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ABSTRACT

Offline preference-based reinforcement learning (PbRL) learns complex behav-
iors from human feedback without environment interaction, but suffers from re-
ward model extrapolation errors when encountering out-of-distribution region dur-
ing policy optimization. These errors arise from distributional shifts between
preference-labeled training trajectories and unlabeled inference data, leading to re-
ward misestimation and suboptimal policies. We introduce SPOT (Subgoal-based
Preference Optimization Through Attention Weight), which mitigates extrapola-
tion errors by leveraging attention-derived subgoals from preference data. SPOT
regularizes the policy toward subgoals observed in preferred trajectories. This ap-
proach constrains learning within the training distribution, reducing reward model
extrapolation errors. Through comprehensive experiments, we demonstrate that
our subgoal-guided approach achieves superior performance compared to exist-
ing methods while reducing extrapolation errors. Our approach preserves fine-
grained credit assignment information while enhancing query efficiency, suggest-
ing promising directions for reliable and practical offline preference-based learn-
ing.

1 INTRODUCTION

Preference-based reinforcement learning (PbRL) has demonstrated remarkable success across di-
verse domains. PbRL learns reward functions directly from human feedback, eliminating the over-
head of manually designing the dense reward functions (Christiano et al., |2017b). This paradigm is
particularly valuable in complex scenarios where defining precise reward functions is challenging,
such as robotic manipulation (Akrour et al., 2011), autonomous driving (Surmann et al., 2025), and
LLMs (Fernandes et al.l 2023; |[Korbak et al.l 2023). With the growing utilization of offline data
in policy optimization (Fang et al., 2022 |[Prudencio et al., [2023)), offline PbRL has emerged as a
significant area of research (Tu et al., 2025).

The standard offline PbRL framework follows a two-stage process. First, a reward model is trained
using pairwise preference-labeled trajectory datasets to approximate step-wise rewards. Second,
this learned reward model is used to label an unlabeled trajectory dataset, which is then utilized for
policy optimization through reinforcement learning algorithms. Offline PbRL faces fundamental
challenge in learning accurate step-wise reward model from coarse-grained trajectory-level prefer-
ences. This challenge stems primarily from extrapolation errors —a critical limitation when reward
models encounter distributional shifts (Yu et al., [ 2022; |Gulcehre et al., [ 2021)). Specifically, trajecto-
ries used for policy optimization often lie outside the distribution of preference-labeled data, creating
out-of-distribution regions where reward model estimates become unreliable. These estimation er-
rors can significantly mislead policy learning by providing over- or underestimated reward signals,
which in turn leads suboptimal performance by either inflated Q-function estimates or deflated value
estimates (Fujimoto et al.,|2019; [Kumar et al., 2020).

Two main directions were suggested to mitigate this challenge: improving reward model reliabil-
ity (Tu et al.,|2025) or completely eliminating them (Hejna & Sadighl [2023; |An et al., 2023)). While
these approaches do reduce reward model extrapolation errors, they overlook the rich information
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contained in preference datasets, dismissing valuable signals that could further alleviate extrapola-
tion error.

Building on recent advances in attention-based reward modeling (Kim et al.| 2023} [Verma & Susa,
2024), we observe that preference-based RL identifies critical states within trajectories through at-
tention mechanisms that assign higher weights to states strongly influencing human preferences. We
conceptualize these high-attention states as subgoals, which act as critical decision points or mile-
stones. These subgoals are anchored within the demonstrated preferred trajectories, which helps to
mitigate extrapolation errors while simultaneously providing auxiliary waypoints that guide reward
learning through additional supervisory structure.

In this work, we propose SPOT (Subgoal-based Preference Optimization Through Attention
Weight), a novel approach that addresses reward model extrapolation errors in offline PbRL. Our
approach improves reward model reliability by utilizing meaningful subgoals extracted from high-
attention weight points on preferred trajectories. We employ a Conditional Variational Autoencoder
(CVAE) to learn the underlying distribution of these preference-aligned subgoals, enabling gener-
ation of contextually appropriate intermediate subgoals for unlabeled trajectories. By incorporat-
ing subgoals as intermediate reward signals, SPOT effectively mitigates extrapolation errors while
preserving fine-grained credit assignment information. SPOT regularizes the policy toward sub-
goals observed in preferred trajectories. Through empirical evaluation, we demonstrates that SPOT
achieves state-of-the-art performance across multiple benchmarks while effectively addressing ex-
trapolation errors and improving reward model reliability.

2 RELATED WORK

Offline Preference-based Reinforcement Learning (PbRL) has emerged as a promising paradigm
that combines human preference feedback with offline RL to learn effective policies without online
environment interaction (Christiano et al., [2017b; Lee et al.l |2021; [Liang et al.l |2022; [Park et al.,
2022). The traditional approach follows a two-stage framework: first learning a reward function
from human preference data, then applying standard reinforcement learning algorithms (Haarnoja
et al.,[2018;|Schulman et al.,[2017) using the learned reward function for policy optimization. Recent
advances have enhanced offline preference learning through non-Markovian reward structures (Kim
et al.,[2023)), contrastive learning frameworks (Hejna et al.), and data augmentation techniques (Choi
et al.,[2025). Modern approaches integrate diffusion models for trajectory optimization (Zhang et al.,
2024) and leverage large language models for preference elicitation (Ouyang et al., 2022} Verma &
Susa, [2024; [Early et al.; 2022; Kang et al.| 2023)).

