portion of the interactions contributing to the confidence score $v(\mathbf{x})$ were associated with semantically irrelevant or unreliable sentimental tokens. Similarly, in cases where we aimed to detect potential bias based on occupation, we included irrelevant occupation-related tokens for the defendants or victims, and analyzed whether the legal LLM leveraged these occupation-related tokens to compute the confidence score $v(\mathbf{x})$ in Eq. (1).

Finally, we show the selection of input phrases for extracting interactions. As discussed in Section 2.1, given an input sample \mathbf{x} with n input phrases, we can extract at most 2^{n+1} AND-OR interactions to compute the confidence score $v(\mathbf{x})$. Consequently, the computational cost for extracting interactions increases exponentially with the number of input phrases. To alleviate this issue, we followed (42; 46) to select a set of tokens as input phrases, while keeping the remaining tokens as a constant background



1674

1675

1676

1677

Segmentation

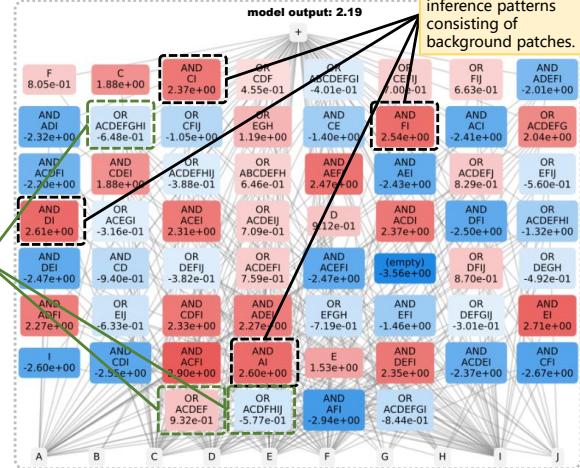
Too complex (high-order) interactions usually represent non-generalizable interaction patterns.

	Positive interactions	Negative interactions
Number	29	31
Sum of interaction effects	48.981	-47.926

Most salient 60 interaction primitives

model output: 2.19

Representing unreliable inference patterns consisting of background patches.



1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

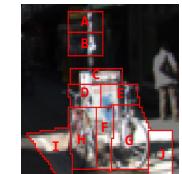
1690

1691

1692

1693

1694

Segmentation

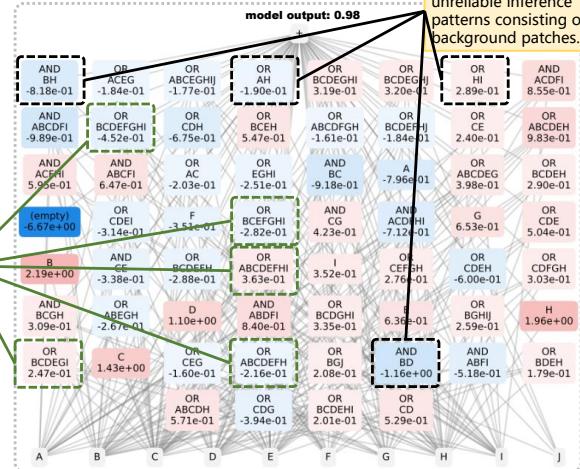
Too complex (high-order) interactions usually represent non-generalizable interaction patterns.

	Positive interactions	Negative interactions
Number	33	27
Sum of interaction effects	19.361	-17.224

Most salient 60 interaction primitives

model output: 0.98

Representing unreliable inference patterns consisting of background patches.



1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

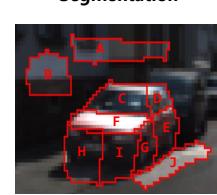
1723

1724

1725

1726

1727

Segmentation

Too complex (high-order) interactions usually represent non-generalizable interaction patterns.

	Positive interactions	Negative interactions
Number	37	23
Sum of interaction effects	26.227	-21.467

Most salient 60 interaction primitives

model output: 6.04

Representing unreliable inference patterns consisting of background patches.

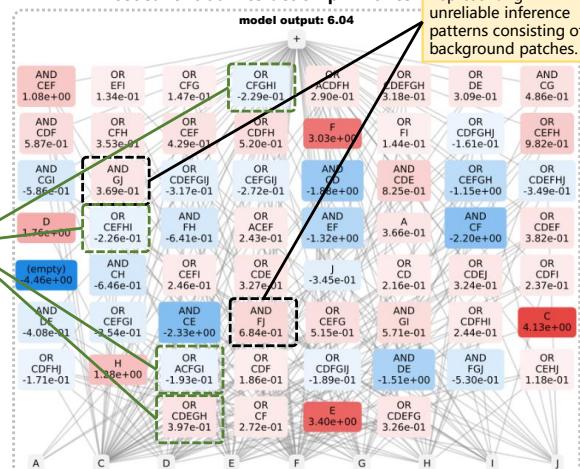


Figure 23: The interactions extracted from a DNN for pedestrian detection.

1728 then compute interactions between these image regions. The visualization of the interactions enables
1729 human to manually check the correctness of interactions encoded by the model.
1730

1731 Let us consider the explanation on the first input image as an example. We can analyze the
1732 representation quality of the DNN from the following three perspectives. (1) The interactions
1733 $I_{\text{AND}}(S = \{C, I\})$, $I_{\text{AND}}(S = \{D, I\})$, $I_{\text{AND}}(S = \{F, I\})$ and $I_{\text{AND}}(S = \{A, I\})$ between pedestrian
1734 patches and background patches may represent unreliable inference patterns. (2) High-order inter-
1735 actions, *e.g.*, $I_{\text{OR}}(S = \{A, C, D, E, F, G, H, I\})$ and $I_{\text{OR}}(S = \{A, C, D, F, H, I, J\})$, usually represent
1736 too complex inference patterns. Complex interactions usually have lower generalization power than
1737 simple interactions. (3) There are 29 positive interactions and 31 negative interactions extracted from
1738 an input image. The offsetting of positive and negative interactions is another problem. Adversarially
1739 robust neural networks usually encode more positive interactions and fewer negative interactions than
normal neural networks.

1740 In addition, the problematic interactions (*e.g.*, interactions on background patches) reflect represen-
1741 tation flaws of a DNN, because it is found by (26) that salient interactions are usually transferable
1742 across different samples. In other words, problematic interactions may affect the inference of a large
1743 number of samples.
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781