Existing offline RL suffers from extrapolation error due to distribution mismatch, leading to either
overestimated Q-values for out-of-distribution actions (Gulcehre et al., [2021) or deflated value es-
timates (Yeom et al.,[2024). Various error regularization methods address this challenge, including
BCQ (Fujimoto et al., 2019), CQL (Kumar et al.| 2020), and IQL (Kostrikov et al., 2021), which
constrain learning OOD region. Reward shaping provides another principled approach to address
extrapolation error with policy invariance guarantees (Ng et al., [1999). Techniques include posi-
tive reward shaping for offline dataset conservative exploitation (Sun et al.,|2022), adaptive shaping
mechanisms (Zhang & Tanl [2023} Rezaeifar et al., 2022), and model-based penalties (Yu et al.,
2020). Recent work extends this through language-guided (Goyal et al.,[2019) and goal-conditioned
formulations (Mezghani et al.|[2022)). In offline PbRL, extrapolation errors are further amplified than
in offline RL due to the existence of the reward model. Distribution mismatch between preference-
labeled trajectories and policy optimization trajectories causes biased reward estimates (Yu et al.,
2022; Konyushkova et al.,[2020; |[Hu et al., [2023). Recent approaches address this through trajectory
return regularization (Tu et al.l|2025) or alternative paradigms that circumvent explicit reward mod-
eling (Hejna & Sadigh| [2023; |An et al.||2023) by directly optimizing against preference datasets.

3 PRELIMINARIES

Offline Preference based Reinforcement Learning Traditional offline PbRL approaches employ a
Markov Decision Process (MDP) (Christiano et al., 2017a) framework for preference learning. Let

o) = (sgé), age))7 . (sg), a(}f)), where £ € 0, 1. preferences are collected as triples (o, o, y),
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Subgoal Learning via CVAE Reward Shaping for Offline RL
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Figure 1: Overall architecture of SPOT. Our framework consists of two main stages: (1) Subgoal
Learning via CVAE (left): The Preference Transformer, as a reward model, processes state-action
pairs (s, a;) and produces attention weights w; and rewards r; during reward learning. Subgoal
states S, are identified by applying weight and reward filtering, selecting states with both top K%
attention weights and above-average reward values. The CVAE learns to generate subgoal § con-
ditioned on each intermediate state and action. (2) Reward Shaping for offline RL (right): For
training, the batch dataset is simultaneously processed through both the Preference Transformer to
obtain model rewards r,,, and the CVAE to generate predicted subgoals g. The final reward 7 f;y,4; is
computed by combining the model reward with a shaped reward term derived from cosine similarity
between predicted subgoals and next states, weighted by hyperparameter A.

where y € {0,1,0.5} denotes the preference label: y = 1if o = 0% y = 0if 6 = 0!, and

y = 0.5 for equal preference. The Bradley-Terry model (Bradley & Terryl, [1952)) with Markovian
reward assumption is typically employed (Christiano et al.| [2017a) :

exp(32; Tu(st, at))

Plot = 0% 4] = — (1)
2 ieioy XX,y (st ay))
This approaches are trained using cross-entropy loss with human-provided preference labels y:
Lop = —E (0,01 y)~p [y10g Plot = 0 9] + (1 — y)log Plo? - o5 ¢]] )

Preference Transformer Preference Transformer (PT) (Kim et al. [2023) formulates preference
learning as a non-Markovian reward problem (Bacchus et al., [1996). PT employs a causal trans-
former to process state-action sequences and a preference attention layer to generate non-Markovian
rewards 7 and importance weights w,. Each trajectory segment is processed through a causal trans-
former backbone, followed by a bidirectional attention mechanism that produces both predicted
scalar rewards and associated attention weights at each timestep. The preference prediction is for-
mulated as:

exp (X, w((sh al)iLys ) - #((sh ab)isys )

Plo' = 0%y =
Srcon exp (X w((sh ab) Ly v) - #((sh b))

3)

where the reward function 7, takes into account the trajectory history {(s;, a;)}!_, and the attention
weights w are computed over the previous H steps. This approach enables credit assignment through
importance weights w;.
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4 METHOD

We propose an enhanced offline PbRL framework that integrates attention-driven subgoal discovery
to mitigate extrapolation error. Our approach extends the traditional two-phase PbRL paradigm by
incorporating a novel subgoal learning mechanism in the first phase and leveraging these learned
subgoals for effective reward shaping in the second phase. Our framework addresses the extrapola-
tion error problem by constraining policy learning toward subgoals where reward models produce
unreliable estimates. The framework simultaneously trains a CVAE during reward model learning
and applies the learned subgoal guidance during offline RL training.

4.1 SUBGOAL LEARNING VIiA CVAE
4.1.1 ATTENTION-BASED SUBGOAL IDENTIFICATION

Building upon the Preference Transformer architecture [Kim et al.| (2023), which employs causal
transformers with bidirectional attention layers for credit assignment in preference trajectories, we
leverage attention weights as importance measures to identify critical states within trajectories. The
attention mechanism captures states that most strongly influence human preferences. This attention
weight can capture the temporal dependencies and state importance that are crucial for subgoal
identification.

For a given trajectory segment o = {(s¢,a;)}/L,, we extract attention weights w; through the
preference transformer:

wy = fattention(sta Qg 9) 4)
where fuuention represents the attention mechanism parameterized by 6, producing scalar attention
weights that quantify the importance of each state-action pair in the trajectory.

4.1.2 DUAL-CRITERIA FILTERING

In preferred trajectories that only marginally outperform non-preferred ones, high attention states
are prone to focus on relatively bad states. To avoid selecting less desirable subgoals, we introduce
a dual-criteria filtering mechanism, attention-based and reward-based criteria. The subgoal state set
&g is then constructed by selecting states that satisfy both criterias:

Sg(0; K) = {s¢ | wy = ag(o) Ny > T(0)} )
ak (o) = Quantile; _ o ({witi;) (6)

where a i (o) represents the (100 — K)-th percentile threshold of attention weights within trajectory
o, ensuring we select only the top K% attention states. The reward constraint 7, > (o) with

(o) = % Z@‘Tﬂ 7; selects states that exceed the trajectory’s average reward. This dual-criteria
approach serves a critical role in extrapolation error mitigation by guaranteeing that high-quality

subgoals are derived exclusively from preference-aligned training trajectory segments.

4.1.3 CONDITIONAL VARIATIONAL AUTOENCODER TRAINING

Although our method identifies meaningful subgoals in preferred trajectories, applying them to un-
labeled data presents a key challenge: mapping these waypoints to arbitrary state-action pairs during
policy optimization. To address this, we employ a Conditional Variational Autoencoder (CVAE) that
learns the underlying distribution of preference-aligned subgoals and generates contextually relevant
subgoals conditioned on current state-action. This enables SPOT to provide appropriate intermediate
guidance during policy optimization.

CVAE is trained with state-action-subgoal triplets (s, at, g¢) sampled from preferred trajectories,
where s; and a; is a corresponding state-action pairs between g;—; and g;. The CVAE framework
models the conditional distribution py(g|st, a;) through three components:

* Encoder network: g, (z|g:, s¢, a;) that approximates the posterior distribution
* Prior network: p,(z|s, a;) that models the latent space conditioned on current context
* Decoder network: py(g:|z, s¢, a;) that reconstructs subgoals from latent representations
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The CVAE training objective combines reconstruction accuracy with regularization:

Levag = —Eq(ﬁ(zlgt,st,at) Ungﬂ(gt|Z7 Stvat)] + BDkL (q¢(z|gt7 St at)lel)(Z|5t7 a)) )

To maintain directional consistency between current states and target subgoals, we introduce an

additional cosine similarity loss:
1 gt - gt )
Lom=1 (1 a3/ ®)
2 [1G¢1l1]g¢l

where g; represents the CVAE-generated subgoal and g is the ground-truth subgoal. The complete
training objective is:
Etotal = ECVAE + Esim (9)

The CVAE framework ensures that generated subgoals remain within the training distribution. This
is achieved via the KL divergence term in the objective function, which regularizes the latent space
to prevent the decoder from generating out-of-distribution subgoals.

4.2 REWARD SHAPING FOR OFFLINE RL

4.2.1 SUB-GOAL-GUIDED REWARD AUGMENTATION

The learned CVAE generates contextually relevant sub-goals during offline RL training. For each
state-action pair (s;, a;) in a training batch B = {(s;, a;)}Y;, we generate corresponding subgoals:

gi = Go(si,ai), V(si,a;) €B (10)
where G, represents the trained CVAE decoder network.

To measure progress toward these generated sub-goals, we compute a normalized similarity between
the next state s, and the predicted sub-goal §;:

o
. /A Slgl
m(s), gi) = — I 11
sim(si 95) = ol (an
N sim Sé, Ai +1
rshape(sgagi) = % (12)

The normalization ensures rgpe € [0, 1], providing a consistent scale for reward combination.
The resulting similarity-based reward provides an auxiliary signal that guides the policy toward
preference-aligned subgoals. This mechanism effectively constrains the policy to regions well-
supported by the training data and thereby mitigating catastrophic extrapolation errors.

4.2.2 INTEGRATED REWARD SIGNAL

The final reward is the weighted sum of the original reward model output and the subgoal-based
shaping term:
Tfinal (Si5 @iy ;) = Tmodel (Sis @i) + Ashape (85, Gi) (13)

where A\ € [—1,1] is a carefully chosen hyperparameter that balances the contribution of subgoal
guidance without overwhelming the primary reward signal. This formulation preserves the original
task objectives while providing auxiliary guidance toward meaningful intermediate states.

5 EXPERIMENT

Benchmarks We evaluate our methods comparing with other offline preference-based RL meth-
ods. D4RL Gym Locomotion (Fu et al.,|2020) and Robosuite robomimic dataset (Mandlekar et al.,
2021) are utilized as benchmark dataset. We specifically conduct evaluations across different do-
mains, following prior research (Brockman et al.,|2016;|Zhu et al.l[2025). Furthermore, Meta-World
benchmark experiment is conducted (Yu et al., 2019).

Baselines For comparative analysis, we establish a comprehensive baselines encompassing sev-
eral key approaches in preference-based learning. These include Oracle reward (Ground truth re-
ward from the dataset), Markovian Reward (MR) (Christiano et al.,|2017al)), Preference Transformer
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Table 1: Performance Comparison Across Models and Tasks. We report average normalized scores
from human preference benchmarks derived from (Kim et al.l 2023} Hejna & Sadigh| 2023)). For
DA4RL tasks, hop and walk represent hopper and walker2d. m, r, and e denote medium, replay, and
expert, respectively. In robomimic tasks (lift, can), ph and mh denote proficient- and multi-human
data. Scores are mean = std across 5 seeds. bold indicates top 95% methods. Average performance
across 10 tasks is shown. Note that average of oracle is computed over 8 tasks.

Dataset Oracle MR PT IPL HPL SPOT (ours)
hop-m-r 92.02+7.23 372141253 52.154+2594 7496+579 79.89 £10.01 85.08 + 1.32
hop-m-e 62.10 £30.42 63.60 +2542 7446 +433 42.11 £893 9530+ 10.66 98.73 + 7.50

walk-m-r 6759 +791  71.394+2.66 7385+3.18 47.05+£1524 49.89+10.49 76.89 + 2.46
walk-m-e 108.72 +1.86 110.88 +0.76 110.6 +=0.43 107.78 £0.95 103.14 £2.49 110.06 +0.28

lift-mh 81.62+ 554  95.62+2.23 6846+£10.02 8449+428 8837+3.06 6517+ 12.57
lift-ph 9843 £1.15 8740+10.65 9550+ 1.9 95.81 £3.04 61.04 £7.61 97.12 £ 1.81
can-mh 34304+695 47954229 53.06£14.48 41.12+2.21 35.19£1225 60.55 + 1.65
can-ph 7325+270 51.90+£6.58 4874 £5.82  67.98 £ 3.41 1090 +4.33  63.82+5.64
drawer-open - 86.6 + 14.3 42.8+£29.1 87.64 £ 6.99 83.13£12.64 66.80 £ 18.05
plate-slide - 51.5+11.9 51.0+28 51.18 £6.63  28.73 £12.22 64.0 +4.1
Average 77.25 73.61 74.76 73.24 67.96 78.82
Avg.std 11.89 11.51 13.80 6.95 9.36 7.76

(PT) (Kim et al.,[2023), Inverse Preference Learning (IPL) (Hejna & Sadighl [2023)), and Hindsight
Preference Learning (HPL) (Gao et al.,|2024). We adopt Implicit Q-Learning (IQL) (Kostrikov et al.}
2021) as our core reinforcement learning algorithm, given its established track record in previous re-
search. Each baseline method offers distinct characteristics: MR employs the Bradley-Terry model
for preference-based reward extraction, PT implements a causal transformer architecture for non-
Markovian reward inference, IPL demonstrates reward-free preference learning, and HPL utilizes a
variational autoencoder framework to predict future segments for reward labeling.

Setup The experimental setup utilize a training configuration wherein the importance weight Top-
K% is set to 10, KL divergence term [ is fixed to 1, and the reward coefficient \ is fixed at 1.
Ablation studies about Top-K% at Section[5.2.1]

5.1 BENCHMARK RESULT

Our empirical results demonstrate that reward shaping with predicted subgoals significantly en-
hances the performance of offline Preference-based RL. Table || presents a comprehensive evalua-
tion, confirming the consistent superiority of our approach across multiple benchmarks. In the hop-
per environment, SPOT achieves state-of-the-art performance on both medium-replay and medium-
expert datasets, significantly outperforming existing benchmarks while maintaining notably low
variance. The walker2d environment further validates our method’s effectiveness, exhibiting re-
markable stability across various data distributions. In manipulation tasks, our approach demon-
strates consistent efficacy across different levels of demonstration quality, consistently achieving or
approaching top-tier performance metrics. For meta-world, our method yields modest but meaning-
ful improvements over baseline approaches. Particularly noteworthy is the substantial performance
enhancement in the drawer-open task compared to PT, despite its historically challenging low-reward
characteristics, though it falls short of the absolute peak performance while still maintaining incre-
mental improvements. Importantly, our approach achieves the highest mean performance of 78.82
across all evaluated tasks, substantiating the effectiveness of incorporating attention-guided subgoals
in the offline preference-based reinforcement learning paradigm. Additionally, it demonstrates sig-
nificantly reduced average standard deviation from 13.80 (PT) to 7.76.

5.2 ABLATION STUDY

5.2.1 ANALYSIS OF TOP-K% GUIDEPOINT PERFORMANCE

The analysis of performance across different Top-K% groups over 3 seeds reveals interesting pat-
terns in how the importance weights correlate with performance. In both the hopper-medium-expert-
v2 and Can-mh environments, we observe a clear hierarchical performance pattern that aligns with
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Table 2: Performance analysis across different Top-K%
percentile groups.

Percentile hopper-medium-expert Can-mh

Top 10% (SPOT) 99.37 + 8.35 59.56 + 0.23
Top 10-20% 83.19 +2.85 54.10 + 7.38
Bottom 10-20% 69.90 £ 39.12 50.38 &+ 12.79
Bottom 10% 55.24 +24.39 50.04 £+ 3.67

Table 3: Performance (mean =+ std) of reward shaping on hopper-m-expert-v2 and
walker2d-medium-replay-v2, averaged over 3 seeds.

Env Method Weight ()\)
-1.0 —0.5 —0.1 0.1 0.5 1.0

negative distance 43.09 +40.01 64.32 +44.12 75.12 £ 30.83 49.27 £41.61 55.01 £27.28 86.03 £9.77
hop-m-e potential based  51.01 +45.45 62.54 =41.23 96.03 £ 3.14 84.98 £ 11.87 45.80 £49.24 77.95 £ 36.02
cosine similarity 62.78 + 38.47 44.28 +46.02 56.65 + 33.46 55.85 £42.94 63.89 +51.95 97.36 £+ 10.26

negative distance 19.38 +£6.41 13.93+£1.18 49.80 £19.67 71.23£2.38 0.09+0.62 0.23 £ 0.06
walk-m-r potential based 7547+£220 76.71£1.53 76.15£3.72 75.26+0.98 74.45+541 50.60£17.71
cosine similarity 0.69+1.60 75.83+1.39 74.84+0.78 76.66+1.96 75.30+2.73 77.51+2.60

the percentile rankings. The top 10% group achieves the highest performance, followed closely by
the top 10-20% group. This suggests that the higher importance weights effectively identify crit-
ical subgoal within the trajectories. Notably, there is a substantial performance gap between the
upper and lower percentile groups in both environments. The bottom 10-20% group shows a sec-
ond loweset performance with significantly higher variance in performance, while the bottom 10%
group exhibits the lowest performance compared to other percentile groups. This increasing vari-
ance in lower percentiles suggests that lower attention weight subgoals may lead to more unstable
performance outcomes. These findings suggest that the strategic extraction of subgoals significantly
enhances reinforcement learning outcomes through more effective reward shaping mechanisms.

5.2.2 ANALYSIS OF REWARD SHAPING METHODS AND WEIGHT SELECTION

We conduct comparative analysis on different weight magnitudes (A € [—1, 1]) over three widely-
used reward shaping methods.

1. Negative Distance: the Euclidean distance between current states and predicted subgoals.

2. Potential-based (Ng et al. [1999): Traditionally guaranteeing policy invariance with
ground-truth rewards where policy invariance cannot be ensured with predicted rewards

3. Cosine Similarity: Capturing semantic relationships between states and predicted subgoals

Table [3| demonstrates that cosine similarity achieves superior performance on both environments.
The potential-based method shows good performance on walker but higher variance on hopper,
while negative distance exhibits sensitivity to weight selection with instability on walker. Weight
analysis reveals that positive weights generally yield more stable performance, with weight 1.0
being particularly effective for cosine similarity. This indicates that positive reinforcement toward
subgoals outperforms penalizing deviation, and that semantic relationships provide more informative
guidance than other reward shpaing methods for policy learning.

5.3 EXTRAPOLATION ERROR ANALYSIS IN SPOT

To validate SPOT’s effectiveness at mitigating extrapolation error, we analyze how proximity to
predicted subgoals influences extrapolation errors. We define extrapolation error as the absolute
difference between predicted reward and ground truth reward. Since true ground-truth rewards are
unavailable in real environments, we use human-labeled rewards from the dataset as proxy ground
truth. We measure distributional proximity using cosine similarity between the predicted subgoal
state and the current state. In figure [2a] We evaluate the performance under two distributional set-
tings: in-distribution setting only on the reward model training data, and out-of-distribution (OOD)
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Extrapolation Error (In vs OOD) Method Comparison in OOD
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(a) Extrapolation Error: In-Distribution vs OOD. (b) Extrapolation Error: PT vs. SPOT (OOD)

Figure 2: Extrapolation error analysis based on proximity to predicted subgoals. where a higher
similarity value indicates closer proximity. (a) Extrapolation error of the PT on in-distribution versus
out-of-distribution (OOD) data. (b) A direct comparison of extrapolation error between PT and our
method, SPOT, in OOD setting.

setting on trajectories used during policy optimization that exclude from training data. The re-
sult confirms that out-of-distribution (OOD) scenarios exhibit substantially higher prediction errors
compared to in-distribution data. States with high similarity to subgoals tend to exhibit reduced ex-
trapolation errors. Figure [2bldemonstrates that as cosine similarity approaches 1, the extrapolation
error significantly reduces for both methods. Notably, SPOT consistently outperforms the Prefer-
ence Transformer (PT) baseline, showing substantially lower extrapolation errors across all distance
ranges. Subgoal-guided reward shaping approach effectively reduces this extrapolation gap partic-
ularly in OOD settings compared to PT, demonstrating its robustness in handling distribution shifts
through structured intermediate goal prediction.

5.4 SUBGOAL EXTRACTION CASE STUDY

Figure 3] demonstrates the forward-looking nature of our subgoal extraction mechanism through a
qualitative analysis in the hopper environment. We compare the original observations with their
corresponding predicted subgoals during critical phases of a jumping. During the pre-jump phase
(Figure [3a), the agent exhibits a preparatory stance, while the predicted subgoal (Figure [3b) shows
an optimal jumping with extended limbs and forward momentum. Conversely, during the jump-
ing phase (Figure [3c), when the agent is mid-air, the corresponding subgoal (Figure proac-
tively displays a landing-ready posture with bent joints positioned for safe ground contact. Our case
study clearly shows that critical moments captured via subgoals are well-aligned with human pref-
erences. This temporal offset, where subgoals consistently lead actual execution by approximately
one timestep forward, empirically validates the quality and effectiveness of our subgoal generation
mechanism.

5.5 QUERY EFFICIENCY

Another interesting benefit of SPOT is its query efficiency. We conducted comparative experi-
ments across different query numbers and environments. The results in Table {] demonstrate that
SPOT achieves superior performance, generally in the hopper-medium-expert-v2 environment out-
performing the preference Transformer. In the walker2d-medium-replay-v2 environment, both mod-
els showed consistent performance across varying query lengths, with our enhanced model maintain-
ing stable scores around 75 even as queries decreased from 500 to 50. Even with a query length of
50, it maintains consistent performance, whereas the Preference Transformer shows a performance
decline. This stability and outstanding performance validates our method that subgoal utilization
through CVAE can enhance query efficiency by providing shaped rewards that effectively compen-
sate for reduced preference queries.
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(a) Pre-jump observation  (b) Predicted jumping (c) Mid-air observation (d) Predicted landing

Figure 3: Qualitative analysis of subgoal extraction in the hopper environment. The predicted sub-
goals demonstrate forward-looking behavior: (a-b) optimal jumping configuration predicted during
preparatory phase, and (c-d) landing-ready posture predicted during aerial phase. This temporal an-
ticipation validates the predictive nature of our subgoal generation mechanism.

Table 4: Performance comparison between Preference Transformer and SPOT. The query number
is different for each environment: hopper-medium-expert-v2 uses {100, 50, 30}, while walker2d-
medium-replay-v2 uses {500, 100, 50}.

Environment Model Number of Query Score
N . Transformer 30 68.06 + 4.92
opper-medium-expert
100 99.37 £8.35
SPOT 50 85.99 + 12.20
30 85.09 £ 8.54
e 0 Doz
Transformer 50 71.98 T 4'93
walker2d-medium-replay ’ ’
500 77.51 £ 2.60
SPOT 100 75.87 +2.03
50 75.39 £ 3.32

6 CONCLUSION

Summary We present SPOT (Subgoal-based Policy Optimization through Attention Weight), a
framework that mitigates extrapolation errors in offline preference-based reinforcement learning via
preference-aligned subgoals. Our approach identifies critical decision points derived from attention
weights as subgoals, uses these waypoints to shape rewards, thereby reducing extrapolation error.
Not only does SPOT mitigate extrapolation error but it also outperforms conventional preference-
based methods across diverse benchmarks, validating the efficacy of subgoals. Our findings establish
a promising direction to advance realiability and practical applicability via integrating subgoals with
offline PbRL.

Limitation & Future work While our approach is designed to complement an existing preference
learning framework that provides state-level importance weights, we focus our validation on the
offline setting. Given that offline learning scenarios present more challenging conditions due to
their inherent instabilities and limited exploration capabilities, we specifically chose this setting to
test our method’s fundamental effectiveness. Although our approach could be extended to online
preference learning frameworks such as Hindsight Prior Learning (Verma & Susa [2024), we leave
the exploration of these extensions as future work.
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A DATASETS AND TASKS DETAIL

We conduct experiments on a variety of well-established offline datasets, each encompassing mul-
tiple tasks of differing complexities. Specifically, we utilize Gym Mujoco Locomotion benchmarks,
Robosuite (Robomimic) manipulation tasks, and Meta-World manipulation tasks. Below, we detail
each dataset along with the tasks we examine.

Locomotion. We employ several locomotion tasks from the D4ARL benchmark, particularly focusing
on Hopper and Walker2d. These tasks require controlling simulated robots in an optimal manner. In
Hopper, the objective is to move a one-legged robot forward while balancing speed, energy usage,
and stability. The Walker2d task requires a two-legged robot to walk forward, maximizing forward
distance and survival while minimizing control costs. Both tasks present challenges in maintaining
stability and forward progress. All datasets for these tasks are accessible via D4RL’s provided APIs,
licensed under CC BY 4.0.

Robosuite Robotic Manipulation. Robosuite offers diverse manipulation tasks featuring 7-DoF
robotic arms. In our experiments, we focus on two specific environments, lift and can. The lift
task involves grasping and lifting a cube, while the can task entails picking up a soft-drink can and
placing it into a designated bin. These data are sourced from two distinct types of teleoperation:
one proficient teleoperator (ph) and six teleoperators with varying skill levels (mh). The tasks are
sparsely rewarded, providing non-zero feedback only upon successful task completion or relevant
subgoals.

Meta-World. Meta-World is a popular suite of simulated robotic manipulation tasks, commonly
executed with a Sawyer robotic arm. We focus on three tasks: butfon press, where the arm must
press a button on a surface; drawer open, which requires the arm to pull a drawer open; and plate
slide, where the goal is to push a plate into a slot or cabinet. Each task tests different aspects of
manipulation, such as precision control, grasping, and coordinated motion.

Preference Dataset. We employ preference annotations to generate reward signals for the above
tasks, following methods from offline preference-based Reinforcement Learning |[Kim et al.| (2023);
Hejna & Sadigh| (2023). We utilized baseline implementations from publicly available reposito-
ries. Specifically, for D4ARL and Robosuite, preference annotations were obtained using Preference
Transformerﬂ while for Meta-World tasks, preference data were derived from the IPL frameworkﬂ
These annotations provide pairwise feedback on short segments of trajectories, enabling training of
a reward model even in the absence of explicit numerical rewards.

B EXPERIMENTAL DETAILS

B.1 ALGORITHM IMPLEMENTATIONS

we selects the four kinds of baselines which are mostly well-known and top-performing in offline
preference based reinforcement learning fields. We are explaining the details about baselines and
our methods.

B.1.1 PREFERENCE TRANSFORMER

The architecture of Preference Transformer (PT) consists of a causal transformer with a bidirec-
tional self-attention mechanism. Following the original implementation, we employ a single-layer
architecture with four self-attention heads, which provides an effective balance between computa-
tional efficiency and model performance. The transformer operates on an embedding dimension of
256, processing sequential data while maintaining temporal dependencies through its causal struc-
ture. This implementation entirely follows the original PT architecture Kim et al.| (2023)), ensuring
reproducibility while maintaining computational tractability.

The complete hyperparameter configuration is detailed in Table 5] as depicted inKim et al.|(2023).

"nttps://github.com/csmile-1006/PreferenceTransformer
https://github.com/jhejna/inverse-preference-learning
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Table 5: Hyperparameters of Preference Transformer Kim et al.|(2023)

Hyperparameter Value

Number of layers 1

Number of attention heads 4

Embedding dimension 256

(Casual transformer, Preference attention layer)

Batch size 256

Dropout rate (embedding, attention, residual connection) 0.1

Learning rate 0.0001

Optimizer AdamW [Loshchilov & Hutter (2019)
Optimizer momentum B1=0.9, 8, =0.99
Weight decay 0.0001

Warmup steps 500

Total gradient steps 10K

B.1.2 BASELINE IMPLEMENTATIONS

For comprehensive evaluation, we implemented several baseline approaches. The Markovian Re-
ward (MR) model follows the architecture specified in the original PT paper, utilizing their con-
nected layer design for reward estimation. We maintained consistency with the PT implementation
by adopting identical hyperparameter settings as detailed in the previous section.

We also compared our approach against Inverse Preference Learning (IPL), which is notable for its
ability to operate without explicit reward modeling. For IPL implementation, we adhered to the
original hyperparameter configuration as provided in their public repository. This ensures faithful
reproduction of their reported methodology.

Additionally, we incorporated Human Preference Learning (HPL) as another baseline comparison.
The implementation strictly follows the original authors’ codebaseﬂ maintaining their specified hy-
perparameter settings to ensure accurate representation of their approach. This adherence to original
implementations facilitates fair and reliable comparative analysis across different preference-based
learning methods.

B.1.3 TRAINING DETAILS

Our codebase is implemented upon the same reimplemented GPT with JAX framework as in Pref-
erence Transformer. We utilize comparable hyperparameters throughout all experiments, including
a segment length of 100 and a similar number of preference queries. we trained CVAE with hyper-
parameters listed in Table 6]

For the IQL training, we apply a standard reward normalization process to ensure stable learning.
And we use publicly release IQL setting followed by conventional researches. All experiments are
conducted using JAX [Bradbury et al.| (2018)), running on a single NVIDIA GeForce RTX 1080 Ti
GPU and 8 CPU cores. We train both the learned reward model and IQL policy over 5 random
seeds for each of the tasks. The total training time varies with the complexity of the environment;
however, on average, each reward model requires only a few minutes, while the subsequent IQL
training generally completes within an hour for each dataset. For the Ablation experiments, we
utilized 3 random seed value to get performance results. This parallel training architecture enables
computational efficiency by minimizing additional training overhead for each procedural step. For
the ablation study, we conduct to visualize the correlation between ground truth, PT, and our meth-
ods. we sample 10K samples from dataset to visualize the distribution and compare the correlation
and MSE value between each values.

*http://github.com/typoverflow/WiseRL
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Table 6: Hyperparameters for our CVAE

Hyperparameter Value
Dimension of latent variable z 16

Hidden dimensions (encoder / prior network) [32, 64, 32]
Learning rate 1x10~4
Batch size 256
Posterior / prior distribution Diagonal Gaussian
KL loss term weighting 1.0
training steps 100k
output dim observation dim

C ABLATION STUDIES

C.0.1 AUXILIARY LOSSs FUNCTIONS

To evaluate the effectiveness of our auxiliary cosine similarity loss design in CVAE training, we
conduct ablation studies comparing MSE loss alone against the combination of MSE with cosine
similarity loss. Table [/| demonstrates that the combined auxiliary loss consistently outperforms
MSE-only training across all tested environments. The cosine similarity component provides seman-
tic informations that improve subgoal alignment, particularly benefiting manipulation tasks where
spatial relationships are critical.

Table 7: Performance comparison of auxiliary loss functions

Environment MSE Only MSE + Cosine Similarity
lift-mh 48.07 £16.25 71.19 £15.24
can-mh 39.22 £ 3.53 59.56 £ 0.29
walker2d-medium-expert-v2  109.23 £ 0.25 110.13 £ 0.21
walker2d-medium-replay-v2  73.61 £ 1.23 77.51+3.19

C.1 COMPUTATION TIME

We measured computation time separately for reward-model training and the offline RL phase. In
Table [§] SPOT incurs only a modest overhead—its slight increase in runtime is outweighed by the
performance gains it delivers. By comparison, HPL demands nearly ten times more computation
than either SPOT or PT. Although SPOT introduces an extra training stage, we assume that the
resulting improvements make this overhead entirely acceptable.

Table 8: Training Time Comparison Between Methods

Method Environment Reward Model Training Offline RL Total Time

PT hopper-m-e 0:22:54 (1,374s) 1:03:42 (3,822s) 1:26:36 (5,196s)
SPOT hopper-m-e 0:31:18 (1,878s) 1:05:45 (3,946s) 1:37:03 (5,824s)
HPL hopper-m-e 4:30:37 (16,237s) 5:47:28 (20,848s)  10:18:05 (37,085s)
PT walker-m-r 1:44:17 (6,257s) 1:02:59 (3,780s) 2:47:16 (10,037s)
SPOT walker-m-r 2:07:14 (7,634s) 1:07:57 (4,077s) 3:15:11 (11,7115s)
HPL walker-m-r 4:40:35 (16,835s) 5:49:07 (20,947s)  10:29:42 (37,782s)

C.1.1 ADDITIONAL VISUALIZATION AND QUALITY ASSESSMENT

To evaluate the quality and distribution of generated subgoals, we conduct comprehensive visualiza-
tion analysis using multiple dimensionality reduction techniques and quantitative metrics. Figure []
presents t-SNE, PCA, and UMAP projections of observation embeddings (blue) and subgoal em-
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Figure 4: Latent space visualization of observation embeddings (blue) and subgoal embeddings (red)
in hopper-medium-expert environment using different dimensionality reduction techniques. All vi-
sualizations demonstrate strategic clustering of subgoals at critical decision points while maintaining
semantic consistency with the observation space.

beddings (red) in the hopper-medium-expert environment. The t-SNE visualization reveals a com-
plex, nonlinear manifold structure where subgoal embeddings exhibit strategic clustering in specific
regions, indicating that our CVAE effectively identifies critical state transitions and key decision
points in the task space. The PCA projection demonstrates a more linear trajectory pattern with ob-
servations forming a distinct path from upper left to lower right regions, while subgoal embeddings
concentrate at strategically important locations, particularly at trajectory endpoints. The UMAP vi-
sualization provides complementary insights into the local neighborhood structure, confirming that
generated subgoals maintain semantic consistency with the observation space while focusing on
pivotal states.

To quantitatively assess the quality of our subgoal generation, we employ precision and recall met-
rics following the methodology of (Kynkddnniemi et al., 2019). Our evaluation on the hopper-
medium-expert-v2 environment yields a precision of 0.652 and recall of 0.795, indicating that our
CVAE generates high-quality subgoals with good coverage of the target distribution while maintain-
ing reasonable fidelity. The high recall value demonstrates that our method successfully captures
the diversity of critical states in the expert demonstrations, while the balanced precision score con-
firms that generated subgoals avoid spurious or irrelevant states, validating the effectiveness of our
subgoal extraction mechanism.
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